xref: /netbsd-src/sys/kern/sysv_sem.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /*	$NetBSD: sysv_sem.c,v 1.91 2014/09/05 05:54:48 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Implementation of SVID semaphores
35  *
36  * Author: Daniel Boulet
37  *
38  * This software is provided ``AS IS'' without any warranties of any kind.
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.91 2014/09/05 05:54:48 matt Exp $");
43 
44 #define SYSVSEM
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/sem.h>
49 #include <sys/sysctl.h>
50 #include <sys/kmem.h>
51 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
52 #include <sys/syscallargs.h>
53 #include <sys/kauth.h>
54 
55 /*
56  * Memory areas:
57  *  1st: Pool of semaphore identifiers
58  *  2nd: Semaphores
59  *  3rd: Conditional variables
60  *  4th: Undo structures
61  */
62 struct semid_ds *	sema			__read_mostly;
63 static struct __sem *	sem			__read_mostly;
64 static kcondvar_t *	semcv			__read_mostly;
65 static int *		semu			__read_mostly;
66 
67 static kmutex_t		semlock			__cacheline_aligned;
68 static bool		sem_realloc_state	__read_mostly;
69 static kcondvar_t	sem_realloc_cv;
70 
71 /*
72  * List of active undo structures, total number of semaphores,
73  * and total number of semop waiters.
74  */
75 static struct sem_undo *semu_list		__read_mostly;
76 static u_int		semtot			__cacheline_aligned;
77 static u_int		sem_waiters		__cacheline_aligned;
78 
79 /* Macro to find a particular sem_undo vector */
80 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
81 
82 #ifdef SEM_DEBUG
83 #define SEM_PRINTF(a) printf a
84 #else
85 #define SEM_PRINTF(a)
86 #endif
87 
88 struct sem_undo *semu_alloc(struct proc *);
89 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
90 void semundo_clear(int, int);
91 
92 void
93 seminit(void)
94 {
95 	int i, sz;
96 	vaddr_t v;
97 
98 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
99 	cv_init(&sem_realloc_cv, "semrealc");
100 	sem_realloc_state = false;
101 	semtot = 0;
102 	sem_waiters = 0;
103 
104 	/* Allocate the wired memory for our structures */
105 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
106 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
107 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
108 	    ALIGN(seminfo.semmnu * seminfo.semusz);
109 	sz = round_page(sz);
110 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
111 	if (v == 0)
112 		panic("sysv_sem: cannot allocate memory");
113 	sema = (void *)v;
114 	sem = (void *)((uintptr_t)sema +
115 	    ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
116 	semcv = (void *)((uintptr_t)sem +
117 	    ALIGN(seminfo.semmns * sizeof(struct __sem)));
118 	semu = (void *)((uintptr_t)semcv +
119 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
120 
121 	for (i = 0; i < seminfo.semmni; i++) {
122 		sema[i]._sem_base = 0;
123 		sema[i].sem_perm.mode = 0;
124 		cv_init(&semcv[i], "semwait");
125 	}
126 	for (i = 0; i < seminfo.semmnu; i++) {
127 		struct sem_undo *suptr = SEMU(semu, i);
128 		suptr->un_proc = NULL;
129 	}
130 	semu_list = NULL;
131 	exithook_establish(semexit, NULL);
132 
133 	sysvipcinit();
134 }
135 
136 static int
137 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
138 {
139 	struct semid_ds *new_sema, *old_sema;
140 	struct __sem *new_sem;
141 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
142 	int *new_semu;
143 	kcondvar_t *new_semcv;
144 	vaddr_t v;
145 	int i, j, lsemid, nmnus, sz;
146 
147 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
148 		return EINVAL;
149 
150 	/* Allocate the wired memory for our structures */
151 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
152 	    ALIGN(newsemmns * sizeof(struct __sem)) +
153 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
154 	    ALIGN(newsemmnu * seminfo.semusz);
155 	sz = round_page(sz);
156 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
157 	if (v == 0)
158 		return ENOMEM;
159 
160 	mutex_enter(&semlock);
161 	if (sem_realloc_state) {
162 		mutex_exit(&semlock);
163 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
164 		return EBUSY;
165 	}
166 	sem_realloc_state = true;
167 	if (sem_waiters) {
168 		/*
169 		 * Mark reallocation state, wake-up all waiters,
170 		 * and wait while they will all exit.
171 		 */
172 		for (i = 0; i < seminfo.semmni; i++)
173 			cv_broadcast(&semcv[i]);
174 		while (sem_waiters)
175 			cv_wait(&sem_realloc_cv, &semlock);
176 	}
177 	old_sema = sema;
178 
179 	/* Get the number of last slot */
180 	lsemid = 0;
181 	for (i = 0; i < seminfo.semmni; i++)
182 		if (sema[i].sem_perm.mode & SEM_ALLOC)
183 			lsemid = i;
184 
185 	/* Get the number of currently used undo structures */
186 	nmnus = 0;
187 	for (i = 0; i < seminfo.semmnu; i++) {
188 		suptr = SEMU(semu, i);
189 		if (suptr->un_proc == NULL)
190 			continue;
191 		nmnus++;
192 	}
193 
194 	/* We cannot reallocate less memory than we use */
195 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
196 		mutex_exit(&semlock);
197 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
198 		return EBUSY;
199 	}
200 
201 	new_sema = (void *)v;
202 	new_sem = (void *)((uintptr_t)new_sema +
203 	    ALIGN(newsemmni * sizeof(struct semid_ds)));
204 	new_semcv = (void *)((uintptr_t)new_sem +
205 	    ALIGN(newsemmns * sizeof(struct __sem)));
206 	new_semu = (void *)((uintptr_t)new_semcv +
207 	    ALIGN(newsemmni * sizeof(kcondvar_t)));
208 
209 	/* Initialize all semaphore identifiers and condvars */
210 	for (i = 0; i < newsemmni; i++) {
211 		new_sema[i]._sem_base = 0;
212 		new_sema[i].sem_perm.mode = 0;
213 		cv_init(&new_semcv[i], "semwait");
214 	}
215 	for (i = 0; i < newsemmnu; i++) {
216 		nsuptr = SEMU(new_semu, i);
217 		nsuptr->un_proc = NULL;
218 	}
219 
220 	/*
221 	 * Copy all identifiers, semaphores and list of the
222 	 * undo structures to the new memory allocation.
223 	 */
224 	j = 0;
225 	for (i = 0; i <= lsemid; i++) {
226 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
227 			continue;
228 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
229 		new_sema[i]._sem_base = &new_sem[j];
230 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
231 		    (sizeof(struct __sem) * sema[i].sem_nsems));
232 		j += sema[i].sem_nsems;
233 	}
234 	KASSERT(j == semtot);
235 
236 	j = 0;
237 	new_semu_list = NULL;
238 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
239 		KASSERT(j < newsemmnu);
240 		nsuptr = SEMU(new_semu, j);
241 		memcpy(nsuptr, suptr, SEMUSZ);
242 		nsuptr->un_next = new_semu_list;
243 		new_semu_list = nsuptr;
244 		j++;
245 	}
246 
247 	for (i = 0; i < seminfo.semmni; i++) {
248 		KASSERT(cv_has_waiters(&semcv[i]) == false);
249 		cv_destroy(&semcv[i]);
250 	}
251 
252 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
253 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
254 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
255 	    ALIGN(seminfo.semmnu * seminfo.semusz);
256 	sz = round_page(sz);
257 
258 	/* Set the pointers and update the new values */
259 	sema = new_sema;
260 	sem = new_sem;
261 	semcv = new_semcv;
262 	semu = new_semu;
263 	semu_list = new_semu_list;
264 
265 	seminfo.semmni = newsemmni;
266 	seminfo.semmns = newsemmns;
267 	seminfo.semmnu = newsemmnu;
268 
269 	/* Reallocation completed - notify all waiters, if any */
270 	sem_realloc_state = false;
271 	cv_broadcast(&sem_realloc_cv);
272 	mutex_exit(&semlock);
273 
274 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
275 	return 0;
276 }
277 
278 /*
279  * Placebo.
280  */
281 
282 int
283 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
284 {
285 
286 	*retval = 0;
287 	return 0;
288 }
289 
290 /*
291  * Allocate a new sem_undo structure for a process.
292  * => Returns NULL on failure.
293  */
294 struct sem_undo *
295 semu_alloc(struct proc *p)
296 {
297 	struct sem_undo *suptr, **supptr;
298 	bool attempted = false;
299 	int i;
300 
301 	KASSERT(mutex_owned(&semlock));
302 again:
303 	/* Look for a free structure. */
304 	for (i = 0; i < seminfo.semmnu; i++) {
305 		suptr = SEMU(semu, i);
306 		if (suptr->un_proc == NULL) {
307 			/* Found.  Fill it in and return. */
308 			suptr->un_next = semu_list;
309 			semu_list = suptr;
310 			suptr->un_cnt = 0;
311 			suptr->un_proc = p;
312 			return suptr;
313 		}
314 	}
315 
316 	/* Not found.  Attempt to free some structures. */
317 	if (!attempted) {
318 		bool freed = false;
319 
320 		attempted = true;
321 		supptr = &semu_list;
322 		while ((suptr = *supptr) != NULL) {
323 			if (suptr->un_cnt == 0)  {
324 				suptr->un_proc = NULL;
325 				*supptr = suptr->un_next;
326 				freed = true;
327 			} else {
328 				supptr = &suptr->un_next;
329 			}
330 		}
331 		if (freed) {
332 			goto again;
333 		}
334 	}
335 	return NULL;
336 }
337 
338 /*
339  * Adjust a particular entry for a particular proc
340  */
341 
342 int
343 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
344     int adjval)
345 {
346 	struct sem_undo *suptr;
347 	struct sem_undo_entry *sunptr;
348 	int i;
349 
350 	KASSERT(mutex_owned(&semlock));
351 
352 	/*
353 	 * Look for and remember the sem_undo if the caller doesn't
354 	 * provide it
355 	 */
356 
357 	suptr = *supptr;
358 	if (suptr == NULL) {
359 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
360 			if (suptr->un_proc == p)
361 				break;
362 
363 		if (suptr == NULL) {
364 			suptr = semu_alloc(p);
365 			if (suptr == NULL)
366 				return (ENOSPC);
367 		}
368 		*supptr = suptr;
369 	}
370 
371 	/*
372 	 * Look for the requested entry and adjust it (delete if
373 	 * adjval becomes 0).
374 	 */
375 	sunptr = &suptr->un_ent[0];
376 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
377 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
378 			continue;
379 		sunptr->un_adjval += adjval;
380 		if (sunptr->un_adjval == 0) {
381 			suptr->un_cnt--;
382 			if (i < suptr->un_cnt)
383 				suptr->un_ent[i] =
384 				    suptr->un_ent[suptr->un_cnt];
385 		}
386 		return (0);
387 	}
388 
389 	/* Didn't find the right entry - create it */
390 	if (suptr->un_cnt == SEMUME)
391 		return (EINVAL);
392 
393 	sunptr = &suptr->un_ent[suptr->un_cnt];
394 	suptr->un_cnt++;
395 	sunptr->un_adjval = adjval;
396 	sunptr->un_id = semid;
397 	sunptr->un_num = semnum;
398 	return (0);
399 }
400 
401 void
402 semundo_clear(int semid, int semnum)
403 {
404 	struct sem_undo *suptr;
405 	struct sem_undo_entry *sunptr, *sunend;
406 
407 	KASSERT(mutex_owned(&semlock));
408 
409 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
410 		for (sunptr = &suptr->un_ent[0],
411 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
412 			if (sunptr->un_id == semid) {
413 				if (semnum == -1 || sunptr->un_num == semnum) {
414 					suptr->un_cnt--;
415 					sunend--;
416 					if (sunptr != sunend)
417 						*sunptr = *sunend;
418 					if (semnum != -1)
419 						break;
420 					else
421 						continue;
422 				}
423 			}
424 			sunptr++;
425 		}
426 }
427 
428 int
429 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
430     register_t *retval)
431 {
432 	/* {
433 		syscallarg(int) semid;
434 		syscallarg(int) semnum;
435 		syscallarg(int) cmd;
436 		syscallarg(union __semun *) arg;
437 	} */
438 	struct semid_ds sembuf;
439 	int cmd, error;
440 	void *pass_arg;
441 	union __semun karg;
442 
443 	cmd = SCARG(uap, cmd);
444 
445 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
446 
447 	if (pass_arg) {
448 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
449 		if (error)
450 			return error;
451 		if (cmd == IPC_SET) {
452 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
453 			if (error)
454 				return (error);
455 		}
456 	}
457 
458 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
459 	    pass_arg, retval);
460 
461 	if (error == 0 && cmd == IPC_STAT)
462 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
463 
464 	return (error);
465 }
466 
467 int
468 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
469     register_t *retval)
470 {
471 	kauth_cred_t cred = l->l_cred;
472 	union __semun *arg = v;
473 	struct semid_ds *sembuf = v, *semaptr;
474 	int i, error, ix;
475 
476 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
477 	    semid, semnum, cmd, v));
478 
479 	mutex_enter(&semlock);
480 
481 	ix = IPCID_TO_IX(semid);
482 	if (ix < 0 || ix >= seminfo.semmni) {
483 		mutex_exit(&semlock);
484 		return (EINVAL);
485 	}
486 
487 	semaptr = &sema[ix];
488 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
489 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
490 		mutex_exit(&semlock);
491 		return (EINVAL);
492 	}
493 
494 	switch (cmd) {
495 	case IPC_RMID:
496 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
497 			break;
498 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
499 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
500 		semtot -= semaptr->sem_nsems;
501 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
502 			sem[i] = sem[i + semaptr->sem_nsems];
503 		for (i = 0; i < seminfo.semmni; i++) {
504 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
505 			    sema[i]._sem_base > semaptr->_sem_base)
506 				sema[i]._sem_base -= semaptr->sem_nsems;
507 		}
508 		semaptr->sem_perm.mode = 0;
509 		semundo_clear(ix, -1);
510 		cv_broadcast(&semcv[ix]);
511 		break;
512 
513 	case IPC_SET:
514 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
515 			break;
516 		KASSERT(sembuf != NULL);
517 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
518 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
519 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
520 		    (sembuf->sem_perm.mode & 0777);
521 		semaptr->sem_ctime = time_second;
522 		break;
523 
524 	case IPC_STAT:
525 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
526 			break;
527 		KASSERT(sembuf != NULL);
528 		memcpy(sembuf, semaptr, sizeof(struct semid_ds));
529 		sembuf->sem_perm.mode &= 0777;
530 		break;
531 
532 	case GETNCNT:
533 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
534 			break;
535 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
536 			error = EINVAL;
537 			break;
538 		}
539 		*retval = semaptr->_sem_base[semnum].semncnt;
540 		break;
541 
542 	case GETPID:
543 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
544 			break;
545 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
546 			error = EINVAL;
547 			break;
548 		}
549 		*retval = semaptr->_sem_base[semnum].sempid;
550 		break;
551 
552 	case GETVAL:
553 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
554 			break;
555 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
556 			error = EINVAL;
557 			break;
558 		}
559 		*retval = semaptr->_sem_base[semnum].semval;
560 		break;
561 
562 	case GETALL:
563 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
564 			break;
565 		KASSERT(arg != NULL);
566 		for (i = 0; i < semaptr->sem_nsems; i++) {
567 			error = copyout(&semaptr->_sem_base[i].semval,
568 			    &arg->array[i], sizeof(arg->array[i]));
569 			if (error != 0)
570 				break;
571 		}
572 		break;
573 
574 	case GETZCNT:
575 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
576 			break;
577 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
578 			error = EINVAL;
579 			break;
580 		}
581 		*retval = semaptr->_sem_base[semnum].semzcnt;
582 		break;
583 
584 	case SETVAL:
585 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
586 			break;
587 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
588 			error = EINVAL;
589 			break;
590 		}
591 		KASSERT(arg != NULL);
592 		if ((unsigned int)arg->val > seminfo.semvmx) {
593 			error = ERANGE;
594 			break;
595 		}
596 		semaptr->_sem_base[semnum].semval = arg->val;
597 		semundo_clear(ix, semnum);
598 		cv_broadcast(&semcv[ix]);
599 		break;
600 
601 	case SETALL:
602 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
603 			break;
604 		KASSERT(arg != NULL);
605 		for (i = 0; i < semaptr->sem_nsems; i++) {
606 			unsigned short semval;
607 			error = copyin(&arg->array[i], &semval,
608 			    sizeof(arg->array[i]));
609 			if (error != 0)
610 				break;
611 			if ((unsigned int)semval > seminfo.semvmx) {
612 				error = ERANGE;
613 				break;
614 			}
615 			semaptr->_sem_base[i].semval = semval;
616 		}
617 		semundo_clear(ix, -1);
618 		cv_broadcast(&semcv[ix]);
619 		break;
620 
621 	default:
622 		error = EINVAL;
623 		break;
624 	}
625 
626 	mutex_exit(&semlock);
627 	return (error);
628 }
629 
630 int
631 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
632 {
633 	/* {
634 		syscallarg(key_t) key;
635 		syscallarg(int) nsems;
636 		syscallarg(int) semflg;
637 	} */
638 	int semid, error = 0;
639 	int key = SCARG(uap, key);
640 	int nsems = SCARG(uap, nsems);
641 	int semflg = SCARG(uap, semflg);
642 	kauth_cred_t cred = l->l_cred;
643 
644 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
645 
646 	mutex_enter(&semlock);
647 
648 	if (key != IPC_PRIVATE) {
649 		for (semid = 0; semid < seminfo.semmni; semid++) {
650 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
651 			    sema[semid].sem_perm._key == key)
652 				break;
653 		}
654 		if (semid < seminfo.semmni) {
655 			SEM_PRINTF(("found public key\n"));
656 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
657 			    semflg & 0700)))
658 			    	goto out;
659 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
660 				SEM_PRINTF(("too small\n"));
661 				error = EINVAL;
662 				goto out;
663 			}
664 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
665 				SEM_PRINTF(("not exclusive\n"));
666 				error = EEXIST;
667 				goto out;
668 			}
669 			goto found;
670 		}
671 	}
672 
673 	SEM_PRINTF(("need to allocate the semid_ds\n"));
674 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
675 		if (nsems <= 0 || nsems > seminfo.semmsl) {
676 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
677 			    seminfo.semmsl));
678 			error = EINVAL;
679 			goto out;
680 		}
681 		if (nsems > seminfo.semmns - semtot) {
682 			SEM_PRINTF(("not enough semaphores left "
683 			    "(need %d, got %d)\n",
684 			    nsems, seminfo.semmns - semtot));
685 			error = ENOSPC;
686 			goto out;
687 		}
688 		for (semid = 0; semid < seminfo.semmni; semid++) {
689 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
690 				break;
691 		}
692 		if (semid == seminfo.semmni) {
693 			SEM_PRINTF(("no more semid_ds's available\n"));
694 			error = ENOSPC;
695 			goto out;
696 		}
697 		SEM_PRINTF(("semid %d is available\n", semid));
698 		sema[semid].sem_perm._key = key;
699 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
700 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
701 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
702 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
703 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
704 		sema[semid].sem_perm._seq =
705 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
706 		sema[semid].sem_nsems = nsems;
707 		sema[semid].sem_otime = 0;
708 		sema[semid].sem_ctime = time_second;
709 		sema[semid]._sem_base = &sem[semtot];
710 		semtot += nsems;
711 		memset(sema[semid]._sem_base, 0,
712 		    sizeof(sema[semid]._sem_base[0]) * nsems);
713 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
714 		    &sem[semtot]));
715 	} else {
716 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
717 		error = ENOENT;
718 		goto out;
719 	}
720 
721  found:
722 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
723  out:
724 	mutex_exit(&semlock);
725 	return (error);
726 }
727 
728 #define SMALL_SOPS 8
729 
730 int
731 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
732 {
733 	/* {
734 		syscallarg(int) semid;
735 		syscallarg(struct sembuf *) sops;
736 		syscallarg(size_t) nsops;
737 	} */
738 	struct proc *p = l->l_proc;
739 	int semid = SCARG(uap, semid), seq;
740 	size_t nsops = SCARG(uap, nsops);
741 	struct sembuf small_sops[SMALL_SOPS];
742 	struct sembuf *sops;
743 	struct semid_ds *semaptr;
744 	struct sembuf *sopptr = NULL;
745 	struct __sem *semptr = NULL;
746 	struct sem_undo *suptr = NULL;
747 	kauth_cred_t cred = l->l_cred;
748 	int i, error;
749 	int do_wakeup, do_undos;
750 
751 	SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
752 
753 	if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
754 		mutex_enter(p->p_lock);
755 		p->p_flag |= PK_SYSVSEM;
756 		mutex_exit(p->p_lock);
757 	}
758 
759 restart:
760 	if (nsops <= SMALL_SOPS) {
761 		sops = small_sops;
762 	} else if (nsops <= seminfo.semopm) {
763 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
764 	} else {
765 		SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
766 		    seminfo.semopm, nsops));
767 		return (E2BIG);
768 	}
769 
770 	error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
771 	if (error) {
772 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
773 		    SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
774 		if (sops != small_sops)
775 			kmem_free(sops, nsops * sizeof(*sops));
776 		return error;
777 	}
778 
779 	mutex_enter(&semlock);
780 	/* In case of reallocation, we will wait for completion */
781 	while (__predict_false(sem_realloc_state))
782 		cv_wait(&sem_realloc_cv, &semlock);
783 
784 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
785 	if (semid < 0 || semid >= seminfo.semmni) {
786 		error = EINVAL;
787 		goto out;
788 	}
789 
790 	semaptr = &sema[semid];
791 	seq = IPCID_TO_SEQ(SCARG(uap, semid));
792 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
793 	    semaptr->sem_perm._seq != seq) {
794 		error = EINVAL;
795 		goto out;
796 	}
797 
798 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
799 		SEM_PRINTF(("error = %d from ipaccess\n", error));
800 		goto out;
801 	}
802 
803 	for (i = 0; i < nsops; i++)
804 		if (sops[i].sem_num >= semaptr->sem_nsems) {
805 			error = EFBIG;
806 			goto out;
807 		}
808 
809 	/*
810 	 * Loop trying to satisfy the vector of requests.
811 	 * If we reach a point where we must wait, any requests already
812 	 * performed are rolled back and we go to sleep until some other
813 	 * process wakes us up.  At this point, we start all over again.
814 	 *
815 	 * This ensures that from the perspective of other tasks, a set
816 	 * of requests is atomic (never partially satisfied).
817 	 */
818 	do_undos = 0;
819 
820 	for (;;) {
821 		do_wakeup = 0;
822 
823 		for (i = 0; i < nsops; i++) {
824 			sopptr = &sops[i];
825 			semptr = &semaptr->_sem_base[sopptr->sem_num];
826 
827 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
828 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
829 			    semaptr, semaptr->_sem_base, semptr,
830 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
831 			    (sopptr->sem_flg & IPC_NOWAIT) ?
832 			    "nowait" : "wait"));
833 
834 			if (sopptr->sem_op < 0) {
835 				if ((int)(semptr->semval +
836 				    sopptr->sem_op) < 0) {
837 					SEM_PRINTF(("semop:  "
838 					    "can't do it now\n"));
839 					break;
840 				} else {
841 					semptr->semval += sopptr->sem_op;
842 					if (semptr->semval == 0 &&
843 					    semptr->semzcnt > 0)
844 						do_wakeup = 1;
845 				}
846 				if (sopptr->sem_flg & SEM_UNDO)
847 					do_undos = 1;
848 			} else if (sopptr->sem_op == 0) {
849 				if (semptr->semval > 0) {
850 					SEM_PRINTF(("semop:  not zero now\n"));
851 					break;
852 				}
853 			} else {
854 				if (semptr->semncnt > 0)
855 					do_wakeup = 1;
856 				semptr->semval += sopptr->sem_op;
857 				if (sopptr->sem_flg & SEM_UNDO)
858 					do_undos = 1;
859 			}
860 		}
861 
862 		/*
863 		 * Did we get through the entire vector?
864 		 */
865 		if (i >= nsops)
866 			goto done;
867 
868 		/*
869 		 * No ... rollback anything that we've already done
870 		 */
871 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
872 		while (i-- > 0)
873 			semaptr->_sem_base[sops[i].sem_num].semval -=
874 			    sops[i].sem_op;
875 
876 		/*
877 		 * If the request that we couldn't satisfy has the
878 		 * NOWAIT flag set then return with EAGAIN.
879 		 */
880 		if (sopptr->sem_flg & IPC_NOWAIT) {
881 			error = EAGAIN;
882 			goto out;
883 		}
884 
885 		if (sopptr->sem_op == 0)
886 			semptr->semzcnt++;
887 		else
888 			semptr->semncnt++;
889 
890 		sem_waiters++;
891 		SEM_PRINTF(("semop:  good night!\n"));
892 		error = cv_wait_sig(&semcv[semid], &semlock);
893 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
894 		sem_waiters--;
895 
896 		/* Notify reallocator, if it is waiting */
897 		cv_broadcast(&sem_realloc_cv);
898 
899 		/*
900 		 * Make sure that the semaphore still exists
901 		 */
902 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
903 		    semaptr->sem_perm._seq != seq) {
904 			error = EIDRM;
905 			goto out;
906 		}
907 
908 		/*
909 		 * The semaphore is still alive.  Readjust the count of
910 		 * waiting processes.
911 		 */
912 		semptr = &semaptr->_sem_base[sopptr->sem_num];
913 		if (sopptr->sem_op == 0)
914 			semptr->semzcnt--;
915 		else
916 			semptr->semncnt--;
917 
918 		/* In case of such state, restart the call */
919 		if (sem_realloc_state) {
920 			mutex_exit(&semlock);
921 			goto restart;
922 		}
923 
924 		/* Is it really morning, or was our sleep interrupted? */
925 		if (error != 0) {
926 			error = EINTR;
927 			goto out;
928 		}
929 		SEM_PRINTF(("semop:  good morning!\n"));
930 	}
931 
932 done:
933 	/*
934 	 * Process any SEM_UNDO requests.
935 	 */
936 	if (do_undos) {
937 		for (i = 0; i < nsops; i++) {
938 			/*
939 			 * We only need to deal with SEM_UNDO's for non-zero
940 			 * op's.
941 			 */
942 			int adjval;
943 
944 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
945 				continue;
946 			adjval = sops[i].sem_op;
947 			if (adjval == 0)
948 				continue;
949 			error = semundo_adjust(p, &suptr, semid,
950 			    sops[i].sem_num, -adjval);
951 			if (error == 0)
952 				continue;
953 
954 			/*
955 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
956 			 * Rollback the adjustments to this point and then
957 			 * rollback the semaphore ups and down so we can return
958 			 * with an error with all structures restored.  We
959 			 * rollback the undo's in the exact reverse order that
960 			 * we applied them.  This guarantees that we won't run
961 			 * out of space as we roll things back out.
962 			 */
963 			while (i-- > 0) {
964 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
965 					continue;
966 				adjval = sops[i].sem_op;
967 				if (adjval == 0)
968 					continue;
969 				if (semundo_adjust(p, &suptr, semid,
970 				    sops[i].sem_num, adjval) != 0)
971 					panic("semop - can't undo undos");
972 			}
973 
974 			for (i = 0; i < nsops; i++)
975 				semaptr->_sem_base[sops[i].sem_num].semval -=
976 				    sops[i].sem_op;
977 
978 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
979 			goto out;
980 		} /* loop through the sops */
981 	} /* if (do_undos) */
982 
983 	/* We're definitely done - set the sempid's */
984 	for (i = 0; i < nsops; i++) {
985 		sopptr = &sops[i];
986 		semptr = &semaptr->_sem_base[sopptr->sem_num];
987 		semptr->sempid = p->p_pid;
988 	}
989 
990 	/* Update sem_otime */
991 	semaptr->sem_otime = time_second;
992 
993 	/* Do a wakeup if any semaphore was up'd. */
994 	if (do_wakeup) {
995 		SEM_PRINTF(("semop:  doing wakeup\n"));
996 		cv_broadcast(&semcv[semid]);
997 		SEM_PRINTF(("semop:  back from wakeup\n"));
998 	}
999 	SEM_PRINTF(("semop:  done\n"));
1000 	*retval = 0;
1001 
1002  out:
1003 	mutex_exit(&semlock);
1004 	if (sops != small_sops)
1005 		kmem_free(sops, nsops * sizeof(*sops));
1006 	return error;
1007 }
1008 
1009 /*
1010  * Go through the undo structures for this process and apply the
1011  * adjustments to semaphores.
1012  */
1013 /*ARGSUSED*/
1014 void
1015 semexit(struct proc *p, void *v)
1016 {
1017 	struct sem_undo *suptr;
1018 	struct sem_undo **supptr;
1019 
1020 	if ((p->p_flag & PK_SYSVSEM) == 0)
1021 		return;
1022 
1023 	mutex_enter(&semlock);
1024 
1025 	/*
1026 	 * Go through the chain of undo vectors looking for one
1027 	 * associated with this process.
1028 	 */
1029 
1030 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
1031 	    supptr = &suptr->un_next) {
1032 		if (suptr->un_proc == p)
1033 			break;
1034 	}
1035 
1036 	/*
1037 	 * If there is no undo vector, skip to the end.
1038 	 */
1039 
1040 	if (suptr == NULL) {
1041 		mutex_exit(&semlock);
1042 		return;
1043 	}
1044 
1045 	/*
1046 	 * We now have an undo vector for this process.
1047 	 */
1048 
1049 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1050 	    suptr->un_cnt));
1051 
1052 	/*
1053 	 * If there are any active undo elements then process them.
1054 	 */
1055 	if (suptr->un_cnt > 0) {
1056 		int ix;
1057 
1058 		for (ix = 0; ix < suptr->un_cnt; ix++) {
1059 			int semid = suptr->un_ent[ix].un_id;
1060 			int semnum = suptr->un_ent[ix].un_num;
1061 			int adjval = suptr->un_ent[ix].un_adjval;
1062 			struct semid_ds *semaptr;
1063 
1064 			semaptr = &sema[semid];
1065 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1066 				panic("semexit - semid not allocated");
1067 			if (semnum >= semaptr->sem_nsems)
1068 				panic("semexit - semnum out of range");
1069 
1070 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
1071 			    "sem=%d\n",
1072 			    suptr->un_proc, suptr->un_ent[ix].un_id,
1073 			    suptr->un_ent[ix].un_num,
1074 			    suptr->un_ent[ix].un_adjval,
1075 			    semaptr->_sem_base[semnum].semval));
1076 
1077 			if (adjval < 0 &&
1078 			    semaptr->_sem_base[semnum].semval < -adjval)
1079 				semaptr->_sem_base[semnum].semval = 0;
1080 			else
1081 				semaptr->_sem_base[semnum].semval += adjval;
1082 
1083 			cv_broadcast(&semcv[semid]);
1084 			SEM_PRINTF(("semexit:  back from wakeup\n"));
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Deallocate the undo vector.
1090 	 */
1091 	SEM_PRINTF(("removing vector\n"));
1092 	suptr->un_proc = NULL;
1093 	*supptr = suptr->un_next;
1094 	mutex_exit(&semlock);
1095 }
1096 
1097 /*
1098  * Sysctl initialization and nodes.
1099  */
1100 
1101 static int
1102 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1103 {
1104 	int newsize, error;
1105 	struct sysctlnode node;
1106 	node = *rnode;
1107 	node.sysctl_data = &newsize;
1108 
1109 	newsize = seminfo.semmni;
1110 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1111 	if (error || newp == NULL)
1112 		return error;
1113 
1114 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1115 }
1116 
1117 static int
1118 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1119 {
1120 	int newsize, error;
1121 	struct sysctlnode node;
1122 	node = *rnode;
1123 	node.sysctl_data = &newsize;
1124 
1125 	newsize = seminfo.semmns;
1126 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1127 	if (error || newp == NULL)
1128 		return error;
1129 
1130 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1131 }
1132 
1133 static int
1134 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1135 {
1136 	int newsize, error;
1137 	struct sysctlnode node;
1138 	node = *rnode;
1139 	node.sysctl_data = &newsize;
1140 
1141 	newsize = seminfo.semmnu;
1142 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1143 	if (error || newp == NULL)
1144 		return error;
1145 
1146 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1147 }
1148 
1149 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1150 {
1151 	const struct sysctlnode *node = NULL;
1152 
1153 	sysctl_createv(clog, 0, NULL, &node,
1154 		CTLFLAG_PERMANENT,
1155 		CTLTYPE_NODE, "ipc",
1156 		SYSCTL_DESCR("SysV IPC options"),
1157 		NULL, 0, NULL, 0,
1158 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1159 
1160 	if (node == NULL)
1161 		return;
1162 
1163 	sysctl_createv(clog, 0, &node, NULL,
1164 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1165 		CTLTYPE_INT, "semmni",
1166 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1167 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1168 		CTL_CREATE, CTL_EOL);
1169 	sysctl_createv(clog, 0, &node, NULL,
1170 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1171 		CTLTYPE_INT, "semmns",
1172 		SYSCTL_DESCR("Max number of number of semaphores in system"),
1173 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1174 		CTL_CREATE, CTL_EOL);
1175 	sysctl_createv(clog, 0, &node, NULL,
1176 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1177 		CTLTYPE_INT, "semmnu",
1178 		SYSCTL_DESCR("Max number of undo structures in system"),
1179 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1180 		CTL_CREATE, CTL_EOL);
1181 }
1182