1 /* $NetBSD: sysv_sem.c,v 1.33 1999/08/25 05:05:49 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Implementation of SVID semaphores 42 * 43 * Author: Daniel Boulet 44 * 45 * This software is provided ``AS IS'' without any warranties of any kind. 46 */ 47 48 #define SYSVSEM 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/kernel.h> 53 #include <sys/proc.h> 54 #include <sys/sem.h> 55 #include <sys/malloc.h> 56 57 #include <sys/mount.h> 58 #include <sys/syscallargs.h> 59 60 int semtot = 0; 61 struct proc *semlock_holder = NULL; 62 63 #ifdef SEM_DEBUG 64 #define SEM_PRINTF(a) printf a 65 #else 66 #define SEM_PRINTF(a) 67 #endif 68 69 void semlock __P((struct proc *)); 70 struct sem_undo *semu_alloc __P((struct proc *)); 71 int semundo_adjust __P((struct proc *, struct sem_undo **, int, int, int)); 72 void semundo_clear __P((int, int)); 73 74 void 75 seminit() 76 { 77 register int i; 78 79 if (sema == NULL) 80 panic("sema is NULL"); 81 if (semu == NULL) 82 panic("semu is NULL"); 83 84 for (i = 0; i < seminfo.semmni; i++) { 85 sema[i]._sem_base = 0; 86 sema[i].sem_perm.mode = 0; 87 } 88 for (i = 0; i < seminfo.semmnu; i++) { 89 register struct sem_undo *suptr = SEMU(i); 90 suptr->un_proc = NULL; 91 } 92 semu_list = NULL; 93 } 94 95 void 96 semlock(p) 97 struct proc *p; 98 { 99 100 while (semlock_holder != NULL && semlock_holder != p) 101 sleep((caddr_t)&semlock_holder, (PZERO - 4)); 102 } 103 104 /* 105 * Lock or unlock the entire semaphore facility. 106 * 107 * This will probably eventually evolve into a general purpose semaphore 108 * facility status enquiry mechanism (I don't like the "read /dev/kmem" 109 * approach currently taken by ipcs and the amount of info that we want 110 * to be able to extract for ipcs is probably beyond the capability of 111 * the getkerninfo facility. 112 * 113 * At the time that the current version of semconfig was written, ipcs is 114 * the only user of the semconfig facility. It uses it to ensure that the 115 * semaphore facility data structures remain static while it fishes around 116 * in /dev/kmem. 117 */ 118 119 int 120 sys_semconfig(p, v, retval) 121 struct proc *p; 122 void *v; 123 register_t *retval; 124 { 125 struct sys_semconfig_args /* { 126 syscallarg(int) flag; 127 } */ *uap = v; 128 int eval = 0; 129 130 semlock(p); 131 132 switch (SCARG(uap, flag)) { 133 case SEM_CONFIG_FREEZE: 134 semlock_holder = p; 135 break; 136 137 case SEM_CONFIG_THAW: 138 semlock_holder = NULL; 139 wakeup((caddr_t)&semlock_holder); 140 break; 141 142 default: 143 printf( 144 "semconfig: unknown flag parameter value (%d) - ignored\n", 145 SCARG(uap, flag)); 146 eval = EINVAL; 147 break; 148 } 149 150 *retval = 0; 151 return(eval); 152 } 153 154 /* 155 * Allocate a new sem_undo structure for a process 156 * (returns ptr to structure or NULL if no more room) 157 */ 158 159 struct sem_undo * 160 semu_alloc(p) 161 struct proc *p; 162 { 163 register int i; 164 register struct sem_undo *suptr; 165 register struct sem_undo **supptr; 166 int attempt; 167 168 /* 169 * Try twice to allocate something. 170 * (we'll purge any empty structures after the first pass so 171 * two passes are always enough) 172 */ 173 174 for (attempt = 0; attempt < 2; attempt++) { 175 /* 176 * Look for a free structure. 177 * Fill it in and return it if we find one. 178 */ 179 180 for (i = 0; i < seminfo.semmnu; i++) { 181 suptr = SEMU(i); 182 if (suptr->un_proc == NULL) { 183 suptr->un_next = semu_list; 184 semu_list = suptr; 185 suptr->un_cnt = 0; 186 suptr->un_proc = p; 187 return(suptr); 188 } 189 } 190 191 /* 192 * We didn't find a free one, if this is the first attempt 193 * then try to free some structures. 194 */ 195 196 if (attempt == 0) { 197 /* All the structures are in use - try to free some */ 198 int did_something = 0; 199 200 supptr = &semu_list; 201 while ((suptr = *supptr) != NULL) { 202 if (suptr->un_cnt == 0) { 203 suptr->un_proc = NULL; 204 *supptr = suptr->un_next; 205 did_something = 1; 206 } else 207 supptr = &(suptr->un_next); 208 } 209 210 /* If we didn't free anything then just give-up */ 211 if (!did_something) 212 return(NULL); 213 } else { 214 /* 215 * The second pass failed even though we freed 216 * something after the first pass! 217 * This is IMPOSSIBLE! 218 */ 219 panic("semu_alloc - second attempt failed"); 220 } 221 } 222 return NULL; 223 } 224 225 /* 226 * Adjust a particular entry for a particular proc 227 */ 228 229 int 230 semundo_adjust(p, supptr, semid, semnum, adjval) 231 register struct proc *p; 232 struct sem_undo **supptr; 233 int semid, semnum; 234 int adjval; 235 { 236 register struct sem_undo *suptr; 237 register struct undo *sunptr; 238 int i; 239 240 /* Look for and remember the sem_undo if the caller doesn't provide 241 it */ 242 243 suptr = *supptr; 244 if (suptr == NULL) { 245 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) { 246 if (suptr->un_proc == p) { 247 *supptr = suptr; 248 break; 249 } 250 } 251 if (suptr == NULL) { 252 if (adjval == 0) 253 return(0); 254 suptr = semu_alloc(p); 255 if (suptr == NULL) 256 return(ENOSPC); 257 *supptr = suptr; 258 } 259 } 260 261 /* 262 * Look for the requested entry and adjust it (delete if adjval becomes 263 * 0). 264 */ 265 sunptr = &suptr->un_ent[0]; 266 for (i = 0; i < suptr->un_cnt; i++, sunptr++) { 267 if (sunptr->un_id != semid || sunptr->un_num != semnum) 268 continue; 269 if (adjval == 0) 270 sunptr->un_adjval = 0; 271 else 272 sunptr->un_adjval += adjval; 273 if (sunptr->un_adjval == 0) { 274 suptr->un_cnt--; 275 if (i < suptr->un_cnt) 276 suptr->un_ent[i] = 277 suptr->un_ent[suptr->un_cnt]; 278 } 279 return(0); 280 } 281 282 /* Didn't find the right entry - create it */ 283 if (adjval == 0) 284 return(0); 285 if (suptr->un_cnt == SEMUME) 286 return(EINVAL); 287 288 sunptr = &suptr->un_ent[suptr->un_cnt]; 289 suptr->un_cnt++; 290 sunptr->un_adjval = adjval; 291 sunptr->un_id = semid; 292 sunptr->un_num = semnum; 293 return(0); 294 } 295 296 void 297 semundo_clear(semid, semnum) 298 int semid, semnum; 299 { 300 register struct sem_undo *suptr; 301 302 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) { 303 register struct undo *sunptr; 304 register int i; 305 306 sunptr = &suptr->un_ent[0]; 307 for (i = 0; i < suptr->un_cnt; i++, sunptr++) { 308 if (sunptr->un_id == semid) { 309 if (semnum == -1 || sunptr->un_num == semnum) { 310 suptr->un_cnt--; 311 if (i < suptr->un_cnt) { 312 suptr->un_ent[i] = 313 suptr->un_ent[suptr->un_cnt]; 314 i--, sunptr--; 315 } 316 } 317 if (semnum != -1) 318 break; 319 } 320 } 321 } 322 } 323 324 int 325 sys___semctl13(p, v, retval) 326 struct proc *p; 327 void *v; 328 register_t *retval; 329 { 330 struct sys___semctl13_args /* { 331 syscallarg(int) semid; 332 syscallarg(int) semnum; 333 syscallarg(int) cmd; 334 syscallarg(union __semun) arg; 335 } */ *uap = v; 336 struct semid_ds sembuf; 337 int cmd, error; 338 void *pass_arg = NULL; 339 340 cmd = SCARG(uap, cmd); 341 342 switch (cmd) { 343 case IPC_SET: 344 case IPC_STAT: 345 pass_arg = &sembuf; 346 break; 347 348 case GETALL: 349 case SETVAL: 350 case SETALL: 351 pass_arg = &SCARG(uap, arg); 352 break; 353 } 354 355 if (cmd == IPC_SET) { 356 error = copyin(SCARG(uap, arg).buf, &sembuf, sizeof(sembuf)); 357 if (error) 358 return (error); 359 } 360 361 error = semctl1(p, SCARG(uap, semid), SCARG(uap, semnum), cmd, 362 pass_arg, retval); 363 364 if (error == 0 && cmd == IPC_STAT) 365 error = copyout(&sembuf, SCARG(uap, arg).buf, sizeof(sembuf)); 366 367 return (error); 368 } 369 370 int 371 semctl1(p, semid, semnum, cmd, v, retval) 372 struct proc *p; 373 int semid, semnum, cmd; 374 void *v; 375 register_t *retval; 376 { 377 struct ucred *cred = p->p_ucred; 378 union __semun *arg = v; 379 struct semid_ds *sembuf = v, *semaptr; 380 int i, error, ix; 381 382 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n", 383 semid, semnum, cmd, v)); 384 385 semlock(p); 386 387 ix = IPCID_TO_IX(semid); 388 if (ix < 0 || ix >= seminfo.semmsl) 389 return (EINVAL); 390 391 semaptr = &sema[ix]; 392 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || 393 semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) 394 return (EINVAL); 395 396 switch (cmd) { 397 case IPC_RMID: 398 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0) 399 return (error); 400 semaptr->sem_perm.cuid = cred->cr_uid; 401 semaptr->sem_perm.uid = cred->cr_uid; 402 semtot -= semaptr->sem_nsems; 403 for (i = semaptr->_sem_base - sem; i < semtot; i++) 404 sem[i] = sem[i + semaptr->sem_nsems]; 405 for (i = 0; i < seminfo.semmni; i++) { 406 if ((sema[i].sem_perm.mode & SEM_ALLOC) && 407 sema[i]._sem_base > semaptr->_sem_base) 408 sema[i]._sem_base -= semaptr->sem_nsems; 409 } 410 semaptr->sem_perm.mode = 0; 411 semundo_clear(ix, -1); 412 wakeup(semaptr); 413 break; 414 415 case IPC_SET: 416 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M))) 417 return (error); 418 semaptr->sem_perm.uid = sembuf->sem_perm.uid; 419 semaptr->sem_perm.gid = sembuf->sem_perm.gid; 420 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) | 421 (sembuf->sem_perm.mode & 0777); 422 semaptr->sem_ctime = time.tv_sec; 423 break; 424 425 case IPC_STAT: 426 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) 427 return (error); 428 memcpy(sembuf, semaptr, sizeof(struct semid_ds)); 429 break; 430 431 case GETNCNT: 432 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) 433 return (error); 434 if (semnum < 0 || semnum >= semaptr->sem_nsems) 435 return (EINVAL); 436 *retval = semaptr->_sem_base[semnum].semncnt; 437 break; 438 439 case GETPID: 440 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) 441 return (error); 442 if (semnum < 0 || semnum >= semaptr->sem_nsems) 443 return (EINVAL); 444 *retval = semaptr->_sem_base[semnum].sempid; 445 break; 446 447 case GETVAL: 448 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) 449 return (error); 450 if (semnum < 0 || semnum >= semaptr->sem_nsems) 451 return (EINVAL); 452 *retval = semaptr->_sem_base[semnum].semval; 453 break; 454 455 case GETALL: 456 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) 457 return (error); 458 for (i = 0; i < semaptr->sem_nsems; i++) { 459 error = copyout(&semaptr->_sem_base[i].semval, 460 &arg->array[i], sizeof(arg->array[i])); 461 if (error != 0) 462 break; 463 } 464 break; 465 466 case GETZCNT: 467 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R))) 468 return (error); 469 if (semnum < 0 || semnum >= semaptr->sem_nsems) 470 return (EINVAL); 471 *retval = semaptr->_sem_base[semnum].semzcnt; 472 break; 473 474 case SETVAL: 475 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) 476 return (error); 477 if (semnum < 0 || semnum >= semaptr->sem_nsems) 478 return (EINVAL); 479 semaptr->_sem_base[semnum].semval = arg->val; 480 semundo_clear(ix, semnum); 481 wakeup(semaptr); 482 break; 483 484 case SETALL: 485 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) 486 return (error); 487 for (i = 0; i < semaptr->sem_nsems; i++) { 488 error = copyin(&arg->array[i], 489 &semaptr->_sem_base[i].semval, 490 sizeof(arg->array[i])); 491 if (error != 0) 492 break; 493 } 494 semundo_clear(ix, -1); 495 wakeup(semaptr); 496 break; 497 498 default: 499 return (EINVAL); 500 } 501 502 return (error); 503 } 504 505 int 506 sys_semget(p, v, retval) 507 struct proc *p; 508 void *v; 509 register_t *retval; 510 { 511 register struct sys_semget_args /* { 512 syscallarg(key_t) key; 513 syscallarg(int) nsems; 514 syscallarg(int) semflg; 515 } */ *uap = v; 516 int semid, eval; 517 int key = SCARG(uap, key); 518 int nsems = SCARG(uap, nsems); 519 int semflg = SCARG(uap, semflg); 520 struct ucred *cred = p->p_ucred; 521 522 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg)); 523 524 semlock(p); 525 526 if (key != IPC_PRIVATE) { 527 for (semid = 0; semid < seminfo.semmni; semid++) { 528 if ((sema[semid].sem_perm.mode & SEM_ALLOC) && 529 sema[semid].sem_perm._key == key) 530 break; 531 } 532 if (semid < seminfo.semmni) { 533 SEM_PRINTF(("found public key\n")); 534 if ((eval = ipcperm(cred, &sema[semid].sem_perm, 535 semflg & 0700))) 536 return(eval); 537 if (nsems > 0 && sema[semid].sem_nsems < nsems) { 538 SEM_PRINTF(("too small\n")); 539 return(EINVAL); 540 } 541 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) { 542 SEM_PRINTF(("not exclusive\n")); 543 return(EEXIST); 544 } 545 goto found; 546 } 547 } 548 549 SEM_PRINTF(("need to allocate the semid_ds\n")); 550 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) { 551 if (nsems <= 0 || nsems > seminfo.semmsl) { 552 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems, 553 seminfo.semmsl)); 554 return(EINVAL); 555 } 556 if (nsems > seminfo.semmns - semtot) { 557 SEM_PRINTF(("not enough semaphores left (need %d, got %d)\n", 558 nsems, seminfo.semmns - semtot)); 559 return(ENOSPC); 560 } 561 for (semid = 0; semid < seminfo.semmni; semid++) { 562 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0) 563 break; 564 } 565 if (semid == seminfo.semmni) { 566 SEM_PRINTF(("no more semid_ds's available\n")); 567 return(ENOSPC); 568 } 569 SEM_PRINTF(("semid %d is available\n", semid)); 570 sema[semid].sem_perm._key = key; 571 sema[semid].sem_perm.cuid = cred->cr_uid; 572 sema[semid].sem_perm.uid = cred->cr_uid; 573 sema[semid].sem_perm.cgid = cred->cr_gid; 574 sema[semid].sem_perm.gid = cred->cr_gid; 575 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC; 576 sema[semid].sem_perm._seq = 577 (sema[semid].sem_perm._seq + 1) & 0x7fff; 578 sema[semid].sem_nsems = nsems; 579 sema[semid].sem_otime = 0; 580 sema[semid].sem_ctime = time.tv_sec; 581 sema[semid]._sem_base = &sem[semtot]; 582 semtot += nsems; 583 memset(sema[semid]._sem_base, 0, 584 sizeof(sema[semid]._sem_base[0])*nsems); 585 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base, 586 &sem[semtot])); 587 } else { 588 SEM_PRINTF(("didn't find it and wasn't asked to create it\n")); 589 return(ENOENT); 590 } 591 592 found: 593 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm); 594 return(0); 595 } 596 597 int 598 sys_semop(p, v, retval) 599 struct proc *p; 600 void *v; 601 register_t *retval; 602 { 603 register struct sys_semop_args /* { 604 syscallarg(int) semid; 605 syscallarg(struct sembuf *) sops; 606 syscallarg(size_t) nsops; 607 } */ *uap = v; 608 int semid = SCARG(uap, semid); 609 int nsops = SCARG(uap, nsops); 610 struct sembuf sops[MAX_SOPS]; 611 register struct semid_ds *semaptr; 612 register struct sembuf *sopptr = NULL; 613 register struct __sem *semptr = NULL; 614 struct sem_undo *suptr = NULL; 615 struct ucred *cred = p->p_ucred; 616 int i, j, eval; 617 int do_wakeup, do_undos; 618 619 SEM_PRINTF(("call to semop(%d, %p, %d)\n", semid, sops, nsops)); 620 621 semlock(p); 622 623 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */ 624 625 if (semid < 0 || semid >= seminfo.semmsl) 626 return(EINVAL); 627 628 semaptr = &sema[semid]; 629 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || 630 semaptr->sem_perm._seq != IPCID_TO_SEQ(SCARG(uap, semid))) 631 return(EINVAL); 632 633 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W))) { 634 SEM_PRINTF(("eval = %d from ipaccess\n", eval)); 635 return(eval); 636 } 637 638 if (nsops > MAX_SOPS) { 639 SEM_PRINTF(("too many sops (max=%d, nsops=%d)\n", MAX_SOPS, nsops)); 640 return(E2BIG); 641 } 642 643 if ((eval = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]))) 644 != 0) { 645 SEM_PRINTF(("eval = %d from copyin(%p, %p, %d)\n", eval, 646 SCARG(uap, sops), &sops, nsops * sizeof(sops[0]))); 647 return(eval); 648 } 649 650 /* 651 * Loop trying to satisfy the vector of requests. 652 * If we reach a point where we must wait, any requests already 653 * performed are rolled back and we go to sleep until some other 654 * process wakes us up. At this point, we start all over again. 655 * 656 * This ensures that from the perspective of other tasks, a set 657 * of requests is atomic (never partially satisfied). 658 */ 659 do_undos = 0; 660 661 for (;;) { 662 do_wakeup = 0; 663 664 for (i = 0; i < nsops; i++) { 665 sopptr = &sops[i]; 666 667 if (sopptr->sem_num >= semaptr->sem_nsems) 668 return(EFBIG); 669 670 semptr = &semaptr->_sem_base[sopptr->sem_num]; 671 672 SEM_PRINTF(("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n", 673 semaptr, semaptr->_sem_base, semptr, 674 sopptr->sem_num, semptr->semval, sopptr->sem_op, 675 (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait")); 676 677 if (sopptr->sem_op < 0) { 678 if ((int)(semptr->semval + 679 sopptr->sem_op) < 0) { 680 SEM_PRINTF(("semop: can't do it now\n")); 681 break; 682 } else { 683 semptr->semval += sopptr->sem_op; 684 if (semptr->semval == 0 && 685 semptr->semzcnt > 0) 686 do_wakeup = 1; 687 } 688 if (sopptr->sem_flg & SEM_UNDO) 689 do_undos = 1; 690 } else if (sopptr->sem_op == 0) { 691 if (semptr->semval > 0) { 692 SEM_PRINTF(("semop: not zero now\n")); 693 break; 694 } 695 } else { 696 if (semptr->semncnt > 0) 697 do_wakeup = 1; 698 semptr->semval += sopptr->sem_op; 699 if (sopptr->sem_flg & SEM_UNDO) 700 do_undos = 1; 701 } 702 } 703 704 /* 705 * Did we get through the entire vector? 706 */ 707 if (i >= nsops) 708 goto done; 709 710 /* 711 * No ... rollback anything that we've already done 712 */ 713 SEM_PRINTF(("semop: rollback 0 through %d\n", i-1)); 714 for (j = 0; j < i; j++) 715 semaptr->_sem_base[sops[j].sem_num].semval -= 716 sops[j].sem_op; 717 718 /* 719 * If the request that we couldn't satisfy has the 720 * NOWAIT flag set then return with EAGAIN. 721 */ 722 if (sopptr->sem_flg & IPC_NOWAIT) 723 return(EAGAIN); 724 725 if (sopptr->sem_op == 0) 726 semptr->semzcnt++; 727 else 728 semptr->semncnt++; 729 730 SEM_PRINTF(("semop: good night!\n")); 731 eval = tsleep((caddr_t)semaptr, (PZERO - 4) | PCATCH, 732 "semwait", 0); 733 SEM_PRINTF(("semop: good morning (eval=%d)!\n", eval)); 734 735 suptr = NULL; /* sem_undo may have been reallocated */ 736 737 if (eval != 0) 738 return(EINTR); 739 SEM_PRINTF(("semop: good morning!\n")); 740 741 /* 742 * Make sure that the semaphore still exists 743 */ 744 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || 745 semaptr->sem_perm._seq != IPCID_TO_SEQ(SCARG(uap, semid))) { 746 /* The man page says to return EIDRM. */ 747 /* Unfortunately, BSD doesn't define that code! */ 748 #ifdef EIDRM 749 return(EIDRM); 750 #else 751 return(EINVAL); 752 #endif 753 } 754 755 /* 756 * The semaphore is still alive. Readjust the count of 757 * waiting processes. 758 */ 759 if (sopptr->sem_op == 0) 760 semptr->semzcnt--; 761 else 762 semptr->semncnt--; 763 } 764 765 done: 766 /* 767 * Process any SEM_UNDO requests. 768 */ 769 if (do_undos) { 770 for (i = 0; i < nsops; i++) { 771 /* 772 * We only need to deal with SEM_UNDO's for non-zero 773 * op's. 774 */ 775 int adjval; 776 777 if ((sops[i].sem_flg & SEM_UNDO) == 0) 778 continue; 779 adjval = sops[i].sem_op; 780 if (adjval == 0) 781 continue; 782 eval = semundo_adjust(p, &suptr, semid, 783 sops[i].sem_num, -adjval); 784 if (eval == 0) 785 continue; 786 787 /* 788 * Oh-Oh! We ran out of either sem_undo's or undo's. 789 * Rollback the adjustments to this point and then 790 * rollback the semaphore ups and down so we can return 791 * with an error with all structures restored. We 792 * rollback the undo's in the exact reverse order that 793 * we applied them. This guarantees that we won't run 794 * out of space as we roll things back out. 795 */ 796 for (j = i - 1; j >= 0; j--) { 797 if ((sops[j].sem_flg & SEM_UNDO) == 0) 798 continue; 799 adjval = sops[j].sem_op; 800 if (adjval == 0) 801 continue; 802 if (semundo_adjust(p, &suptr, semid, 803 sops[j].sem_num, adjval) != 0) 804 panic("semop - can't undo undos"); 805 } 806 807 for (j = 0; j < nsops; j++) 808 semaptr->_sem_base[sops[j].sem_num].semval -= 809 sops[j].sem_op; 810 811 SEM_PRINTF(("eval = %d from semundo_adjust\n", eval)); 812 return(eval); 813 } /* loop through the sops */ 814 } /* if (do_undos) */ 815 816 /* We're definitely done - set the sempid's */ 817 for (i = 0; i < nsops; i++) { 818 sopptr = &sops[i]; 819 semptr = &semaptr->_sem_base[sopptr->sem_num]; 820 semptr->sempid = p->p_pid; 821 } 822 823 /* Do a wakeup if any semaphore was up'd. */ 824 if (do_wakeup) { 825 SEM_PRINTF(("semop: doing wakeup\n")); 826 #ifdef SEM_WAKEUP 827 sem_wakeup((caddr_t)semaptr); 828 #else 829 wakeup((caddr_t)semaptr); 830 #endif 831 SEM_PRINTF(("semop: back from wakeup\n")); 832 } 833 SEM_PRINTF(("semop: done\n")); 834 *retval = 0; 835 return(0); 836 } 837 838 /* 839 * Go through the undo structures for this process and apply the adjustments to 840 * semaphores. 841 */ 842 void 843 semexit(p) 844 struct proc *p; 845 { 846 register struct sem_undo *suptr; 847 register struct sem_undo **supptr; 848 849 /* 850 * Go through the chain of undo vectors looking for one associated with 851 * this process. 852 */ 853 854 for (supptr = &semu_list; (suptr = *supptr) != NULL; 855 supptr = &suptr->un_next) { 856 if (suptr->un_proc == p) 857 break; 858 } 859 860 /* 861 * There are a few possibilities to consider here ... 862 * 863 * 1) The semaphore facility isn't currently locked. In this case, 864 * this call should proceed normally. 865 * 2) The semaphore facility is locked by this process (i.e. the one 866 * that is exiting). In this case, this call should proceed as 867 * usual and the facility should be unlocked at the end of this 868 * routine (since the locker is exiting). 869 * 3) The semaphore facility is locked by some other process and this 870 * process doesn't have an undo structure allocated for it. In this 871 * case, this call should proceed normally (i.e. not accomplish 872 * anything and, most importantly, not block since that is 873 * unnecessary and could result in a LOT of processes blocking in 874 * here if the facility is locked for a long time). 875 * 4) The semaphore facility is locked by some other process and this 876 * process has an undo structure allocated for it. In this case, 877 * this call should block until the facility has been unlocked since 878 * the holder of the lock may be examining this process's proc entry 879 * (the ipcs utility does this when printing out the information 880 * from the allocated sem undo elements). 881 * 882 * This leads to the conclusion that we should not block unless we 883 * discover that the someone else has the semaphore facility locked and 884 * this process has an undo structure. Let's do that... 885 * 886 * Note that we do this in a separate pass from the one that processes 887 * any existing undo structure since we don't want to risk blocking at 888 * that time (it would make the actual unlinking of the element from 889 * the chain of allocated undo structures rather messy). 890 */ 891 892 /* 893 * Does someone else hold the semaphore facility's lock? 894 */ 895 896 if (semlock_holder != NULL && semlock_holder != p) { 897 /* 898 * Yes (i.e. we are in case 3 or 4). 899 * 900 * If we didn't find an undo vector associated with this 901 * process than we can just return (i.e. we are in case 3). 902 * 903 * Note that we know that someone else is holding the lock so 904 * we don't even have to see if we're holding it... 905 */ 906 907 if (suptr == NULL) 908 return; 909 910 /* 911 * We are in case 4. 912 * 913 * Go to sleep as long as someone else is locking the semaphore 914 * facility (note that we won't get here if we are holding the 915 * lock so we don't need to check for that possibility). 916 */ 917 918 while (semlock_holder != NULL) 919 sleep((caddr_t)&semlock_holder, (PZERO - 4)); 920 921 /* 922 * Nobody is holding the facility (i.e. we are now in case 1). 923 * We can proceed safely according to the argument outlined 924 * above. 925 * 926 * We look up the undo vector again, in case the list changed 927 * while we were asleep, and the parent is now different. 928 */ 929 930 for (supptr = &semu_list; (suptr = *supptr) != NULL; 931 supptr = &suptr->un_next) { 932 if (suptr->un_proc == p) 933 break; 934 } 935 936 if (suptr == NULL) 937 panic("semexit: undo vector disappeared"); 938 } else { 939 /* 940 * No (i.e. we are in case 1 or 2). 941 * 942 * If there is no undo vector, skip to the end and unlock the 943 * semaphore facility if necessary. 944 */ 945 946 if (suptr == NULL) 947 goto unlock; 948 } 949 950 /* 951 * We are now in case 1 or 2, and we have an undo vector for this 952 * process. 953 */ 954 955 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p, 956 suptr->un_cnt)); 957 958 /* 959 * If there are any active undo elements then process them. 960 */ 961 if (suptr->un_cnt > 0) { 962 int ix; 963 964 for (ix = 0; ix < suptr->un_cnt; ix++) { 965 int semid = suptr->un_ent[ix].un_id; 966 int semnum = suptr->un_ent[ix].un_num; 967 int adjval = suptr->un_ent[ix].un_adjval; 968 struct semid_ds *semaptr; 969 970 semaptr = &sema[semid]; 971 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0) 972 panic("semexit - semid not allocated"); 973 if (semnum >= semaptr->sem_nsems) 974 panic("semexit - semnum out of range"); 975 976 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; sem=%d\n", 977 suptr->un_proc, suptr->un_ent[ix].un_id, 978 suptr->un_ent[ix].un_num, 979 suptr->un_ent[ix].un_adjval, 980 semaptr->_sem_base[semnum].semval)); 981 982 if (adjval < 0 && 983 semaptr->_sem_base[semnum].semval < -adjval) 984 semaptr->_sem_base[semnum].semval = 0; 985 else 986 semaptr->_sem_base[semnum].semval += adjval; 987 988 #ifdef SEM_WAKEUP 989 sem_wakeup((caddr_t)semaptr); 990 #else 991 wakeup((caddr_t)semaptr); 992 #endif 993 SEM_PRINTF(("semexit: back from wakeup\n")); 994 } 995 } 996 997 /* 998 * Deallocate the undo vector. 999 */ 1000 SEM_PRINTF(("removing vector\n")); 1001 suptr->un_proc = NULL; 1002 *supptr = suptr->un_next; 1003 1004 unlock: 1005 /* 1006 * If the exiting process is holding the global semaphore facility 1007 * lock (i.e. we are in case 2) then release it. 1008 */ 1009 if (semlock_holder == p) { 1010 semlock_holder = NULL; 1011 wakeup((caddr_t)&semlock_holder); 1012 } 1013 } 1014