xref: /netbsd-src/sys/kern/sys_pipe.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: sys_pipe.c,v 1.73 2006/06/07 22:33:41 kardel Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1996 John S. Dyson
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice immediately at the beginning of the file, without modification,
48  *    this list of conditions, and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Absolutely no warranty of function or purpose is made by the author
53  *    John S. Dyson.
54  * 4. Modifications may be freely made to this file if the above conditions
55  *    are met.
56  *
57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58  */
59 
60 /*
61  * This file contains a high-performance replacement for the socket-based
62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
63  * all features of sockets, but does do everything that pipes normally
64  * do.
65  *
66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67  * written by Jaromir Dolecek.
68  */
69 
70 /*
71  * This code has two modes of operation, a small write mode and a large
72  * write mode.  The small write mode acts like conventional pipes with
73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76  * using the UVM page loan facility from where the receiving process can copy
77  * the data directly from the pages in the sending process.
78  *
79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80  * happen for small transfers so that the system will not spend all of
81  * its time context switching.  PIPE_SIZE is constrained by the
82  * amount of kernel virtual memory.
83  */
84 
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.73 2006/06/07 22:33:41 kardel Exp $");
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/lock.h>
97 #include <sys/ttycom.h>
98 #include <sys/stat.h>
99 #include <sys/malloc.h>
100 #include <sys/poll.h>
101 #include <sys/signalvar.h>
102 #include <sys/vnode.h>
103 #include <sys/uio.h>
104 #include <sys/lock.h>
105 #include <sys/select.h>
106 #include <sys/mount.h>
107 #include <sys/sa.h>
108 #include <sys/syscallargs.h>
109 #include <uvm/uvm.h>
110 #include <sys/sysctl.h>
111 #include <sys/kernel.h>
112 #include <sys/kauth.h>
113 
114 #include <sys/pipe.h>
115 
116 /*
117  * Use this define if you want to disable *fancy* VM things.  Expect an
118  * approx 30% decrease in transfer rate.
119  */
120 /* #define PIPE_NODIRECT */
121 
122 /*
123  * interfaces to the outside world
124  */
125 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
126 		kauth_cred_t cred, int flags);
127 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
128 		kauth_cred_t cred, int flags);
129 static int pipe_close(struct file *fp, struct lwp *l);
130 static int pipe_poll(struct file *fp, int events, struct lwp *l);
131 static int pipe_kqfilter(struct file *fp, struct knote *kn);
132 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
133 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
134 		struct lwp *l);
135 
136 static const struct fileops pipeops = {
137 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
138 	pipe_stat, pipe_close, pipe_kqfilter
139 };
140 
141 /*
142  * Default pipe buffer size(s), this can be kind-of large now because pipe
143  * space is pageable.  The pipe code will try to maintain locality of
144  * reference for performance reasons, so small amounts of outstanding I/O
145  * will not wipe the cache.
146  */
147 #define MINPIPESIZE (PIPE_SIZE/3)
148 #define MAXPIPESIZE (2*PIPE_SIZE/3)
149 
150 /*
151  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
152  * is there so that on large systems, we don't exhaust it.
153  */
154 #define MAXPIPEKVA (8*1024*1024)
155 static int maxpipekva = MAXPIPEKVA;
156 
157 /*
158  * Limit for direct transfers, we cannot, of course limit
159  * the amount of kva for pipes in general though.
160  */
161 #define LIMITPIPEKVA (16*1024*1024)
162 static int limitpipekva = LIMITPIPEKVA;
163 
164 /*
165  * Limit the number of "big" pipes
166  */
167 #define LIMITBIGPIPES  32
168 static int maxbigpipes = LIMITBIGPIPES;
169 static int nbigpipe = 0;
170 
171 /*
172  * Amount of KVA consumed by pipe buffers.
173  */
174 static int amountpipekva = 0;
175 
176 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
177 
178 static void pipeclose(struct file *fp, struct pipe *pipe);
179 static void pipe_free_kmem(struct pipe *pipe);
180 static int pipe_create(struct pipe **pipep, int allockva);
181 static int pipelock(struct pipe *pipe, int catch);
182 static inline void pipeunlock(struct pipe *pipe);
183 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
184 #ifndef PIPE_NODIRECT
185 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
186     struct uio *uio);
187 #endif
188 static int pipespace(struct pipe *pipe, int size);
189 
190 #ifndef PIPE_NODIRECT
191 static int pipe_loan_alloc(struct pipe *, int);
192 static void pipe_loan_free(struct pipe *);
193 #endif /* PIPE_NODIRECT */
194 
195 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
196     &pool_allocator_nointr);
197 
198 /*
199  * The pipe system call for the DTYPE_PIPE type of pipes
200  */
201 
202 /* ARGSUSED */
203 int
204 sys_pipe(struct lwp *l, void *v, register_t *retval)
205 {
206 	struct file *rf, *wf;
207 	struct pipe *rpipe, *wpipe;
208 	int fd, error;
209 	struct proc *p;
210 
211 	p = l->l_proc;
212 	rpipe = wpipe = NULL;
213 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
214 		pipeclose(NULL, rpipe);
215 		pipeclose(NULL, wpipe);
216 		return (ENFILE);
217 	}
218 
219 	/*
220 	 * Note: the file structure returned from falloc() is marked
221 	 * as 'larval' initially. Unless we mark it as 'mature' by
222 	 * FILE_SET_MATURE(), any attempt to do anything with it would
223 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
224 	 * file descriptor races if we block in the second falloc().
225 	 */
226 
227 	error = falloc(p, &rf, &fd);
228 	if (error)
229 		goto free2;
230 	retval[0] = fd;
231 	rf->f_flag = FREAD;
232 	rf->f_type = DTYPE_PIPE;
233 	rf->f_data = (caddr_t)rpipe;
234 	rf->f_ops = &pipeops;
235 
236 	error = falloc(p, &wf, &fd);
237 	if (error)
238 		goto free3;
239 	retval[1] = fd;
240 	wf->f_flag = FWRITE;
241 	wf->f_type = DTYPE_PIPE;
242 	wf->f_data = (caddr_t)wpipe;
243 	wf->f_ops = &pipeops;
244 
245 	rpipe->pipe_peer = wpipe;
246 	wpipe->pipe_peer = rpipe;
247 
248 	FILE_SET_MATURE(rf);
249 	FILE_SET_MATURE(wf);
250 	FILE_UNUSE(rf, l);
251 	FILE_UNUSE(wf, l);
252 	return (0);
253 free3:
254 	FILE_UNUSE(rf, l);
255 	ffree(rf);
256 	fdremove(p->p_fd, retval[0]);
257 free2:
258 	pipeclose(NULL, wpipe);
259 	pipeclose(NULL, rpipe);
260 
261 	return (error);
262 }
263 
264 /*
265  * Allocate kva for pipe circular buffer, the space is pageable
266  * This routine will 'realloc' the size of a pipe safely, if it fails
267  * it will retain the old buffer.
268  * If it fails it will return ENOMEM.
269  */
270 static int
271 pipespace(struct pipe *pipe, int size)
272 {
273 	caddr_t buffer;
274 	/*
275 	 * Allocate pageable virtual address space. Physical memory is
276 	 * allocated on demand.
277 	 */
278 	buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
279 	    UVM_KMF_PAGEABLE);
280 	if (buffer == NULL)
281 		return (ENOMEM);
282 
283 	/* free old resources if we're resizing */
284 	pipe_free_kmem(pipe);
285 	pipe->pipe_buffer.buffer = buffer;
286 	pipe->pipe_buffer.size = size;
287 	pipe->pipe_buffer.in = 0;
288 	pipe->pipe_buffer.out = 0;
289 	pipe->pipe_buffer.cnt = 0;
290 	amountpipekva += pipe->pipe_buffer.size;
291 	return (0);
292 }
293 
294 /*
295  * Initialize and allocate VM and memory for pipe.
296  */
297 static int
298 pipe_create(struct pipe **pipep, int allockva)
299 {
300 	struct pipe *pipe;
301 	int error;
302 
303 	pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
304 
305 	/* Initialize */
306 	memset(pipe, 0, sizeof(struct pipe));
307 	pipe->pipe_state = PIPE_SIGNALR;
308 
309 	getmicrotime(&pipe->pipe_ctime);
310 	pipe->pipe_atime = pipe->pipe_ctime;
311 	pipe->pipe_mtime = pipe->pipe_ctime;
312 	simple_lock_init(&pipe->pipe_slock);
313 
314 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
315 		return (error);
316 
317 	return (0);
318 }
319 
320 
321 /*
322  * Lock a pipe for I/O, blocking other access
323  * Called with pipe spin lock held.
324  * Return with pipe spin lock released on success.
325  */
326 static int
327 pipelock(struct pipe *pipe, int catch)
328 {
329 
330 	LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
331 
332 	while (pipe->pipe_state & PIPE_LOCKFL) {
333 		int error;
334 		const int pcatch = catch ? PCATCH : 0;
335 
336 		pipe->pipe_state |= PIPE_LWANT;
337 		error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
338 		    &pipe->pipe_slock);
339 		if (error != 0)
340 			return error;
341 	}
342 
343 	pipe->pipe_state |= PIPE_LOCKFL;
344 	simple_unlock(&pipe->pipe_slock);
345 
346 	return 0;
347 }
348 
349 /*
350  * unlock a pipe I/O lock
351  */
352 static inline void
353 pipeunlock(struct pipe *pipe)
354 {
355 
356 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
357 
358 	pipe->pipe_state &= ~PIPE_LOCKFL;
359 	if (pipe->pipe_state & PIPE_LWANT) {
360 		pipe->pipe_state &= ~PIPE_LWANT;
361 		wakeup(pipe);
362 	}
363 }
364 
365 /*
366  * Select/poll wakup. This also sends SIGIO to peer connected to
367  * 'sigpipe' side of pipe.
368  */
369 static void
370 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
371 {
372 	int band;
373 
374 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
375 
376 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
377 		return;
378 
379 	switch (code) {
380 	case POLL_IN:
381 		band = POLLIN|POLLRDNORM;
382 		break;
383 	case POLL_OUT:
384 		band = POLLOUT|POLLWRNORM;
385 		break;
386 	case POLL_HUP:
387 		band = POLLHUP;
388 		break;
389 #if POLL_HUP != POLL_ERR
390 	case POLL_ERR:
391 		band = POLLERR;
392 		break;
393 #endif
394 	default:
395 		band = 0;
396 #ifdef DIAGNOSTIC
397 		printf("bad siginfo code %d in pipe notification.\n", code);
398 #endif
399 		break;
400 	}
401 
402 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
403 }
404 
405 /* ARGSUSED */
406 static int
407 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
408     int flags)
409 {
410 	struct pipe *rpipe = (struct pipe *) fp->f_data;
411 	struct pipebuf *bp = &rpipe->pipe_buffer;
412 	int error;
413 	size_t nread = 0;
414 	size_t size;
415 	size_t ocnt;
416 
417 	PIPE_LOCK(rpipe);
418 	++rpipe->pipe_busy;
419 	ocnt = bp->cnt;
420 
421 again:
422 	error = pipelock(rpipe, 1);
423 	if (error)
424 		goto unlocked_error;
425 
426 	while (uio->uio_resid) {
427 		/*
428 		 * normal pipe buffer receive
429 		 */
430 		if (bp->cnt > 0) {
431 			size = bp->size - bp->out;
432 			if (size > bp->cnt)
433 				size = bp->cnt;
434 			if (size > uio->uio_resid)
435 				size = uio->uio_resid;
436 
437 			error = uiomove(&bp->buffer[bp->out], size, uio);
438 			if (error)
439 				break;
440 
441 			bp->out += size;
442 			if (bp->out >= bp->size)
443 				bp->out = 0;
444 
445 			bp->cnt -= size;
446 
447 			/*
448 			 * If there is no more to read in the pipe, reset
449 			 * its pointers to the beginning.  This improves
450 			 * cache hit stats.
451 			 */
452 			if (bp->cnt == 0) {
453 				bp->in = 0;
454 				bp->out = 0;
455 			}
456 			nread += size;
457 #ifndef PIPE_NODIRECT
458 		} else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
459 			/*
460 			 * Direct copy, bypassing a kernel buffer.
461 			 */
462 			caddr_t	va;
463 
464 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
465 
466 			size = rpipe->pipe_map.cnt;
467 			if (size > uio->uio_resid)
468 				size = uio->uio_resid;
469 
470 			va = (caddr_t) rpipe->pipe_map.kva +
471 			    rpipe->pipe_map.pos;
472 			error = uiomove(va, size, uio);
473 			if (error)
474 				break;
475 			nread += size;
476 			rpipe->pipe_map.pos += size;
477 			rpipe->pipe_map.cnt -= size;
478 			if (rpipe->pipe_map.cnt == 0) {
479 				PIPE_LOCK(rpipe);
480 				rpipe->pipe_state &= ~PIPE_DIRECTR;
481 				wakeup(rpipe);
482 				PIPE_UNLOCK(rpipe);
483 			}
484 #endif
485 		} else {
486 			/*
487 			 * Break if some data was read.
488 			 */
489 			if (nread > 0)
490 				break;
491 
492 			PIPE_LOCK(rpipe);
493 
494 			/*
495 			 * detect EOF condition
496 			 * read returns 0 on EOF, no need to set error
497 			 */
498 			if (rpipe->pipe_state & PIPE_EOF) {
499 				PIPE_UNLOCK(rpipe);
500 				break;
501 			}
502 
503 			/*
504 			 * don't block on non-blocking I/O
505 			 */
506 			if (fp->f_flag & FNONBLOCK) {
507 				PIPE_UNLOCK(rpipe);
508 				error = EAGAIN;
509 				break;
510 			}
511 
512 			/*
513 			 * Unlock the pipe buffer for our remaining processing.
514 			 * We will either break out with an error or we will
515 			 * sleep and relock to loop.
516 			 */
517 			pipeunlock(rpipe);
518 
519 			/*
520 			 * The PIPE_DIRECTR flag is not under the control
521 			 * of the long-term lock (see pipe_direct_write()),
522 			 * so re-check now while holding the spin lock.
523 			 */
524 			if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
525 				goto again;
526 
527 			/*
528 			 * We want to read more, wake up select/poll.
529 			 */
530 			pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
531 
532 			/*
533 			 * If the "write-side" is blocked, wake it up now.
534 			 */
535 			if (rpipe->pipe_state & PIPE_WANTW) {
536 				rpipe->pipe_state &= ~PIPE_WANTW;
537 				wakeup(rpipe);
538 			}
539 
540 			/* Now wait until the pipe is filled */
541 			rpipe->pipe_state |= PIPE_WANTR;
542 			error = ltsleep(rpipe, PSOCK | PCATCH,
543 					"piperd", 0, &rpipe->pipe_slock);
544 			if (error != 0)
545 				goto unlocked_error;
546 			goto again;
547 		}
548 	}
549 
550 	if (error == 0)
551 		getmicrotime(&rpipe->pipe_atime);
552 
553 	PIPE_LOCK(rpipe);
554 	pipeunlock(rpipe);
555 
556 unlocked_error:
557 	--rpipe->pipe_busy;
558 
559 	/*
560 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
561 	 */
562 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
563 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
564 		wakeup(rpipe);
565 	} else if (bp->cnt < MINPIPESIZE) {
566 		/*
567 		 * Handle write blocking hysteresis.
568 		 */
569 		if (rpipe->pipe_state & PIPE_WANTW) {
570 			rpipe->pipe_state &= ~PIPE_WANTW;
571 			wakeup(rpipe);
572 		}
573 	}
574 
575 	/*
576 	 * If anything was read off the buffer, signal to the writer it's
577 	 * possible to write more data. Also send signal if we are here for the
578 	 * first time after last write.
579 	 */
580 	if ((bp->size - bp->cnt) >= PIPE_BUF
581 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
582 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
583 		rpipe->pipe_state &= ~PIPE_SIGNALR;
584 	}
585 
586 	PIPE_UNLOCK(rpipe);
587 	return (error);
588 }
589 
590 #ifndef PIPE_NODIRECT
591 /*
592  * Allocate structure for loan transfer.
593  */
594 static int
595 pipe_loan_alloc(struct pipe *wpipe, int npages)
596 {
597 	vsize_t len;
598 
599 	len = (vsize_t)npages << PAGE_SHIFT;
600 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
601 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
602 	if (wpipe->pipe_map.kva == 0)
603 		return (ENOMEM);
604 
605 	amountpipekva += len;
606 	wpipe->pipe_map.npages = npages;
607 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
608 	    M_WAITOK);
609 	return (0);
610 }
611 
612 /*
613  * Free resources allocated for loan transfer.
614  */
615 static void
616 pipe_loan_free(struct pipe *wpipe)
617 {
618 	vsize_t len;
619 
620 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
621 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
622 	wpipe->pipe_map.kva = 0;
623 	amountpipekva -= len;
624 	free(wpipe->pipe_map.pgs, M_PIPE);
625 	wpipe->pipe_map.pgs = NULL;
626 }
627 
628 /*
629  * NetBSD direct write, using uvm_loan() mechanism.
630  * This implements the pipe buffer write mechanism.  Note that only
631  * a direct write OR a normal pipe write can be pending at any given time.
632  * If there are any characters in the pipe buffer, the direct write will
633  * be deferred until the receiving process grabs all of the bytes from
634  * the pipe buffer.  Then the direct mapping write is set-up.
635  *
636  * Called with the long-term pipe lock held.
637  */
638 static int
639 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
640 {
641 	int error, npages, j;
642 	struct vm_page **pgs;
643 	vaddr_t bbase, kva, base, bend;
644 	vsize_t blen, bcnt;
645 	voff_t bpos;
646 
647 	KASSERT(wpipe->pipe_map.cnt == 0);
648 
649 	/*
650 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
651 	 * not aligned to PAGE_SIZE.
652 	 */
653 	bbase = (vaddr_t)uio->uio_iov->iov_base;
654 	base = trunc_page(bbase);
655 	bend = round_page(bbase + uio->uio_iov->iov_len);
656 	blen = bend - base;
657 	bpos = bbase - base;
658 
659 	if (blen > PIPE_DIRECT_CHUNK) {
660 		blen = PIPE_DIRECT_CHUNK;
661 		bend = base + blen;
662 		bcnt = PIPE_DIRECT_CHUNK - bpos;
663 	} else {
664 		bcnt = uio->uio_iov->iov_len;
665 	}
666 	npages = blen >> PAGE_SHIFT;
667 
668 	/*
669 	 * Free the old kva if we need more pages than we have
670 	 * allocated.
671 	 */
672 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
673 		pipe_loan_free(wpipe);
674 
675 	/* Allocate new kva. */
676 	if (wpipe->pipe_map.kva == 0) {
677 		error = pipe_loan_alloc(wpipe, npages);
678 		if (error)
679 			return (error);
680 	}
681 
682 	/* Loan the write buffer memory from writer process */
683 	pgs = wpipe->pipe_map.pgs;
684 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
685 			 pgs, UVM_LOAN_TOPAGE);
686 	if (error) {
687 		pipe_loan_free(wpipe);
688 		return (ENOMEM); /* so that caller fallback to ordinary write */
689 	}
690 
691 	/* Enter the loaned pages to kva */
692 	kva = wpipe->pipe_map.kva;
693 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
694 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
695 	}
696 	pmap_update(pmap_kernel());
697 
698 	/* Now we can put the pipe in direct write mode */
699 	wpipe->pipe_map.pos = bpos;
700 	wpipe->pipe_map.cnt = bcnt;
701 	wpipe->pipe_state |= PIPE_DIRECTW;
702 
703 	/*
704 	 * But before we can let someone do a direct read,
705 	 * we have to wait until the pipe is drained.
706 	 */
707 
708 	/* Relase the pipe lock while we wait */
709 	PIPE_LOCK(wpipe);
710 	pipeunlock(wpipe);
711 
712 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
713 		if (wpipe->pipe_state & PIPE_WANTR) {
714 			wpipe->pipe_state &= ~PIPE_WANTR;
715 			wakeup(wpipe);
716 		}
717 
718 		wpipe->pipe_state |= PIPE_WANTW;
719 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
720 				&wpipe->pipe_slock);
721 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
722 			error = EPIPE;
723 	}
724 
725 	/* Pipe is drained; next read will off the direct buffer */
726 	wpipe->pipe_state |= PIPE_DIRECTR;
727 
728 	/* Wait until the reader is done */
729 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
730 		if (wpipe->pipe_state & PIPE_WANTR) {
731 			wpipe->pipe_state &= ~PIPE_WANTR;
732 			wakeup(wpipe);
733 		}
734 		pipeselwakeup(wpipe, wpipe, POLL_IN);
735 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
736 				&wpipe->pipe_slock);
737 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
738 			error = EPIPE;
739 	}
740 
741 	/* Take pipe out of direct write mode */
742 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
743 
744 	/* Acquire the pipe lock and cleanup */
745 	(void)pipelock(wpipe, 0);
746 	if (pgs != NULL) {
747 		pmap_kremove(wpipe->pipe_map.kva, blen);
748 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
749 	}
750 	if (error || amountpipekva > maxpipekva)
751 		pipe_loan_free(wpipe);
752 
753 	if (error) {
754 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
755 
756 		/*
757 		 * If nothing was read from what we offered, return error
758 		 * straight on. Otherwise update uio resid first. Caller
759 		 * will deal with the error condition, returning short
760 		 * write, error, or restarting the write(2) as appropriate.
761 		 */
762 		if (wpipe->pipe_map.cnt == bcnt) {
763 			wpipe->pipe_map.cnt = 0;
764 			wakeup(wpipe);
765 			return (error);
766 		}
767 
768 		bcnt -= wpipe->pipe_map.cnt;
769 	}
770 
771 	uio->uio_resid -= bcnt;
772 	/* uio_offset not updated, not set/used for write(2) */
773 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
774 	uio->uio_iov->iov_len -= bcnt;
775 	if (uio->uio_iov->iov_len == 0) {
776 		uio->uio_iov++;
777 		uio->uio_iovcnt--;
778 	}
779 
780 	wpipe->pipe_map.cnt = 0;
781 	return (error);
782 }
783 #endif /* !PIPE_NODIRECT */
784 
785 static int
786 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
787     int flags)
788 {
789 	struct pipe *wpipe, *rpipe;
790 	struct pipebuf *bp;
791 	int error;
792 
793 	/* We want to write to our peer */
794 	rpipe = (struct pipe *) fp->f_data;
795 
796 retry:
797 	error = 0;
798 	PIPE_LOCK(rpipe);
799 	wpipe = rpipe->pipe_peer;
800 
801 	/*
802 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
803 	 */
804 	if (wpipe == NULL)
805 		error = EPIPE;
806 	else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
807 		/* Deal with race for peer */
808 		PIPE_UNLOCK(rpipe);
809 		goto retry;
810 	} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
811 		PIPE_UNLOCK(wpipe);
812 		error = EPIPE;
813 	}
814 
815 	PIPE_UNLOCK(rpipe);
816 	if (error != 0)
817 		return (error);
818 
819 	++wpipe->pipe_busy;
820 
821 	/* Aquire the long-term pipe lock */
822 	if ((error = pipelock(wpipe,1)) != 0) {
823 		--wpipe->pipe_busy;
824 		if (wpipe->pipe_busy == 0
825 		    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
826 			wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
827 			wakeup(wpipe);
828 		}
829 		PIPE_UNLOCK(wpipe);
830 		return (error);
831 	}
832 
833 	bp = &wpipe->pipe_buffer;
834 
835 	/*
836 	 * If it is advantageous to resize the pipe buffer, do so.
837 	 */
838 	if ((uio->uio_resid > PIPE_SIZE) &&
839 	    (nbigpipe < maxbigpipes) &&
840 #ifndef PIPE_NODIRECT
841 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
842 #endif
843 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
844 
845 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
846 			nbigpipe++;
847 	}
848 
849 	while (uio->uio_resid) {
850 		size_t space;
851 
852 #ifndef PIPE_NODIRECT
853 		/*
854 		 * Pipe buffered writes cannot be coincidental with
855 		 * direct writes.  Also, only one direct write can be
856 		 * in progress at any one time.  We wait until the currently
857 		 * executing direct write is completed before continuing.
858 		 *
859 		 * We break out if a signal occurs or the reader goes away.
860 		 */
861 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
862 			PIPE_LOCK(wpipe);
863 			if (wpipe->pipe_state & PIPE_WANTR) {
864 				wpipe->pipe_state &= ~PIPE_WANTR;
865 				wakeup(wpipe);
866 			}
867 			pipeunlock(wpipe);
868 			error = ltsleep(wpipe, PSOCK | PCATCH,
869 					"pipbww", 0, &wpipe->pipe_slock);
870 
871 			(void)pipelock(wpipe, 0);
872 			if (wpipe->pipe_state & PIPE_EOF)
873 				error = EPIPE;
874 		}
875 		if (error)
876 			break;
877 
878 		/*
879 		 * If the transfer is large, we can gain performance if
880 		 * we do process-to-process copies directly.
881 		 * If the write is non-blocking, we don't use the
882 		 * direct write mechanism.
883 		 *
884 		 * The direct write mechanism will detect the reader going
885 		 * away on us.
886 		 */
887 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
888 		    (fp->f_flag & FNONBLOCK) == 0 &&
889 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
890 			error = pipe_direct_write(fp, wpipe, uio);
891 
892 			/*
893 			 * Break out if error occurred, unless it's ENOMEM.
894 			 * ENOMEM means we failed to allocate some resources
895 			 * for direct write, so we just fallback to ordinary
896 			 * write. If the direct write was successful,
897 			 * process rest of data via ordinary write.
898 			 */
899 			if (error == 0)
900 				continue;
901 
902 			if (error != ENOMEM)
903 				break;
904 		}
905 #endif /* PIPE_NODIRECT */
906 
907 		space = bp->size - bp->cnt;
908 
909 		/* Writes of size <= PIPE_BUF must be atomic. */
910 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
911 			space = 0;
912 
913 		if (space > 0) {
914 			int size;	/* Transfer size */
915 			int segsize;	/* first segment to transfer */
916 
917 			/*
918 			 * Transfer size is minimum of uio transfer
919 			 * and free space in pipe buffer.
920 			 */
921 			if (space > uio->uio_resid)
922 				size = uio->uio_resid;
923 			else
924 				size = space;
925 			/*
926 			 * First segment to transfer is minimum of
927 			 * transfer size and contiguous space in
928 			 * pipe buffer.  If first segment to transfer
929 			 * is less than the transfer size, we've got
930 			 * a wraparound in the buffer.
931 			 */
932 			segsize = bp->size - bp->in;
933 			if (segsize > size)
934 				segsize = size;
935 
936 			/* Transfer first segment */
937 			error = uiomove(&bp->buffer[bp->in], segsize, uio);
938 
939 			if (error == 0 && segsize < size) {
940 				/*
941 				 * Transfer remaining part now, to
942 				 * support atomic writes.  Wraparound
943 				 * happened.
944 				 */
945 #ifdef DEBUG
946 				if (bp->in + segsize != bp->size)
947 					panic("Expected pipe buffer wraparound disappeared");
948 #endif
949 
950 				error = uiomove(&bp->buffer[0],
951 						size - segsize, uio);
952 			}
953 			if (error)
954 				break;
955 
956 			bp->in += size;
957 			if (bp->in >= bp->size) {
958 #ifdef DEBUG
959 				if (bp->in != size - segsize + bp->size)
960 					panic("Expected wraparound bad");
961 #endif
962 				bp->in = size - segsize;
963 			}
964 
965 			bp->cnt += size;
966 #ifdef DEBUG
967 			if (bp->cnt > bp->size)
968 				panic("Pipe buffer overflow");
969 #endif
970 		} else {
971 			/*
972 			 * If the "read-side" has been blocked, wake it up now.
973 			 */
974 			PIPE_LOCK(wpipe);
975 			if (wpipe->pipe_state & PIPE_WANTR) {
976 				wpipe->pipe_state &= ~PIPE_WANTR;
977 				wakeup(wpipe);
978 			}
979 			PIPE_UNLOCK(wpipe);
980 
981 			/*
982 			 * don't block on non-blocking I/O
983 			 */
984 			if (fp->f_flag & FNONBLOCK) {
985 				error = EAGAIN;
986 				break;
987 			}
988 
989 			/*
990 			 * We have no more space and have something to offer,
991 			 * wake up select/poll.
992 			 */
993 			if (bp->cnt)
994 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
995 
996 			PIPE_LOCK(wpipe);
997 			pipeunlock(wpipe);
998 			wpipe->pipe_state |= PIPE_WANTW;
999 			error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
1000 					&wpipe->pipe_slock);
1001 			(void)pipelock(wpipe, 0);
1002 			if (error != 0)
1003 				break;
1004 			/*
1005 			 * If read side wants to go away, we just issue a signal
1006 			 * to ourselves.
1007 			 */
1008 			if (wpipe->pipe_state & PIPE_EOF) {
1009 				error = EPIPE;
1010 				break;
1011 			}
1012 		}
1013 	}
1014 
1015 	PIPE_LOCK(wpipe);
1016 	--wpipe->pipe_busy;
1017 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1018 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1019 		wakeup(wpipe);
1020 	} else if (bp->cnt > 0) {
1021 		/*
1022 		 * If we have put any characters in the buffer, we wake up
1023 		 * the reader.
1024 		 */
1025 		if (wpipe->pipe_state & PIPE_WANTR) {
1026 			wpipe->pipe_state &= ~PIPE_WANTR;
1027 			wakeup(wpipe);
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * Don't return EPIPE if I/O was successful
1033 	 */
1034 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1035 		error = 0;
1036 
1037 	if (error == 0)
1038 		getmicrotime(&wpipe->pipe_mtime);
1039 
1040 	/*
1041 	 * We have something to offer, wake up select/poll.
1042 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1043 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1044 	 */
1045 	if (bp->cnt)
1046 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
1047 
1048 	/*
1049 	 * Arrange for next read(2) to do a signal.
1050 	 */
1051 	wpipe->pipe_state |= PIPE_SIGNALR;
1052 
1053 	pipeunlock(wpipe);
1054 	PIPE_UNLOCK(wpipe);
1055 	return (error);
1056 }
1057 
1058 /*
1059  * we implement a very minimal set of ioctls for compatibility with sockets.
1060  */
1061 int
1062 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1063 {
1064 	struct pipe *pipe = (struct pipe *)fp->f_data;
1065 	struct proc *p = l->l_proc;
1066 
1067 	switch (cmd) {
1068 
1069 	case FIONBIO:
1070 		return (0);
1071 
1072 	case FIOASYNC:
1073 		PIPE_LOCK(pipe);
1074 		if (*(int *)data) {
1075 			pipe->pipe_state |= PIPE_ASYNC;
1076 		} else {
1077 			pipe->pipe_state &= ~PIPE_ASYNC;
1078 		}
1079 		PIPE_UNLOCK(pipe);
1080 		return (0);
1081 
1082 	case FIONREAD:
1083 		PIPE_LOCK(pipe);
1084 #ifndef PIPE_NODIRECT
1085 		if (pipe->pipe_state & PIPE_DIRECTW)
1086 			*(int *)data = pipe->pipe_map.cnt;
1087 		else
1088 #endif
1089 			*(int *)data = pipe->pipe_buffer.cnt;
1090 		PIPE_UNLOCK(pipe);
1091 		return (0);
1092 
1093 	case FIONWRITE:
1094 		/* Look at other side */
1095 		pipe = pipe->pipe_peer;
1096 		PIPE_LOCK(pipe);
1097 #ifndef PIPE_NODIRECT
1098 		if (pipe->pipe_state & PIPE_DIRECTW)
1099 			*(int *)data = pipe->pipe_map.cnt;
1100 		else
1101 #endif
1102 			*(int *)data = pipe->pipe_buffer.cnt;
1103 		PIPE_UNLOCK(pipe);
1104 		return (0);
1105 
1106 	case FIONSPACE:
1107 		/* Look at other side */
1108 		pipe = pipe->pipe_peer;
1109 		PIPE_LOCK(pipe);
1110 #ifndef PIPE_NODIRECT
1111 		/*
1112 		 * If we're in direct-mode, we don't really have a
1113 		 * send queue, and any other write will block. Thus
1114 		 * zero seems like the best answer.
1115 		 */
1116 		if (pipe->pipe_state & PIPE_DIRECTW)
1117 			*(int *)data = 0;
1118 		else
1119 #endif
1120 			*(int *)data = pipe->pipe_buffer.size -
1121 					pipe->pipe_buffer.cnt;
1122 		PIPE_UNLOCK(pipe);
1123 		return (0);
1124 
1125 	case TIOCSPGRP:
1126 	case FIOSETOWN:
1127 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
1128 
1129 	case TIOCGPGRP:
1130 	case FIOGETOWN:
1131 		return fgetown(p, pipe->pipe_pgid, cmd, data);
1132 
1133 	}
1134 	return (EPASSTHROUGH);
1135 }
1136 
1137 int
1138 pipe_poll(struct file *fp, int events, struct lwp *l)
1139 {
1140 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1141 	struct pipe *wpipe;
1142 	int eof = 0;
1143 	int revents = 0;
1144 
1145 retry:
1146 	PIPE_LOCK(rpipe);
1147 	wpipe = rpipe->pipe_peer;
1148 	if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1149 		/* Deal with race for peer */
1150 		PIPE_UNLOCK(rpipe);
1151 		goto retry;
1152 	}
1153 
1154 	if (events & (POLLIN | POLLRDNORM))
1155 		if ((rpipe->pipe_buffer.cnt > 0) ||
1156 #ifndef PIPE_NODIRECT
1157 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
1158 #endif
1159 		    (rpipe->pipe_state & PIPE_EOF))
1160 			revents |= events & (POLLIN | POLLRDNORM);
1161 
1162 	eof |= (rpipe->pipe_state & PIPE_EOF);
1163 	PIPE_UNLOCK(rpipe);
1164 
1165 	if (wpipe == NULL)
1166 		revents |= events & (POLLOUT | POLLWRNORM);
1167 	else {
1168 		if (events & (POLLOUT | POLLWRNORM))
1169 			if ((wpipe->pipe_state & PIPE_EOF) || (
1170 #ifndef PIPE_NODIRECT
1171 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1172 #endif
1173 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1174 				revents |= events & (POLLOUT | POLLWRNORM);
1175 
1176 		eof |= (wpipe->pipe_state & PIPE_EOF);
1177 		PIPE_UNLOCK(wpipe);
1178 	}
1179 
1180 	if (wpipe == NULL || eof)
1181 		revents |= POLLHUP;
1182 
1183 	if (revents == 0) {
1184 		if (events & (POLLIN | POLLRDNORM))
1185 			selrecord(l, &rpipe->pipe_sel);
1186 
1187 		if (events & (POLLOUT | POLLWRNORM))
1188 			selrecord(l, &wpipe->pipe_sel);
1189 	}
1190 
1191 	return (revents);
1192 }
1193 
1194 static int
1195 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1196 {
1197 	struct pipe *pipe = (struct pipe *)fp->f_data;
1198 
1199 	memset((caddr_t)ub, 0, sizeof(*ub));
1200 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1201 	ub->st_blksize = pipe->pipe_buffer.size;
1202 	if (ub->st_blksize == 0 && pipe->pipe_peer)
1203 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1204 	ub->st_size = pipe->pipe_buffer.cnt;
1205 	ub->st_blocks = (ub->st_size) ? 1 : 0;
1206 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1207 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1208 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1209 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1210 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
1211 	/*
1212 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1213 	 * XXX (st_dev, st_ino) should be unique.
1214 	 */
1215 	return (0);
1216 }
1217 
1218 /* ARGSUSED */
1219 static int
1220 pipe_close(struct file *fp, struct lwp *l)
1221 {
1222 	struct pipe *pipe = (struct pipe *)fp->f_data;
1223 
1224 	fp->f_data = NULL;
1225 	pipeclose(fp, pipe);
1226 	return (0);
1227 }
1228 
1229 static void
1230 pipe_free_kmem(struct pipe *pipe)
1231 {
1232 
1233 	if (pipe->pipe_buffer.buffer != NULL) {
1234 		if (pipe->pipe_buffer.size > PIPE_SIZE)
1235 			--nbigpipe;
1236 		amountpipekva -= pipe->pipe_buffer.size;
1237 		uvm_km_free(kernel_map,
1238 			(vaddr_t)pipe->pipe_buffer.buffer,
1239 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1240 		pipe->pipe_buffer.buffer = NULL;
1241 	}
1242 #ifndef PIPE_NODIRECT
1243 	if (pipe->pipe_map.kva != 0) {
1244 		pipe_loan_free(pipe);
1245 		pipe->pipe_map.cnt = 0;
1246 		pipe->pipe_map.kva = 0;
1247 		pipe->pipe_map.pos = 0;
1248 		pipe->pipe_map.npages = 0;
1249 	}
1250 #endif /* !PIPE_NODIRECT */
1251 }
1252 
1253 /*
1254  * shutdown the pipe
1255  */
1256 static void
1257 pipeclose(struct file *fp, struct pipe *pipe)
1258 {
1259 	struct pipe *ppipe;
1260 
1261 	if (pipe == NULL)
1262 		return;
1263 
1264 retry:
1265 	PIPE_LOCK(pipe);
1266 
1267 	pipeselwakeup(pipe, pipe, POLL_HUP);
1268 
1269 	/*
1270 	 * If the other side is blocked, wake it up saying that
1271 	 * we want to close it down.
1272 	 */
1273 	pipe->pipe_state |= PIPE_EOF;
1274 	while (pipe->pipe_busy) {
1275 		wakeup(pipe);
1276 		pipe->pipe_state |= PIPE_WANTCLOSE;
1277 		ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1278 	}
1279 
1280 	/*
1281 	 * Disconnect from peer
1282 	 */
1283 	if ((ppipe = pipe->pipe_peer) != NULL) {
1284 		/* Deal with race for peer */
1285 		if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1286 			PIPE_UNLOCK(pipe);
1287 			goto retry;
1288 		}
1289 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
1290 
1291 		ppipe->pipe_state |= PIPE_EOF;
1292 		wakeup(ppipe);
1293 		ppipe->pipe_peer = NULL;
1294 		PIPE_UNLOCK(ppipe);
1295 	}
1296 
1297 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1298 
1299 	PIPE_UNLOCK(pipe);
1300 
1301 	/*
1302 	 * free resources
1303 	 */
1304 	pipe_free_kmem(pipe);
1305 	pool_put(&pipe_pool, pipe);
1306 }
1307 
1308 static void
1309 filt_pipedetach(struct knote *kn)
1310 {
1311 	struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1312 
1313 	switch(kn->kn_filter) {
1314 	case EVFILT_WRITE:
1315 		/* need the peer structure, not our own */
1316 		pipe = pipe->pipe_peer;
1317 		/* XXXSMP: race for peer */
1318 
1319 		/* if reader end already closed, just return */
1320 		if (pipe == NULL)
1321 			return;
1322 
1323 		break;
1324 	default:
1325 		/* nothing to do */
1326 		break;
1327 	}
1328 
1329 #ifdef DIAGNOSTIC
1330 	if (kn->kn_hook != pipe)
1331 		panic("filt_pipedetach: inconsistent knote");
1332 #endif
1333 
1334 	PIPE_LOCK(pipe);
1335 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1336 	PIPE_UNLOCK(pipe);
1337 }
1338 
1339 /*ARGSUSED*/
1340 static int
1341 filt_piperead(struct knote *kn, long hint)
1342 {
1343 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1344 	struct pipe *wpipe = rpipe->pipe_peer;
1345 
1346 	if ((hint & NOTE_SUBMIT) == 0)
1347 		PIPE_LOCK(rpipe);
1348 	kn->kn_data = rpipe->pipe_buffer.cnt;
1349 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1350 		kn->kn_data = rpipe->pipe_map.cnt;
1351 
1352 	/* XXXSMP: race for peer */
1353 	if ((rpipe->pipe_state & PIPE_EOF) ||
1354 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1355 		kn->kn_flags |= EV_EOF;
1356 		if ((hint & NOTE_SUBMIT) == 0)
1357 			PIPE_UNLOCK(rpipe);
1358 		return (1);
1359 	}
1360 	if ((hint & NOTE_SUBMIT) == 0)
1361 		PIPE_UNLOCK(rpipe);
1362 	return (kn->kn_data > 0);
1363 }
1364 
1365 /*ARGSUSED*/
1366 static int
1367 filt_pipewrite(struct knote *kn, long hint)
1368 {
1369 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1370 	struct pipe *wpipe = rpipe->pipe_peer;
1371 
1372 	if ((hint & NOTE_SUBMIT) == 0)
1373 		PIPE_LOCK(rpipe);
1374 	/* XXXSMP: race for peer */
1375 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1376 		kn->kn_data = 0;
1377 		kn->kn_flags |= EV_EOF;
1378 		if ((hint & NOTE_SUBMIT) == 0)
1379 			PIPE_UNLOCK(rpipe);
1380 		return (1);
1381 	}
1382 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1383 	if (wpipe->pipe_state & PIPE_DIRECTW)
1384 		kn->kn_data = 0;
1385 
1386 	if ((hint & NOTE_SUBMIT) == 0)
1387 		PIPE_UNLOCK(rpipe);
1388 	return (kn->kn_data >= PIPE_BUF);
1389 }
1390 
1391 static const struct filterops pipe_rfiltops =
1392 	{ 1, NULL, filt_pipedetach, filt_piperead };
1393 static const struct filterops pipe_wfiltops =
1394 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
1395 
1396 /*ARGSUSED*/
1397 static int
1398 pipe_kqfilter(struct file *fp, struct knote *kn)
1399 {
1400 	struct pipe *pipe;
1401 
1402 	pipe = (struct pipe *)kn->kn_fp->f_data;
1403 	switch (kn->kn_filter) {
1404 	case EVFILT_READ:
1405 		kn->kn_fop = &pipe_rfiltops;
1406 		break;
1407 	case EVFILT_WRITE:
1408 		kn->kn_fop = &pipe_wfiltops;
1409 		/* XXXSMP: race for peer */
1410 		pipe = pipe->pipe_peer;
1411 		if (pipe == NULL) {
1412 			/* other end of pipe has been closed */
1413 			return (EBADF);
1414 		}
1415 		break;
1416 	default:
1417 		return (1);
1418 	}
1419 	kn->kn_hook = pipe;
1420 
1421 	PIPE_LOCK(pipe);
1422 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1423 	PIPE_UNLOCK(pipe);
1424 	return (0);
1425 }
1426 
1427 /*
1428  * Handle pipe sysctls.
1429  */
1430 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1431 {
1432 
1433 	sysctl_createv(clog, 0, NULL, NULL,
1434 		       CTLFLAG_PERMANENT,
1435 		       CTLTYPE_NODE, "kern", NULL,
1436 		       NULL, 0, NULL, 0,
1437 		       CTL_KERN, CTL_EOL);
1438 	sysctl_createv(clog, 0, NULL, NULL,
1439 		       CTLFLAG_PERMANENT,
1440 		       CTLTYPE_NODE, "pipe",
1441 		       SYSCTL_DESCR("Pipe settings"),
1442 		       NULL, 0, NULL, 0,
1443 		       CTL_KERN, KERN_PIPE, CTL_EOL);
1444 
1445 	sysctl_createv(clog, 0, NULL, NULL,
1446 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1447 		       CTLTYPE_INT, "maxkvasz",
1448 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
1449 				    "used for pipes"),
1450 		       NULL, 0, &maxpipekva, 0,
1451 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1452 	sysctl_createv(clog, 0, NULL, NULL,
1453 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1454 		       CTLTYPE_INT, "maxloankvasz",
1455 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
1456 		       NULL, 0, &limitpipekva, 0,
1457 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1458 	sysctl_createv(clog, 0, NULL, NULL,
1459 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1460 		       CTLTYPE_INT, "maxbigpipes",
1461 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1462 		       NULL, 0, &maxbigpipes, 0,
1463 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1464 	sysctl_createv(clog, 0, NULL, NULL,
1465 		       CTLFLAG_PERMANENT,
1466 		       CTLTYPE_INT, "nbigpipes",
1467 		       SYSCTL_DESCR("Number of \"big\" pipes"),
1468 		       NULL, 0, &nbigpipe, 0,
1469 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1470 	sysctl_createv(clog, 0, NULL, NULL,
1471 		       CTLFLAG_PERMANENT,
1472 		       CTLTYPE_INT, "kvasize",
1473 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1474 				    "buffers"),
1475 		       NULL, 0, &amountpipekva, 0,
1476 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1477 }
1478