xref: /netbsd-src/sys/kern/sys_select.c (revision cb861154c176d3dcc8ff846f449e3c16a5f5edb5)
1 /*	$NetBSD: sys_select.c,v 1.30 2011/03/06 04:41:58 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007, 2008, 2009, 2010 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran and Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
66  */
67 
68 /*
69  * System calls of synchronous I/O multiplexing subsystem.
70  *
71  * Locking
72  *
73  * Two locks are used: <object-lock> and selcluster_t::sc_lock.
74  *
75  * The <object-lock> might be a device driver or another subsystem, e.g.
76  * socket or pipe.  This lock is not exported, and thus invisible to this
77  * subsystem.  Mainly, synchronisation between selrecord() and selnotify()
78  * routines depends on this lock, as it will be described in the comments.
79  *
80  * Lock order
81  *
82  *	<object-lock> ->
83  *		selcluster_t::sc_lock
84  */
85 
86 #include <sys/cdefs.h>
87 __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.30 2011/03/06 04:41:58 rmind Exp $");
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/proc.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/uio.h>
97 #include <sys/kernel.h>
98 #include <sys/lwp.h>
99 #include <sys/poll.h>
100 #include <sys/mount.h>
101 #include <sys/syscallargs.h>
102 #include <sys/cpu.h>
103 #include <sys/atomic.h>
104 #include <sys/socketvar.h>
105 #include <sys/sleepq.h>
106 
107 /* Flags for lwp::l_selflag. */
108 #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
109 #define	SEL_SCANNING	1	/* polling descriptors */
110 #define	SEL_BLOCKING	2	/* blocking and waiting for event */
111 #define	SEL_EVENT	3	/* interrupted, events set directly */
112 
113 /* Operations: either select() or poll(). */
114 #define	SELOP_SELECT	1
115 #define	SELOP_POLL	2
116 
117 /*
118  * Per-cluster state for select()/poll().  For a system with fewer
119  * than 32 CPUs, this gives us per-CPU clusters.
120  */
121 #define	SELCLUSTERS	32
122 #define	SELCLUSTERMASK	(SELCLUSTERS - 1)
123 
124 typedef struct selcluster {
125 	kmutex_t	*sc_lock;
126 	sleepq_t	sc_sleepq;
127 	int		sc_ncoll;
128 	uint32_t	sc_mask;
129 } selcluster_t;
130 
131 static inline int	selscan(char *, const int, const size_t, register_t *);
132 static inline int	pollscan(struct pollfd *, const int, register_t *);
133 static void		selclear(void);
134 
135 static const int sel_flag[] = {
136 	POLLRDNORM | POLLHUP | POLLERR,
137 	POLLWRNORM | POLLHUP | POLLERR,
138 	POLLRDBAND
139 };
140 
141 static syncobj_t select_sobj = {
142 	SOBJ_SLEEPQ_FIFO,
143 	sleepq_unsleep,
144 	sleepq_changepri,
145 	sleepq_lendpri,
146 	syncobj_noowner,
147 };
148 
149 static selcluster_t	*selcluster[SELCLUSTERS] __read_mostly;
150 
151 /*
152  * Select system call.
153  */
154 int
155 sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
156     register_t *retval)
157 {
158 	/* {
159 		syscallarg(int)				nd;
160 		syscallarg(fd_set *)			in;
161 		syscallarg(fd_set *)			ou;
162 		syscallarg(fd_set *)			ex;
163 		syscallarg(const struct timespec *)	ts;
164 		syscallarg(sigset_t *)			mask;
165 	} */
166 	struct timespec	ats, *ts = NULL;
167 	sigset_t	amask, *mask = NULL;
168 	int		error;
169 
170 	if (SCARG(uap, ts)) {
171 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
172 		if (error)
173 			return error;
174 		ts = &ats;
175 	}
176 	if (SCARG(uap, mask) != NULL) {
177 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
178 		if (error)
179 			return error;
180 		mask = &amask;
181 	}
182 
183 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
184 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
185 }
186 
187 int
188 sys___select50(struct lwp *l, const struct sys___select50_args *uap,
189     register_t *retval)
190 {
191 	/* {
192 		syscallarg(int)			nd;
193 		syscallarg(fd_set *)		in;
194 		syscallarg(fd_set *)		ou;
195 		syscallarg(fd_set *)		ex;
196 		syscallarg(struct timeval *)	tv;
197 	} */
198 	struct timeval atv;
199 	struct timespec ats, *ts = NULL;
200 	int error;
201 
202 	if (SCARG(uap, tv)) {
203 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
204 		if (error)
205 			return error;
206 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
207 		ts = &ats;
208 	}
209 
210 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
211 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
212 }
213 
214 /*
215  * sel_do_scan: common code to perform the scan on descriptors.
216  */
217 static int
218 sel_do_scan(const int op, void *fds, const int nf, const size_t ni,
219     struct timespec *ts, sigset_t *mask, register_t *retval)
220 {
221 	lwp_t		* const l = curlwp;
222 	proc_t		* const p = l->l_proc;
223 	selcluster_t	*sc;
224 	kmutex_t	*lock;
225 	sigset_t	oldmask;
226 	struct timespec	sleepts;
227 	int		error, timo;
228 
229 	timo = 0;
230 	if (ts && inittimeleft(ts, &sleepts) == -1) {
231 		return EINVAL;
232 	}
233 
234 	if (__predict_false(mask)) {
235 		sigminusset(&sigcantmask, mask);
236 		mutex_enter(p->p_lock);
237 		oldmask = l->l_sigmask;
238 		l->l_sigmask = *mask;
239 		mutex_exit(p->p_lock);
240 	} else {
241 		/* XXXgcc */
242 		oldmask = l->l_sigmask;
243 	}
244 
245 	sc = curcpu()->ci_data.cpu_selcluster;
246 	lock = sc->sc_lock;
247 	l->l_selcluster = sc;
248 	SLIST_INIT(&l->l_selwait);
249 
250 	l->l_selret = 0;
251 	if (op == SELOP_SELECT) {
252 		l->l_selbits = fds;
253 		l->l_selni = ni;
254 	} else {
255 		l->l_selbits = NULL;
256 	}
257 	for (;;) {
258 		int ncoll;
259 
260 		/*
261 		 * No need to lock.  If this is overwritten by another value
262 		 * while scanning, we will retry below.  We only need to see
263 		 * exact state from the descriptors that we are about to poll,
264 		 * and lock activity resulting from fo_poll is enough to
265 		 * provide an up to date value for new polling activity.
266 		 */
267 		l->l_selflag = SEL_SCANNING;
268 		ncoll = sc->sc_ncoll;
269 
270 		if (op == SELOP_SELECT) {
271 			error = selscan((char *)fds, nf, ni, retval);
272 		} else {
273 			error = pollscan((struct pollfd *)fds, nf, retval);
274 		}
275 		if (error || *retval)
276 			break;
277 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
278 			break;
279 		/*
280 		 * Acquire the lock and perform the (re)checks.  Note, if
281 		 * collision has occured, then our state does not matter,
282 		 * as we must perform re-scan.  Therefore, check it first.
283 		 */
284 state_check:
285 		mutex_spin_enter(lock);
286 		if (__predict_false(sc->sc_ncoll != ncoll)) {
287 			/* Collision: perform re-scan. */
288 			mutex_spin_exit(lock);
289 			continue;
290 		}
291 		if (__predict_true(l->l_selflag == SEL_EVENT)) {
292 			/* Events occured, they are set directly. */
293 			mutex_spin_exit(lock);
294 			KASSERT(l->l_selret != 0);
295 			*retval = l->l_selret;
296 			break;
297 		}
298 		if (__predict_true(l->l_selflag == SEL_RESET)) {
299 			/* Events occured, but re-scan is requested. */
300 			mutex_spin_exit(lock);
301 			continue;
302 		}
303 		/* Nothing happen, therefore - sleep. */
304 		l->l_selflag = SEL_BLOCKING;
305 		l->l_kpriority = true;
306 		sleepq_enter(&sc->sc_sleepq, l, lock);
307 		sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
308 		error = sleepq_block(timo, true);
309 		if (error != 0) {
310 			break;
311 		}
312 		/* Awoken: need to check the state. */
313 		goto state_check;
314 	}
315 	selclear();
316 
317 	if (__predict_false(mask)) {
318 		mutex_enter(p->p_lock);
319 		l->l_sigmask = oldmask;
320 		mutex_exit(p->p_lock);
321 	}
322 
323 	/* select and poll are not restarted after signals... */
324 	if (error == ERESTART)
325 		return EINTR;
326 	if (error == EWOULDBLOCK)
327 		return 0;
328 	return error;
329 }
330 
331 int
332 selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
333     fd_set *u_ex, struct timespec *ts, sigset_t *mask)
334 {
335 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
336 			    sizeof(fd_mask) * 6];
337 	char 		*bits;
338 	int		error, nf;
339 	size_t		ni;
340 
341 	if (nd < 0)
342 		return (EINVAL);
343 	nf = curlwp->l_fd->fd_dt->dt_nfiles;
344 	if (nd > nf) {
345 		/* forgiving; slightly wrong */
346 		nd = nf;
347 	}
348 	ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
349 	if (ni * 6 > sizeof(smallbits)) {
350 		bits = kmem_alloc(ni * 6, KM_SLEEP);
351 		if (bits == NULL)
352 			return ENOMEM;
353 	} else
354 		bits = smallbits;
355 
356 #define	getbits(name, x)						\
357 	if (u_ ## name) {						\
358 		error = copyin(u_ ## name, bits + ni * x, ni);		\
359 		if (error)						\
360 			goto fail;					\
361 	} else								\
362 		memset(bits + ni * x, 0, ni);
363 	getbits(in, 0);
364 	getbits(ou, 1);
365 	getbits(ex, 2);
366 #undef	getbits
367 
368 	error = sel_do_scan(SELOP_SELECT, bits, nd, ni, ts, mask, retval);
369 	if (error == 0 && u_in != NULL)
370 		error = copyout(bits + ni * 3, u_in, ni);
371 	if (error == 0 && u_ou != NULL)
372 		error = copyout(bits + ni * 4, u_ou, ni);
373 	if (error == 0 && u_ex != NULL)
374 		error = copyout(bits + ni * 5, u_ex, ni);
375  fail:
376 	if (bits != smallbits)
377 		kmem_free(bits, ni * 6);
378 	return (error);
379 }
380 
381 static inline int
382 selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
383 {
384 	fd_mask *ibitp, *obitp;
385 	int msk, i, j, fd, n;
386 	file_t *fp;
387 
388 	ibitp = (fd_mask *)(bits + ni * 0);
389 	obitp = (fd_mask *)(bits + ni * 3);
390 	n = 0;
391 
392 	for (msk = 0; msk < 3; msk++) {
393 		for (i = 0; i < nfd; i += NFDBITS) {
394 			fd_mask ibits, obits;
395 
396 			ibits = *ibitp++;
397 			obits = 0;
398 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
399 				ibits &= ~(1 << j);
400 				if ((fp = fd_getfile(fd)) == NULL)
401 					return (EBADF);
402 				/*
403 				 * Setup an argument to selrecord(), which is
404 				 * a file descriptor number.
405 				 */
406 				curlwp->l_selrec = fd;
407 				if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
408 					obits |= (1 << j);
409 					n++;
410 				}
411 				fd_putfile(fd);
412 			}
413 			*obitp++ = obits;
414 		}
415 	}
416 	*retval = n;
417 	return (0);
418 }
419 
420 /*
421  * Poll system call.
422  */
423 int
424 sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
425 {
426 	/* {
427 		syscallarg(struct pollfd *)	fds;
428 		syscallarg(u_int)		nfds;
429 		syscallarg(int)			timeout;
430 	} */
431 	struct timespec	ats, *ts = NULL;
432 
433 	if (SCARG(uap, timeout) != INFTIM) {
434 		ats.tv_sec = SCARG(uap, timeout) / 1000;
435 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
436 		ts = &ats;
437 	}
438 
439 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
440 }
441 
442 /*
443  * Poll system call.
444  */
445 int
446 sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
447     register_t *retval)
448 {
449 	/* {
450 		syscallarg(struct pollfd *)		fds;
451 		syscallarg(u_int)			nfds;
452 		syscallarg(const struct timespec *)	ts;
453 		syscallarg(const sigset_t *)		mask;
454 	} */
455 	struct timespec	ats, *ts = NULL;
456 	sigset_t	amask, *mask = NULL;
457 	int		error;
458 
459 	if (SCARG(uap, ts)) {
460 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
461 		if (error)
462 			return error;
463 		ts = &ats;
464 	}
465 	if (SCARG(uap, mask)) {
466 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
467 		if (error)
468 			return error;
469 		mask = &amask;
470 	}
471 
472 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
473 }
474 
475 int
476 pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
477     struct timespec *ts, sigset_t *mask)
478 {
479 	struct pollfd	smallfds[32];
480 	struct pollfd	*fds;
481 	int		error;
482 	size_t		ni;
483 
484 	if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
485 		/*
486 		 * Either the user passed in a very sparse 'fds' or junk!
487 		 * The kmem_alloc() call below would be bad news.
488 		 * We could process the 'fds' array in chunks, but that
489 		 * is a lot of code that isn't normally useful.
490 		 * (Or just move the copyin/out into pollscan().)
491 		 * Historically the code silently truncated 'fds' to
492 		 * dt_nfiles entries - but that does cause issues.
493 		 */
494 		return EINVAL;
495 	}
496 	ni = nfds * sizeof(struct pollfd);
497 	if (ni > sizeof(smallfds)) {
498 		fds = kmem_alloc(ni, KM_SLEEP);
499 		if (fds == NULL)
500 			return ENOMEM;
501 	} else
502 		fds = smallfds;
503 
504 	error = copyin(u_fds, fds, ni);
505 	if (error)
506 		goto fail;
507 
508 	error = sel_do_scan(SELOP_POLL, fds, nfds, ni, ts, mask, retval);
509 	if (error == 0)
510 		error = copyout(fds, u_fds, ni);
511  fail:
512 	if (fds != smallfds)
513 		kmem_free(fds, ni);
514 	return (error);
515 }
516 
517 static inline int
518 pollscan(struct pollfd *fds, const int nfd, register_t *retval)
519 {
520 	file_t *fp;
521 	int i, n = 0;
522 
523 	for (i = 0; i < nfd; i++, fds++) {
524 		if (fds->fd < 0) {
525 			fds->revents = 0;
526 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
527 			fds->revents = POLLNVAL;
528 			n++;
529 		} else {
530 			/*
531 			 * Perform poll: registers select request or returns
532 			 * the events which are set.  Setup an argument for
533 			 * selrecord(), which is a pointer to struct pollfd.
534 			 */
535 			curlwp->l_selrec = (uintptr_t)fds;
536 			fds->revents = (*fp->f_ops->fo_poll)(fp,
537 			    fds->events | POLLERR | POLLHUP);
538 			if (fds->revents != 0)
539 				n++;
540 			fd_putfile(fds->fd);
541 		}
542 	}
543 	*retval = n;
544 	return (0);
545 }
546 
547 int
548 seltrue(dev_t dev, int events, lwp_t *l)
549 {
550 
551 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
552 }
553 
554 /*
555  * Record a select request.  Concurrency issues:
556  *
557  * The caller holds the same lock across calls to selrecord() and
558  * selnotify(), so we don't need to consider a concurrent wakeup
559  * while in this routine.
560  *
561  * The only activity we need to guard against is selclear(), called by
562  * another thread that is exiting sel_do_scan().
563  * `sel_lwp' can only become non-NULL while the caller's lock is held,
564  * so it cannot become non-NULL due to a change made by another thread
565  * while we are in this routine.  It can only become _NULL_ due to a
566  * call to selclear().
567  *
568  * If it is non-NULL and != selector there is the potential for
569  * selclear() to be called by another thread.  If either of those
570  * conditions are true, we're not interested in touching the `named
571  * waiter' part of the selinfo record because we need to record a
572  * collision.  Hence there is no need for additional locking in this
573  * routine.
574  */
575 void
576 selrecord(lwp_t *selector, struct selinfo *sip)
577 {
578 	selcluster_t *sc;
579 	lwp_t *other;
580 
581 	KASSERT(selector == curlwp);
582 
583 	sc = selector->l_selcluster;
584 	other = sip->sel_lwp;
585 
586 	if (other == selector) {
587 		/* 1. We (selector) already claimed to be the first LWP. */
588 		KASSERT(sip->sel_cluster = sc);
589 	} else if (other == NULL) {
590 		/*
591 		 * 2. No first LWP, therefore we (selector) are the first.
592 		 *
593 		 * There may be unnamed waiters (collisions).  Issue a memory
594 		 * barrier to ensure that we access sel_lwp (above) before
595 		 * other fields - this guards against a call to selclear().
596 		 */
597 		membar_enter();
598 		sip->sel_lwp = selector;
599 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
600 		/* Copy the argument, which is for selnotify(). */
601 		sip->sel_fdinfo = selector->l_selrec;
602 		/* Replace selinfo's lock with the chosen cluster's lock. */
603 		sip->sel_cluster = sc;
604 	} else {
605 		/* 3. Multiple waiters: record a collision. */
606 		sip->sel_collision |= sc->sc_mask;
607 		KASSERT(sip->sel_cluster != NULL);
608 	}
609 }
610 
611 /*
612  * sel_setevents: a helper function for selnotify(), to set the events
613  * for LWP sleeping in selcommon() or pollcommon().
614  */
615 static inline bool
616 sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
617 {
618 	const int oflag = l->l_selflag;
619 	int ret = 0;
620 
621 	/*
622 	 * If we require re-scan or it was required by somebody else,
623 	 * then just (re)set SEL_RESET and return.
624 	 */
625 	if (__predict_false(events == 0 || oflag == SEL_RESET)) {
626 		l->l_selflag = SEL_RESET;
627 		return true;
628 	}
629 	/*
630 	 * Direct set.  Note: select state of LWP is locked.  First,
631 	 * determine whether it is selcommon() or pollcommon().
632 	 */
633 	if (l->l_selbits != NULL) {
634 		const size_t ni = l->l_selni;
635 		fd_mask *fds = (fd_mask *)l->l_selbits;
636 		fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
637 		const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
638 		const int idx = fd >> __NFDSHIFT;
639 		int n;
640 
641 		for (n = 0; n < 3; n++) {
642 			if ((fds[idx] & fbit) != 0 && (sel_flag[n] & events)) {
643 				ofds[idx] |= fbit;
644 				ret++;
645 			}
646 			fds = (fd_mask *)((char *)fds + ni);
647 			ofds = (fd_mask *)((char *)ofds + ni);
648 		}
649 	} else {
650 		struct pollfd *pfd = (void *)sip->sel_fdinfo;
651 		int revents = events & (pfd->events | POLLERR | POLLHUP);
652 
653 		if (revents) {
654 			pfd->revents |= revents;
655 			ret = 1;
656 		}
657 	}
658 	/* Check whether there are any events to return. */
659 	if (!ret) {
660 		return false;
661 	}
662 	/* Indicate direct set and note the event (cluster lock is held). */
663 	l->l_selflag = SEL_EVENT;
664 	l->l_selret += ret;
665 	return true;
666 }
667 
668 /*
669  * Do a wakeup when a selectable event occurs.  Concurrency issues:
670  *
671  * As per selrecord(), the caller's object lock is held.  If there
672  * is a named waiter, we must acquire the associated selcluster's lock
673  * in order to synchronize with selclear() and pollers going to sleep
674  * in sel_do_scan().
675  *
676  * sip->sel_cluser cannot change at this point, as it is only changed
677  * in selrecord(), and concurrent calls to selrecord() are locked
678  * out by the caller.
679  */
680 void
681 selnotify(struct selinfo *sip, int events, long knhint)
682 {
683 	selcluster_t *sc;
684 	uint32_t mask;
685 	int index, oflag;
686 	lwp_t *l;
687 	kmutex_t *lock;
688 
689 	KNOTE(&sip->sel_klist, knhint);
690 
691 	if (sip->sel_lwp != NULL) {
692 		/* One named LWP is waiting. */
693 		sc = sip->sel_cluster;
694 		lock = sc->sc_lock;
695 		mutex_spin_enter(lock);
696 		/* Still there? */
697 		if (sip->sel_lwp != NULL) {
698 			/*
699 			 * Set the events for our LWP and indicate that.
700 			 * Otherwise, request for a full re-scan.
701 			 */
702 			l = sip->sel_lwp;
703 			oflag = l->l_selflag;
704 #ifndef NO_DIRECT_SELECT
705 			if (!sel_setevents(l, sip, events)) {
706 				/* No events to return. */
707 				mutex_spin_exit(lock);
708 				return;
709 			}
710 #else
711 			l->l_selflag = SEL_RESET;
712 #endif
713 			/*
714 			 * If thread is sleeping, wake it up.  If it's not
715 			 * yet asleep, it will notice the change in state
716 			 * and will re-poll the descriptors.
717 			 */
718 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
719 				KASSERT(l->l_wchan == sc);
720 				sleepq_unsleep(l, false);
721 			}
722 		}
723 		mutex_spin_exit(lock);
724 	}
725 
726 	if ((mask = sip->sel_collision) != 0) {
727 		/*
728 		 * There was a collision (multiple waiters): we must
729 		 * inform all potentially interested waiters.
730 		 */
731 		sip->sel_collision = 0;
732 		do {
733 			index = ffs(mask) - 1;
734 			mask &= ~(1 << index);
735 			sc = selcluster[index];
736 			lock = sc->sc_lock;
737 			mutex_spin_enter(lock);
738 			sc->sc_ncoll++;
739 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
740 		} while (__predict_false(mask != 0));
741 	}
742 }
743 
744 /*
745  * Remove an LWP from all objects that it is waiting for.  Concurrency
746  * issues:
747  *
748  * The object owner's (e.g. device driver) lock is not held here.  Calls
749  * can be made to selrecord() and we do not synchronize against those
750  * directly using locks.  However, we use `sel_lwp' to lock out changes.
751  * Before clearing it we must use memory barriers to ensure that we can
752  * safely traverse the list of selinfo records.
753  */
754 static void
755 selclear(void)
756 {
757 	struct selinfo *sip, *next;
758 	selcluster_t *sc;
759 	lwp_t *l;
760 	kmutex_t *lock;
761 
762 	l = curlwp;
763 	sc = l->l_selcluster;
764 	lock = sc->sc_lock;
765 
766 	mutex_spin_enter(lock);
767 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
768 		KASSERT(sip->sel_lwp == l);
769 		KASSERT(sip->sel_cluster == l->l_selcluster);
770 
771 		/*
772 		 * Read link to next selinfo record, if any.
773 		 * It's no longer safe to touch `sip' after clearing
774 		 * `sel_lwp', so ensure that the read of `sel_chain'
775 		 * completes before the clearing of sel_lwp becomes
776 		 * globally visible.
777 		 */
778 		next = SLIST_NEXT(sip, sel_chain);
779 		membar_exit();
780 		/* Release the record for another named waiter to use. */
781 		sip->sel_lwp = NULL;
782 	}
783 	mutex_spin_exit(lock);
784 }
785 
786 /*
787  * Initialize the select/poll system calls.  Called once for each
788  * CPU in the system, as they are attached.
789  */
790 void
791 selsysinit(struct cpu_info *ci)
792 {
793 	selcluster_t *sc;
794 	u_int index;
795 
796 	/* If already a cluster in place for this bit, re-use. */
797 	index = cpu_index(ci) & SELCLUSTERMASK;
798 	sc = selcluster[index];
799 	if (sc == NULL) {
800 		sc = kmem_alloc(roundup2(sizeof(selcluster_t),
801 		    coherency_unit) + coherency_unit, KM_SLEEP);
802 		sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
803 		sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
804 		sleepq_init(&sc->sc_sleepq);
805 		sc->sc_ncoll = 0;
806 		sc->sc_mask = (1 << index);
807 		selcluster[index] = sc;
808 	}
809 	ci->ci_data.cpu_selcluster = sc;
810 }
811 
812 /*
813  * Initialize a selinfo record.
814  */
815 void
816 selinit(struct selinfo *sip)
817 {
818 
819 	memset(sip, 0, sizeof(*sip));
820 }
821 
822 /*
823  * Destroy a selinfo record.  The owning object must not gain new
824  * references while this is in progress: all activity on the record
825  * must be stopped.
826  *
827  * Concurrency issues: we only need guard against a call to selclear()
828  * by a thread exiting sel_do_scan().  The caller has prevented further
829  * references being made to the selinfo record via selrecord(), and it
830  * will not call selnotify() again.
831  */
832 void
833 seldestroy(struct selinfo *sip)
834 {
835 	selcluster_t *sc;
836 	kmutex_t *lock;
837 	lwp_t *l;
838 
839 	if (sip->sel_lwp == NULL)
840 		return;
841 
842 	/*
843 	 * Lock out selclear().  The selcluster pointer can't change while
844 	 * we are here since it is only ever changed in selrecord(),
845 	 * and that will not be entered again for this record because
846 	 * it is dying.
847 	 */
848 	KASSERT(sip->sel_cluster != NULL);
849 	sc = sip->sel_cluster;
850 	lock = sc->sc_lock;
851 	mutex_spin_enter(lock);
852 	if ((l = sip->sel_lwp) != NULL) {
853 		/*
854 		 * This should rarely happen, so although SLIST_REMOVE()
855 		 * is slow, using it here is not a problem.
856 		 */
857 		KASSERT(l->l_selcluster == sc);
858 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
859 		sip->sel_lwp = NULL;
860 	}
861 	mutex_spin_exit(lock);
862 }
863 
864 int
865 pollsock(struct socket *so, const struct timespec *tsp, int events)
866 {
867 	int		ncoll, error, timo;
868 	struct timespec	sleepts, ts;
869 	selcluster_t	*sc;
870 	lwp_t		*l;
871 	kmutex_t	*lock;
872 
873 	timo = 0;
874 	if (tsp != NULL) {
875 		ts = *tsp;
876 		if (inittimeleft(&ts, &sleepts) == -1)
877 			return EINVAL;
878 	}
879 
880 	l = curlwp;
881 	sc = curcpu()->ci_data.cpu_selcluster;
882 	lock = sc->sc_lock;
883 	l->l_selcluster = sc;
884 	SLIST_INIT(&l->l_selwait);
885 	error = 0;
886 	for (;;) {
887 		/*
888 		 * No need to lock.  If this is overwritten by another
889 		 * value while scanning, we will retry below.  We only
890 		 * need to see exact state from the descriptors that
891 		 * we are about to poll, and lock activity resulting
892 		 * from fo_poll is enough to provide an up to date value
893 		 * for new polling activity.
894 		 */
895 		ncoll = sc->sc_ncoll;
896 		l->l_selflag = SEL_SCANNING;
897 		if (sopoll(so, events) != 0)
898 			break;
899 		if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
900 			break;
901 		mutex_spin_enter(lock);
902 		if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
903 			mutex_spin_exit(lock);
904 			continue;
905 		}
906 		l->l_selflag = SEL_BLOCKING;
907 		sleepq_enter(&sc->sc_sleepq, l, lock);
908 		sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
909 		error = sleepq_block(timo, true);
910 		if (error != 0)
911 			break;
912 	}
913 	selclear();
914 	/* poll is not restarted after signals... */
915 	if (error == ERESTART)
916 		error = EINTR;
917 	if (error == EWOULDBLOCK)
918 		error = 0;
919 	return (error);
920 }
921