1 /* $NetBSD: sys_sched.c,v 1.38 2011/08/07 21:38:32 rmind Exp $ */ 2 3 /* 4 * Copyright (c) 2008, 2011 Mindaugas Rasiukevicius <rmind at NetBSD org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * System calls relating to the scheduler. 31 * 32 * Lock order: 33 * 34 * cpu_lock -> 35 * proc_lock -> 36 * proc_t::p_lock -> 37 * lwp_t::lwp_lock 38 * 39 * TODO: 40 * - Handle pthread_setschedprio() as defined by POSIX; 41 * - Handle sched_yield() case for SCHED_FIFO as defined by POSIX; 42 */ 43 44 #include <sys/cdefs.h> 45 __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.38 2011/08/07 21:38:32 rmind Exp $"); 46 47 #include <sys/param.h> 48 49 #include <sys/cpu.h> 50 #include <sys/kauth.h> 51 #include <sys/kmem.h> 52 #include <sys/lwp.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/pset.h> 56 #include <sys/sa.h> 57 #include <sys/savar.h> 58 #include <sys/sched.h> 59 #include <sys/syscallargs.h> 60 #include <sys/sysctl.h> 61 #include <sys/systm.h> 62 #include <sys/types.h> 63 #include <sys/unistd.h> 64 65 #include "opt_sa.h" 66 67 static struct sysctllog *sched_sysctl_log; 68 static kauth_listener_t sched_listener; 69 70 /* 71 * Convert user priority or the in-kernel priority or convert the current 72 * priority to the appropriate range according to the policy change. 73 */ 74 static pri_t 75 convert_pri(lwp_t *l, int policy, pri_t pri) 76 { 77 78 /* Convert user priority to the in-kernel */ 79 if (pri != PRI_NONE) { 80 /* Only for real-time threads */ 81 KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX); 82 KASSERT(policy != SCHED_OTHER); 83 return PRI_USER_RT + pri; 84 } 85 86 /* Neither policy, nor priority change */ 87 if (l->l_class == policy) 88 return l->l_priority; 89 90 /* Time-sharing -> real-time */ 91 if (l->l_class == SCHED_OTHER) { 92 KASSERT(policy == SCHED_FIFO || policy == SCHED_RR); 93 return PRI_USER_RT; 94 } 95 96 /* Real-time -> time-sharing */ 97 if (policy == SCHED_OTHER) { 98 KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR); 99 return l->l_priority - PRI_USER_RT; 100 } 101 102 /* Real-time -> real-time */ 103 return l->l_priority; 104 } 105 106 int 107 do_sched_setparam(pid_t pid, lwpid_t lid, int policy, 108 const struct sched_param *params) 109 { 110 struct proc *p; 111 struct lwp *t; 112 pri_t pri; 113 u_int lcnt; 114 int error; 115 116 error = 0; 117 118 pri = params->sched_priority; 119 120 /* If no parameters specified, just return (this should not happen) */ 121 if (pri == PRI_NONE && policy == SCHED_NONE) 122 return 0; 123 124 /* Validate scheduling class */ 125 if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR)) 126 return EINVAL; 127 128 /* Validate priority */ 129 if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX)) 130 return EINVAL; 131 132 if (pid != 0) { 133 /* Find the process */ 134 mutex_enter(proc_lock); 135 p = proc_find(pid); 136 if (p == NULL) { 137 mutex_exit(proc_lock); 138 return ESRCH; 139 } 140 mutex_enter(p->p_lock); 141 mutex_exit(proc_lock); 142 /* Disallow modification of system processes */ 143 if ((p->p_flag & PK_SYSTEM) != 0) { 144 mutex_exit(p->p_lock); 145 return EPERM; 146 } 147 } else { 148 /* Use the calling process */ 149 p = curlwp->l_proc; 150 mutex_enter(p->p_lock); 151 } 152 153 /* Find the LWP(s) */ 154 lcnt = 0; 155 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 156 pri_t kpri; 157 int lpolicy; 158 159 if (lid && lid != t->l_lid) 160 continue; 161 162 lcnt++; 163 lwp_lock(t); 164 lpolicy = (policy == SCHED_NONE) ? t->l_class : policy; 165 166 /* Disallow setting of priority for SCHED_OTHER threads */ 167 if (lpolicy == SCHED_OTHER && pri != PRI_NONE) { 168 lwp_unlock(t); 169 error = EINVAL; 170 break; 171 } 172 173 /* Convert priority, if needed */ 174 kpri = convert_pri(t, lpolicy, pri); 175 176 /* Check the permission */ 177 error = kauth_authorize_process(kauth_cred_get(), 178 KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy), 179 KAUTH_ARG(kpri)); 180 if (error) { 181 lwp_unlock(t); 182 break; 183 } 184 185 /* Set the scheduling class, change the priority */ 186 t->l_class = lpolicy; 187 lwp_changepri(t, kpri); 188 lwp_unlock(t); 189 } 190 mutex_exit(p->p_lock); 191 return (lcnt == 0) ? ESRCH : error; 192 } 193 194 /* 195 * Set scheduling parameters. 196 */ 197 int 198 sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap, 199 register_t *retval) 200 { 201 /* { 202 syscallarg(pid_t) pid; 203 syscallarg(lwpid_t) lid; 204 syscallarg(int) policy; 205 syscallarg(const struct sched_param *) params; 206 } */ 207 struct sched_param params; 208 int error; 209 210 /* Get the parameters from the user-space */ 211 error = copyin(SCARG(uap, params), ¶ms, sizeof(params)); 212 if (error) 213 goto out; 214 215 error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid), 216 SCARG(uap, policy), ¶ms); 217 out: 218 return error; 219 } 220 221 int 222 do_sched_getparam(pid_t pid, lwpid_t lid, int *policy, 223 struct sched_param *params) 224 { 225 struct sched_param lparams; 226 struct lwp *t; 227 int error, lpolicy; 228 229 /* Locks the LWP */ 230 t = lwp_find2(pid, lid); 231 if (t == NULL) 232 return ESRCH; 233 234 /* Check the permission */ 235 error = kauth_authorize_process(kauth_cred_get(), 236 KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL); 237 if (error != 0) { 238 mutex_exit(t->l_proc->p_lock); 239 return error; 240 } 241 242 lwp_lock(t); 243 lparams.sched_priority = t->l_priority; 244 lpolicy = t->l_class; 245 246 switch (lpolicy) { 247 case SCHED_OTHER: 248 lparams.sched_priority -= PRI_USER; 249 break; 250 case SCHED_RR: 251 case SCHED_FIFO: 252 lparams.sched_priority -= PRI_USER_RT; 253 break; 254 } 255 256 if (policy != NULL) 257 *policy = lpolicy; 258 259 if (params != NULL) 260 *params = lparams; 261 262 lwp_unlock(t); 263 mutex_exit(t->l_proc->p_lock); 264 return error; 265 } 266 267 /* 268 * Get scheduling parameters. 269 */ 270 int 271 sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap, 272 register_t *retval) 273 { 274 /* { 275 syscallarg(pid_t) pid; 276 syscallarg(lwpid_t) lid; 277 syscallarg(int *) policy; 278 syscallarg(struct sched_param *) params; 279 } */ 280 struct sched_param params; 281 int error, policy; 282 283 error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy, 284 ¶ms); 285 if (error) 286 goto out; 287 288 error = copyout(¶ms, SCARG(uap, params), sizeof(params)); 289 if (error == 0 && SCARG(uap, policy) != NULL) 290 error = copyout(&policy, SCARG(uap, policy), sizeof(int)); 291 out: 292 return error; 293 } 294 295 /* 296 * Allocate the CPU set, and get it from userspace. 297 */ 298 static int 299 genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size) 300 { 301 kcpuset_t *kset; 302 int error; 303 304 kcpuset_create(&kset, false); 305 error = kcpuset_copyin(sset, kset, size); 306 if (error) { 307 kcpuset_unuse(kset, NULL); 308 } else { 309 *dset = kset; 310 } 311 return error; 312 } 313 314 /* 315 * Set affinity. 316 */ 317 int 318 sys__sched_setaffinity(struct lwp *l, 319 const struct sys__sched_setaffinity_args *uap, register_t *retval) 320 { 321 /* { 322 syscallarg(pid_t) pid; 323 syscallarg(lwpid_t) lid; 324 syscallarg(size_t) size; 325 syscallarg(const cpuset_t *) cpuset; 326 } */ 327 kcpuset_t *kcset, *kcpulst = NULL; 328 struct cpu_info *ici, *ci; 329 struct proc *p; 330 struct lwp *t; 331 CPU_INFO_ITERATOR cii; 332 bool alloff; 333 lwpid_t lid; 334 u_int lcnt; 335 int error; 336 337 error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size)); 338 if (error) 339 return error; 340 341 /* 342 * Traverse _each_ CPU to: 343 * - Check that CPUs in the mask have no assigned processor set. 344 * - Check that at least one CPU from the mask is online. 345 * - Find the first target CPU to migrate. 346 * 347 * To avoid the race with CPU online/offline calls and processor sets, 348 * cpu_lock will be locked for the entire operation. 349 */ 350 ci = NULL; 351 alloff = false; 352 mutex_enter(&cpu_lock); 353 for (CPU_INFO_FOREACH(cii, ici)) { 354 struct schedstate_percpu *ispc; 355 356 if (kcpuset_isset(kcset, cpu_index(ici)) == 0) 357 continue; 358 359 ispc = &ici->ci_schedstate; 360 /* Check that CPU is not in the processor-set */ 361 if (ispc->spc_psid != PS_NONE) { 362 error = EPERM; 363 goto out; 364 } 365 /* Skip offline CPUs */ 366 if (ispc->spc_flags & SPCF_OFFLINE) { 367 alloff = true; 368 continue; 369 } 370 /* Target CPU to migrate */ 371 if (ci == NULL) { 372 ci = ici; 373 } 374 } 375 if (ci == NULL) { 376 if (alloff) { 377 /* All CPUs in the set are offline */ 378 error = EPERM; 379 goto out; 380 } 381 /* Empty set */ 382 kcpuset_unuse(kcset, &kcpulst); 383 kcset = NULL; 384 } 385 386 if (SCARG(uap, pid) != 0) { 387 /* Find the process */ 388 mutex_enter(proc_lock); 389 p = proc_find(SCARG(uap, pid)); 390 if (p == NULL) { 391 mutex_exit(proc_lock); 392 error = ESRCH; 393 goto out; 394 } 395 mutex_enter(p->p_lock); 396 mutex_exit(proc_lock); 397 /* Disallow modification of system processes. */ 398 if ((p->p_flag & PK_SYSTEM) != 0) { 399 mutex_exit(p->p_lock); 400 error = EPERM; 401 goto out; 402 } 403 } else { 404 /* Use the calling process */ 405 p = l->l_proc; 406 mutex_enter(p->p_lock); 407 } 408 409 /* 410 * Check the permission. 411 */ 412 error = kauth_authorize_process(l->l_cred, 413 KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL); 414 if (error != 0) { 415 mutex_exit(p->p_lock); 416 goto out; 417 } 418 419 #ifdef KERN_SA 420 /* Changing the affinity of a SA process is not supported */ 421 if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) { 422 mutex_exit(p->p_lock); 423 error = EINVAL; 424 goto out; 425 } 426 #endif 427 428 /* Iterate through LWP(s). */ 429 lcnt = 0; 430 lid = SCARG(uap, lid); 431 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 432 if (lid && lid != t->l_lid) { 433 continue; 434 } 435 lwp_lock(t); 436 /* No affinity for zombie LWPs. */ 437 if (t->l_stat == LSZOMB) { 438 lwp_unlock(t); 439 continue; 440 } 441 /* First, release existing affinity, if any. */ 442 if (t->l_affinity) { 443 kcpuset_unuse(t->l_affinity, &kcpulst); 444 } 445 if (kcset) { 446 /* 447 * Hold a reference on affinity mask, assign mask to 448 * LWP and migrate it to another CPU (unlocks LWP). 449 */ 450 kcpuset_use(kcset); 451 t->l_affinity = kcset; 452 lwp_migrate(t, ci); 453 } else { 454 /* Old affinity mask is released, just clear. */ 455 t->l_affinity = NULL; 456 lwp_unlock(t); 457 } 458 lcnt++; 459 } 460 mutex_exit(p->p_lock); 461 if (lcnt == 0) { 462 error = ESRCH; 463 } 464 out: 465 mutex_exit(&cpu_lock); 466 467 /* 468 * Drop the initial reference (LWPs, if any, have the ownership now), 469 * and destroy whatever is in the G/C list, if filled. 470 */ 471 if (kcset) { 472 kcpuset_unuse(kcset, &kcpulst); 473 } 474 if (kcpulst) { 475 kcpuset_destroy(kcpulst); 476 } 477 return error; 478 } 479 480 /* 481 * Get affinity. 482 */ 483 int 484 sys__sched_getaffinity(struct lwp *l, 485 const struct sys__sched_getaffinity_args *uap, register_t *retval) 486 { 487 /* { 488 syscallarg(pid_t) pid; 489 syscallarg(lwpid_t) lid; 490 syscallarg(size_t) size; 491 syscallarg(cpuset_t *) cpuset; 492 } */ 493 struct lwp *t; 494 kcpuset_t *kcset; 495 int error; 496 497 error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size)); 498 if (error) 499 return error; 500 501 /* Locks the LWP */ 502 t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid)); 503 if (t == NULL) { 504 error = ESRCH; 505 goto out; 506 } 507 /* Check the permission */ 508 if (kauth_authorize_process(l->l_cred, 509 KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) { 510 mutex_exit(t->l_proc->p_lock); 511 error = EPERM; 512 goto out; 513 } 514 lwp_lock(t); 515 if (t->l_affinity) { 516 kcpuset_copy(kcset, t->l_affinity); 517 } else { 518 kcpuset_zero(kcset); 519 } 520 lwp_unlock(t); 521 mutex_exit(t->l_proc->p_lock); 522 523 error = kcpuset_copyout(kcset, SCARG(uap, cpuset), SCARG(uap, size)); 524 out: 525 kcpuset_unuse(kcset, NULL); 526 return error; 527 } 528 529 /* 530 * Yield. 531 */ 532 int 533 sys_sched_yield(struct lwp *l, const void *v, register_t *retval) 534 { 535 536 yield(); 537 #ifdef KERN_SA 538 if (l->l_flag & LW_SA) { 539 sa_preempt(l); 540 } 541 #endif 542 return 0; 543 } 544 545 /* 546 * Sysctl nodes and initialization. 547 */ 548 static void 549 sysctl_sched_setup(struct sysctllog **clog) 550 { 551 const struct sysctlnode *node = NULL; 552 553 sysctl_createv(clog, 0, NULL, NULL, 554 CTLFLAG_PERMANENT, 555 CTLTYPE_NODE, "kern", NULL, 556 NULL, 0, NULL, 0, 557 CTL_KERN, CTL_EOL); 558 sysctl_createv(clog, 0, NULL, NULL, 559 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, 560 CTLTYPE_INT, "posix_sched", 561 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " 562 "Process Scheduling option to which the " 563 "system attempts to conform"), 564 NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0, 565 CTL_KERN, CTL_CREATE, CTL_EOL); 566 sysctl_createv(clog, 0, NULL, &node, 567 CTLFLAG_PERMANENT, 568 CTLTYPE_NODE, "sched", 569 SYSCTL_DESCR("Scheduler options"), 570 NULL, 0, NULL, 0, 571 CTL_KERN, CTL_CREATE, CTL_EOL); 572 573 if (node == NULL) 574 return; 575 576 sysctl_createv(clog, 0, &node, NULL, 577 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE, 578 CTLTYPE_INT, "pri_min", 579 SYSCTL_DESCR("Minimal POSIX real-time priority"), 580 NULL, SCHED_PRI_MIN, NULL, 0, 581 CTL_CREATE, CTL_EOL); 582 sysctl_createv(clog, 0, &node, NULL, 583 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE, 584 CTLTYPE_INT, "pri_max", 585 SYSCTL_DESCR("Maximal POSIX real-time priority"), 586 NULL, SCHED_PRI_MAX, NULL, 0, 587 CTL_CREATE, CTL_EOL); 588 } 589 590 static int 591 sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 592 void *arg0, void *arg1, void *arg2, void *arg3) 593 { 594 struct proc *p; 595 int result; 596 597 result = KAUTH_RESULT_DEFER; 598 p = arg0; 599 600 switch (action) { 601 case KAUTH_PROCESS_SCHEDULER_GETPARAM: 602 if (kauth_cred_uidmatch(cred, p->p_cred)) 603 result = KAUTH_RESULT_ALLOW; 604 break; 605 606 case KAUTH_PROCESS_SCHEDULER_SETPARAM: 607 if (kauth_cred_uidmatch(cred, p->p_cred)) { 608 struct lwp *l; 609 int policy; 610 pri_t priority; 611 612 l = arg1; 613 policy = (int)(unsigned long)arg2; 614 priority = (pri_t)(unsigned long)arg3; 615 616 if ((policy == l->l_class || 617 (policy != SCHED_FIFO && policy != SCHED_RR)) && 618 priority <= l->l_priority) 619 result = KAUTH_RESULT_ALLOW; 620 } 621 622 break; 623 624 case KAUTH_PROCESS_SCHEDULER_GETAFFINITY: 625 result = KAUTH_RESULT_ALLOW; 626 break; 627 628 case KAUTH_PROCESS_SCHEDULER_SETAFFINITY: 629 /* Privileged; we let the secmodel handle this. */ 630 break; 631 632 default: 633 break; 634 } 635 636 return result; 637 } 638 639 void 640 sched_init(void) 641 { 642 643 sysctl_sched_setup(&sched_sysctl_log); 644 645 sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 646 sched_listener_cb, NULL); 647 } 648