xref: /netbsd-src/sys/kern/sysv_sem.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: sysv_sem.c,v 1.77 2007/12/08 15:02:46 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Implementation of SVID semaphores
42  *
43  * Author: Daniel Boulet
44  *
45  * This software is provided ``AS IS'' without any warranties of any kind.
46  */
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.77 2007/12/08 15:02:46 ad Exp $");
50 
51 #define SYSVSEM
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/sem.h>
56 #include <sys/sysctl.h>
57 #include <sys/kmem.h>
58 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
59 #include <sys/syscallargs.h>
60 #include <sys/kauth.h>
61 
62 /*
63  * Memory areas:
64  *  1st: Pool of semaphore identifiers
65  *  2nd: Semaphores
66  *  3rd: Conditional variables
67  *  4th: Undo structures
68  */
69 struct semid_ds		*sema;
70 static struct __sem	*sem;
71 static kcondvar_t	*semcv;
72 static int		*semu;
73 
74 static kmutex_t	semlock;
75 static struct	sem_undo *semu_list;	/* list of active undo structures */
76 static u_int	semtot = 0;		/* total number of semaphores */
77 
78 static u_int	sem_waiters = 0;	/* total number of semop waiters */
79 static bool	sem_realloc_state;
80 static kcondvar_t sem_realloc_cv;
81 
82 /* Macro to find a particular sem_undo vector */
83 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
84 
85 #ifdef SEM_DEBUG
86 #define SEM_PRINTF(a) printf a
87 #else
88 #define SEM_PRINTF(a)
89 #endif
90 
91 struct sem_undo *semu_alloc(struct proc *);
92 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
93 void semundo_clear(int, int);
94 
95 void
96 seminit(void)
97 {
98 	int i, sz;
99 	vaddr_t v;
100 
101 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
102 	cv_init(&sem_realloc_cv, "semrealc");
103 	sem_realloc_state = false;
104 
105 	/* Allocate the wired memory for our structures */
106 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
107 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
108 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
109 	    ALIGN(seminfo.semmnu * seminfo.semusz);
110 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
111 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
112 	if (v == 0)
113 		panic("sysv_sem: cannot allocate memory");
114 	sema = (void *)v;
115 	sem = (void *)(ALIGN(sema) +
116 	    seminfo.semmni * sizeof(struct semid_ds));
117 	semcv = (void *)(ALIGN(sem) +
118 	    seminfo.semmns * sizeof(struct __sem));
119 	semu = (void *)(ALIGN(semcv) +
120 	    seminfo.semmni * sizeof(kcondvar_t));
121 
122 	for (i = 0; i < seminfo.semmni; i++) {
123 		sema[i]._sem_base = 0;
124 		sema[i].sem_perm.mode = 0;
125 		cv_init(&semcv[i], "semwait");
126 	}
127 	for (i = 0; i < seminfo.semmnu; i++) {
128 		struct sem_undo *suptr = SEMU(semu, i);
129 		suptr->un_proc = NULL;
130 	}
131 	semu_list = NULL;
132 	exithook_establish(semexit, NULL);
133 }
134 
135 static int
136 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
137 {
138 	struct semid_ds *new_sema, *old_sema;
139 	struct __sem *new_sem;
140 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
141 	int *new_semu;
142 	kcondvar_t *new_semcv;
143 	vaddr_t v;
144 	int i, j, lsemid, nmnus, sz;
145 
146 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
147 		return EINVAL;
148 
149 	/* Allocate the wired memory for our structures */
150 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
151 	    ALIGN(newsemmns * sizeof(struct __sem)) +
152 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
153 	    ALIGN(newsemmnu * seminfo.semusz);
154 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
155 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
156 	if (v == 0)
157 		return ENOMEM;
158 
159 	mutex_enter(&semlock);
160 	if (sem_realloc_state) {
161 		mutex_exit(&semlock);
162 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
163 		return EBUSY;
164 	}
165 	sem_realloc_state = true;
166 	if (sem_waiters) {
167 		/*
168 		 * Mark reallocation state, wake-up all waiters,
169 		 * and wait while they will all exit.
170 		 */
171 		for (i = 0; i < seminfo.semmni; i++)
172 			cv_broadcast(&semcv[i]);
173 		while (sem_waiters)
174 			cv_wait(&sem_realloc_cv, &semlock);
175 	}
176 	old_sema = sema;
177 
178 	/* Get the number of last slot */
179 	lsemid = 0;
180 	for (i = 0; i < seminfo.semmni; i++)
181 		if (sema[i].sem_perm.mode & SEM_ALLOC)
182 			lsemid = i;
183 
184 	/* Get the number of currently used undo structures */
185 	nmnus = 0;
186 	for (i = 0; i < seminfo.semmnu; i++) {
187 		suptr = SEMU(semu, i);
188 		if (suptr->un_proc == NULL)
189 			continue;
190 		nmnus++;
191 	}
192 
193 	/* We cannot reallocate less memory than we use */
194 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
195 		mutex_exit(&semlock);
196 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
197 		return EBUSY;
198 	}
199 
200 	new_sema = (void *)v;
201 	new_sem = (void *)(ALIGN(new_sema) +
202 	    newsemmni * sizeof(struct semid_ds));
203 	new_semcv = (void *)(ALIGN(new_sem) +
204 	    newsemmns * sizeof(struct __sem));
205 	new_semu = (void *)(ALIGN(new_semcv) +
206 	    newsemmni * sizeof(kcondvar_t));
207 
208 	/* Initialize all semaphore identifiers and condvars */
209 	for (i = 0; i < newsemmni; i++) {
210 		new_sema[i]._sem_base = 0;
211 		new_sema[i].sem_perm.mode = 0;
212 		cv_init(&new_semcv[i], "semwait");
213 	}
214 	for (i = 0; i < newsemmnu; i++) {
215 		nsuptr = SEMU(new_semu, i);
216 		nsuptr->un_proc = NULL;
217 	}
218 
219 	/*
220 	 * Copy all identifiers, semaphores and list of the
221 	 * undo structures to the new memory allocation.
222 	 */
223 	j = 0;
224 	for (i = 0; i <= lsemid; i++) {
225 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
226 			continue;
227 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
228 		new_sema[i]._sem_base = &new_sem[j];
229 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
230 		    (sizeof(struct __sem) * sema[i].sem_nsems));
231 		j += sema[i].sem_nsems;
232 	}
233 	KASSERT(j == semtot);
234 
235 	j = 0;
236 	new_semu_list = NULL;
237 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
238 		KASSERT(j < newsemmnu);
239 		nsuptr = SEMU(new_semu, j);
240 		memcpy(nsuptr, suptr, SEMUSZ);
241 		nsuptr->un_next = new_semu_list;
242 		new_semu_list = nsuptr;
243 		j++;
244 	}
245 
246 	for (i = 0; i < seminfo.semmni; i++) {
247 		KASSERT(cv_has_waiters(&semcv[i]) == false);
248 		cv_destroy(&semcv[i]);
249 	}
250 
251 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
252 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
253 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
254 	    ALIGN(seminfo.semmnu * seminfo.semusz);
255 
256 	/* Set the pointers and update the new values */
257 	sema = new_sema;
258 	sem = new_sem;
259 	semcv = new_semcv;
260 	semu = new_semu;
261 	semu_list = new_semu_list;
262 
263 	seminfo.semmni = newsemmni;
264 	seminfo.semmns = newsemmns;
265 	seminfo.semmnu = newsemmnu;
266 
267 	/* Reallocation completed - notify all waiters, if any */
268 	sem_realloc_state = false;
269 	cv_broadcast(&sem_realloc_cv);
270 	mutex_exit(&semlock);
271 
272 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
273 	return 0;
274 }
275 
276 /*
277  * Placebo.
278  */
279 
280 int
281 sys_semconfig(struct lwp *l, void *v, register_t *retval)
282 {
283 
284 	*retval = 0;
285 	return 0;
286 }
287 
288 /*
289  * Allocate a new sem_undo structure for a process
290  * (returns ptr to structure or NULL if no more room)
291  */
292 
293 struct sem_undo *
294 semu_alloc(struct proc *p)
295 {
296 	int i;
297 	struct sem_undo *suptr;
298 	struct sem_undo **supptr;
299 	int attempt;
300 
301 	KASSERT(mutex_owned(&semlock));
302 
303 	/*
304 	 * Try twice to allocate something.
305 	 * (we'll purge any empty structures after the first pass so
306 	 * two passes are always enough)
307 	 */
308 
309 	for (attempt = 0; attempt < 2; attempt++) {
310 		/*
311 		 * Look for a free structure.
312 		 * Fill it in and return it if we find one.
313 		 */
314 
315 		for (i = 0; i < seminfo.semmnu; i++) {
316 			suptr = SEMU(semu, i);
317 			if (suptr->un_proc == NULL) {
318 				suptr->un_next = semu_list;
319 				semu_list = suptr;
320 				suptr->un_cnt = 0;
321 				suptr->un_proc = p;
322 				return (suptr);
323 			}
324 		}
325 
326 		/*
327 		 * We didn't find a free one, if this is the first attempt
328 		 * then try to free some structures.
329 		 */
330 
331 		if (attempt == 0) {
332 			/* All the structures are in use - try to free some */
333 			int did_something = 0;
334 
335 			supptr = &semu_list;
336 			while ((suptr = *supptr) != NULL) {
337 				if (suptr->un_cnt == 0)  {
338 					suptr->un_proc = NULL;
339 					*supptr = suptr->un_next;
340 					did_something = 1;
341 				} else
342 					supptr = &suptr->un_next;
343 			}
344 
345 			/* If we didn't free anything then just give-up */
346 			if (!did_something)
347 				return (NULL);
348 		} else {
349 			/*
350 			 * The second pass failed even though we freed
351 			 * something after the first pass!
352 			 * This is IMPOSSIBLE!
353 			 */
354 			panic("semu_alloc - second attempt failed");
355 		}
356 	}
357 	return NULL;
358 }
359 
360 /*
361  * Adjust a particular entry for a particular proc
362  */
363 
364 int
365 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
366     int adjval)
367 {
368 	struct sem_undo *suptr;
369 	struct undo *sunptr;
370 	int i;
371 
372 	KASSERT(mutex_owned(&semlock));
373 
374 	/*
375 	 * Look for and remember the sem_undo if the caller doesn't
376 	 * provide it
377 	 */
378 
379 	suptr = *supptr;
380 	if (suptr == NULL) {
381 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
382 			if (suptr->un_proc == p)
383 				break;
384 
385 		if (suptr == NULL) {
386 			suptr = semu_alloc(p);
387 			if (suptr == NULL)
388 				return (ENOSPC);
389 		}
390 		*supptr = suptr;
391 	}
392 
393 	/*
394 	 * Look for the requested entry and adjust it (delete if
395 	 * adjval becomes 0).
396 	 */
397 	sunptr = &suptr->un_ent[0];
398 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
399 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
400 			continue;
401 		sunptr->un_adjval += adjval;
402 		if (sunptr->un_adjval == 0) {
403 			suptr->un_cnt--;
404 			if (i < suptr->un_cnt)
405 				suptr->un_ent[i] =
406 				    suptr->un_ent[suptr->un_cnt];
407 		}
408 		return (0);
409 	}
410 
411 	/* Didn't find the right entry - create it */
412 	if (suptr->un_cnt == SEMUME)
413 		return (EINVAL);
414 
415 	sunptr = &suptr->un_ent[suptr->un_cnt];
416 	suptr->un_cnt++;
417 	sunptr->un_adjval = adjval;
418 	sunptr->un_id = semid;
419 	sunptr->un_num = semnum;
420 	return (0);
421 }
422 
423 void
424 semundo_clear(int semid, int semnum)
425 {
426 	struct sem_undo *suptr;
427 	struct undo *sunptr, *sunend;
428 
429 	KASSERT(mutex_owned(&semlock));
430 
431 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
432 		for (sunptr = &suptr->un_ent[0],
433 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
434 			if (sunptr->un_id == semid) {
435 				if (semnum == -1 || sunptr->un_num == semnum) {
436 					suptr->un_cnt--;
437 					sunend--;
438 					if (sunptr != sunend)
439 						*sunptr = *sunend;
440 					if (semnum != -1)
441 						break;
442 					else
443 						continue;
444 				}
445 			}
446 			sunptr++;
447 		}
448 }
449 
450 int
451 sys_____semctl13(struct lwp *l, void *v, register_t *retval)
452 {
453 	struct sys_____semctl13_args /* {
454 		syscallarg(int) semid;
455 		syscallarg(int) semnum;
456 		syscallarg(int) cmd;
457 		syscallarg(union __semun *) arg;
458 	} */ *uap = v;
459 	struct semid_ds sembuf;
460 	int cmd, error;
461 	void *pass_arg;
462 	union __semun karg;
463 
464 	cmd = SCARG(uap, cmd);
465 
466 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
467 
468 	if (pass_arg) {
469 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
470 		if (error)
471 			return error;
472 		if (cmd == IPC_SET) {
473 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
474 			if (error)
475 				return (error);
476 		}
477 	}
478 
479 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
480 	    pass_arg, retval);
481 
482 	if (error == 0 && cmd == IPC_STAT)
483 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
484 
485 	return (error);
486 }
487 
488 int
489 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
490     register_t *retval)
491 {
492 	kauth_cred_t cred = l->l_cred;
493 	union __semun *arg = v;
494 	struct semid_ds *sembuf = v, *semaptr;
495 	int i, error, ix;
496 
497 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
498 	    semid, semnum, cmd, v));
499 
500 	mutex_enter(&semlock);
501 
502 	ix = IPCID_TO_IX(semid);
503 	if (ix < 0 || ix >= seminfo.semmni) {
504 		mutex_exit(&semlock);
505 		return (EINVAL);
506 	}
507 
508 	semaptr = &sema[ix];
509 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
510 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
511 		mutex_exit(&semlock);
512 		return (EINVAL);
513 	}
514 
515 	switch (cmd) {
516 	case IPC_RMID:
517 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
518 			break;
519 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
520 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
521 		semtot -= semaptr->sem_nsems;
522 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
523 			sem[i] = sem[i + semaptr->sem_nsems];
524 		for (i = 0; i < seminfo.semmni; i++) {
525 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
526 			    sema[i]._sem_base > semaptr->_sem_base)
527 				sema[i]._sem_base -= semaptr->sem_nsems;
528 		}
529 		semaptr->sem_perm.mode = 0;
530 		semundo_clear(ix, -1);
531 		cv_broadcast(&semcv[ix]);
532 		break;
533 
534 	case IPC_SET:
535 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
536 			break;
537 		KASSERT(sembuf != NULL);
538 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
539 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
540 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
541 		    (sembuf->sem_perm.mode & 0777);
542 		semaptr->sem_ctime = time_second;
543 		break;
544 
545 	case IPC_STAT:
546 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
547 			break;
548 		KASSERT(sembuf != NULL);
549 		memcpy(sembuf, semaptr, sizeof(struct semid_ds));
550 		break;
551 
552 	case GETNCNT:
553 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
554 			break;
555 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
556 			error = EINVAL;
557 			break;
558 		}
559 		*retval = semaptr->_sem_base[semnum].semncnt;
560 		break;
561 
562 	case GETPID:
563 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
564 			break;
565 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
566 			error = EINVAL;
567 			break;
568 		}
569 		*retval = semaptr->_sem_base[semnum].sempid;
570 		break;
571 
572 	case GETVAL:
573 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
574 			break;
575 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
576 			error = EINVAL;
577 			break;
578 		}
579 		*retval = semaptr->_sem_base[semnum].semval;
580 		break;
581 
582 	case GETALL:
583 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
584 			break;
585 		KASSERT(arg != NULL);
586 		for (i = 0; i < semaptr->sem_nsems; i++) {
587 			error = copyout(&semaptr->_sem_base[i].semval,
588 			    &arg->array[i], sizeof(arg->array[i]));
589 			if (error != 0)
590 				break;
591 		}
592 		break;
593 
594 	case GETZCNT:
595 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
596 			break;
597 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
598 			error = EINVAL;
599 			break;
600 		}
601 		*retval = semaptr->_sem_base[semnum].semzcnt;
602 		break;
603 
604 	case SETVAL:
605 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
606 			break;
607 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
608 			error = EINVAL;
609 			break;
610 		}
611 		KASSERT(arg != NULL);
612 		semaptr->_sem_base[semnum].semval = arg->val;
613 		semundo_clear(ix, semnum);
614 		cv_broadcast(&semcv[ix]);
615 		break;
616 
617 	case SETALL:
618 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
619 			break;
620 		KASSERT(arg != NULL);
621 		for (i = 0; i < semaptr->sem_nsems; i++) {
622 			error = copyin(&arg->array[i],
623 			    &semaptr->_sem_base[i].semval,
624 			    sizeof(arg->array[i]));
625 			if (error != 0)
626 				break;
627 		}
628 		semundo_clear(ix, -1);
629 		cv_broadcast(&semcv[ix]);
630 		break;
631 
632 	default:
633 		error = EINVAL;
634 		break;
635 	}
636 
637 	mutex_exit(&semlock);
638 	return (error);
639 }
640 
641 int
642 sys_semget(struct lwp *l, void *v, register_t *retval)
643 {
644 	struct sys_semget_args /* {
645 		syscallarg(key_t) key;
646 		syscallarg(int) nsems;
647 		syscallarg(int) semflg;
648 	} */ *uap = v;
649 	int semid, error = 0;
650 	int key = SCARG(uap, key);
651 	int nsems = SCARG(uap, nsems);
652 	int semflg = SCARG(uap, semflg);
653 	kauth_cred_t cred = l->l_cred;
654 
655 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
656 
657 	mutex_enter(&semlock);
658 
659 	if (key != IPC_PRIVATE) {
660 		for (semid = 0; semid < seminfo.semmni; semid++) {
661 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
662 			    sema[semid].sem_perm._key == key)
663 				break;
664 		}
665 		if (semid < seminfo.semmni) {
666 			SEM_PRINTF(("found public key\n"));
667 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
668 			    semflg & 0700)))
669 			    	goto out;
670 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
671 				SEM_PRINTF(("too small\n"));
672 				error = EINVAL;
673 				goto out;
674 			}
675 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
676 				SEM_PRINTF(("not exclusive\n"));
677 				error = EEXIST;
678 				goto out;
679 			}
680 			goto found;
681 		}
682 	}
683 
684 	SEM_PRINTF(("need to allocate the semid_ds\n"));
685 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
686 		if (nsems <= 0 || nsems > seminfo.semmsl) {
687 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
688 			    seminfo.semmsl));
689 			error = EINVAL;
690 			goto out;
691 		}
692 		if (nsems > seminfo.semmns - semtot) {
693 			SEM_PRINTF(("not enough semaphores left "
694 			    "(need %d, got %d)\n",
695 			    nsems, seminfo.semmns - semtot));
696 			error = ENOSPC;
697 			goto out;
698 		}
699 		for (semid = 0; semid < seminfo.semmni; semid++) {
700 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
701 				break;
702 		}
703 		if (semid == seminfo.semmni) {
704 			SEM_PRINTF(("no more semid_ds's available\n"));
705 			error = ENOSPC;
706 			goto out;
707 		}
708 		SEM_PRINTF(("semid %d is available\n", semid));
709 		sema[semid].sem_perm._key = key;
710 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
711 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
712 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
713 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
714 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
715 		sema[semid].sem_perm._seq =
716 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
717 		sema[semid].sem_nsems = nsems;
718 		sema[semid].sem_otime = 0;
719 		sema[semid].sem_ctime = time_second;
720 		sema[semid]._sem_base = &sem[semtot];
721 		semtot += nsems;
722 		memset(sema[semid]._sem_base, 0,
723 		    sizeof(sema[semid]._sem_base[0]) * nsems);
724 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
725 		    &sem[semtot]));
726 	} else {
727 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
728 		error = ENOENT;
729 		goto out;
730 	}
731 
732  found:
733 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
734  out:
735 	mutex_exit(&semlock);
736 	return (error);
737 }
738 
739 #define SMALL_SOPS 8
740 
741 int
742 sys_semop(struct lwp *l, void *v, register_t *retval)
743 {
744 	struct sys_semop_args /* {
745 		syscallarg(int) semid;
746 		syscallarg(struct sembuf *) sops;
747 		syscallarg(size_t) nsops;
748 	} */ *uap = v;
749 	struct proc *p = l->l_proc;
750 	int semid = SCARG(uap, semid), seq;
751 	size_t nsops = SCARG(uap, nsops);
752 	struct sembuf small_sops[SMALL_SOPS];
753 	struct sembuf *sops;
754 	struct semid_ds *semaptr;
755 	struct sembuf *sopptr = NULL;
756 	struct __sem *semptr = NULL;
757 	struct sem_undo *suptr = NULL;
758 	kauth_cred_t cred = l->l_cred;
759 	int i, error;
760 	int do_wakeup, do_undos;
761 
762 	SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
763 restart:
764 	if (nsops <= SMALL_SOPS) {
765 		sops = small_sops;
766 	} else if (nsops <= seminfo.semopm) {
767 		KERNEL_LOCK(1, l);		/* XXXSMP */
768 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
769 		KERNEL_UNLOCK_ONE(l);		/* XXXSMP */
770 	} else {
771 		SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
772 		    seminfo.semopm, nsops));
773 		return (E2BIG);
774 	}
775 
776 	error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
777 	if (error) {
778 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
779 		    SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
780 		if (sops != small_sops) {
781 			KERNEL_LOCK(1, l);		/* XXXSMP */
782 			kmem_free(sops, nsops * sizeof(*sops));
783 			KERNEL_UNLOCK_ONE(l);		/* XXXSMP */
784 		}
785 		return error;
786 	}
787 
788 	mutex_enter(&semlock);
789 	/* In case of reallocation, we will wait for completion */
790 	while (__predict_false(sem_realloc_state))
791 		cv_wait(&sem_realloc_cv, &semlock);
792 
793 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
794 	if (semid < 0 || semid >= seminfo.semmni) {
795 		error = EINVAL;
796 		goto out;
797 	}
798 
799 	semaptr = &sema[semid];
800 	seq = IPCID_TO_SEQ(SCARG(uap, semid));
801 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
802 	    semaptr->sem_perm._seq != seq) {
803 		error = EINVAL;
804 		goto out;
805 	}
806 
807 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
808 		SEM_PRINTF(("error = %d from ipaccess\n", error));
809 		goto out;
810 	}
811 
812 	for (i = 0; i < nsops; i++)
813 		if (sops[i].sem_num >= semaptr->sem_nsems) {
814 			error = EFBIG;
815 			goto out;
816 		}
817 
818 	/*
819 	 * Loop trying to satisfy the vector of requests.
820 	 * If we reach a point where we must wait, any requests already
821 	 * performed are rolled back and we go to sleep until some other
822 	 * process wakes us up.  At this point, we start all over again.
823 	 *
824 	 * This ensures that from the perspective of other tasks, a set
825 	 * of requests is atomic (never partially satisfied).
826 	 */
827 	do_undos = 0;
828 
829 	for (;;) {
830 		do_wakeup = 0;
831 
832 		for (i = 0; i < nsops; i++) {
833 			sopptr = &sops[i];
834 			semptr = &semaptr->_sem_base[sopptr->sem_num];
835 
836 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
837 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
838 			    semaptr, semaptr->_sem_base, semptr,
839 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
840 			    (sopptr->sem_flg & IPC_NOWAIT) ?
841 			    "nowait" : "wait"));
842 
843 			if (sopptr->sem_op < 0) {
844 				if ((int)(semptr->semval +
845 				    sopptr->sem_op) < 0) {
846 					SEM_PRINTF(("semop:  "
847 					    "can't do it now\n"));
848 					break;
849 				} else {
850 					semptr->semval += sopptr->sem_op;
851 					if (semptr->semval == 0 &&
852 					    semptr->semzcnt > 0)
853 						do_wakeup = 1;
854 				}
855 				if (sopptr->sem_flg & SEM_UNDO)
856 					do_undos = 1;
857 			} else if (sopptr->sem_op == 0) {
858 				if (semptr->semval > 0) {
859 					SEM_PRINTF(("semop:  not zero now\n"));
860 					break;
861 				}
862 			} else {
863 				if (semptr->semncnt > 0)
864 					do_wakeup = 1;
865 				semptr->semval += sopptr->sem_op;
866 				if (sopptr->sem_flg & SEM_UNDO)
867 					do_undos = 1;
868 			}
869 		}
870 
871 		/*
872 		 * Did we get through the entire vector?
873 		 */
874 		if (i >= nsops)
875 			goto done;
876 
877 		/*
878 		 * No ... rollback anything that we've already done
879 		 */
880 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
881 		while (i-- > 0)
882 			semaptr->_sem_base[sops[i].sem_num].semval -=
883 			    sops[i].sem_op;
884 
885 		/*
886 		 * If the request that we couldn't satisfy has the
887 		 * NOWAIT flag set then return with EAGAIN.
888 		 */
889 		if (sopptr->sem_flg & IPC_NOWAIT) {
890 			error = EAGAIN;
891 			goto out;
892 		}
893 
894 		if (sopptr->sem_op == 0)
895 			semptr->semzcnt++;
896 		else
897 			semptr->semncnt++;
898 
899 		sem_waiters++;
900 		SEM_PRINTF(("semop:  good night!\n"));
901 		error = cv_wait_sig(&semcv[semid], &semlock);
902 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
903 		sem_waiters--;
904 
905 		/* Notify reallocator, if it is waiting */
906 		cv_broadcast(&sem_realloc_cv);
907 
908 		/*
909 		 * Make sure that the semaphore still exists
910 		 */
911 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
912 		    semaptr->sem_perm._seq != seq) {
913 			error = EIDRM;
914 			goto out;
915 		}
916 
917 		/*
918 		 * The semaphore is still alive.  Readjust the count of
919 		 * waiting processes.
920 		 */
921 		semptr = &semaptr->_sem_base[sopptr->sem_num];
922 		if (sopptr->sem_op == 0)
923 			semptr->semzcnt--;
924 		else
925 			semptr->semncnt--;
926 
927 		/* In case of such state, restart the call */
928 		if (sem_realloc_state) {
929 			mutex_exit(&semlock);
930 			goto restart;
931 		}
932 
933 		/* Is it really morning, or was our sleep interrupted? */
934 		if (error != 0) {
935 			error = EINTR;
936 			goto out;
937 		}
938 		SEM_PRINTF(("semop:  good morning!\n"));
939 	}
940 
941 done:
942 	/*
943 	 * Process any SEM_UNDO requests.
944 	 */
945 	if (do_undos) {
946 		for (i = 0; i < nsops; i++) {
947 			/*
948 			 * We only need to deal with SEM_UNDO's for non-zero
949 			 * op's.
950 			 */
951 			int adjval;
952 
953 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
954 				continue;
955 			adjval = sops[i].sem_op;
956 			if (adjval == 0)
957 				continue;
958 			error = semundo_adjust(p, &suptr, semid,
959 			    sops[i].sem_num, -adjval);
960 			if (error == 0)
961 				continue;
962 
963 			/*
964 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
965 			 * Rollback the adjustments to this point and then
966 			 * rollback the semaphore ups and down so we can return
967 			 * with an error with all structures restored.  We
968 			 * rollback the undo's in the exact reverse order that
969 			 * we applied them.  This guarantees that we won't run
970 			 * out of space as we roll things back out.
971 			 */
972 			while (i-- > 0) {
973 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
974 					continue;
975 				adjval = sops[i].sem_op;
976 				if (adjval == 0)
977 					continue;
978 				if (semundo_adjust(p, &suptr, semid,
979 				    sops[i].sem_num, adjval) != 0)
980 					panic("semop - can't undo undos");
981 			}
982 
983 			for (i = 0; i < nsops; i++)
984 				semaptr->_sem_base[sops[i].sem_num].semval -=
985 				    sops[i].sem_op;
986 
987 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
988 			goto out;
989 		} /* loop through the sops */
990 	} /* if (do_undos) */
991 
992 	/* We're definitely done - set the sempid's */
993 	for (i = 0; i < nsops; i++) {
994 		sopptr = &sops[i];
995 		semptr = &semaptr->_sem_base[sopptr->sem_num];
996 		semptr->sempid = p->p_pid;
997 	}
998 
999 	/* Update sem_otime */
1000 	semaptr->sem_otime = time_second;
1001 
1002 	/* Do a wakeup if any semaphore was up'd. */
1003 	if (do_wakeup) {
1004 		SEM_PRINTF(("semop:  doing wakeup\n"));
1005 		cv_broadcast(&semcv[semid]);
1006 		SEM_PRINTF(("semop:  back from wakeup\n"));
1007 	}
1008 	SEM_PRINTF(("semop:  done\n"));
1009 	*retval = 0;
1010 
1011  out:
1012 	mutex_exit(&semlock);
1013 	if (sops != small_sops) {
1014 		KERNEL_LOCK(1, l);		/* XXXSMP */
1015 		kmem_free(sops, nsops * sizeof(*sops));
1016 		KERNEL_UNLOCK_ONE(l);		/* XXXSMP */
1017 	}
1018 	return error;
1019 }
1020 
1021 /*
1022  * Go through the undo structures for this process and apply the
1023  * adjustments to semaphores.
1024  */
1025 /*ARGSUSED*/
1026 void
1027 semexit(struct proc *p, void *v)
1028 {
1029 	struct sem_undo *suptr;
1030 	struct sem_undo **supptr;
1031 
1032 	mutex_enter(&semlock);
1033 
1034 	/*
1035 	 * Go through the chain of undo vectors looking for one
1036 	 * associated with this process.
1037 	 */
1038 
1039 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
1040 	    supptr = &suptr->un_next) {
1041 		if (suptr->un_proc == p)
1042 			break;
1043 	}
1044 
1045 	/*
1046 	 * If there is no undo vector, skip to the end.
1047 	 */
1048 
1049 	if (suptr == NULL) {
1050 		mutex_exit(&semlock);
1051 		return;
1052 	}
1053 
1054 	/*
1055 	 * We now have an undo vector for this process.
1056 	 */
1057 
1058 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1059 	    suptr->un_cnt));
1060 
1061 	/*
1062 	 * If there are any active undo elements then process them.
1063 	 */
1064 	if (suptr->un_cnt > 0) {
1065 		int ix;
1066 
1067 		for (ix = 0; ix < suptr->un_cnt; ix++) {
1068 			int semid = suptr->un_ent[ix].un_id;
1069 			int semnum = suptr->un_ent[ix].un_num;
1070 			int adjval = suptr->un_ent[ix].un_adjval;
1071 			struct semid_ds *semaptr;
1072 
1073 			semaptr = &sema[semid];
1074 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1075 				panic("semexit - semid not allocated");
1076 			if (semnum >= semaptr->sem_nsems)
1077 				panic("semexit - semnum out of range");
1078 
1079 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
1080 			    "sem=%d\n",
1081 			    suptr->un_proc, suptr->un_ent[ix].un_id,
1082 			    suptr->un_ent[ix].un_num,
1083 			    suptr->un_ent[ix].un_adjval,
1084 			    semaptr->_sem_base[semnum].semval));
1085 
1086 			if (adjval < 0 &&
1087 			    semaptr->_sem_base[semnum].semval < -adjval)
1088 				semaptr->_sem_base[semnum].semval = 0;
1089 			else
1090 				semaptr->_sem_base[semnum].semval += adjval;
1091 
1092 			cv_broadcast(&semcv[semid]);
1093 			SEM_PRINTF(("semexit:  back from wakeup\n"));
1094 		}
1095 	}
1096 
1097 	/*
1098 	 * Deallocate the undo vector.
1099 	 */
1100 	SEM_PRINTF(("removing vector\n"));
1101 	suptr->un_proc = NULL;
1102 	*supptr = suptr->un_next;
1103 	mutex_exit(&semlock);
1104 }
1105 
1106 /*
1107  * Sysctl initialization and nodes.
1108  */
1109 
1110 static int
1111 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1112 {
1113 	int newsize, error;
1114 	struct sysctlnode node;
1115 	node = *rnode;
1116 	node.sysctl_data = &newsize;
1117 
1118 	newsize = seminfo.semmni;
1119 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1120 	if (error || newp == NULL)
1121 		return error;
1122 
1123 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1124 }
1125 
1126 static int
1127 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1128 {
1129 	int newsize, error;
1130 	struct sysctlnode node;
1131 	node = *rnode;
1132 	node.sysctl_data = &newsize;
1133 
1134 	newsize = seminfo.semmns;
1135 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1136 	if (error || newp == NULL)
1137 		return error;
1138 
1139 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1140 }
1141 
1142 static int
1143 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1144 {
1145 	int newsize, error;
1146 	struct sysctlnode node;
1147 	node = *rnode;
1148 	node.sysctl_data = &newsize;
1149 
1150 	newsize = seminfo.semmnu;
1151 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1152 	if (error || newp == NULL)
1153 		return error;
1154 
1155 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1156 }
1157 
1158 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1159 {
1160 	const struct sysctlnode *node = NULL;
1161 
1162 	sysctl_createv(clog, 0, NULL, NULL,
1163 		CTLFLAG_PERMANENT,
1164 		CTLTYPE_NODE, "kern", NULL,
1165 		NULL, 0, NULL, 0,
1166 		CTL_KERN, CTL_EOL);
1167 	sysctl_createv(clog, 0, NULL, &node,
1168 		CTLFLAG_PERMANENT,
1169 		CTLTYPE_NODE, "ipc",
1170 		SYSCTL_DESCR("SysV IPC options"),
1171 		NULL, 0, NULL, 0,
1172 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1173 
1174 	if (node == NULL)
1175 		return;
1176 
1177 	sysctl_createv(clog, 0, &node, NULL,
1178 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1179 		CTLTYPE_INT, "semmni",
1180 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1181 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1182 		CTL_CREATE, CTL_EOL);
1183 	sysctl_createv(clog, 0, &node, NULL,
1184 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1185 		CTLTYPE_INT, "semmns",
1186 		SYSCTL_DESCR("Max number of number of semaphores in system"),
1187 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1188 		CTL_CREATE, CTL_EOL);
1189 	sysctl_createv(clog, 0, &node, NULL,
1190 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1191 		CTLTYPE_INT, "semmnu",
1192 		SYSCTL_DESCR("Max number of undo structures in system"),
1193 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1194 		CTL_CREATE, CTL_EOL);
1195 }
1196