xref: /netbsd-src/sys/kern/sysv_sem.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: sysv_sem.c,v 1.87 2011/05/13 22:16:44 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Implementation of SVID semaphores
35  *
36  * Author: Daniel Boulet
37  *
38  * This software is provided ``AS IS'' without any warranties of any kind.
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.87 2011/05/13 22:16:44 rmind Exp $");
43 
44 #define SYSVSEM
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/sem.h>
49 #include <sys/sysctl.h>
50 #include <sys/kmem.h>
51 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
52 #include <sys/syscallargs.h>
53 #include <sys/kauth.h>
54 
55 /*
56  * Memory areas:
57  *  1st: Pool of semaphore identifiers
58  *  2nd: Semaphores
59  *  3rd: Conditional variables
60  *  4th: Undo structures
61  */
62 struct semid_ds *	sema			__read_mostly;
63 static struct __sem *	sem			__read_mostly;
64 static kcondvar_t *	semcv			__read_mostly;
65 static int *		semu			__read_mostly;
66 
67 static kmutex_t		semlock			__cacheline_aligned;
68 static bool		sem_realloc_state	__read_mostly;
69 static kcondvar_t	sem_realloc_cv;
70 
71 /*
72  * List of active undo structures, total number of semaphores,
73  * and total number of semop waiters.
74  */
75 static struct sem_undo *semu_list		__read_mostly;
76 static u_int		semtot			__cacheline_aligned;
77 static u_int		sem_waiters		__cacheline_aligned;
78 
79 /* Macro to find a particular sem_undo vector */
80 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
81 
82 #ifdef SEM_DEBUG
83 #define SEM_PRINTF(a) printf a
84 #else
85 #define SEM_PRINTF(a)
86 #endif
87 
88 struct sem_undo *semu_alloc(struct proc *);
89 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
90 void semundo_clear(int, int);
91 
92 void
93 seminit(void)
94 {
95 	int i, sz;
96 	vaddr_t v;
97 
98 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
99 	cv_init(&sem_realloc_cv, "semrealc");
100 	sem_realloc_state = false;
101 	semtot = 0;
102 	sem_waiters = 0;
103 
104 	/* Allocate the wired memory for our structures */
105 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
106 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
107 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
108 	    ALIGN(seminfo.semmnu * seminfo.semusz);
109 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
110 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
111 	if (v == 0)
112 		panic("sysv_sem: cannot allocate memory");
113 	sema = (void *)v;
114 	sem = (void *)((uintptr_t)sema +
115 	    ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
116 	semcv = (void *)((uintptr_t)sem +
117 	    ALIGN(seminfo.semmns * sizeof(struct __sem)));
118 	semu = (void *)((uintptr_t)semcv +
119 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
120 
121 	for (i = 0; i < seminfo.semmni; i++) {
122 		sema[i]._sem_base = 0;
123 		sema[i].sem_perm.mode = 0;
124 		cv_init(&semcv[i], "semwait");
125 	}
126 	for (i = 0; i < seminfo.semmnu; i++) {
127 		struct sem_undo *suptr = SEMU(semu, i);
128 		suptr->un_proc = NULL;
129 	}
130 	semu_list = NULL;
131 	exithook_establish(semexit, NULL);
132 }
133 
134 static int
135 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
136 {
137 	struct semid_ds *new_sema, *old_sema;
138 	struct __sem *new_sem;
139 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
140 	int *new_semu;
141 	kcondvar_t *new_semcv;
142 	vaddr_t v;
143 	int i, j, lsemid, nmnus, sz;
144 
145 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
146 		return EINVAL;
147 
148 	/* Allocate the wired memory for our structures */
149 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
150 	    ALIGN(newsemmns * sizeof(struct __sem)) +
151 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
152 	    ALIGN(newsemmnu * seminfo.semusz);
153 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
154 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
155 	if (v == 0)
156 		return ENOMEM;
157 
158 	mutex_enter(&semlock);
159 	if (sem_realloc_state) {
160 		mutex_exit(&semlock);
161 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
162 		return EBUSY;
163 	}
164 	sem_realloc_state = true;
165 	if (sem_waiters) {
166 		/*
167 		 * Mark reallocation state, wake-up all waiters,
168 		 * and wait while they will all exit.
169 		 */
170 		for (i = 0; i < seminfo.semmni; i++)
171 			cv_broadcast(&semcv[i]);
172 		while (sem_waiters)
173 			cv_wait(&sem_realloc_cv, &semlock);
174 	}
175 	old_sema = sema;
176 
177 	/* Get the number of last slot */
178 	lsemid = 0;
179 	for (i = 0; i < seminfo.semmni; i++)
180 		if (sema[i].sem_perm.mode & SEM_ALLOC)
181 			lsemid = i;
182 
183 	/* Get the number of currently used undo structures */
184 	nmnus = 0;
185 	for (i = 0; i < seminfo.semmnu; i++) {
186 		suptr = SEMU(semu, i);
187 		if (suptr->un_proc == NULL)
188 			continue;
189 		nmnus++;
190 	}
191 
192 	/* We cannot reallocate less memory than we use */
193 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
194 		mutex_exit(&semlock);
195 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
196 		return EBUSY;
197 	}
198 
199 	new_sema = (void *)v;
200 	new_sem = (void *)((uintptr_t)new_sema +
201 	    ALIGN(newsemmni * sizeof(struct semid_ds)));
202 	new_semcv = (void *)((uintptr_t)new_sem +
203 	    ALIGN(newsemmns * sizeof(struct __sem)));
204 	new_semu = (void *)((uintptr_t)new_semcv +
205 	    ALIGN(newsemmni * sizeof(kcondvar_t)));
206 
207 	/* Initialize all semaphore identifiers and condvars */
208 	for (i = 0; i < newsemmni; i++) {
209 		new_sema[i]._sem_base = 0;
210 		new_sema[i].sem_perm.mode = 0;
211 		cv_init(&new_semcv[i], "semwait");
212 	}
213 	for (i = 0; i < newsemmnu; i++) {
214 		nsuptr = SEMU(new_semu, i);
215 		nsuptr->un_proc = NULL;
216 	}
217 
218 	/*
219 	 * Copy all identifiers, semaphores and list of the
220 	 * undo structures to the new memory allocation.
221 	 */
222 	j = 0;
223 	for (i = 0; i <= lsemid; i++) {
224 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
225 			continue;
226 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
227 		new_sema[i]._sem_base = &new_sem[j];
228 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
229 		    (sizeof(struct __sem) * sema[i].sem_nsems));
230 		j += sema[i].sem_nsems;
231 	}
232 	KASSERT(j == semtot);
233 
234 	j = 0;
235 	new_semu_list = NULL;
236 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
237 		KASSERT(j < newsemmnu);
238 		nsuptr = SEMU(new_semu, j);
239 		memcpy(nsuptr, suptr, SEMUSZ);
240 		nsuptr->un_next = new_semu_list;
241 		new_semu_list = nsuptr;
242 		j++;
243 	}
244 
245 	for (i = 0; i < seminfo.semmni; i++) {
246 		KASSERT(cv_has_waiters(&semcv[i]) == false);
247 		cv_destroy(&semcv[i]);
248 	}
249 
250 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
251 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
252 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
253 	    ALIGN(seminfo.semmnu * seminfo.semusz);
254 
255 	/* Set the pointers and update the new values */
256 	sema = new_sema;
257 	sem = new_sem;
258 	semcv = new_semcv;
259 	semu = new_semu;
260 	semu_list = new_semu_list;
261 
262 	seminfo.semmni = newsemmni;
263 	seminfo.semmns = newsemmns;
264 	seminfo.semmnu = newsemmnu;
265 
266 	/* Reallocation completed - notify all waiters, if any */
267 	sem_realloc_state = false;
268 	cv_broadcast(&sem_realloc_cv);
269 	mutex_exit(&semlock);
270 
271 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
272 	return 0;
273 }
274 
275 /*
276  * Placebo.
277  */
278 
279 int
280 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
281 {
282 
283 	*retval = 0;
284 	return 0;
285 }
286 
287 /*
288  * Allocate a new sem_undo structure for a process.
289  * => Returns NULL on failure.
290  */
291 struct sem_undo *
292 semu_alloc(struct proc *p)
293 {
294 	struct sem_undo *suptr, **supptr;
295 	bool attempted = false;
296 	int i;
297 
298 	KASSERT(mutex_owned(&semlock));
299 again:
300 	/* Look for a free structure. */
301 	for (i = 0; i < seminfo.semmnu; i++) {
302 		suptr = SEMU(semu, i);
303 		if (suptr->un_proc == NULL) {
304 			/* Found.  Fill it in and return. */
305 			suptr->un_next = semu_list;
306 			semu_list = suptr;
307 			suptr->un_cnt = 0;
308 			suptr->un_proc = p;
309 			return suptr;
310 		}
311 	}
312 
313 	/* Not found.  Attempt to free some structures. */
314 	if (!attempted) {
315 		bool freed = false;
316 
317 		attempted = true;
318 		supptr = &semu_list;
319 		while ((suptr = *supptr) != NULL) {
320 			if (suptr->un_cnt == 0)  {
321 				suptr->un_proc = NULL;
322 				*supptr = suptr->un_next;
323 				freed = true;
324 			} else {
325 				supptr = &suptr->un_next;
326 			}
327 		}
328 		if (freed) {
329 			goto again;
330 		}
331 	}
332 	return NULL;
333 }
334 
335 /*
336  * Adjust a particular entry for a particular proc
337  */
338 
339 int
340 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
341     int adjval)
342 {
343 	struct sem_undo *suptr;
344 	struct undo *sunptr;
345 	int i;
346 
347 	KASSERT(mutex_owned(&semlock));
348 
349 	/*
350 	 * Look for and remember the sem_undo if the caller doesn't
351 	 * provide it
352 	 */
353 
354 	suptr = *supptr;
355 	if (suptr == NULL) {
356 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
357 			if (suptr->un_proc == p)
358 				break;
359 
360 		if (suptr == NULL) {
361 			suptr = semu_alloc(p);
362 			if (suptr == NULL)
363 				return (ENOSPC);
364 		}
365 		*supptr = suptr;
366 	}
367 
368 	/*
369 	 * Look for the requested entry and adjust it (delete if
370 	 * adjval becomes 0).
371 	 */
372 	sunptr = &suptr->un_ent[0];
373 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
374 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
375 			continue;
376 		sunptr->un_adjval += adjval;
377 		if (sunptr->un_adjval == 0) {
378 			suptr->un_cnt--;
379 			if (i < suptr->un_cnt)
380 				suptr->un_ent[i] =
381 				    suptr->un_ent[suptr->un_cnt];
382 		}
383 		return (0);
384 	}
385 
386 	/* Didn't find the right entry - create it */
387 	if (suptr->un_cnt == SEMUME)
388 		return (EINVAL);
389 
390 	sunptr = &suptr->un_ent[suptr->un_cnt];
391 	suptr->un_cnt++;
392 	sunptr->un_adjval = adjval;
393 	sunptr->un_id = semid;
394 	sunptr->un_num = semnum;
395 	return (0);
396 }
397 
398 void
399 semundo_clear(int semid, int semnum)
400 {
401 	struct sem_undo *suptr;
402 	struct undo *sunptr, *sunend;
403 
404 	KASSERT(mutex_owned(&semlock));
405 
406 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
407 		for (sunptr = &suptr->un_ent[0],
408 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
409 			if (sunptr->un_id == semid) {
410 				if (semnum == -1 || sunptr->un_num == semnum) {
411 					suptr->un_cnt--;
412 					sunend--;
413 					if (sunptr != sunend)
414 						*sunptr = *sunend;
415 					if (semnum != -1)
416 						break;
417 					else
418 						continue;
419 				}
420 			}
421 			sunptr++;
422 		}
423 }
424 
425 int
426 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
427     register_t *retval)
428 {
429 	/* {
430 		syscallarg(int) semid;
431 		syscallarg(int) semnum;
432 		syscallarg(int) cmd;
433 		syscallarg(union __semun *) arg;
434 	} */
435 	struct semid_ds sembuf;
436 	int cmd, error;
437 	void *pass_arg;
438 	union __semun karg;
439 
440 	cmd = SCARG(uap, cmd);
441 
442 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
443 
444 	if (pass_arg) {
445 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
446 		if (error)
447 			return error;
448 		if (cmd == IPC_SET) {
449 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
450 			if (error)
451 				return (error);
452 		}
453 	}
454 
455 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
456 	    pass_arg, retval);
457 
458 	if (error == 0 && cmd == IPC_STAT)
459 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
460 
461 	return (error);
462 }
463 
464 int
465 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
466     register_t *retval)
467 {
468 	kauth_cred_t cred = l->l_cred;
469 	union __semun *arg = v;
470 	struct semid_ds *sembuf = v, *semaptr;
471 	int i, error, ix;
472 
473 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
474 	    semid, semnum, cmd, v));
475 
476 	mutex_enter(&semlock);
477 
478 	ix = IPCID_TO_IX(semid);
479 	if (ix < 0 || ix >= seminfo.semmni) {
480 		mutex_exit(&semlock);
481 		return (EINVAL);
482 	}
483 
484 	semaptr = &sema[ix];
485 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
486 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
487 		mutex_exit(&semlock);
488 		return (EINVAL);
489 	}
490 
491 	switch (cmd) {
492 	case IPC_RMID:
493 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
494 			break;
495 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
496 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
497 		semtot -= semaptr->sem_nsems;
498 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
499 			sem[i] = sem[i + semaptr->sem_nsems];
500 		for (i = 0; i < seminfo.semmni; i++) {
501 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
502 			    sema[i]._sem_base > semaptr->_sem_base)
503 				sema[i]._sem_base -= semaptr->sem_nsems;
504 		}
505 		semaptr->sem_perm.mode = 0;
506 		semundo_clear(ix, -1);
507 		cv_broadcast(&semcv[ix]);
508 		break;
509 
510 	case IPC_SET:
511 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
512 			break;
513 		KASSERT(sembuf != NULL);
514 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
515 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
516 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
517 		    (sembuf->sem_perm.mode & 0777);
518 		semaptr->sem_ctime = time_second;
519 		break;
520 
521 	case IPC_STAT:
522 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
523 			break;
524 		KASSERT(sembuf != NULL);
525 		memcpy(sembuf, semaptr, sizeof(struct semid_ds));
526 		sembuf->sem_perm.mode &= 0777;
527 		break;
528 
529 	case GETNCNT:
530 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
531 			break;
532 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
533 			error = EINVAL;
534 			break;
535 		}
536 		*retval = semaptr->_sem_base[semnum].semncnt;
537 		break;
538 
539 	case GETPID:
540 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
541 			break;
542 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
543 			error = EINVAL;
544 			break;
545 		}
546 		*retval = semaptr->_sem_base[semnum].sempid;
547 		break;
548 
549 	case GETVAL:
550 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
551 			break;
552 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
553 			error = EINVAL;
554 			break;
555 		}
556 		*retval = semaptr->_sem_base[semnum].semval;
557 		break;
558 
559 	case GETALL:
560 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
561 			break;
562 		KASSERT(arg != NULL);
563 		for (i = 0; i < semaptr->sem_nsems; i++) {
564 			error = copyout(&semaptr->_sem_base[i].semval,
565 			    &arg->array[i], sizeof(arg->array[i]));
566 			if (error != 0)
567 				break;
568 		}
569 		break;
570 
571 	case GETZCNT:
572 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
573 			break;
574 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
575 			error = EINVAL;
576 			break;
577 		}
578 		*retval = semaptr->_sem_base[semnum].semzcnt;
579 		break;
580 
581 	case SETVAL:
582 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
583 			break;
584 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
585 			error = EINVAL;
586 			break;
587 		}
588 		KASSERT(arg != NULL);
589 		if ((unsigned int)arg->val > seminfo.semvmx) {
590 			error = ERANGE;
591 			break;
592 		}
593 		semaptr->_sem_base[semnum].semval = arg->val;
594 		semundo_clear(ix, semnum);
595 		cv_broadcast(&semcv[ix]);
596 		break;
597 
598 	case SETALL:
599 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
600 			break;
601 		KASSERT(arg != NULL);
602 		for (i = 0; i < semaptr->sem_nsems; i++) {
603 			unsigned short semval;
604 			error = copyin(&arg->array[i], &semval,
605 			    sizeof(arg->array[i]));
606 			if (error != 0)
607 				break;
608 			if ((unsigned int)semval > seminfo.semvmx) {
609 				error = ERANGE;
610 				break;
611 			}
612 			semaptr->_sem_base[i].semval = semval;
613 		}
614 		semundo_clear(ix, -1);
615 		cv_broadcast(&semcv[ix]);
616 		break;
617 
618 	default:
619 		error = EINVAL;
620 		break;
621 	}
622 
623 	mutex_exit(&semlock);
624 	return (error);
625 }
626 
627 int
628 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
629 {
630 	/* {
631 		syscallarg(key_t) key;
632 		syscallarg(int) nsems;
633 		syscallarg(int) semflg;
634 	} */
635 	int semid, error = 0;
636 	int key = SCARG(uap, key);
637 	int nsems = SCARG(uap, nsems);
638 	int semflg = SCARG(uap, semflg);
639 	kauth_cred_t cred = l->l_cred;
640 
641 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
642 
643 	mutex_enter(&semlock);
644 
645 	if (key != IPC_PRIVATE) {
646 		for (semid = 0; semid < seminfo.semmni; semid++) {
647 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
648 			    sema[semid].sem_perm._key == key)
649 				break;
650 		}
651 		if (semid < seminfo.semmni) {
652 			SEM_PRINTF(("found public key\n"));
653 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
654 			    semflg & 0700)))
655 			    	goto out;
656 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
657 				SEM_PRINTF(("too small\n"));
658 				error = EINVAL;
659 				goto out;
660 			}
661 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
662 				SEM_PRINTF(("not exclusive\n"));
663 				error = EEXIST;
664 				goto out;
665 			}
666 			goto found;
667 		}
668 	}
669 
670 	SEM_PRINTF(("need to allocate the semid_ds\n"));
671 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
672 		if (nsems <= 0 || nsems > seminfo.semmsl) {
673 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
674 			    seminfo.semmsl));
675 			error = EINVAL;
676 			goto out;
677 		}
678 		if (nsems > seminfo.semmns - semtot) {
679 			SEM_PRINTF(("not enough semaphores left "
680 			    "(need %d, got %d)\n",
681 			    nsems, seminfo.semmns - semtot));
682 			error = ENOSPC;
683 			goto out;
684 		}
685 		for (semid = 0; semid < seminfo.semmni; semid++) {
686 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
687 				break;
688 		}
689 		if (semid == seminfo.semmni) {
690 			SEM_PRINTF(("no more semid_ds's available\n"));
691 			error = ENOSPC;
692 			goto out;
693 		}
694 		SEM_PRINTF(("semid %d is available\n", semid));
695 		sema[semid].sem_perm._key = key;
696 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
697 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
698 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
699 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
700 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
701 		sema[semid].sem_perm._seq =
702 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
703 		sema[semid].sem_nsems = nsems;
704 		sema[semid].sem_otime = 0;
705 		sema[semid].sem_ctime = time_second;
706 		sema[semid]._sem_base = &sem[semtot];
707 		semtot += nsems;
708 		memset(sema[semid]._sem_base, 0,
709 		    sizeof(sema[semid]._sem_base[0]) * nsems);
710 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
711 		    &sem[semtot]));
712 	} else {
713 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
714 		error = ENOENT;
715 		goto out;
716 	}
717 
718  found:
719 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
720  out:
721 	mutex_exit(&semlock);
722 	return (error);
723 }
724 
725 #define SMALL_SOPS 8
726 
727 int
728 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
729 {
730 	/* {
731 		syscallarg(int) semid;
732 		syscallarg(struct sembuf *) sops;
733 		syscallarg(size_t) nsops;
734 	} */
735 	struct proc *p = l->l_proc;
736 	int semid = SCARG(uap, semid), seq;
737 	size_t nsops = SCARG(uap, nsops);
738 	struct sembuf small_sops[SMALL_SOPS];
739 	struct sembuf *sops;
740 	struct semid_ds *semaptr;
741 	struct sembuf *sopptr = NULL;
742 	struct __sem *semptr = NULL;
743 	struct sem_undo *suptr = NULL;
744 	kauth_cred_t cred = l->l_cred;
745 	int i, error;
746 	int do_wakeup, do_undos;
747 
748 	SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
749 
750 	if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
751 		mutex_enter(p->p_lock);
752 		p->p_flag |= PK_SYSVSEM;
753 		mutex_exit(p->p_lock);
754 	}
755 
756 restart:
757 	if (nsops <= SMALL_SOPS) {
758 		sops = small_sops;
759 	} else if (nsops <= seminfo.semopm) {
760 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
761 	} else {
762 		SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
763 		    seminfo.semopm, nsops));
764 		return (E2BIG);
765 	}
766 
767 	error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
768 	if (error) {
769 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
770 		    SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
771 		if (sops != small_sops)
772 			kmem_free(sops, nsops * sizeof(*sops));
773 		return error;
774 	}
775 
776 	mutex_enter(&semlock);
777 	/* In case of reallocation, we will wait for completion */
778 	while (__predict_false(sem_realloc_state))
779 		cv_wait(&sem_realloc_cv, &semlock);
780 
781 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
782 	if (semid < 0 || semid >= seminfo.semmni) {
783 		error = EINVAL;
784 		goto out;
785 	}
786 
787 	semaptr = &sema[semid];
788 	seq = IPCID_TO_SEQ(SCARG(uap, semid));
789 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
790 	    semaptr->sem_perm._seq != seq) {
791 		error = EINVAL;
792 		goto out;
793 	}
794 
795 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
796 		SEM_PRINTF(("error = %d from ipaccess\n", error));
797 		goto out;
798 	}
799 
800 	for (i = 0; i < nsops; i++)
801 		if (sops[i].sem_num >= semaptr->sem_nsems) {
802 			error = EFBIG;
803 			goto out;
804 		}
805 
806 	/*
807 	 * Loop trying to satisfy the vector of requests.
808 	 * If we reach a point where we must wait, any requests already
809 	 * performed are rolled back and we go to sleep until some other
810 	 * process wakes us up.  At this point, we start all over again.
811 	 *
812 	 * This ensures that from the perspective of other tasks, a set
813 	 * of requests is atomic (never partially satisfied).
814 	 */
815 	do_undos = 0;
816 
817 	for (;;) {
818 		do_wakeup = 0;
819 
820 		for (i = 0; i < nsops; i++) {
821 			sopptr = &sops[i];
822 			semptr = &semaptr->_sem_base[sopptr->sem_num];
823 
824 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
825 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
826 			    semaptr, semaptr->_sem_base, semptr,
827 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
828 			    (sopptr->sem_flg & IPC_NOWAIT) ?
829 			    "nowait" : "wait"));
830 
831 			if (sopptr->sem_op < 0) {
832 				if ((int)(semptr->semval +
833 				    sopptr->sem_op) < 0) {
834 					SEM_PRINTF(("semop:  "
835 					    "can't do it now\n"));
836 					break;
837 				} else {
838 					semptr->semval += sopptr->sem_op;
839 					if (semptr->semval == 0 &&
840 					    semptr->semzcnt > 0)
841 						do_wakeup = 1;
842 				}
843 				if (sopptr->sem_flg & SEM_UNDO)
844 					do_undos = 1;
845 			} else if (sopptr->sem_op == 0) {
846 				if (semptr->semval > 0) {
847 					SEM_PRINTF(("semop:  not zero now\n"));
848 					break;
849 				}
850 			} else {
851 				if (semptr->semncnt > 0)
852 					do_wakeup = 1;
853 				semptr->semval += sopptr->sem_op;
854 				if (sopptr->sem_flg & SEM_UNDO)
855 					do_undos = 1;
856 			}
857 		}
858 
859 		/*
860 		 * Did we get through the entire vector?
861 		 */
862 		if (i >= nsops)
863 			goto done;
864 
865 		/*
866 		 * No ... rollback anything that we've already done
867 		 */
868 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
869 		while (i-- > 0)
870 			semaptr->_sem_base[sops[i].sem_num].semval -=
871 			    sops[i].sem_op;
872 
873 		/*
874 		 * If the request that we couldn't satisfy has the
875 		 * NOWAIT flag set then return with EAGAIN.
876 		 */
877 		if (sopptr->sem_flg & IPC_NOWAIT) {
878 			error = EAGAIN;
879 			goto out;
880 		}
881 
882 		if (sopptr->sem_op == 0)
883 			semptr->semzcnt++;
884 		else
885 			semptr->semncnt++;
886 
887 		sem_waiters++;
888 		SEM_PRINTF(("semop:  good night!\n"));
889 		error = cv_wait_sig(&semcv[semid], &semlock);
890 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
891 		sem_waiters--;
892 
893 		/* Notify reallocator, if it is waiting */
894 		cv_broadcast(&sem_realloc_cv);
895 
896 		/*
897 		 * Make sure that the semaphore still exists
898 		 */
899 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
900 		    semaptr->sem_perm._seq != seq) {
901 			error = EIDRM;
902 			goto out;
903 		}
904 
905 		/*
906 		 * The semaphore is still alive.  Readjust the count of
907 		 * waiting processes.
908 		 */
909 		semptr = &semaptr->_sem_base[sopptr->sem_num];
910 		if (sopptr->sem_op == 0)
911 			semptr->semzcnt--;
912 		else
913 			semptr->semncnt--;
914 
915 		/* In case of such state, restart the call */
916 		if (sem_realloc_state) {
917 			mutex_exit(&semlock);
918 			goto restart;
919 		}
920 
921 		/* Is it really morning, or was our sleep interrupted? */
922 		if (error != 0) {
923 			error = EINTR;
924 			goto out;
925 		}
926 		SEM_PRINTF(("semop:  good morning!\n"));
927 	}
928 
929 done:
930 	/*
931 	 * Process any SEM_UNDO requests.
932 	 */
933 	if (do_undos) {
934 		for (i = 0; i < nsops; i++) {
935 			/*
936 			 * We only need to deal with SEM_UNDO's for non-zero
937 			 * op's.
938 			 */
939 			int adjval;
940 
941 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
942 				continue;
943 			adjval = sops[i].sem_op;
944 			if (adjval == 0)
945 				continue;
946 			error = semundo_adjust(p, &suptr, semid,
947 			    sops[i].sem_num, -adjval);
948 			if (error == 0)
949 				continue;
950 
951 			/*
952 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
953 			 * Rollback the adjustments to this point and then
954 			 * rollback the semaphore ups and down so we can return
955 			 * with an error with all structures restored.  We
956 			 * rollback the undo's in the exact reverse order that
957 			 * we applied them.  This guarantees that we won't run
958 			 * out of space as we roll things back out.
959 			 */
960 			while (i-- > 0) {
961 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
962 					continue;
963 				adjval = sops[i].sem_op;
964 				if (adjval == 0)
965 					continue;
966 				if (semundo_adjust(p, &suptr, semid,
967 				    sops[i].sem_num, adjval) != 0)
968 					panic("semop - can't undo undos");
969 			}
970 
971 			for (i = 0; i < nsops; i++)
972 				semaptr->_sem_base[sops[i].sem_num].semval -=
973 				    sops[i].sem_op;
974 
975 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
976 			goto out;
977 		} /* loop through the sops */
978 	} /* if (do_undos) */
979 
980 	/* We're definitely done - set the sempid's */
981 	for (i = 0; i < nsops; i++) {
982 		sopptr = &sops[i];
983 		semptr = &semaptr->_sem_base[sopptr->sem_num];
984 		semptr->sempid = p->p_pid;
985 	}
986 
987 	/* Update sem_otime */
988 	semaptr->sem_otime = time_second;
989 
990 	/* Do a wakeup if any semaphore was up'd. */
991 	if (do_wakeup) {
992 		SEM_PRINTF(("semop:  doing wakeup\n"));
993 		cv_broadcast(&semcv[semid]);
994 		SEM_PRINTF(("semop:  back from wakeup\n"));
995 	}
996 	SEM_PRINTF(("semop:  done\n"));
997 	*retval = 0;
998 
999  out:
1000 	mutex_exit(&semlock);
1001 	if (sops != small_sops)
1002 		kmem_free(sops, nsops * sizeof(*sops));
1003 	return error;
1004 }
1005 
1006 /*
1007  * Go through the undo structures for this process and apply the
1008  * adjustments to semaphores.
1009  */
1010 /*ARGSUSED*/
1011 void
1012 semexit(struct proc *p, void *v)
1013 {
1014 	struct sem_undo *suptr;
1015 	struct sem_undo **supptr;
1016 
1017 	if ((p->p_flag & PK_SYSVSEM) == 0)
1018 		return;
1019 
1020 	mutex_enter(&semlock);
1021 
1022 	/*
1023 	 * Go through the chain of undo vectors looking for one
1024 	 * associated with this process.
1025 	 */
1026 
1027 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
1028 	    supptr = &suptr->un_next) {
1029 		if (suptr->un_proc == p)
1030 			break;
1031 	}
1032 
1033 	/*
1034 	 * If there is no undo vector, skip to the end.
1035 	 */
1036 
1037 	if (suptr == NULL) {
1038 		mutex_exit(&semlock);
1039 		return;
1040 	}
1041 
1042 	/*
1043 	 * We now have an undo vector for this process.
1044 	 */
1045 
1046 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1047 	    suptr->un_cnt));
1048 
1049 	/*
1050 	 * If there are any active undo elements then process them.
1051 	 */
1052 	if (suptr->un_cnt > 0) {
1053 		int ix;
1054 
1055 		for (ix = 0; ix < suptr->un_cnt; ix++) {
1056 			int semid = suptr->un_ent[ix].un_id;
1057 			int semnum = suptr->un_ent[ix].un_num;
1058 			int adjval = suptr->un_ent[ix].un_adjval;
1059 			struct semid_ds *semaptr;
1060 
1061 			semaptr = &sema[semid];
1062 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1063 				panic("semexit - semid not allocated");
1064 			if (semnum >= semaptr->sem_nsems)
1065 				panic("semexit - semnum out of range");
1066 
1067 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
1068 			    "sem=%d\n",
1069 			    suptr->un_proc, suptr->un_ent[ix].un_id,
1070 			    suptr->un_ent[ix].un_num,
1071 			    suptr->un_ent[ix].un_adjval,
1072 			    semaptr->_sem_base[semnum].semval));
1073 
1074 			if (adjval < 0 &&
1075 			    semaptr->_sem_base[semnum].semval < -adjval)
1076 				semaptr->_sem_base[semnum].semval = 0;
1077 			else
1078 				semaptr->_sem_base[semnum].semval += adjval;
1079 
1080 			cv_broadcast(&semcv[semid]);
1081 			SEM_PRINTF(("semexit:  back from wakeup\n"));
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * Deallocate the undo vector.
1087 	 */
1088 	SEM_PRINTF(("removing vector\n"));
1089 	suptr->un_proc = NULL;
1090 	*supptr = suptr->un_next;
1091 	mutex_exit(&semlock);
1092 }
1093 
1094 /*
1095  * Sysctl initialization and nodes.
1096  */
1097 
1098 static int
1099 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1100 {
1101 	int newsize, error;
1102 	struct sysctlnode node;
1103 	node = *rnode;
1104 	node.sysctl_data = &newsize;
1105 
1106 	newsize = seminfo.semmni;
1107 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1108 	if (error || newp == NULL)
1109 		return error;
1110 
1111 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1112 }
1113 
1114 static int
1115 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1116 {
1117 	int newsize, error;
1118 	struct sysctlnode node;
1119 	node = *rnode;
1120 	node.sysctl_data = &newsize;
1121 
1122 	newsize = seminfo.semmns;
1123 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1124 	if (error || newp == NULL)
1125 		return error;
1126 
1127 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1128 }
1129 
1130 static int
1131 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1132 {
1133 	int newsize, error;
1134 	struct sysctlnode node;
1135 	node = *rnode;
1136 	node.sysctl_data = &newsize;
1137 
1138 	newsize = seminfo.semmnu;
1139 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1140 	if (error || newp == NULL)
1141 		return error;
1142 
1143 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1144 }
1145 
1146 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1147 {
1148 	const struct sysctlnode *node = NULL;
1149 
1150 	sysctl_createv(clog, 0, NULL, NULL,
1151 		CTLFLAG_PERMANENT,
1152 		CTLTYPE_NODE, "kern", NULL,
1153 		NULL, 0, NULL, 0,
1154 		CTL_KERN, CTL_EOL);
1155 	sysctl_createv(clog, 0, NULL, &node,
1156 		CTLFLAG_PERMANENT,
1157 		CTLTYPE_NODE, "ipc",
1158 		SYSCTL_DESCR("SysV IPC options"),
1159 		NULL, 0, NULL, 0,
1160 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1161 
1162 	if (node == NULL)
1163 		return;
1164 
1165 	sysctl_createv(clog, 0, &node, NULL,
1166 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1167 		CTLTYPE_INT, "semmni",
1168 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1169 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1170 		CTL_CREATE, CTL_EOL);
1171 	sysctl_createv(clog, 0, &node, NULL,
1172 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1173 		CTLTYPE_INT, "semmns",
1174 		SYSCTL_DESCR("Max number of number of semaphores in system"),
1175 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1176 		CTL_CREATE, CTL_EOL);
1177 	sysctl_createv(clog, 0, &node, NULL,
1178 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1179 		CTLTYPE_INT, "semmnu",
1180 		SYSCTL_DESCR("Max number of undo structures in system"),
1181 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1182 		CTL_CREATE, CTL_EOL);
1183 }
1184