xref: /netbsd-src/sys/kern/sys_timerfd.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: sys_timerfd.c,v 1.7 2021/11/24 16:35:33 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_timerfd.c,v 1.7 2021/11/24 16:35:33 thorpej Exp $");
34 
35 /*
36  * timerfd
37  *
38  * Timerfd objects are similar to POSIX timers, except they are associated
39  * with a file descriptor rather than a process.  Timerfd objects are
40  * created with the timerfd_create(2) system call, similar to timer_create(2).
41  * The timerfd analogues for timer_gettime(2) and timer_settime(2) are
42  * timerfd_gettime(2) and timerfd_settime(2), respectively.
43  *
44  * When a timerfd object's timer fires, an internal counter is incremented.
45  * When this counter is non-zero, the descriptor associated with the timerfd
46  * object is "readable".  Note that this is slightly different than the
47  * POSIX timer "overrun" counter, which only increments if the timer fires
48  * again while the notification signal is already pending.  Thus, we are
49  * responsible for incrementing the "overrun" counter each time the timerfd
50  * timer fires.
51  *
52  * This implementation is API compatible with the Linux timerfd interface.
53  */
54 
55 #include <sys/param.h>
56 #include <sys/types.h>
57 #include <sys/condvar.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/poll.h>
63 #include <sys/proc.h>
64 #include <sys/select.h>
65 #include <sys/stat.h>
66 #include <sys/syscallargs.h>
67 #include <sys/timerfd.h>
68 #include <sys/uio.h>
69 
70 /* N.B. all timerfd state is protected by itimer_lock() */
71 struct timerfd {
72 	struct itimer	tfd_itimer;
73 	kcondvar_t	tfd_read_wait;
74 	struct selinfo	tfd_read_sel;
75 	int64_t		tfd_nwaiters;
76 	bool		tfd_cancel_on_set;
77 	bool		tfd_cancelled;
78 	bool		tfd_restarting;
79 
80 	/*
81 	 * Information kept for stat(2).
82 	 */
83 	struct timespec tfd_btime;	/* time created */
84 	struct timespec	tfd_mtime;	/* last timerfd_settime() */
85 	struct timespec	tfd_atime;	/* last read */
86 };
87 
88 static void	timerfd_wake(struct timerfd *);
89 
90 static inline uint64_t
91 timerfd_fire_count(const struct timerfd * const tfd)
92 {
93 	return (unsigned int)tfd->tfd_itimer.it_overruns;
94 }
95 
96 static inline bool
97 timerfd_is_readable(const struct timerfd * const tfd)
98 {
99 	return tfd->tfd_itimer.it_overruns != 0 || tfd->tfd_cancelled;
100 }
101 
102 /*
103  * timerfd_fire:
104  *
105  *	Called when the timerfd's timer fires.
106  *
107  *	Called from a callout with itimer lock held.
108  */
109 static void
110 timerfd_fire(struct itimer * const it)
111 {
112 	struct timerfd * const tfd =
113 	    container_of(it, struct timerfd, tfd_itimer);
114 
115 	it->it_overruns++;
116 	timerfd_wake(tfd);
117 }
118 
119 /*
120  * timerfd_realtime_changed:
121  *
122  *	Called when CLOCK_REALTIME is changed with clock_settime()
123  *	or settimeofday().
124  *
125  *	Called with itimer lock held.
126  */
127 static void
128 timerfd_realtime_changed(struct itimer * const it)
129 {
130 	struct timerfd * const tfd =
131 	    container_of(it, struct timerfd, tfd_itimer);
132 
133 	/* Should only be called when timer is armed. */
134 	KASSERT(timespecisset(&it->it_time.it_value));
135 
136 	if (tfd->tfd_cancel_on_set) {
137 		tfd->tfd_cancelled = true;
138 		timerfd_wake(tfd);
139 	}
140 }
141 
142 static const struct itimer_ops timerfd_itimer_monotonic_ops = {
143 	.ito_fire = timerfd_fire,
144 };
145 
146 static const struct itimer_ops timerfd_itimer_realtime_ops = {
147 	.ito_fire = timerfd_fire,
148 	.ito_realtime_changed = timerfd_realtime_changed,
149 };
150 
151 /*
152  * timerfd_create:
153  *
154  *	Create a timerfd object.
155  */
156 static struct timerfd *
157 timerfd_create(clockid_t const clock_id, int const flags)
158 {
159 	struct timerfd * const tfd = kmem_zalloc(sizeof(*tfd), KM_SLEEP);
160 
161 	KASSERT(clock_id == CLOCK_REALTIME || clock_id == CLOCK_MONOTONIC);
162 
163 	cv_init(&tfd->tfd_read_wait, "tfdread");
164 	selinit(&tfd->tfd_read_sel);
165 	getnanotime(&tfd->tfd_btime);
166 
167 	/* Caller deals with TFD_CLOEXEC and TFD_NONBLOCK. */
168 
169 	itimer_lock();
170 	itimer_init(&tfd->tfd_itimer,
171 	    clock_id == CLOCK_REALTIME ? &timerfd_itimer_realtime_ops
172 				       : &timerfd_itimer_monotonic_ops,
173 	    clock_id, NULL);
174 	itimer_unlock();
175 
176 	return tfd;
177 }
178 
179 /*
180  * timerfd_destroy:
181  *
182  *	Destroy a timerfd object.
183  */
184 static void
185 timerfd_destroy(struct timerfd * const tfd)
186 {
187 
188 	KASSERT(tfd->tfd_nwaiters == 0);
189 
190 	itimer_lock();
191 	itimer_poison(&tfd->tfd_itimer);
192 	itimer_fini(&tfd->tfd_itimer);	/* drops itimer lock */
193 
194 	cv_destroy(&tfd->tfd_read_wait);
195 
196 	seldestroy(&tfd->tfd_read_sel);
197 
198 	kmem_free(tfd, sizeof(*tfd));
199 }
200 
201 /*
202  * timerfd_wait:
203  *
204  *	Block on a timerfd.  Handles non-blocking, as well as
205  *	the restart cases.
206  */
207 static int
208 timerfd_wait(struct timerfd * const tfd, int const fflag)
209 {
210 	extern kmutex_t	itimer_mutex;	/* XXX */
211 	int error;
212 
213 	if (fflag & FNONBLOCK) {
214 		return EAGAIN;
215 	}
216 
217 	/*
218 	 * We're going to block.  Check if we need to return ERESTART.
219 	 */
220 	if (tfd->tfd_restarting) {
221 		return ERESTART;
222 	}
223 
224 	tfd->tfd_nwaiters++;
225 	KASSERT(tfd->tfd_nwaiters > 0);
226 	error = cv_wait_sig(&tfd->tfd_read_wait, &itimer_mutex);
227 	tfd->tfd_nwaiters--;
228 	KASSERT(tfd->tfd_nwaiters >= 0);
229 
230 	/*
231 	 * If a restart was triggered while we were asleep, we need
232 	 * to return ERESTART if no other error was returned.
233 	 */
234 	if (tfd->tfd_restarting) {
235 		if (error == 0) {
236 			error = ERESTART;
237 		}
238 	}
239 
240 	return error;
241 }
242 
243 /*
244  * timerfd_wake:
245  *
246  *	Wake LWPs blocked on a timerfd.
247  */
248 static void
249 timerfd_wake(struct timerfd * const tfd)
250 {
251 
252 	if (tfd->tfd_nwaiters) {
253 		cv_broadcast(&tfd->tfd_read_wait);
254 	}
255 	selnotify(&tfd->tfd_read_sel, POLLIN | POLLRDNORM, NOTE_SUBMIT);
256 }
257 
258 /*
259  * timerfd file operations
260  */
261 
262 static int
263 timerfd_fop_read(file_t * const fp, off_t * const offset,
264     struct uio * const uio, kauth_cred_t const cred, int const flags)
265 {
266 	struct timerfd * const tfd = fp->f_timerfd;
267 	struct itimer * const it = &tfd->tfd_itimer;
268 	int const fflag = fp->f_flag;
269 	uint64_t return_value;
270 	int error;
271 
272 	if (uio->uio_resid < sizeof(uint64_t)) {
273 		return EINVAL;
274 	}
275 
276 	itimer_lock();
277 
278 	while (!timerfd_is_readable(tfd)) {
279 		if ((error = timerfd_wait(tfd, fflag)) != 0) {
280 			itimer_unlock();
281 			return error;
282 		}
283 	}
284 
285 	if (tfd->tfd_cancelled) {
286 		itimer_unlock();
287 		return ECANCELED;
288 	}
289 
290 	return_value = timerfd_fire_count(tfd);
291 	it->it_overruns = 0;
292 
293 	getnanotime(&tfd->tfd_atime);
294 
295 	itimer_unlock();
296 
297 	error = uiomove(&return_value, sizeof(return_value), uio);
298 
299 	return error;
300 }
301 
302 static int
303 timerfd_fop_ioctl(file_t * const fp, unsigned long const cmd, void * const data)
304 {
305 	struct timerfd * const tfd = fp->f_timerfd;
306 	int error = 0;
307 
308 	switch (cmd) {
309 	case TFD_IOC_SET_TICKS: {
310 		const uint64_t * const new_ticksp = data;
311 		if (*new_ticksp > INT_MAX) {
312 			return EINVAL;
313 		}
314 		itimer_lock();
315 		tfd->tfd_itimer.it_overruns = (int)*new_ticksp;
316 		itimer_unlock();
317 		break;
318 	    }
319 
320 	default:
321 		error = EPASSTHROUGH;
322 	}
323 
324 	return error;
325 }
326 
327 static int
328 timerfd_fop_poll(file_t * const fp, int const events)
329 {
330 	struct timerfd * const tfd = fp->f_timerfd;
331 	int revents = events & (POLLOUT | POLLWRNORM);
332 
333 	if (events & (POLLIN | POLLRDNORM)) {
334 		itimer_lock();
335 		if (timerfd_is_readable(tfd)) {
336 			revents |= events & (POLLIN | POLLRDNORM);
337 		} else {
338 			selrecord(curlwp, &tfd->tfd_read_sel);
339 		}
340 		itimer_unlock();
341 	}
342 
343 	return revents;
344 }
345 
346 static int
347 timerfd_fop_stat(file_t * const fp, struct stat * const st)
348 {
349 	struct timerfd * const tfd = fp->f_timerfd;
350 
351 	memset(st, 0, sizeof(*st));
352 
353 	itimer_lock();
354 	st->st_size = (off_t)timerfd_fire_count(tfd);
355 	st->st_atimespec = tfd->tfd_atime;
356 	st->st_mtimespec = tfd->tfd_mtime;
357 	itimer_unlock();
358 
359 	st->st_blksize = sizeof(uint64_t);
360 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
361 	st->st_blocks = 1;
362 	st->st_birthtimespec = tfd->tfd_btime;
363 	st->st_ctimespec = st->st_mtimespec;
364 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
365 	st->st_gid = kauth_cred_getegid(fp->f_cred);
366 
367 	return 0;
368 }
369 
370 static int
371 timerfd_fop_close(file_t * const fp)
372 {
373 	struct timerfd * const tfd = fp->f_timerfd;
374 
375 	fp->f_timerfd = NULL;
376 	timerfd_destroy(tfd);
377 
378 	return 0;
379 }
380 
381 static void
382 timerfd_filt_read_detach(struct knote * const kn)
383 {
384 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
385 
386 	itimer_lock();
387 	KASSERT(kn->kn_hook == tfd);
388 	selremove_knote(&tfd->tfd_read_sel, kn);
389 	itimer_unlock();
390 }
391 
392 static int
393 timerfd_filt_read(struct knote * const kn, long const hint)
394 {
395 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
396 	int rv;
397 
398 	if (hint & NOTE_SUBMIT) {
399 		KASSERT(itimer_lock_held());
400 	} else {
401 		itimer_lock();
402 	}
403 
404 	kn->kn_data = (int64_t)timerfd_fire_count(tfd);
405 	rv = kn->kn_data != 0;
406 
407 	if ((hint & NOTE_SUBMIT) == 0) {
408 		itimer_unlock();
409 	}
410 
411 	return rv;
412 }
413 
414 static const struct filterops timerfd_read_filterops = {
415 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
416 	.f_detach = timerfd_filt_read_detach,
417 	.f_event = timerfd_filt_read,
418 };
419 
420 static int
421 timerfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
422 {
423 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
424 	struct selinfo *sel;
425 
426 	switch (kn->kn_filter) {
427 	case EVFILT_READ:
428 		sel = &tfd->tfd_read_sel;
429 		kn->kn_fop = &timerfd_read_filterops;
430 		break;
431 
432 	default:
433 		return EINVAL;
434 	}
435 
436 	kn->kn_hook = tfd;
437 
438 	itimer_lock();
439 	selrecord_knote(sel, kn);
440 	itimer_unlock();
441 
442 	return 0;
443 }
444 
445 static void
446 timerfd_fop_restart(file_t * const fp)
447 {
448 	struct timerfd * const tfd = fp->f_timerfd;
449 
450 	/*
451 	 * Unblock blocked reads in order to allow close() to complete.
452 	 * System calls return ERESTART so that the fd is revalidated.
453 	 */
454 
455 	itimer_lock();
456 
457 	if (tfd->tfd_nwaiters != 0) {
458 		tfd->tfd_restarting = true;
459 		cv_broadcast(&tfd->tfd_read_wait);
460 	}
461 
462 	itimer_unlock();
463 }
464 
465 static const struct fileops timerfd_fileops = {
466 	.fo_name = "timerfd",
467 	.fo_read = timerfd_fop_read,
468 	.fo_write = fbadop_write,
469 	.fo_ioctl = timerfd_fop_ioctl,
470 	.fo_fcntl = fnullop_fcntl,
471 	.fo_poll = timerfd_fop_poll,
472 	.fo_stat = timerfd_fop_stat,
473 	.fo_close = timerfd_fop_close,
474 	.fo_kqfilter = timerfd_fop_kqfilter,
475 	.fo_restart = timerfd_fop_restart,
476 };
477 
478 /*
479  * timerfd_create(2) system call
480  */
481 int
482 do_timerfd_create(struct lwp * const l, clockid_t const clock_id,
483     int const flags, register_t *retval)
484 {
485 	file_t *fp;
486 	int fd, error;
487 
488 	if (flags & ~(TFD_CLOEXEC | TFD_NONBLOCK)) {
489 		return EINVAL;
490 	}
491 
492 	switch (clock_id) {
493 	case CLOCK_REALTIME:
494 	case CLOCK_MONOTONIC:
495 		/* allowed */
496 		break;
497 
498 	default:
499 		return EINVAL;
500 	}
501 
502 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
503 		return error;
504 	}
505 
506 	fp->f_flag = FREAD;
507 	if (flags & TFD_NONBLOCK) {
508 		fp->f_flag |= FNONBLOCK;
509 	}
510 	fp->f_type = DTYPE_TIMERFD;
511 	fp->f_ops = &timerfd_fileops;
512 	fp->f_timerfd = timerfd_create(clock_id, flags);
513 	fd_set_exclose(l, fd, !!(flags & TFD_CLOEXEC));
514 	fd_affix(curproc, fp, fd);
515 
516 	*retval = fd;
517 	return 0;
518 }
519 
520 int
521 sys_timerfd_create(struct lwp *l, const struct sys_timerfd_create_args *uap,
522     register_t *retval)
523 {
524 	/* {
525 		syscallarg(clockid_t) clock_id;
526 		syscallarg(int) flags;
527 	} */
528 
529 	return do_timerfd_create(l, SCARG(uap, clock_id), SCARG(uap, flags),
530 	    retval);
531 }
532 
533 /*
534  * timerfd_gettime(2) system call.
535  */
536 int
537 do_timerfd_gettime(struct lwp *l, int fd, struct itimerspec *curr_value,
538     register_t *retval)
539 {
540 	file_t *fp;
541 
542 	if ((fp = fd_getfile(fd)) == NULL) {
543 		return EBADF;
544 	}
545 
546 	if (fp->f_ops != &timerfd_fileops) {
547 		fd_putfile(fd);
548 		return EINVAL;
549 	}
550 
551 	struct timerfd * const tfd = fp->f_timerfd;
552 	itimer_lock();
553 	itimer_gettime(&tfd->tfd_itimer, curr_value);
554 	itimer_unlock();
555 
556 	fd_putfile(fd);
557 	return 0;
558 }
559 
560 int
561 sys_timerfd_gettime(struct lwp *l, const struct sys_timerfd_gettime_args *uap,
562     register_t *retval)
563 {
564 	/* {
565 		syscallarg(int) fd;
566 		syscallarg(struct itimerspec *) curr_value;
567 	} */
568 
569 	struct itimerspec oits;
570 	int error;
571 
572 	error = do_timerfd_gettime(l, SCARG(uap, fd), &oits, retval);
573 	if (error == 0) {
574 		error = copyout(&oits, SCARG(uap, curr_value), sizeof(oits));
575 	}
576 	return error;
577 }
578 
579 /*
580  * timerfd_settime(2) system call.
581  */
582 int
583 do_timerfd_settime(struct lwp *l, int fd, int flags,
584     const struct itimerspec *new_value, struct itimerspec *old_value,
585     register_t *retval)
586 {
587 	file_t *fp;
588 	int error;
589 
590 	if (flags & ~(TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET)) {
591 		return EINVAL;
592 	}
593 
594 	if ((fp = fd_getfile(fd)) == NULL) {
595 		return EBADF;
596 	}
597 
598 	if (fp->f_ops != &timerfd_fileops) {
599 		fd_putfile(fd);
600 		return EINVAL;
601 	}
602 
603 	struct timerfd * const tfd = fp->f_timerfd;
604 	struct itimer * const it = &tfd->tfd_itimer;
605 
606 	itimer_lock();
607 
608  restart:
609 	if (old_value != NULL) {
610 		*old_value = it->it_time;
611 	}
612 	it->it_time = *new_value;
613 
614 	/*
615 	 * If we've been passed a relative value, convert it to an
616 	 * absolute, as that's what the itimer facility expects for
617 	 * non-virtual timers.  Also ensure that this doesn't set it
618 	 * to zero or lets it go negative.
619 	 * XXXJRT re-factor.
620 	 */
621 	if (timespecisset(&it->it_time.it_value) &&
622 	    (flags & TFD_TIMER_ABSTIME) == 0) {
623 		struct timespec now;
624 		if (it->it_clockid == CLOCK_REALTIME) {
625 			getnanotime(&now);
626 		} else { /* CLOCK_MONOTONIC */
627 			getnanouptime(&now);
628 		}
629 		timespecadd(&it->it_time.it_value, &now,
630 		    &it->it_time.it_value);
631 	}
632 
633 	error = itimer_settime(it);
634 	if (error == ERESTART) {
635 		goto restart;
636 	}
637 	KASSERT(error == 0);
638 
639 	/* Reset the expirations counter. */
640 	it->it_overruns = 0;
641 
642 	if (it->it_clockid == CLOCK_REALTIME) {
643 		tfd->tfd_cancelled = false;
644 		tfd->tfd_cancel_on_set = !!(flags & TFD_TIMER_CANCEL_ON_SET);
645 	}
646 
647 	getnanotime(&tfd->tfd_mtime);
648 	itimer_unlock();
649 
650 	fd_putfile(fd);
651 	return error;
652 }
653 
654 int
655 sys_timerfd_settime(struct lwp *l, const struct sys_timerfd_settime_args *uap,
656     register_t *retval)
657 {
658 	/* {
659 		syscallarg(int) fd;
660 		syscallarg(int) flags;
661 		syscallarg(const struct itimerspec *) new_value;
662 		syscallarg(struct itimerspec *) old_value;
663 	} */
664 
665 	struct itimerspec nits, oits, *oitsp = NULL;
666 	int error;
667 
668 	error = copyin(SCARG(uap, new_value), &nits, sizeof(nits));
669 	if (error) {
670 		return error;
671 	}
672 
673 	if (SCARG(uap, old_value) != NULL) {
674 		oitsp = &oits;
675 	}
676 
677 	error = do_timerfd_settime(l, SCARG(uap, fd), SCARG(uap, flags),
678 	    &nits, oitsp, retval);
679 	if (error == 0 && oitsp != NULL) {
680 		error = copyout(oitsp, SCARG(uap, old_value), sizeof(*oitsp));
681 	}
682 	return error;
683 }
684