xref: /netbsd-src/sys/kern/sys_pipe.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: sys_pipe.c,v 1.76 2006/10/12 01:32:18 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1996 John S. Dyson
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice immediately at the beginning of the file, without modification,
48  *    this list of conditions, and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Absolutely no warranty of function or purpose is made by the author
53  *    John S. Dyson.
54  * 4. Modifications may be freely made to this file if the above conditions
55  *    are met.
56  *
57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58  */
59 
60 /*
61  * This file contains a high-performance replacement for the socket-based
62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
63  * all features of sockets, but does do everything that pipes normally
64  * do.
65  *
66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67  * written by Jaromir Dolecek.
68  */
69 
70 /*
71  * This code has two modes of operation, a small write mode and a large
72  * write mode.  The small write mode acts like conventional pipes with
73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76  * using the UVM page loan facility from where the receiving process can copy
77  * the data directly from the pages in the sending process.
78  *
79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80  * happen for small transfers so that the system will not spend all of
81  * its time context switching.  PIPE_SIZE is constrained by the
82  * amount of kernel virtual memory.
83  */
84 
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.76 2006/10/12 01:32:18 christos Exp $");
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/lock.h>
104 #include <sys/select.h>
105 #include <sys/mount.h>
106 #include <sys/sa.h>
107 #include <sys/syscallargs.h>
108 #include <uvm/uvm.h>
109 #include <sys/sysctl.h>
110 #include <sys/kernel.h>
111 #include <sys/kauth.h>
112 
113 #include <sys/pipe.h>
114 
115 /*
116  * Use this define if you want to disable *fancy* VM things.  Expect an
117  * approx 30% decrease in transfer rate.
118  */
119 /* #define PIPE_NODIRECT */
120 
121 /*
122  * interfaces to the outside world
123  */
124 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
125 		kauth_cred_t cred, int flags);
126 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
127 		kauth_cred_t cred, int flags);
128 static int pipe_close(struct file *fp, struct lwp *l);
129 static int pipe_poll(struct file *fp, int events, struct lwp *l);
130 static int pipe_kqfilter(struct file *fp, struct knote *kn);
131 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
132 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
133 		struct lwp *l);
134 
135 static const struct fileops pipeops = {
136 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
137 	pipe_stat, pipe_close, pipe_kqfilter
138 };
139 
140 /*
141  * Default pipe buffer size(s), this can be kind-of large now because pipe
142  * space is pageable.  The pipe code will try to maintain locality of
143  * reference for performance reasons, so small amounts of outstanding I/O
144  * will not wipe the cache.
145  */
146 #define MINPIPESIZE (PIPE_SIZE/3)
147 #define MAXPIPESIZE (2*PIPE_SIZE/3)
148 
149 /*
150  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
151  * is there so that on large systems, we don't exhaust it.
152  */
153 #define MAXPIPEKVA (8*1024*1024)
154 static int maxpipekva = MAXPIPEKVA;
155 
156 /*
157  * Limit for direct transfers, we cannot, of course limit
158  * the amount of kva for pipes in general though.
159  */
160 #define LIMITPIPEKVA (16*1024*1024)
161 static int limitpipekva = LIMITPIPEKVA;
162 
163 /*
164  * Limit the number of "big" pipes
165  */
166 #define LIMITBIGPIPES  32
167 static int maxbigpipes = LIMITBIGPIPES;
168 static int nbigpipe = 0;
169 
170 /*
171  * Amount of KVA consumed by pipe buffers.
172  */
173 static int amountpipekva = 0;
174 
175 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
176 
177 static void pipeclose(struct file *fp, struct pipe *pipe);
178 static void pipe_free_kmem(struct pipe *pipe);
179 static int pipe_create(struct pipe **pipep, int allockva);
180 static int pipelock(struct pipe *pipe, int catch);
181 static inline void pipeunlock(struct pipe *pipe);
182 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
183 #ifndef PIPE_NODIRECT
184 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
185     struct uio *uio);
186 #endif
187 static int pipespace(struct pipe *pipe, int size);
188 
189 #ifndef PIPE_NODIRECT
190 static int pipe_loan_alloc(struct pipe *, int);
191 static void pipe_loan_free(struct pipe *);
192 #endif /* PIPE_NODIRECT */
193 
194 static POOL_INIT(pipe_pool, sizeof(struct pipe), 0, 0, 0, "pipepl",
195     &pool_allocator_nointr);
196 
197 /*
198  * The pipe system call for the DTYPE_PIPE type of pipes
199  */
200 
201 /* ARGSUSED */
202 int
203 sys_pipe(struct lwp *l, void *v __unused, register_t *retval)
204 {
205 	struct file *rf, *wf;
206 	struct pipe *rpipe, *wpipe;
207 	int fd, error;
208 
209 	rpipe = wpipe = NULL;
210 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
211 		pipeclose(NULL, rpipe);
212 		pipeclose(NULL, wpipe);
213 		return (ENFILE);
214 	}
215 
216 	/*
217 	 * Note: the file structure returned from falloc() is marked
218 	 * as 'larval' initially. Unless we mark it as 'mature' by
219 	 * FILE_SET_MATURE(), any attempt to do anything with it would
220 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
221 	 * file descriptor races if we block in the second falloc().
222 	 */
223 
224 	error = falloc(l, &rf, &fd);
225 	if (error)
226 		goto free2;
227 	retval[0] = fd;
228 	rf->f_flag = FREAD;
229 	rf->f_type = DTYPE_PIPE;
230 	rf->f_data = (caddr_t)rpipe;
231 	rf->f_ops = &pipeops;
232 
233 	error = falloc(l, &wf, &fd);
234 	if (error)
235 		goto free3;
236 	retval[1] = fd;
237 	wf->f_flag = FWRITE;
238 	wf->f_type = DTYPE_PIPE;
239 	wf->f_data = (caddr_t)wpipe;
240 	wf->f_ops = &pipeops;
241 
242 	rpipe->pipe_peer = wpipe;
243 	wpipe->pipe_peer = rpipe;
244 
245 	FILE_SET_MATURE(rf);
246 	FILE_SET_MATURE(wf);
247 	FILE_UNUSE(rf, l);
248 	FILE_UNUSE(wf, l);
249 	return (0);
250 free3:
251 	FILE_UNUSE(rf, l);
252 	ffree(rf);
253 	fdremove(l->l_proc->p_fd, retval[0]);
254 free2:
255 	pipeclose(NULL, wpipe);
256 	pipeclose(NULL, rpipe);
257 
258 	return (error);
259 }
260 
261 /*
262  * Allocate kva for pipe circular buffer, the space is pageable
263  * This routine will 'realloc' the size of a pipe safely, if it fails
264  * it will retain the old buffer.
265  * If it fails it will return ENOMEM.
266  */
267 static int
268 pipespace(struct pipe *pipe, int size)
269 {
270 	caddr_t buffer;
271 	/*
272 	 * Allocate pageable virtual address space. Physical memory is
273 	 * allocated on demand.
274 	 */
275 	buffer = (caddr_t) uvm_km_alloc(kernel_map, round_page(size), 0,
276 	    UVM_KMF_PAGEABLE);
277 	if (buffer == NULL)
278 		return (ENOMEM);
279 
280 	/* free old resources if we're resizing */
281 	pipe_free_kmem(pipe);
282 	pipe->pipe_buffer.buffer = buffer;
283 	pipe->pipe_buffer.size = size;
284 	pipe->pipe_buffer.in = 0;
285 	pipe->pipe_buffer.out = 0;
286 	pipe->pipe_buffer.cnt = 0;
287 	amountpipekva += pipe->pipe_buffer.size;
288 	return (0);
289 }
290 
291 /*
292  * Initialize and allocate VM and memory for pipe.
293  */
294 static int
295 pipe_create(struct pipe **pipep, int allockva)
296 {
297 	struct pipe *pipe;
298 	int error;
299 
300 	pipe = *pipep = pool_get(&pipe_pool, PR_WAITOK);
301 
302 	/* Initialize */
303 	memset(pipe, 0, sizeof(struct pipe));
304 	pipe->pipe_state = PIPE_SIGNALR;
305 
306 	getmicrotime(&pipe->pipe_ctime);
307 	pipe->pipe_atime = pipe->pipe_ctime;
308 	pipe->pipe_mtime = pipe->pipe_ctime;
309 	simple_lock_init(&pipe->pipe_slock);
310 
311 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
312 		return (error);
313 
314 	return (0);
315 }
316 
317 
318 /*
319  * Lock a pipe for I/O, blocking other access
320  * Called with pipe spin lock held.
321  * Return with pipe spin lock released on success.
322  */
323 static int
324 pipelock(struct pipe *pipe, int catch)
325 {
326 
327 	LOCK_ASSERT(simple_lock_held(&pipe->pipe_slock));
328 
329 	while (pipe->pipe_state & PIPE_LOCKFL) {
330 		int error;
331 		const int pcatch = catch ? PCATCH : 0;
332 
333 		pipe->pipe_state |= PIPE_LWANT;
334 		error = ltsleep(pipe, PSOCK | pcatch, "pipelk", 0,
335 		    &pipe->pipe_slock);
336 		if (error != 0)
337 			return error;
338 	}
339 
340 	pipe->pipe_state |= PIPE_LOCKFL;
341 	simple_unlock(&pipe->pipe_slock);
342 
343 	return 0;
344 }
345 
346 /*
347  * unlock a pipe I/O lock
348  */
349 static inline void
350 pipeunlock(struct pipe *pipe)
351 {
352 
353 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
354 
355 	pipe->pipe_state &= ~PIPE_LOCKFL;
356 	if (pipe->pipe_state & PIPE_LWANT) {
357 		pipe->pipe_state &= ~PIPE_LWANT;
358 		wakeup(pipe);
359 	}
360 }
361 
362 /*
363  * Select/poll wakup. This also sends SIGIO to peer connected to
364  * 'sigpipe' side of pipe.
365  */
366 static void
367 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
368 {
369 	int band;
370 
371 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
372 
373 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
374 		return;
375 
376 	switch (code) {
377 	case POLL_IN:
378 		band = POLLIN|POLLRDNORM;
379 		break;
380 	case POLL_OUT:
381 		band = POLLOUT|POLLWRNORM;
382 		break;
383 	case POLL_HUP:
384 		band = POLLHUP;
385 		break;
386 #if POLL_HUP != POLL_ERR
387 	case POLL_ERR:
388 		band = POLLERR;
389 		break;
390 #endif
391 	default:
392 		band = 0;
393 #ifdef DIAGNOSTIC
394 		printf("bad siginfo code %d in pipe notification.\n", code);
395 #endif
396 		break;
397 	}
398 
399 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
400 }
401 
402 /* ARGSUSED */
403 static int
404 pipe_read(struct file *fp, off_t *offset __unused, struct uio *uio,
405     kauth_cred_t cred __unused, int flags __unused)
406 {
407 	struct pipe *rpipe = (struct pipe *) fp->f_data;
408 	struct pipebuf *bp = &rpipe->pipe_buffer;
409 	int error;
410 	size_t nread = 0;
411 	size_t size;
412 	size_t ocnt;
413 
414 	PIPE_LOCK(rpipe);
415 	++rpipe->pipe_busy;
416 	ocnt = bp->cnt;
417 
418 again:
419 	error = pipelock(rpipe, 1);
420 	if (error)
421 		goto unlocked_error;
422 
423 	while (uio->uio_resid) {
424 		/*
425 		 * normal pipe buffer receive
426 		 */
427 		if (bp->cnt > 0) {
428 			size = bp->size - bp->out;
429 			if (size > bp->cnt)
430 				size = bp->cnt;
431 			if (size > uio->uio_resid)
432 				size = uio->uio_resid;
433 
434 			error = uiomove(&bp->buffer[bp->out], size, uio);
435 			if (error)
436 				break;
437 
438 			bp->out += size;
439 			if (bp->out >= bp->size)
440 				bp->out = 0;
441 
442 			bp->cnt -= size;
443 
444 			/*
445 			 * If there is no more to read in the pipe, reset
446 			 * its pointers to the beginning.  This improves
447 			 * cache hit stats.
448 			 */
449 			if (bp->cnt == 0) {
450 				bp->in = 0;
451 				bp->out = 0;
452 			}
453 			nread += size;
454 #ifndef PIPE_NODIRECT
455 		} else if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
456 			/*
457 			 * Direct copy, bypassing a kernel buffer.
458 			 */
459 			caddr_t	va;
460 
461 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
462 
463 			size = rpipe->pipe_map.cnt;
464 			if (size > uio->uio_resid)
465 				size = uio->uio_resid;
466 
467 			va = (caddr_t) rpipe->pipe_map.kva +
468 			    rpipe->pipe_map.pos;
469 			error = uiomove(va, size, uio);
470 			if (error)
471 				break;
472 			nread += size;
473 			rpipe->pipe_map.pos += size;
474 			rpipe->pipe_map.cnt -= size;
475 			if (rpipe->pipe_map.cnt == 0) {
476 				PIPE_LOCK(rpipe);
477 				rpipe->pipe_state &= ~PIPE_DIRECTR;
478 				wakeup(rpipe);
479 				PIPE_UNLOCK(rpipe);
480 			}
481 #endif
482 		} else {
483 			/*
484 			 * Break if some data was read.
485 			 */
486 			if (nread > 0)
487 				break;
488 
489 			PIPE_LOCK(rpipe);
490 
491 			/*
492 			 * detect EOF condition
493 			 * read returns 0 on EOF, no need to set error
494 			 */
495 			if (rpipe->pipe_state & PIPE_EOF) {
496 				PIPE_UNLOCK(rpipe);
497 				break;
498 			}
499 
500 			/*
501 			 * don't block on non-blocking I/O
502 			 */
503 			if (fp->f_flag & FNONBLOCK) {
504 				PIPE_UNLOCK(rpipe);
505 				error = EAGAIN;
506 				break;
507 			}
508 
509 			/*
510 			 * Unlock the pipe buffer for our remaining processing.
511 			 * We will either break out with an error or we will
512 			 * sleep and relock to loop.
513 			 */
514 			pipeunlock(rpipe);
515 
516 			/*
517 			 * The PIPE_DIRECTR flag is not under the control
518 			 * of the long-term lock (see pipe_direct_write()),
519 			 * so re-check now while holding the spin lock.
520 			 */
521 			if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
522 				goto again;
523 
524 			/*
525 			 * We want to read more, wake up select/poll.
526 			 */
527 			pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
528 
529 			/*
530 			 * If the "write-side" is blocked, wake it up now.
531 			 */
532 			if (rpipe->pipe_state & PIPE_WANTW) {
533 				rpipe->pipe_state &= ~PIPE_WANTW;
534 				wakeup(rpipe);
535 			}
536 
537 			/* Now wait until the pipe is filled */
538 			rpipe->pipe_state |= PIPE_WANTR;
539 			error = ltsleep(rpipe, PSOCK | PCATCH,
540 					"piperd", 0, &rpipe->pipe_slock);
541 			if (error != 0)
542 				goto unlocked_error;
543 			goto again;
544 		}
545 	}
546 
547 	if (error == 0)
548 		getmicrotime(&rpipe->pipe_atime);
549 
550 	PIPE_LOCK(rpipe);
551 	pipeunlock(rpipe);
552 
553 unlocked_error:
554 	--rpipe->pipe_busy;
555 
556 	/*
557 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
558 	 */
559 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
560 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
561 		wakeup(rpipe);
562 	} else if (bp->cnt < MINPIPESIZE) {
563 		/*
564 		 * Handle write blocking hysteresis.
565 		 */
566 		if (rpipe->pipe_state & PIPE_WANTW) {
567 			rpipe->pipe_state &= ~PIPE_WANTW;
568 			wakeup(rpipe);
569 		}
570 	}
571 
572 	/*
573 	 * If anything was read off the buffer, signal to the writer it's
574 	 * possible to write more data. Also send signal if we are here for the
575 	 * first time after last write.
576 	 */
577 	if ((bp->size - bp->cnt) >= PIPE_BUF
578 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
579 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
580 		rpipe->pipe_state &= ~PIPE_SIGNALR;
581 	}
582 
583 	PIPE_UNLOCK(rpipe);
584 	return (error);
585 }
586 
587 #ifndef PIPE_NODIRECT
588 /*
589  * Allocate structure for loan transfer.
590  */
591 static int
592 pipe_loan_alloc(struct pipe *wpipe, int npages)
593 {
594 	vsize_t len;
595 
596 	len = (vsize_t)npages << PAGE_SHIFT;
597 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
598 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
599 	if (wpipe->pipe_map.kva == 0)
600 		return (ENOMEM);
601 
602 	amountpipekva += len;
603 	wpipe->pipe_map.npages = npages;
604 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
605 	    M_WAITOK);
606 	return (0);
607 }
608 
609 /*
610  * Free resources allocated for loan transfer.
611  */
612 static void
613 pipe_loan_free(struct pipe *wpipe)
614 {
615 	vsize_t len;
616 
617 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
618 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
619 	wpipe->pipe_map.kva = 0;
620 	amountpipekva -= len;
621 	free(wpipe->pipe_map.pgs, M_PIPE);
622 	wpipe->pipe_map.pgs = NULL;
623 }
624 
625 /*
626  * NetBSD direct write, using uvm_loan() mechanism.
627  * This implements the pipe buffer write mechanism.  Note that only
628  * a direct write OR a normal pipe write can be pending at any given time.
629  * If there are any characters in the pipe buffer, the direct write will
630  * be deferred until the receiving process grabs all of the bytes from
631  * the pipe buffer.  Then the direct mapping write is set-up.
632  *
633  * Called with the long-term pipe lock held.
634  */
635 static int
636 pipe_direct_write(struct file *fp __unused,  struct pipe *wpipe,
637     struct uio *uio)
638 {
639 	int error, npages, j;
640 	struct vm_page **pgs;
641 	vaddr_t bbase, kva, base, bend;
642 	vsize_t blen, bcnt;
643 	voff_t bpos;
644 
645 	KASSERT(wpipe->pipe_map.cnt == 0);
646 
647 	/*
648 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
649 	 * not aligned to PAGE_SIZE.
650 	 */
651 	bbase = (vaddr_t)uio->uio_iov->iov_base;
652 	base = trunc_page(bbase);
653 	bend = round_page(bbase + uio->uio_iov->iov_len);
654 	blen = bend - base;
655 	bpos = bbase - base;
656 
657 	if (blen > PIPE_DIRECT_CHUNK) {
658 		blen = PIPE_DIRECT_CHUNK;
659 		bend = base + blen;
660 		bcnt = PIPE_DIRECT_CHUNK - bpos;
661 	} else {
662 		bcnt = uio->uio_iov->iov_len;
663 	}
664 	npages = blen >> PAGE_SHIFT;
665 
666 	/*
667 	 * Free the old kva if we need more pages than we have
668 	 * allocated.
669 	 */
670 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
671 		pipe_loan_free(wpipe);
672 
673 	/* Allocate new kva. */
674 	if (wpipe->pipe_map.kva == 0) {
675 		error = pipe_loan_alloc(wpipe, npages);
676 		if (error)
677 			return (error);
678 	}
679 
680 	/* Loan the write buffer memory from writer process */
681 	pgs = wpipe->pipe_map.pgs;
682 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
683 			 pgs, UVM_LOAN_TOPAGE);
684 	if (error) {
685 		pipe_loan_free(wpipe);
686 		return (ENOMEM); /* so that caller fallback to ordinary write */
687 	}
688 
689 	/* Enter the loaned pages to kva */
690 	kva = wpipe->pipe_map.kva;
691 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
692 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
693 	}
694 	pmap_update(pmap_kernel());
695 
696 	/* Now we can put the pipe in direct write mode */
697 	wpipe->pipe_map.pos = bpos;
698 	wpipe->pipe_map.cnt = bcnt;
699 	wpipe->pipe_state |= PIPE_DIRECTW;
700 
701 	/*
702 	 * But before we can let someone do a direct read,
703 	 * we have to wait until the pipe is drained.
704 	 */
705 
706 	/* Relase the pipe lock while we wait */
707 	PIPE_LOCK(wpipe);
708 	pipeunlock(wpipe);
709 
710 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
711 		if (wpipe->pipe_state & PIPE_WANTR) {
712 			wpipe->pipe_state &= ~PIPE_WANTR;
713 			wakeup(wpipe);
714 		}
715 
716 		wpipe->pipe_state |= PIPE_WANTW;
717 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwc", 0,
718 				&wpipe->pipe_slock);
719 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
720 			error = EPIPE;
721 	}
722 
723 	/* Pipe is drained; next read will off the direct buffer */
724 	wpipe->pipe_state |= PIPE_DIRECTR;
725 
726 	/* Wait until the reader is done */
727 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
728 		if (wpipe->pipe_state & PIPE_WANTR) {
729 			wpipe->pipe_state &= ~PIPE_WANTR;
730 			wakeup(wpipe);
731 		}
732 		pipeselwakeup(wpipe, wpipe, POLL_IN);
733 		error = ltsleep(wpipe, PSOCK | PCATCH, "pipdwt", 0,
734 				&wpipe->pipe_slock);
735 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
736 			error = EPIPE;
737 	}
738 
739 	/* Take pipe out of direct write mode */
740 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
741 
742 	/* Acquire the pipe lock and cleanup */
743 	(void)pipelock(wpipe, 0);
744 	if (pgs != NULL) {
745 		pmap_kremove(wpipe->pipe_map.kva, blen);
746 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
747 	}
748 	if (error || amountpipekva > maxpipekva)
749 		pipe_loan_free(wpipe);
750 
751 	if (error) {
752 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
753 
754 		/*
755 		 * If nothing was read from what we offered, return error
756 		 * straight on. Otherwise update uio resid first. Caller
757 		 * will deal with the error condition, returning short
758 		 * write, error, or restarting the write(2) as appropriate.
759 		 */
760 		if (wpipe->pipe_map.cnt == bcnt) {
761 			wpipe->pipe_map.cnt = 0;
762 			wakeup(wpipe);
763 			return (error);
764 		}
765 
766 		bcnt -= wpipe->pipe_map.cnt;
767 	}
768 
769 	uio->uio_resid -= bcnt;
770 	/* uio_offset not updated, not set/used for write(2) */
771 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
772 	uio->uio_iov->iov_len -= bcnt;
773 	if (uio->uio_iov->iov_len == 0) {
774 		uio->uio_iov++;
775 		uio->uio_iovcnt--;
776 	}
777 
778 	wpipe->pipe_map.cnt = 0;
779 	return (error);
780 }
781 #endif /* !PIPE_NODIRECT */
782 
783 static int
784 pipe_write(struct file *fp, off_t *offset __unused, struct uio *uio,
785     kauth_cred_t cred __unused, int flags __unused)
786 {
787 	struct pipe *wpipe, *rpipe;
788 	struct pipebuf *bp;
789 	int error;
790 
791 	/* We want to write to our peer */
792 	rpipe = (struct pipe *) fp->f_data;
793 
794 retry:
795 	error = 0;
796 	PIPE_LOCK(rpipe);
797 	wpipe = rpipe->pipe_peer;
798 
799 	/*
800 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
801 	 */
802 	if (wpipe == NULL)
803 		error = EPIPE;
804 	else if (simple_lock_try(&wpipe->pipe_slock) == 0) {
805 		/* Deal with race for peer */
806 		PIPE_UNLOCK(rpipe);
807 		goto retry;
808 	} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
809 		PIPE_UNLOCK(wpipe);
810 		error = EPIPE;
811 	}
812 
813 	PIPE_UNLOCK(rpipe);
814 	if (error != 0)
815 		return (error);
816 
817 	++wpipe->pipe_busy;
818 
819 	/* Aquire the long-term pipe lock */
820 	if ((error = pipelock(wpipe,1)) != 0) {
821 		--wpipe->pipe_busy;
822 		if (wpipe->pipe_busy == 0
823 		    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
824 			wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
825 			wakeup(wpipe);
826 		}
827 		PIPE_UNLOCK(wpipe);
828 		return (error);
829 	}
830 
831 	bp = &wpipe->pipe_buffer;
832 
833 	/*
834 	 * If it is advantageous to resize the pipe buffer, do so.
835 	 */
836 	if ((uio->uio_resid > PIPE_SIZE) &&
837 	    (nbigpipe < maxbigpipes) &&
838 #ifndef PIPE_NODIRECT
839 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
840 #endif
841 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
842 
843 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
844 			nbigpipe++;
845 	}
846 
847 	while (uio->uio_resid) {
848 		size_t space;
849 
850 #ifndef PIPE_NODIRECT
851 		/*
852 		 * Pipe buffered writes cannot be coincidental with
853 		 * direct writes.  Also, only one direct write can be
854 		 * in progress at any one time.  We wait until the currently
855 		 * executing direct write is completed before continuing.
856 		 *
857 		 * We break out if a signal occurs or the reader goes away.
858 		 */
859 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
860 			PIPE_LOCK(wpipe);
861 			if (wpipe->pipe_state & PIPE_WANTR) {
862 				wpipe->pipe_state &= ~PIPE_WANTR;
863 				wakeup(wpipe);
864 			}
865 			pipeunlock(wpipe);
866 			error = ltsleep(wpipe, PSOCK | PCATCH,
867 					"pipbww", 0, &wpipe->pipe_slock);
868 
869 			(void)pipelock(wpipe, 0);
870 			if (wpipe->pipe_state & PIPE_EOF)
871 				error = EPIPE;
872 		}
873 		if (error)
874 			break;
875 
876 		/*
877 		 * If the transfer is large, we can gain performance if
878 		 * we do process-to-process copies directly.
879 		 * If the write is non-blocking, we don't use the
880 		 * direct write mechanism.
881 		 *
882 		 * The direct write mechanism will detect the reader going
883 		 * away on us.
884 		 */
885 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
886 		    (fp->f_flag & FNONBLOCK) == 0 &&
887 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
888 			error = pipe_direct_write(fp, wpipe, uio);
889 
890 			/*
891 			 * Break out if error occurred, unless it's ENOMEM.
892 			 * ENOMEM means we failed to allocate some resources
893 			 * for direct write, so we just fallback to ordinary
894 			 * write. If the direct write was successful,
895 			 * process rest of data via ordinary write.
896 			 */
897 			if (error == 0)
898 				continue;
899 
900 			if (error != ENOMEM)
901 				break;
902 		}
903 #endif /* PIPE_NODIRECT */
904 
905 		space = bp->size - bp->cnt;
906 
907 		/* Writes of size <= PIPE_BUF must be atomic. */
908 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
909 			space = 0;
910 
911 		if (space > 0) {
912 			int size;	/* Transfer size */
913 			int segsize;	/* first segment to transfer */
914 
915 			/*
916 			 * Transfer size is minimum of uio transfer
917 			 * and free space in pipe buffer.
918 			 */
919 			if (space > uio->uio_resid)
920 				size = uio->uio_resid;
921 			else
922 				size = space;
923 			/*
924 			 * First segment to transfer is minimum of
925 			 * transfer size and contiguous space in
926 			 * pipe buffer.  If first segment to transfer
927 			 * is less than the transfer size, we've got
928 			 * a wraparound in the buffer.
929 			 */
930 			segsize = bp->size - bp->in;
931 			if (segsize > size)
932 				segsize = size;
933 
934 			/* Transfer first segment */
935 			error = uiomove(&bp->buffer[bp->in], segsize, uio);
936 
937 			if (error == 0 && segsize < size) {
938 				/*
939 				 * Transfer remaining part now, to
940 				 * support atomic writes.  Wraparound
941 				 * happened.
942 				 */
943 #ifdef DEBUG
944 				if (bp->in + segsize != bp->size)
945 					panic("Expected pipe buffer wraparound disappeared");
946 #endif
947 
948 				error = uiomove(&bp->buffer[0],
949 						size - segsize, uio);
950 			}
951 			if (error)
952 				break;
953 
954 			bp->in += size;
955 			if (bp->in >= bp->size) {
956 #ifdef DEBUG
957 				if (bp->in != size - segsize + bp->size)
958 					panic("Expected wraparound bad");
959 #endif
960 				bp->in = size - segsize;
961 			}
962 
963 			bp->cnt += size;
964 #ifdef DEBUG
965 			if (bp->cnt > bp->size)
966 				panic("Pipe buffer overflow");
967 #endif
968 		} else {
969 			/*
970 			 * If the "read-side" has been blocked, wake it up now.
971 			 */
972 			PIPE_LOCK(wpipe);
973 			if (wpipe->pipe_state & PIPE_WANTR) {
974 				wpipe->pipe_state &= ~PIPE_WANTR;
975 				wakeup(wpipe);
976 			}
977 			PIPE_UNLOCK(wpipe);
978 
979 			/*
980 			 * don't block on non-blocking I/O
981 			 */
982 			if (fp->f_flag & FNONBLOCK) {
983 				error = EAGAIN;
984 				break;
985 			}
986 
987 			/*
988 			 * We have no more space and have something to offer,
989 			 * wake up select/poll.
990 			 */
991 			if (bp->cnt)
992 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
993 
994 			PIPE_LOCK(wpipe);
995 			pipeunlock(wpipe);
996 			wpipe->pipe_state |= PIPE_WANTW;
997 			error = ltsleep(wpipe, PSOCK | PCATCH, "pipewr", 0,
998 					&wpipe->pipe_slock);
999 			(void)pipelock(wpipe, 0);
1000 			if (error != 0)
1001 				break;
1002 			/*
1003 			 * If read side wants to go away, we just issue a signal
1004 			 * to ourselves.
1005 			 */
1006 			if (wpipe->pipe_state & PIPE_EOF) {
1007 				error = EPIPE;
1008 				break;
1009 			}
1010 		}
1011 	}
1012 
1013 	PIPE_LOCK(wpipe);
1014 	--wpipe->pipe_busy;
1015 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1016 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1017 		wakeup(wpipe);
1018 	} else if (bp->cnt > 0) {
1019 		/*
1020 		 * If we have put any characters in the buffer, we wake up
1021 		 * the reader.
1022 		 */
1023 		if (wpipe->pipe_state & PIPE_WANTR) {
1024 			wpipe->pipe_state &= ~PIPE_WANTR;
1025 			wakeup(wpipe);
1026 		}
1027 	}
1028 
1029 	/*
1030 	 * Don't return EPIPE if I/O was successful
1031 	 */
1032 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1033 		error = 0;
1034 
1035 	if (error == 0)
1036 		getmicrotime(&wpipe->pipe_mtime);
1037 
1038 	/*
1039 	 * We have something to offer, wake up select/poll.
1040 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1041 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1042 	 */
1043 	if (bp->cnt)
1044 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
1045 
1046 	/*
1047 	 * Arrange for next read(2) to do a signal.
1048 	 */
1049 	wpipe->pipe_state |= PIPE_SIGNALR;
1050 
1051 	pipeunlock(wpipe);
1052 	PIPE_UNLOCK(wpipe);
1053 	return (error);
1054 }
1055 
1056 /*
1057  * we implement a very minimal set of ioctls for compatibility with sockets.
1058  */
1059 int
1060 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1061 {
1062 	struct pipe *pipe = (struct pipe *)fp->f_data;
1063 	struct proc *p = l->l_proc;
1064 
1065 	switch (cmd) {
1066 
1067 	case FIONBIO:
1068 		return (0);
1069 
1070 	case FIOASYNC:
1071 		PIPE_LOCK(pipe);
1072 		if (*(int *)data) {
1073 			pipe->pipe_state |= PIPE_ASYNC;
1074 		} else {
1075 			pipe->pipe_state &= ~PIPE_ASYNC;
1076 		}
1077 		PIPE_UNLOCK(pipe);
1078 		return (0);
1079 
1080 	case FIONREAD:
1081 		PIPE_LOCK(pipe);
1082 #ifndef PIPE_NODIRECT
1083 		if (pipe->pipe_state & PIPE_DIRECTW)
1084 			*(int *)data = pipe->pipe_map.cnt;
1085 		else
1086 #endif
1087 			*(int *)data = pipe->pipe_buffer.cnt;
1088 		PIPE_UNLOCK(pipe);
1089 		return (0);
1090 
1091 	case FIONWRITE:
1092 		/* Look at other side */
1093 		pipe = pipe->pipe_peer;
1094 		PIPE_LOCK(pipe);
1095 #ifndef PIPE_NODIRECT
1096 		if (pipe->pipe_state & PIPE_DIRECTW)
1097 			*(int *)data = pipe->pipe_map.cnt;
1098 		else
1099 #endif
1100 			*(int *)data = pipe->pipe_buffer.cnt;
1101 		PIPE_UNLOCK(pipe);
1102 		return (0);
1103 
1104 	case FIONSPACE:
1105 		/* Look at other side */
1106 		pipe = pipe->pipe_peer;
1107 		PIPE_LOCK(pipe);
1108 #ifndef PIPE_NODIRECT
1109 		/*
1110 		 * If we're in direct-mode, we don't really have a
1111 		 * send queue, and any other write will block. Thus
1112 		 * zero seems like the best answer.
1113 		 */
1114 		if (pipe->pipe_state & PIPE_DIRECTW)
1115 			*(int *)data = 0;
1116 		else
1117 #endif
1118 			*(int *)data = pipe->pipe_buffer.size -
1119 					pipe->pipe_buffer.cnt;
1120 		PIPE_UNLOCK(pipe);
1121 		return (0);
1122 
1123 	case TIOCSPGRP:
1124 	case FIOSETOWN:
1125 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
1126 
1127 	case TIOCGPGRP:
1128 	case FIOGETOWN:
1129 		return fgetown(p, pipe->pipe_pgid, cmd, data);
1130 
1131 	}
1132 	return (EPASSTHROUGH);
1133 }
1134 
1135 int
1136 pipe_poll(struct file *fp, int events, struct lwp *l)
1137 {
1138 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1139 	struct pipe *wpipe;
1140 	int eof = 0;
1141 	int revents = 0;
1142 
1143 retry:
1144 	PIPE_LOCK(rpipe);
1145 	wpipe = rpipe->pipe_peer;
1146 	if (wpipe != NULL && simple_lock_try(&wpipe->pipe_slock) == 0) {
1147 		/* Deal with race for peer */
1148 		PIPE_UNLOCK(rpipe);
1149 		goto retry;
1150 	}
1151 
1152 	if (events & (POLLIN | POLLRDNORM))
1153 		if ((rpipe->pipe_buffer.cnt > 0) ||
1154 #ifndef PIPE_NODIRECT
1155 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
1156 #endif
1157 		    (rpipe->pipe_state & PIPE_EOF))
1158 			revents |= events & (POLLIN | POLLRDNORM);
1159 
1160 	eof |= (rpipe->pipe_state & PIPE_EOF);
1161 	PIPE_UNLOCK(rpipe);
1162 
1163 	if (wpipe == NULL)
1164 		revents |= events & (POLLOUT | POLLWRNORM);
1165 	else {
1166 		if (events & (POLLOUT | POLLWRNORM))
1167 			if ((wpipe->pipe_state & PIPE_EOF) || (
1168 #ifndef PIPE_NODIRECT
1169 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1170 #endif
1171 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1172 				revents |= events & (POLLOUT | POLLWRNORM);
1173 
1174 		eof |= (wpipe->pipe_state & PIPE_EOF);
1175 		PIPE_UNLOCK(wpipe);
1176 	}
1177 
1178 	if (wpipe == NULL || eof)
1179 		revents |= POLLHUP;
1180 
1181 	if (revents == 0) {
1182 		if (events & (POLLIN | POLLRDNORM))
1183 			selrecord(l, &rpipe->pipe_sel);
1184 
1185 		if (events & (POLLOUT | POLLWRNORM))
1186 			selrecord(l, &wpipe->pipe_sel);
1187 	}
1188 
1189 	return (revents);
1190 }
1191 
1192 static int
1193 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l __unused)
1194 {
1195 	struct pipe *pipe = (struct pipe *)fp->f_data;
1196 
1197 	memset((caddr_t)ub, 0, sizeof(*ub));
1198 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1199 	ub->st_blksize = pipe->pipe_buffer.size;
1200 	if (ub->st_blksize == 0 && pipe->pipe_peer)
1201 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1202 	ub->st_size = pipe->pipe_buffer.cnt;
1203 	ub->st_blocks = (ub->st_size) ? 1 : 0;
1204 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1205 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1206 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1207 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1208 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
1209 	/*
1210 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1211 	 * XXX (st_dev, st_ino) should be unique.
1212 	 */
1213 	return (0);
1214 }
1215 
1216 /* ARGSUSED */
1217 static int
1218 pipe_close(struct file *fp, struct lwp *l __unused)
1219 {
1220 	struct pipe *pipe = (struct pipe *)fp->f_data;
1221 
1222 	fp->f_data = NULL;
1223 	pipeclose(fp, pipe);
1224 	return (0);
1225 }
1226 
1227 static void
1228 pipe_free_kmem(struct pipe *pipe)
1229 {
1230 
1231 	if (pipe->pipe_buffer.buffer != NULL) {
1232 		if (pipe->pipe_buffer.size > PIPE_SIZE)
1233 			--nbigpipe;
1234 		amountpipekva -= pipe->pipe_buffer.size;
1235 		uvm_km_free(kernel_map,
1236 			(vaddr_t)pipe->pipe_buffer.buffer,
1237 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1238 		pipe->pipe_buffer.buffer = NULL;
1239 	}
1240 #ifndef PIPE_NODIRECT
1241 	if (pipe->pipe_map.kva != 0) {
1242 		pipe_loan_free(pipe);
1243 		pipe->pipe_map.cnt = 0;
1244 		pipe->pipe_map.kva = 0;
1245 		pipe->pipe_map.pos = 0;
1246 		pipe->pipe_map.npages = 0;
1247 	}
1248 #endif /* !PIPE_NODIRECT */
1249 }
1250 
1251 /*
1252  * shutdown the pipe
1253  */
1254 static void
1255 pipeclose(struct file *fp __unused, struct pipe *pipe)
1256 {
1257 	struct pipe *ppipe;
1258 
1259 	if (pipe == NULL)
1260 		return;
1261 
1262 retry:
1263 	PIPE_LOCK(pipe);
1264 
1265 	pipeselwakeup(pipe, pipe, POLL_HUP);
1266 
1267 	/*
1268 	 * If the other side is blocked, wake it up saying that
1269 	 * we want to close it down.
1270 	 */
1271 	pipe->pipe_state |= PIPE_EOF;
1272 	while (pipe->pipe_busy) {
1273 		wakeup(pipe);
1274 		pipe->pipe_state |= PIPE_WANTCLOSE;
1275 		ltsleep(pipe, PSOCK, "pipecl", 0, &pipe->pipe_slock);
1276 	}
1277 
1278 	/*
1279 	 * Disconnect from peer
1280 	 */
1281 	if ((ppipe = pipe->pipe_peer) != NULL) {
1282 		/* Deal with race for peer */
1283 		if (simple_lock_try(&ppipe->pipe_slock) == 0) {
1284 			PIPE_UNLOCK(pipe);
1285 			goto retry;
1286 		}
1287 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
1288 
1289 		ppipe->pipe_state |= PIPE_EOF;
1290 		wakeup(ppipe);
1291 		ppipe->pipe_peer = NULL;
1292 		PIPE_UNLOCK(ppipe);
1293 	}
1294 
1295 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1296 
1297 	PIPE_UNLOCK(pipe);
1298 
1299 	/*
1300 	 * free resources
1301 	 */
1302 	pipe_free_kmem(pipe);
1303 	pool_put(&pipe_pool, pipe);
1304 }
1305 
1306 static void
1307 filt_pipedetach(struct knote *kn)
1308 {
1309 	struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1310 
1311 	switch(kn->kn_filter) {
1312 	case EVFILT_WRITE:
1313 		/* need the peer structure, not our own */
1314 		pipe = pipe->pipe_peer;
1315 		/* XXXSMP: race for peer */
1316 
1317 		/* if reader end already closed, just return */
1318 		if (pipe == NULL)
1319 			return;
1320 
1321 		break;
1322 	default:
1323 		/* nothing to do */
1324 		break;
1325 	}
1326 
1327 #ifdef DIAGNOSTIC
1328 	if (kn->kn_hook != pipe)
1329 		panic("filt_pipedetach: inconsistent knote");
1330 #endif
1331 
1332 	PIPE_LOCK(pipe);
1333 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1334 	PIPE_UNLOCK(pipe);
1335 }
1336 
1337 /*ARGSUSED*/
1338 static int
1339 filt_piperead(struct knote *kn, long hint)
1340 {
1341 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1342 	struct pipe *wpipe = rpipe->pipe_peer;
1343 
1344 	if ((hint & NOTE_SUBMIT) == 0)
1345 		PIPE_LOCK(rpipe);
1346 	kn->kn_data = rpipe->pipe_buffer.cnt;
1347 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1348 		kn->kn_data = rpipe->pipe_map.cnt;
1349 
1350 	/* XXXSMP: race for peer */
1351 	if ((rpipe->pipe_state & PIPE_EOF) ||
1352 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1353 		kn->kn_flags |= EV_EOF;
1354 		if ((hint & NOTE_SUBMIT) == 0)
1355 			PIPE_UNLOCK(rpipe);
1356 		return (1);
1357 	}
1358 	if ((hint & NOTE_SUBMIT) == 0)
1359 		PIPE_UNLOCK(rpipe);
1360 	return (kn->kn_data > 0);
1361 }
1362 
1363 /*ARGSUSED*/
1364 static int
1365 filt_pipewrite(struct knote *kn, long hint)
1366 {
1367 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1368 	struct pipe *wpipe = rpipe->pipe_peer;
1369 
1370 	if ((hint & NOTE_SUBMIT) == 0)
1371 		PIPE_LOCK(rpipe);
1372 	/* XXXSMP: race for peer */
1373 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1374 		kn->kn_data = 0;
1375 		kn->kn_flags |= EV_EOF;
1376 		if ((hint & NOTE_SUBMIT) == 0)
1377 			PIPE_UNLOCK(rpipe);
1378 		return (1);
1379 	}
1380 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1381 	if (wpipe->pipe_state & PIPE_DIRECTW)
1382 		kn->kn_data = 0;
1383 
1384 	if ((hint & NOTE_SUBMIT) == 0)
1385 		PIPE_UNLOCK(rpipe);
1386 	return (kn->kn_data >= PIPE_BUF);
1387 }
1388 
1389 static const struct filterops pipe_rfiltops =
1390 	{ 1, NULL, filt_pipedetach, filt_piperead };
1391 static const struct filterops pipe_wfiltops =
1392 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
1393 
1394 /*ARGSUSED*/
1395 static int
1396 pipe_kqfilter(struct file *fp __unused, struct knote *kn)
1397 {
1398 	struct pipe *pipe;
1399 
1400 	pipe = (struct pipe *)kn->kn_fp->f_data;
1401 	switch (kn->kn_filter) {
1402 	case EVFILT_READ:
1403 		kn->kn_fop = &pipe_rfiltops;
1404 		break;
1405 	case EVFILT_WRITE:
1406 		kn->kn_fop = &pipe_wfiltops;
1407 		/* XXXSMP: race for peer */
1408 		pipe = pipe->pipe_peer;
1409 		if (pipe == NULL) {
1410 			/* other end of pipe has been closed */
1411 			return (EBADF);
1412 		}
1413 		break;
1414 	default:
1415 		return (1);
1416 	}
1417 	kn->kn_hook = pipe;
1418 
1419 	PIPE_LOCK(pipe);
1420 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1421 	PIPE_UNLOCK(pipe);
1422 	return (0);
1423 }
1424 
1425 /*
1426  * Handle pipe sysctls.
1427  */
1428 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1429 {
1430 
1431 	sysctl_createv(clog, 0, NULL, NULL,
1432 		       CTLFLAG_PERMANENT,
1433 		       CTLTYPE_NODE, "kern", NULL,
1434 		       NULL, 0, NULL, 0,
1435 		       CTL_KERN, CTL_EOL);
1436 	sysctl_createv(clog, 0, NULL, NULL,
1437 		       CTLFLAG_PERMANENT,
1438 		       CTLTYPE_NODE, "pipe",
1439 		       SYSCTL_DESCR("Pipe settings"),
1440 		       NULL, 0, NULL, 0,
1441 		       CTL_KERN, KERN_PIPE, CTL_EOL);
1442 
1443 	sysctl_createv(clog, 0, NULL, NULL,
1444 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1445 		       CTLTYPE_INT, "maxkvasz",
1446 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
1447 				    "used for pipes"),
1448 		       NULL, 0, &maxpipekva, 0,
1449 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1450 	sysctl_createv(clog, 0, NULL, NULL,
1451 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1452 		       CTLTYPE_INT, "maxloankvasz",
1453 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
1454 		       NULL, 0, &limitpipekva, 0,
1455 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1456 	sysctl_createv(clog, 0, NULL, NULL,
1457 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1458 		       CTLTYPE_INT, "maxbigpipes",
1459 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1460 		       NULL, 0, &maxbigpipes, 0,
1461 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1462 	sysctl_createv(clog, 0, NULL, NULL,
1463 		       CTLFLAG_PERMANENT,
1464 		       CTLTYPE_INT, "nbigpipes",
1465 		       SYSCTL_DESCR("Number of \"big\" pipes"),
1466 		       NULL, 0, &nbigpipe, 0,
1467 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1468 	sysctl_createv(clog, 0, NULL, NULL,
1469 		       CTLFLAG_PERMANENT,
1470 		       CTLTYPE_INT, "kvasize",
1471 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1472 				    "buffers"),
1473 		       NULL, 0, &amountpipekva, 0,
1474 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1475 }
1476