1 /* $NetBSD: sys_pipe.c,v 1.73 2006/06/07 22:33:41 kardel Exp $ */ 2 3 /*- 4 * Copyright (c) 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1996 John S. Dyson 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice immediately at the beginning of the file, without modification, 48 * this list of conditions, and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Absolutely no warranty of function or purpose is made by the author 53 * John S. Dyson. 54 * 4. Modifications may be freely made to this file if the above conditions 55 * are met. 56 * 57 * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $ 58 */ 59 60 /* 61 * This file contains a high-performance replacement for the socket-based 62 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 63 * all features of sockets, but does do everything that pipes normally 64 * do. 65 * 66 * Adaption for NetBSD UVM, including uvm_loan() based direct write, was 67 * written by Jaromir Dolecek. 68 */ 69 70 /* 71 * This code has two modes of operation, a small write mode and a large 72 * write mode. The small write mode acts like conventional pipes with 73 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 74 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 75 * and PIPE_SIZE in size it is mapped read-only into the kernel address space 76 * using the UVM page loan facility from where the receiving process can copy 77 * the data directly from the pages in the sending process. 78 * 79 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 80 * happen for small transfers so that the system will not spend all of 81 * its time context switching. PIPE_SIZE is constrained by the 82 * amount of kernel virtual memory. 83 */ 84 85 #include <sys/cdefs.h> 86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.73 2006/06/07 22:33:41 kardel Exp $"); 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/proc.h> 91 #include <sys/fcntl.h> 92 #include <sys/file.h> 93 #include <sys/filedesc.h> 94 #include <sys/filio.h> 95 #include <sys/kernel.h> 96 #include <sys/lock.h> 97 #include <sys/ttycom.h> 98 #include <sys/stat.h> 99 #include <sys/malloc.h> 100 #include <sys/poll.h> 101 #include <sys/signalvar.h> 102 #include <sys/vnode.h> 103 #include <sys/uio.h> 104 #include <sys/lock.h> 105 #include <sys/select.h> 106 #include <sys/mount.h> 107 #include <sys/sa.h> 108 #include <sys/syscallargs.h> 109 #include <uvm/uvm.h> 110 #include <sys/sysctl.h> 111 #include <sys/kernel.h> 112 #include <sys/kauth.h> 113 114 #include <sys/pipe.h> 115 116 /* 117 * Use this define if you want to disable *fancy* VM things. Expect an 118 * approx 30% decrease in transfer rate. 119 */ 120 /* #define PIPE_NODIRECT */ 121 122 /* 123 * interfaces to the outside world 124 */ 125 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio, 126 kauth_cred_t cred, int flags); 127 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio, 128 kauth_cred_t cred, int flags); 129 static int pipe_close(struct file *fp, struct lwp *l); 130 static int pipe_poll(struct file *fp, int events, struct lwp *l); 131 static int pipe_kqfilter(struct file *fp, struct knote *kn); 132 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l); 133 static int pipe_ioctl(struct file *fp, u_long cmd, void *data, 134 struct lwp *l); 135 136 static const struct fileops pipeops = { 137 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll, 138 pipe_stat, pipe_close, pipe_kqfilter 139 }; 140 141 /* 142 * Default pipe buffer size(s), this can be kind-of large now because pipe 143 * space is pageable. The pipe code will try to maintain locality of 144 * reference for performance reasons, so small amounts of outstanding I/O 145 * will not wipe the cache. 146 */ 147 #define MINPIPESIZE (PIPE_SIZE/3) 148 #define MAXPIPESIZE (2*PIPE_SIZE/3) 149 150 /* 151 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 152 * is there so that on large systems, we don't exhaust it. 153 */ 154 #define MAXPIPEKVA (8*1024*1024) 155 static int maxpipekva = MAXPIPEKVA; 156 157 /* 158 * Limit for direct transfers, we cannot, of course limit 159 * the amount of kva for pipes in general though. 160 */ 161 #define LIMITPIPEKVA (16*1024*1024) 162 static int limitpipekva = LIMITPIPEKVA; 163 164 /* 165 * Limit the number of "big" pipes 166 */ 167 #define LIMITBIGPIPES 32 168 static int maxbigpipes = LIMITBIGPIPES; 169 static int nbigpipe = 0; 170 171 /* 172 * Amount of KVA consumed by pipe buffers. 173 */ 174 static int amountpipekva = 0; 175 176 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures"); 177 178 static void pipeclose(struct file *fp, struct pipe *pipe); 179 static void pipe_free_kmem(struct pipe *pipe); 180 static int pipe_create(struct pipe **pipep, int allockva); 181 static int pipelock(struct pipe *pipe, int catch); 182 static inline void pipeunlock(struct pipe *pipe); 183 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code); 184 #ifndef PIPE_NODIRECT 185 static int pipe_direct_write(struct file *fp, struct pipe *wpipe, 186 struct uio *uio); 187 #endif 188 static int pipespace(struct pipe *pipe, int size); 189 190 #ifndef PIPE_NODIRECT 191 static int pipe_loan_alloc(struct pipe *, int); 192 static void pipe_loan_free(struct pipe *); 193 #endif /* PIPE_NODIRECT */ 194 195 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl", 196 &pool_allocator_nointr); 197 198 /* 199 * The pipe system call for the DTYPE_PIPE type of pipes 200 */ 201 202 /* ARGSUSED */ 203 int 204 sys_pipe(struct lwp *l, void *v, register_t *retval) 205 { 206 struct file *rf, *wf; 207 struct pipe *rpipe, *wpipe; 208 int fd, error; 209 struct proc *p; 210 211 p = l->l_proc; 212 rpipe = wpipe = NULL; 213 if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) { 214 pipeclose(NULL, rpipe); 215 pipeclose(NULL, wpipe); 216 return (ENFILE); 217 } 218 219 /* 220 * Note: the file structure returned from falloc() is marked 221 * as 'larval' initially. Unless we mark it as 'mature' by 222 * FILE_SET_MATURE(), any attempt to do anything with it would 223 * return EBADF, including e.g. dup(2) or close(2). This avoids 224 * file descriptor races if we block in the second falloc(). 225 */ 226 227 error = falloc(p, &rf, &fd); 228 if (error) 229 goto free2; 230 retval[0] = fd; 231 rf->f_flag = FREAD; 232 rf->f_type = DTYPE_PIPE; 233 rf->f_data = (caddr_t)rpipe; 234 rf->f_ops = &pipeops; 235 236 error = falloc(p, &wf, &fd); 237 if (error) 238 goto free3; 239 retval[1] = fd; 240 wf->f_flag = FWRITE; 241 wf->f_type = DTYPE_PIPE; 242 wf->f_data = (caddr_t)wpipe; 243 wf->f_ops = &pipeops; 244 245 rpipe->pipe_peer = wpipe; 246 wpipe->pipe_peer = rpipe; 247 248 FILE_SET_MATURE(rf); 249 FILE_SET_MATURE(wf); 250 FILE_UNUSE(rf, l); 251 FILE_UNUSE(wf, l); 252 return (0); 253 free3: 254 FILE_UNUSE(rf, l); 255 ffree(rf); 256 fdremove(p->p_fd, retval[0]); 257 free2: 258 pipeclose(NULL, wpipe); 259 pipeclose(NULL, rpipe); 260 261 return (error); 262 } 263 264 /* 265 * Allocate kva for pipe circular buffer, the space is pageable 266 * This routine will 'realloc' the size of a pipe safely, if it fails 267 * it will retain the old buffer. 268 * If it fails it will return ENOMEM. 269 */ 270 static int 271 pipespace(struct pipe *pipe, int size) 272 { 273 caddr_t buffer; 274 /* 275 * Allocate pageable virtual address space. Physical memory is 276 * allocated on demand. 277 */ 278 buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0, 279 UVM_KMF_PAGEABLE); 280 if (buffer == NULL) 281 return (ENOMEM); 282 283 /* free old resources if we're resizing */ 284 pipe_free_kmem(pipe); 285 pipe->pipe_buffer.buffer = buffer; 286 pipe->pipe_buffer.size = size; 287 pipe->pipe_buffer.in = 0; 288 pipe->pipe_buffer.out = 0; 289 pipe->pipe_buffer.cnt = 0; 290 amountpipekva += pipe->pipe_buffer.size; 291 return (0); 292 } 293 294 /* 295 * Initialize and allocate VM and memory for pipe. 296 */ 297 static int 298 pipe_create(struct pipe **pipep, int allockva) 299 { 300 struct pipe *pipe; 301 int error; 302 303 pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK); 304 305 /* Initialize */ 306 memset(pipe, 0, sizeof(struct pipe)); 307 pipe->pipe_state = PIPE_SIGNALR; 308 309 getmicrotime(&pipe->pipe_ctime); 310 pipe->pipe_atime = pipe->pipe_ctime; 311 pipe->pipe_mtime = pipe->pipe_ctime; 312 simple_lock_init(&pipe->pipe_slock); 313 314 if (allockva && (error = pipespace(pipe, PIPE_SIZE))) 315 return (error); 316 317 return (0); 318 } 319 320 321 /* 322 * Lock a pipe for I/O, blocking other access 323 * Called with pipe spin lock held. 324 * Return with pipe spin lock released on success. 325 */ 326 static int 327 pipelock(struct pipe *pipe, int catch) 328 { 329 330 LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock)); 331 332 while (pipe->pipe_state & PIPE_LOCKFL) { 333 int error; 334 const int pcatch = catch ? PCATCH : 0; 335 336 pipe->pipe_state |= PIPE_LWANT; 337 error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0, 338 &pipe->pipe_slock); 339 if (error != 0) 340 return error; 341 } 342 343 pipe->pipe_state |= PIPE_LOCKFL; 344 simple_unlock(&pipe->pipe_slock); 345 346 return 0; 347 } 348 349 /* 350 * unlock a pipe I/O lock 351 */ 352 static inline void 353 pipeunlock(struct pipe *pipe) 354 { 355 356 KASSERT(pipe->pipe_state & PIPE_LOCKFL); 357 358 pipe->pipe_state &= ~PIPE_LOCKFL; 359 if (pipe->pipe_state & PIPE_LWANT) { 360 pipe->pipe_state &= ~PIPE_LWANT; 361 wakeup(pipe); 362 } 363 } 364 365 /* 366 * Select/poll wakup. This also sends SIGIO to peer connected to 367 * 'sigpipe' side of pipe. 368 */ 369 static void 370 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code) 371 { 372 int band; 373 374 selnotify(&selp->pipe_sel, NOTE_SUBMIT); 375 376 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0) 377 return; 378 379 switch (code) { 380 case POLL_IN: 381 band = POLLIN|POLLRDNORM; 382 break; 383 case POLL_OUT: 384 band = POLLOUT|POLLWRNORM; 385 break; 386 case POLL_HUP: 387 band = POLLHUP; 388 break; 389 #if POLL_HUP != POLL_ERR 390 case POLL_ERR: 391 band = POLLERR; 392 break; 393 #endif 394 default: 395 band = 0; 396 #ifdef DIAGNOSTIC 397 printf("bad siginfo code %d in pipe notification.\n", code); 398 #endif 399 break; 400 } 401 402 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp); 403 } 404 405 /* ARGSUSED */ 406 static int 407 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 408 int flags) 409 { 410 struct pipe *rpipe = (struct pipe *) fp->f_data; 411 struct pipebuf *bp = &rpipe->pipe_buffer; 412 int error; 413 size_t nread = 0; 414 size_t size; 415 size_t ocnt; 416 417 PIPE_LOCK(rpipe); 418 ++rpipe->pipe_busy; 419 ocnt = bp->cnt; 420 421 again: 422 error = pipelock(rpipe, 1); 423 if (error) 424 goto unlocked_error; 425 426 while (uio->uio_resid) { 427 /* 428 * normal pipe buffer receive 429 */ 430 if (bp->cnt > 0) { 431 size = bp->size - bp->out; 432 if (size > bp->cnt) 433 size = bp->cnt; 434 if (size > uio->uio_resid) 435 size = uio->uio_resid; 436 437 error = uiomove(&bp->buffer[bp->out], size, uio); 438 if (error) 439 break; 440 441 bp->out += size; 442 if (bp->out >= bp->size) 443 bp->out = 0; 444 445 bp->cnt -= size; 446 447 /* 448 * If there is no more to read in the pipe, reset 449 * its pointers to the beginning. This improves 450 * cache hit stats. 451 */ 452 if (bp->cnt == 0) { 453 bp->in = 0; 454 bp->out = 0; 455 } 456 nread += size; 457 #ifndef PIPE_NODIRECT 458 } else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) { 459 /* 460 * Direct copy, bypassing a kernel buffer. 461 */ 462 caddr_t va; 463 464 KASSERT(rpipe->pipe_state & PIPE_DIRECTW); 465 466 size = rpipe->pipe_map.cnt; 467 if (size > uio->uio_resid) 468 size = uio->uio_resid; 469 470 va = (caddr_t) rpipe->pipe_map.kva + 471 rpipe->pipe_map.pos; 472 error = uiomove(va, size, uio); 473 if (error) 474 break; 475 nread += size; 476 rpipe->pipe_map.pos += size; 477 rpipe->pipe_map.cnt -= size; 478 if (rpipe->pipe_map.cnt == 0) { 479 PIPE_LOCK(rpipe); 480 rpipe->pipe_state &= ~PIPE_DIRECTR; 481 wakeup(rpipe); 482 PIPE_UNLOCK(rpipe); 483 } 484 #endif 485 } else { 486 /* 487 * Break if some data was read. 488 */ 489 if (nread > 0) 490 break; 491 492 PIPE_LOCK(rpipe); 493 494 /* 495 * detect EOF condition 496 * read returns 0 on EOF, no need to set error 497 */ 498 if (rpipe->pipe_state & PIPE_EOF) { 499 PIPE_UNLOCK(rpipe); 500 break; 501 } 502 503 /* 504 * don't block on non-blocking I/O 505 */ 506 if (fp->f_flag & FNONBLOCK) { 507 PIPE_UNLOCK(rpipe); 508 error = EAGAIN; 509 break; 510 } 511 512 /* 513 * Unlock the pipe buffer for our remaining processing. 514 * We will either break out with an error or we will 515 * sleep and relock to loop. 516 */ 517 pipeunlock(rpipe); 518 519 /* 520 * The PIPE_DIRECTR flag is not under the control 521 * of the long-term lock (see pipe_direct_write()), 522 * so re-check now while holding the spin lock. 523 */ 524 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) 525 goto again; 526 527 /* 528 * We want to read more, wake up select/poll. 529 */ 530 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN); 531 532 /* 533 * If the "write-side" is blocked, wake it up now. 534 */ 535 if (rpipe->pipe_state & PIPE_WANTW) { 536 rpipe->pipe_state &= ~PIPE_WANTW; 537 wakeup(rpipe); 538 } 539 540 /* Now wait until the pipe is filled */ 541 rpipe->pipe_state |= PIPE_WANTR; 542 error = ltsleep(rpipe, PSOCK | PCATCH, 543 "piperd", 0, &rpipe->pipe_slock); 544 if (error != 0) 545 goto unlocked_error; 546 goto again; 547 } 548 } 549 550 if (error == 0) 551 getmicrotime(&rpipe->pipe_atime); 552 553 PIPE_LOCK(rpipe); 554 pipeunlock(rpipe); 555 556 unlocked_error: 557 --rpipe->pipe_busy; 558 559 /* 560 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0. 561 */ 562 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) { 563 rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW); 564 wakeup(rpipe); 565 } else if (bp->cnt < MINPIPESIZE) { 566 /* 567 * Handle write blocking hysteresis. 568 */ 569 if (rpipe->pipe_state & PIPE_WANTW) { 570 rpipe->pipe_state &= ~PIPE_WANTW; 571 wakeup(rpipe); 572 } 573 } 574 575 /* 576 * If anything was read off the buffer, signal to the writer it's 577 * possible to write more data. Also send signal if we are here for the 578 * first time after last write. 579 */ 580 if ((bp->size - bp->cnt) >= PIPE_BUF 581 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) { 582 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 583 rpipe->pipe_state &= ~PIPE_SIGNALR; 584 } 585 586 PIPE_UNLOCK(rpipe); 587 return (error); 588 } 589 590 #ifndef PIPE_NODIRECT 591 /* 592 * Allocate structure for loan transfer. 593 */ 594 static int 595 pipe_loan_alloc(struct pipe *wpipe, int npages) 596 { 597 vsize_t len; 598 599 len = (vsize_t)npages << PAGE_SHIFT; 600 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0, 601 UVM_KMF_VAONLY | UVM_KMF_WAITVA); 602 if (wpipe->pipe_map.kva == 0) 603 return (ENOMEM); 604 605 amountpipekva += len; 606 wpipe->pipe_map.npages = npages; 607 wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE, 608 M_WAITOK); 609 return (0); 610 } 611 612 /* 613 * Free resources allocated for loan transfer. 614 */ 615 static void 616 pipe_loan_free(struct pipe *wpipe) 617 { 618 vsize_t len; 619 620 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT; 621 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY); 622 wpipe->pipe_map.kva = 0; 623 amountpipekva -= len; 624 free(wpipe->pipe_map.pgs, M_PIPE); 625 wpipe->pipe_map.pgs = NULL; 626 } 627 628 /* 629 * NetBSD direct write, using uvm_loan() mechanism. 630 * This implements the pipe buffer write mechanism. Note that only 631 * a direct write OR a normal pipe write can be pending at any given time. 632 * If there are any characters in the pipe buffer, the direct write will 633 * be deferred until the receiving process grabs all of the bytes from 634 * the pipe buffer. Then the direct mapping write is set-up. 635 * 636 * Called with the long-term pipe lock held. 637 */ 638 static int 639 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio) 640 { 641 int error, npages, j; 642 struct vm_page **pgs; 643 vaddr_t bbase, kva, base, bend; 644 vsize_t blen, bcnt; 645 voff_t bpos; 646 647 KASSERT(wpipe->pipe_map.cnt == 0); 648 649 /* 650 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers 651 * not aligned to PAGE_SIZE. 652 */ 653 bbase = (vaddr_t)uio->uio_iov->iov_base; 654 base = trunc_page(bbase); 655 bend = round_page(bbase + uio->uio_iov->iov_len); 656 blen = bend - base; 657 bpos = bbase - base; 658 659 if (blen > PIPE_DIRECT_CHUNK) { 660 blen = PIPE_DIRECT_CHUNK; 661 bend = base + blen; 662 bcnt = PIPE_DIRECT_CHUNK - bpos; 663 } else { 664 bcnt = uio->uio_iov->iov_len; 665 } 666 npages = blen >> PAGE_SHIFT; 667 668 /* 669 * Free the old kva if we need more pages than we have 670 * allocated. 671 */ 672 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages) 673 pipe_loan_free(wpipe); 674 675 /* Allocate new kva. */ 676 if (wpipe->pipe_map.kva == 0) { 677 error = pipe_loan_alloc(wpipe, npages); 678 if (error) 679 return (error); 680 } 681 682 /* Loan the write buffer memory from writer process */ 683 pgs = wpipe->pipe_map.pgs; 684 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen, 685 pgs, UVM_LOAN_TOPAGE); 686 if (error) { 687 pipe_loan_free(wpipe); 688 return (ENOMEM); /* so that caller fallback to ordinary write */ 689 } 690 691 /* Enter the loaned pages to kva */ 692 kva = wpipe->pipe_map.kva; 693 for (j = 0; j < npages; j++, kva += PAGE_SIZE) { 694 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ); 695 } 696 pmap_update(pmap_kernel()); 697 698 /* Now we can put the pipe in direct write mode */ 699 wpipe->pipe_map.pos = bpos; 700 wpipe->pipe_map.cnt = bcnt; 701 wpipe->pipe_state |= PIPE_DIRECTW; 702 703 /* 704 * But before we can let someone do a direct read, 705 * we have to wait until the pipe is drained. 706 */ 707 708 /* Relase the pipe lock while we wait */ 709 PIPE_LOCK(wpipe); 710 pipeunlock(wpipe); 711 712 while (error == 0 && wpipe->pipe_buffer.cnt > 0) { 713 if (wpipe->pipe_state & PIPE_WANTR) { 714 wpipe->pipe_state &= ~PIPE_WANTR; 715 wakeup(wpipe); 716 } 717 718 wpipe->pipe_state |= PIPE_WANTW; 719 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0, 720 &wpipe->pipe_slock); 721 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 722 error = EPIPE; 723 } 724 725 /* Pipe is drained; next read will off the direct buffer */ 726 wpipe->pipe_state |= PIPE_DIRECTR; 727 728 /* Wait until the reader is done */ 729 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) { 730 if (wpipe->pipe_state & PIPE_WANTR) { 731 wpipe->pipe_state &= ~PIPE_WANTR; 732 wakeup(wpipe); 733 } 734 pipeselwakeup(wpipe, wpipe, POLL_IN); 735 error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0, 736 &wpipe->pipe_slock); 737 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 738 error = EPIPE; 739 } 740 741 /* Take pipe out of direct write mode */ 742 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR); 743 744 /* Acquire the pipe lock and cleanup */ 745 (void)pipelock(wpipe, 0); 746 if (pgs != NULL) { 747 pmap_kremove(wpipe->pipe_map.kva, blen); 748 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE); 749 } 750 if (error || amountpipekva > maxpipekva) 751 pipe_loan_free(wpipe); 752 753 if (error) { 754 pipeselwakeup(wpipe, wpipe, POLL_ERR); 755 756 /* 757 * If nothing was read from what we offered, return error 758 * straight on. Otherwise update uio resid first. Caller 759 * will deal with the error condition, returning short 760 * write, error, or restarting the write(2) as appropriate. 761 */ 762 if (wpipe->pipe_map.cnt == bcnt) { 763 wpipe->pipe_map.cnt = 0; 764 wakeup(wpipe); 765 return (error); 766 } 767 768 bcnt -= wpipe->pipe_map.cnt; 769 } 770 771 uio->uio_resid -= bcnt; 772 /* uio_offset not updated, not set/used for write(2) */ 773 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt; 774 uio->uio_iov->iov_len -= bcnt; 775 if (uio->uio_iov->iov_len == 0) { 776 uio->uio_iov++; 777 uio->uio_iovcnt--; 778 } 779 780 wpipe->pipe_map.cnt = 0; 781 return (error); 782 } 783 #endif /* !PIPE_NODIRECT */ 784 785 static int 786 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 787 int flags) 788 { 789 struct pipe *wpipe, *rpipe; 790 struct pipebuf *bp; 791 int error; 792 793 /* We want to write to our peer */ 794 rpipe = (struct pipe *) fp->f_data; 795 796 retry: 797 error = 0; 798 PIPE_LOCK(rpipe); 799 wpipe = rpipe->pipe_peer; 800 801 /* 802 * Detect loss of pipe read side, issue SIGPIPE if lost. 803 */ 804 if (wpipe == NULL) 805 error = EPIPE; 806 else if (simple_lock_try(&wpipe->pipe_slock) == 0) { 807 /* Deal with race for peer */ 808 PIPE_UNLOCK(rpipe); 809 goto retry; 810 } else if ((wpipe->pipe_state & PIPE_EOF) != 0) { 811 PIPE_UNLOCK(wpipe); 812 error = EPIPE; 813 } 814 815 PIPE_UNLOCK(rpipe); 816 if (error != 0) 817 return (error); 818 819 ++wpipe->pipe_busy; 820 821 /* Aquire the long-term pipe lock */ 822 if ((error = pipelock(wpipe,1)) != 0) { 823 --wpipe->pipe_busy; 824 if (wpipe->pipe_busy == 0 825 && (wpipe->pipe_state & PIPE_WANTCLOSE)) { 826 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR); 827 wakeup(wpipe); 828 } 829 PIPE_UNLOCK(wpipe); 830 return (error); 831 } 832 833 bp = &wpipe->pipe_buffer; 834 835 /* 836 * If it is advantageous to resize the pipe buffer, do so. 837 */ 838 if ((uio->uio_resid > PIPE_SIZE) && 839 (nbigpipe < maxbigpipes) && 840 #ifndef PIPE_NODIRECT 841 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 842 #endif 843 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) { 844 845 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0) 846 nbigpipe++; 847 } 848 849 while (uio->uio_resid) { 850 size_t space; 851 852 #ifndef PIPE_NODIRECT 853 /* 854 * Pipe buffered writes cannot be coincidental with 855 * direct writes. Also, only one direct write can be 856 * in progress at any one time. We wait until the currently 857 * executing direct write is completed before continuing. 858 * 859 * We break out if a signal occurs or the reader goes away. 860 */ 861 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) { 862 PIPE_LOCK(wpipe); 863 if (wpipe->pipe_state & PIPE_WANTR) { 864 wpipe->pipe_state &= ~PIPE_WANTR; 865 wakeup(wpipe); 866 } 867 pipeunlock(wpipe); 868 error = ltsleep(wpipe, PSOCK | PCATCH, 869 "pipbww", 0, &wpipe->pipe_slock); 870 871 (void)pipelock(wpipe, 0); 872 if (wpipe->pipe_state & PIPE_EOF) 873 error = EPIPE; 874 } 875 if (error) 876 break; 877 878 /* 879 * If the transfer is large, we can gain performance if 880 * we do process-to-process copies directly. 881 * If the write is non-blocking, we don't use the 882 * direct write mechanism. 883 * 884 * The direct write mechanism will detect the reader going 885 * away on us. 886 */ 887 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 888 (fp->f_flag & FNONBLOCK) == 0 && 889 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) { 890 error = pipe_direct_write(fp, wpipe, uio); 891 892 /* 893 * Break out if error occurred, unless it's ENOMEM. 894 * ENOMEM means we failed to allocate some resources 895 * for direct write, so we just fallback to ordinary 896 * write. If the direct write was successful, 897 * process rest of data via ordinary write. 898 */ 899 if (error == 0) 900 continue; 901 902 if (error != ENOMEM) 903 break; 904 } 905 #endif /* PIPE_NODIRECT */ 906 907 space = bp->size - bp->cnt; 908 909 /* Writes of size <= PIPE_BUF must be atomic. */ 910 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF)) 911 space = 0; 912 913 if (space > 0) { 914 int size; /* Transfer size */ 915 int segsize; /* first segment to transfer */ 916 917 /* 918 * Transfer size is minimum of uio transfer 919 * and free space in pipe buffer. 920 */ 921 if (space > uio->uio_resid) 922 size = uio->uio_resid; 923 else 924 size = space; 925 /* 926 * First segment to transfer is minimum of 927 * transfer size and contiguous space in 928 * pipe buffer. If first segment to transfer 929 * is less than the transfer size, we've got 930 * a wraparound in the buffer. 931 */ 932 segsize = bp->size - bp->in; 933 if (segsize > size) 934 segsize = size; 935 936 /* Transfer first segment */ 937 error = uiomove(&bp->buffer[bp->in], segsize, uio); 938 939 if (error == 0 && segsize < size) { 940 /* 941 * Transfer remaining part now, to 942 * support atomic writes. Wraparound 943 * happened. 944 */ 945 #ifdef DEBUG 946 if (bp->in + segsize != bp->size) 947 panic("Expected pipe buffer wraparound disappeared"); 948 #endif 949 950 error = uiomove(&bp->buffer[0], 951 size - segsize, uio); 952 } 953 if (error) 954 break; 955 956 bp->in += size; 957 if (bp->in >= bp->size) { 958 #ifdef DEBUG 959 if (bp->in != size - segsize + bp->size) 960 panic("Expected wraparound bad"); 961 #endif 962 bp->in = size - segsize; 963 } 964 965 bp->cnt += size; 966 #ifdef DEBUG 967 if (bp->cnt > bp->size) 968 panic("Pipe buffer overflow"); 969 #endif 970 } else { 971 /* 972 * If the "read-side" has been blocked, wake it up now. 973 */ 974 PIPE_LOCK(wpipe); 975 if (wpipe->pipe_state & PIPE_WANTR) { 976 wpipe->pipe_state &= ~PIPE_WANTR; 977 wakeup(wpipe); 978 } 979 PIPE_UNLOCK(wpipe); 980 981 /* 982 * don't block on non-blocking I/O 983 */ 984 if (fp->f_flag & FNONBLOCK) { 985 error = EAGAIN; 986 break; 987 } 988 989 /* 990 * We have no more space and have something to offer, 991 * wake up select/poll. 992 */ 993 if (bp->cnt) 994 pipeselwakeup(wpipe, wpipe, POLL_OUT); 995 996 PIPE_LOCK(wpipe); 997 pipeunlock(wpipe); 998 wpipe->pipe_state |= PIPE_WANTW; 999 error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0, 1000 &wpipe->pipe_slock); 1001 (void)pipelock(wpipe, 0); 1002 if (error != 0) 1003 break; 1004 /* 1005 * If read side wants to go away, we just issue a signal 1006 * to ourselves. 1007 */ 1008 if (wpipe->pipe_state & PIPE_EOF) { 1009 error = EPIPE; 1010 break; 1011 } 1012 } 1013 } 1014 1015 PIPE_LOCK(wpipe); 1016 --wpipe->pipe_busy; 1017 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) { 1018 wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR); 1019 wakeup(wpipe); 1020 } else if (bp->cnt > 0) { 1021 /* 1022 * If we have put any characters in the buffer, we wake up 1023 * the reader. 1024 */ 1025 if (wpipe->pipe_state & PIPE_WANTR) { 1026 wpipe->pipe_state &= ~PIPE_WANTR; 1027 wakeup(wpipe); 1028 } 1029 } 1030 1031 /* 1032 * Don't return EPIPE if I/O was successful 1033 */ 1034 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0) 1035 error = 0; 1036 1037 if (error == 0) 1038 getmicrotime(&wpipe->pipe_mtime); 1039 1040 /* 1041 * We have something to offer, wake up select/poll. 1042 * wpipe->pipe_map.cnt is always 0 in this point (direct write 1043 * is only done synchronously), so check only wpipe->pipe_buffer.cnt 1044 */ 1045 if (bp->cnt) 1046 pipeselwakeup(wpipe, wpipe, POLL_OUT); 1047 1048 /* 1049 * Arrange for next read(2) to do a signal. 1050 */ 1051 wpipe->pipe_state |= PIPE_SIGNALR; 1052 1053 pipeunlock(wpipe); 1054 PIPE_UNLOCK(wpipe); 1055 return (error); 1056 } 1057 1058 /* 1059 * we implement a very minimal set of ioctls for compatibility with sockets. 1060 */ 1061 int 1062 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l) 1063 { 1064 struct pipe *pipe = (struct pipe *)fp->f_data; 1065 struct proc *p = l->l_proc; 1066 1067 switch (cmd) { 1068 1069 case FIONBIO: 1070 return (0); 1071 1072 case FIOASYNC: 1073 PIPE_LOCK(pipe); 1074 if (*(int *)data) { 1075 pipe->pipe_state |= PIPE_ASYNC; 1076 } else { 1077 pipe->pipe_state &= ~PIPE_ASYNC; 1078 } 1079 PIPE_UNLOCK(pipe); 1080 return (0); 1081 1082 case FIONREAD: 1083 PIPE_LOCK(pipe); 1084 #ifndef PIPE_NODIRECT 1085 if (pipe->pipe_state & PIPE_DIRECTW) 1086 *(int *)data = pipe->pipe_map.cnt; 1087 else 1088 #endif 1089 *(int *)data = pipe->pipe_buffer.cnt; 1090 PIPE_UNLOCK(pipe); 1091 return (0); 1092 1093 case FIONWRITE: 1094 /* Look at other side */ 1095 pipe = pipe->pipe_peer; 1096 PIPE_LOCK(pipe); 1097 #ifndef PIPE_NODIRECT 1098 if (pipe->pipe_state & PIPE_DIRECTW) 1099 *(int *)data = pipe->pipe_map.cnt; 1100 else 1101 #endif 1102 *(int *)data = pipe->pipe_buffer.cnt; 1103 PIPE_UNLOCK(pipe); 1104 return (0); 1105 1106 case FIONSPACE: 1107 /* Look at other side */ 1108 pipe = pipe->pipe_peer; 1109 PIPE_LOCK(pipe); 1110 #ifndef PIPE_NODIRECT 1111 /* 1112 * If we're in direct-mode, we don't really have a 1113 * send queue, and any other write will block. Thus 1114 * zero seems like the best answer. 1115 */ 1116 if (pipe->pipe_state & PIPE_DIRECTW) 1117 *(int *)data = 0; 1118 else 1119 #endif 1120 *(int *)data = pipe->pipe_buffer.size - 1121 pipe->pipe_buffer.cnt; 1122 PIPE_UNLOCK(pipe); 1123 return (0); 1124 1125 case TIOCSPGRP: 1126 case FIOSETOWN: 1127 return fsetown(p, &pipe->pipe_pgid, cmd, data); 1128 1129 case TIOCGPGRP: 1130 case FIOGETOWN: 1131 return fgetown(p, pipe->pipe_pgid, cmd, data); 1132 1133 } 1134 return (EPASSTHROUGH); 1135 } 1136 1137 int 1138 pipe_poll(struct file *fp, int events, struct lwp *l) 1139 { 1140 struct pipe *rpipe = (struct pipe *)fp->f_data; 1141 struct pipe *wpipe; 1142 int eof = 0; 1143 int revents = 0; 1144 1145 retry: 1146 PIPE_LOCK(rpipe); 1147 wpipe = rpipe->pipe_peer; 1148 if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) { 1149 /* Deal with race for peer */ 1150 PIPE_UNLOCK(rpipe); 1151 goto retry; 1152 } 1153 1154 if (events & (POLLIN | POLLRDNORM)) 1155 if ((rpipe->pipe_buffer.cnt > 0) || 1156 #ifndef PIPE_NODIRECT 1157 (rpipe->pipe_state & PIPE_DIRECTR) || 1158 #endif 1159 (rpipe->pipe_state & PIPE_EOF)) 1160 revents |= events & (POLLIN | POLLRDNORM); 1161 1162 eof |= (rpipe->pipe_state & PIPE_EOF); 1163 PIPE_UNLOCK(rpipe); 1164 1165 if (wpipe == NULL) 1166 revents |= events & (POLLOUT | POLLWRNORM); 1167 else { 1168 if (events & (POLLOUT | POLLWRNORM)) 1169 if ((wpipe->pipe_state & PIPE_EOF) || ( 1170 #ifndef PIPE_NODIRECT 1171 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1172 #endif 1173 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1174 revents |= events & (POLLOUT | POLLWRNORM); 1175 1176 eof |= (wpipe->pipe_state & PIPE_EOF); 1177 PIPE_UNLOCK(wpipe); 1178 } 1179 1180 if (wpipe == NULL || eof) 1181 revents |= POLLHUP; 1182 1183 if (revents == 0) { 1184 if (events & (POLLIN | POLLRDNORM)) 1185 selrecord(l, &rpipe->pipe_sel); 1186 1187 if (events & (POLLOUT | POLLWRNORM)) 1188 selrecord(l, &wpipe->pipe_sel); 1189 } 1190 1191 return (revents); 1192 } 1193 1194 static int 1195 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l) 1196 { 1197 struct pipe *pipe = (struct pipe *)fp->f_data; 1198 1199 memset((caddr_t)ub, 0, sizeof(*ub)); 1200 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 1201 ub->st_blksize = pipe->pipe_buffer.size; 1202 if (ub->st_blksize == 0 && pipe->pipe_peer) 1203 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size; 1204 ub->st_size = pipe->pipe_buffer.cnt; 1205 ub->st_blocks = (ub->st_size) ? 1 : 0; 1206 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec); 1207 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec); 1208 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec); 1209 ub->st_uid = kauth_cred_geteuid(fp->f_cred); 1210 ub->st_gid = kauth_cred_getegid(fp->f_cred); 1211 /* 1212 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1213 * XXX (st_dev, st_ino) should be unique. 1214 */ 1215 return (0); 1216 } 1217 1218 /* ARGSUSED */ 1219 static int 1220 pipe_close(struct file *fp, struct lwp *l) 1221 { 1222 struct pipe *pipe = (struct pipe *)fp->f_data; 1223 1224 fp->f_data = NULL; 1225 pipeclose(fp, pipe); 1226 return (0); 1227 } 1228 1229 static void 1230 pipe_free_kmem(struct pipe *pipe) 1231 { 1232 1233 if (pipe->pipe_buffer.buffer != NULL) { 1234 if (pipe->pipe_buffer.size > PIPE_SIZE) 1235 --nbigpipe; 1236 amountpipekva -= pipe->pipe_buffer.size; 1237 uvm_km_free(kernel_map, 1238 (vaddr_t)pipe->pipe_buffer.buffer, 1239 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE); 1240 pipe->pipe_buffer.buffer = NULL; 1241 } 1242 #ifndef PIPE_NODIRECT 1243 if (pipe->pipe_map.kva != 0) { 1244 pipe_loan_free(pipe); 1245 pipe->pipe_map.cnt = 0; 1246 pipe->pipe_map.kva = 0; 1247 pipe->pipe_map.pos = 0; 1248 pipe->pipe_map.npages = 0; 1249 } 1250 #endif /* !PIPE_NODIRECT */ 1251 } 1252 1253 /* 1254 * shutdown the pipe 1255 */ 1256 static void 1257 pipeclose(struct file *fp, struct pipe *pipe) 1258 { 1259 struct pipe *ppipe; 1260 1261 if (pipe == NULL) 1262 return; 1263 1264 retry: 1265 PIPE_LOCK(pipe); 1266 1267 pipeselwakeup(pipe, pipe, POLL_HUP); 1268 1269 /* 1270 * If the other side is blocked, wake it up saying that 1271 * we want to close it down. 1272 */ 1273 pipe->pipe_state |= PIPE_EOF; 1274 while (pipe->pipe_busy) { 1275 wakeup(pipe); 1276 pipe->pipe_state |= PIPE_WANTCLOSE; 1277 ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock); 1278 } 1279 1280 /* 1281 * Disconnect from peer 1282 */ 1283 if ((ppipe = pipe->pipe_peer) != NULL) { 1284 /* Deal with race for peer */ 1285 if (simple_lock_try(&ppipe->pipe_slock) == 0) { 1286 PIPE_UNLOCK(pipe); 1287 goto retry; 1288 } 1289 pipeselwakeup(ppipe, ppipe, POLL_HUP); 1290 1291 ppipe->pipe_state |= PIPE_EOF; 1292 wakeup(ppipe); 1293 ppipe->pipe_peer = NULL; 1294 PIPE_UNLOCK(ppipe); 1295 } 1296 1297 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0); 1298 1299 PIPE_UNLOCK(pipe); 1300 1301 /* 1302 * free resources 1303 */ 1304 pipe_free_kmem(pipe); 1305 pool_put(&pipe_pool, pipe); 1306 } 1307 1308 static void 1309 filt_pipedetach(struct knote *kn) 1310 { 1311 struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data; 1312 1313 switch(kn->kn_filter) { 1314 case EVFILT_WRITE: 1315 /* need the peer structure, not our own */ 1316 pipe = pipe->pipe_peer; 1317 /* XXXSMP: race for peer */ 1318 1319 /* if reader end already closed, just return */ 1320 if (pipe == NULL) 1321 return; 1322 1323 break; 1324 default: 1325 /* nothing to do */ 1326 break; 1327 } 1328 1329 #ifdef DIAGNOSTIC 1330 if (kn->kn_hook != pipe) 1331 panic("filt_pipedetach: inconsistent knote"); 1332 #endif 1333 1334 PIPE_LOCK(pipe); 1335 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext); 1336 PIPE_UNLOCK(pipe); 1337 } 1338 1339 /*ARGSUSED*/ 1340 static int 1341 filt_piperead(struct knote *kn, long hint) 1342 { 1343 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1344 struct pipe *wpipe = rpipe->pipe_peer; 1345 1346 if ((hint & NOTE_SUBMIT) == 0) 1347 PIPE_LOCK(rpipe); 1348 kn->kn_data = rpipe->pipe_buffer.cnt; 1349 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1350 kn->kn_data = rpipe->pipe_map.cnt; 1351 1352 /* XXXSMP: race for peer */ 1353 if ((rpipe->pipe_state & PIPE_EOF) || 1354 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1355 kn->kn_flags |= EV_EOF; 1356 if ((hint & NOTE_SUBMIT) == 0) 1357 PIPE_UNLOCK(rpipe); 1358 return (1); 1359 } 1360 if ((hint & NOTE_SUBMIT) == 0) 1361 PIPE_UNLOCK(rpipe); 1362 return (kn->kn_data > 0); 1363 } 1364 1365 /*ARGSUSED*/ 1366 static int 1367 filt_pipewrite(struct knote *kn, long hint) 1368 { 1369 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1370 struct pipe *wpipe = rpipe->pipe_peer; 1371 1372 if ((hint & NOTE_SUBMIT) == 0) 1373 PIPE_LOCK(rpipe); 1374 /* XXXSMP: race for peer */ 1375 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1376 kn->kn_data = 0; 1377 kn->kn_flags |= EV_EOF; 1378 if ((hint & NOTE_SUBMIT) == 0) 1379 PIPE_UNLOCK(rpipe); 1380 return (1); 1381 } 1382 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1383 if (wpipe->pipe_state & PIPE_DIRECTW) 1384 kn->kn_data = 0; 1385 1386 if ((hint & NOTE_SUBMIT) == 0) 1387 PIPE_UNLOCK(rpipe); 1388 return (kn->kn_data >= PIPE_BUF); 1389 } 1390 1391 static const struct filterops pipe_rfiltops = 1392 { 1, NULL, filt_pipedetach, filt_piperead }; 1393 static const struct filterops pipe_wfiltops = 1394 { 1, NULL, filt_pipedetach, filt_pipewrite }; 1395 1396 /*ARGSUSED*/ 1397 static int 1398 pipe_kqfilter(struct file *fp, struct knote *kn) 1399 { 1400 struct pipe *pipe; 1401 1402 pipe = (struct pipe *)kn->kn_fp->f_data; 1403 switch (kn->kn_filter) { 1404 case EVFILT_READ: 1405 kn->kn_fop = &pipe_rfiltops; 1406 break; 1407 case EVFILT_WRITE: 1408 kn->kn_fop = &pipe_wfiltops; 1409 /* XXXSMP: race for peer */ 1410 pipe = pipe->pipe_peer; 1411 if (pipe == NULL) { 1412 /* other end of pipe has been closed */ 1413 return (EBADF); 1414 } 1415 break; 1416 default: 1417 return (1); 1418 } 1419 kn->kn_hook = pipe; 1420 1421 PIPE_LOCK(pipe); 1422 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext); 1423 PIPE_UNLOCK(pipe); 1424 return (0); 1425 } 1426 1427 /* 1428 * Handle pipe sysctls. 1429 */ 1430 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup") 1431 { 1432 1433 sysctl_createv(clog, 0, NULL, NULL, 1434 CTLFLAG_PERMANENT, 1435 CTLTYPE_NODE, "kern", NULL, 1436 NULL, 0, NULL, 0, 1437 CTL_KERN, CTL_EOL); 1438 sysctl_createv(clog, 0, NULL, NULL, 1439 CTLFLAG_PERMANENT, 1440 CTLTYPE_NODE, "pipe", 1441 SYSCTL_DESCR("Pipe settings"), 1442 NULL, 0, NULL, 0, 1443 CTL_KERN, KERN_PIPE, CTL_EOL); 1444 1445 sysctl_createv(clog, 0, NULL, NULL, 1446 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1447 CTLTYPE_INT, "maxkvasz", 1448 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1449 "used for pipes"), 1450 NULL, 0, &maxpipekva, 0, 1451 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL); 1452 sysctl_createv(clog, 0, NULL, NULL, 1453 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1454 CTLTYPE_INT, "maxloankvasz", 1455 SYSCTL_DESCR("Limit for direct transfers via page loan"), 1456 NULL, 0, &limitpipekva, 0, 1457 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL); 1458 sysctl_createv(clog, 0, NULL, NULL, 1459 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1460 CTLTYPE_INT, "maxbigpipes", 1461 SYSCTL_DESCR("Maximum number of \"big\" pipes"), 1462 NULL, 0, &maxbigpipes, 0, 1463 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL); 1464 sysctl_createv(clog, 0, NULL, NULL, 1465 CTLFLAG_PERMANENT, 1466 CTLTYPE_INT, "nbigpipes", 1467 SYSCTL_DESCR("Number of \"big\" pipes"), 1468 NULL, 0, &nbigpipe, 0, 1469 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL); 1470 sysctl_createv(clog, 0, NULL, NULL, 1471 CTLFLAG_PERMANENT, 1472 CTLTYPE_INT, "kvasize", 1473 SYSCTL_DESCR("Amount of kernel memory consumed by pipe " 1474 "buffers"), 1475 NULL, 0, &amountpipekva, 0, 1476 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL); 1477 } 1478