1 /* $NetBSD: sys_pipe.c,v 1.143 2017/12/26 08:30:58 kamil Exp $ */ 2 3 /*- 4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1996 John S. Dyson 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice immediately at the beginning of the file, without modification, 41 * this list of conditions, and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Absolutely no warranty of function or purpose is made by the author 46 * John S. Dyson. 47 * 4. Modifications may be freely made to this file if the above conditions 48 * are met. 49 */ 50 51 /* 52 * This file contains a high-performance replacement for the socket-based 53 * pipes scheme originally used. It does not support all features of 54 * sockets, but does do everything that pipes normally do. 55 * 56 * This code has two modes of operation, a small write mode and a large 57 * write mode. The small write mode acts like conventional pipes with 58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space 61 * using the UVM page loan facility from where the receiving process can copy 62 * the data directly from the pages in the sending process. 63 * 64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 65 * happen for small transfers so that the system will not spend all of 66 * its time context switching. PIPE_SIZE is constrained by the 67 * amount of kernel virtual memory. 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.143 2017/12/26 08:30:58 kamil Exp $"); 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> 76 #include <sys/fcntl.h> 77 #include <sys/file.h> 78 #include <sys/filedesc.h> 79 #include <sys/filio.h> 80 #include <sys/kernel.h> 81 #include <sys/ttycom.h> 82 #include <sys/stat.h> 83 #include <sys/poll.h> 84 #include <sys/signalvar.h> 85 #include <sys/vnode.h> 86 #include <sys/uio.h> 87 #include <sys/select.h> 88 #include <sys/mount.h> 89 #include <sys/syscallargs.h> 90 #include <sys/sysctl.h> 91 #include <sys/kauth.h> 92 #include <sys/atomic.h> 93 #include <sys/pipe.h> 94 95 #include <uvm/uvm_extern.h> 96 97 /* 98 * Use this to disable direct I/O and decrease the code size: 99 * #define PIPE_NODIRECT 100 */ 101 102 /* XXX Disabled for now; rare hangs switching between direct/buffered */ 103 #define PIPE_NODIRECT 104 105 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int); 106 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int); 107 static int pipe_close(file_t *); 108 static int pipe_poll(file_t *, int); 109 static int pipe_kqfilter(file_t *, struct knote *); 110 static int pipe_stat(file_t *, struct stat *); 111 static int pipe_ioctl(file_t *, u_long, void *); 112 static void pipe_restart(file_t *); 113 114 static const struct fileops pipeops = { 115 .fo_name = "pipe", 116 .fo_read = pipe_read, 117 .fo_write = pipe_write, 118 .fo_ioctl = pipe_ioctl, 119 .fo_fcntl = fnullop_fcntl, 120 .fo_poll = pipe_poll, 121 .fo_stat = pipe_stat, 122 .fo_close = pipe_close, 123 .fo_kqfilter = pipe_kqfilter, 124 .fo_restart = pipe_restart, 125 }; 126 127 /* 128 * Default pipe buffer size(s), this can be kind-of large now because pipe 129 * space is pageable. The pipe code will try to maintain locality of 130 * reference for performance reasons, so small amounts of outstanding I/O 131 * will not wipe the cache. 132 */ 133 #define MINPIPESIZE (PIPE_SIZE / 3) 134 #define MAXPIPESIZE (2 * PIPE_SIZE / 3) 135 136 /* 137 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 138 * is there so that on large systems, we don't exhaust it. 139 */ 140 #define MAXPIPEKVA (8 * 1024 * 1024) 141 static u_int maxpipekva = MAXPIPEKVA; 142 143 /* 144 * Limit for direct transfers, we cannot, of course limit 145 * the amount of kva for pipes in general though. 146 */ 147 #define LIMITPIPEKVA (16 * 1024 * 1024) 148 static u_int limitpipekva = LIMITPIPEKVA; 149 150 /* 151 * Limit the number of "big" pipes 152 */ 153 #define LIMITBIGPIPES 32 154 static u_int maxbigpipes = LIMITBIGPIPES; 155 static u_int nbigpipe = 0; 156 157 /* 158 * Amount of KVA consumed by pipe buffers. 159 */ 160 static u_int amountpipekva = 0; 161 162 static void pipeclose(struct pipe *); 163 static void pipe_free_kmem(struct pipe *); 164 static int pipe_create(struct pipe **, pool_cache_t); 165 static int pipelock(struct pipe *, bool); 166 static inline void pipeunlock(struct pipe *); 167 static void pipeselwakeup(struct pipe *, struct pipe *, int); 168 #ifndef PIPE_NODIRECT 169 static int pipe_direct_write(file_t *, struct pipe *, struct uio *); 170 #endif 171 static int pipespace(struct pipe *, int); 172 static int pipe_ctor(void *, void *, int); 173 static void pipe_dtor(void *, void *); 174 175 #ifndef PIPE_NODIRECT 176 static int pipe_loan_alloc(struct pipe *, int); 177 static void pipe_loan_free(struct pipe *); 178 #endif /* PIPE_NODIRECT */ 179 180 static pool_cache_t pipe_wr_cache; 181 static pool_cache_t pipe_rd_cache; 182 183 void 184 pipe_init(void) 185 { 186 187 /* Writer side is not automatically allocated KVA. */ 188 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr", 189 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL); 190 KASSERT(pipe_wr_cache != NULL); 191 192 /* Reader side gets preallocated KVA. */ 193 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd", 194 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1); 195 KASSERT(pipe_rd_cache != NULL); 196 } 197 198 static int 199 pipe_ctor(void *arg, void *obj, int flags) 200 { 201 struct pipe *pipe; 202 vaddr_t va; 203 204 pipe = obj; 205 206 memset(pipe, 0, sizeof(struct pipe)); 207 if (arg != NULL) { 208 /* Preallocate space. */ 209 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0, 210 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 211 KASSERT(va != 0); 212 pipe->pipe_kmem = va; 213 atomic_add_int(&amountpipekva, PIPE_SIZE); 214 } 215 cv_init(&pipe->pipe_rcv, "pipe_rd"); 216 cv_init(&pipe->pipe_wcv, "pipe_wr"); 217 cv_init(&pipe->pipe_draincv, "pipe_drn"); 218 cv_init(&pipe->pipe_lkcv, "pipe_lk"); 219 selinit(&pipe->pipe_sel); 220 pipe->pipe_state = PIPE_SIGNALR; 221 222 return 0; 223 } 224 225 static void 226 pipe_dtor(void *arg, void *obj) 227 { 228 struct pipe *pipe; 229 230 pipe = obj; 231 232 cv_destroy(&pipe->pipe_rcv); 233 cv_destroy(&pipe->pipe_wcv); 234 cv_destroy(&pipe->pipe_draincv); 235 cv_destroy(&pipe->pipe_lkcv); 236 seldestroy(&pipe->pipe_sel); 237 if (pipe->pipe_kmem != 0) { 238 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE, 239 UVM_KMF_PAGEABLE); 240 atomic_add_int(&amountpipekva, -PIPE_SIZE); 241 } 242 } 243 244 /* 245 * The pipe system call for the DTYPE_PIPE type of pipes 246 */ 247 int 248 pipe1(struct lwp *l, int *fildes, int flags) 249 { 250 struct pipe *rpipe, *wpipe; 251 file_t *rf, *wf; 252 int fd, error; 253 proc_t *p; 254 255 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE)) 256 return EINVAL; 257 p = curproc; 258 rpipe = wpipe = NULL; 259 if ((error = pipe_create(&rpipe, pipe_rd_cache)) || 260 (error = pipe_create(&wpipe, pipe_wr_cache))) { 261 goto free2; 262 } 263 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 264 wpipe->pipe_lock = rpipe->pipe_lock; 265 mutex_obj_hold(wpipe->pipe_lock); 266 267 error = fd_allocfile(&rf, &fd); 268 if (error) 269 goto free2; 270 fildes[0] = fd; 271 272 error = fd_allocfile(&wf, &fd); 273 if (error) 274 goto free3; 275 fildes[1] = fd; 276 277 rf->f_flag = FREAD | flags; 278 rf->f_type = DTYPE_PIPE; 279 rf->f_pipe = rpipe; 280 rf->f_ops = &pipeops; 281 fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0); 282 283 wf->f_flag = FWRITE | flags; 284 wf->f_type = DTYPE_PIPE; 285 wf->f_pipe = wpipe; 286 wf->f_ops = &pipeops; 287 fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0); 288 289 rpipe->pipe_peer = wpipe; 290 wpipe->pipe_peer = rpipe; 291 292 fd_affix(p, rf, fildes[0]); 293 fd_affix(p, wf, fildes[1]); 294 return (0); 295 free3: 296 fd_abort(p, rf, fildes[0]); 297 free2: 298 pipeclose(wpipe); 299 pipeclose(rpipe); 300 301 return (error); 302 } 303 304 /* 305 * Allocate kva for pipe circular buffer, the space is pageable 306 * This routine will 'realloc' the size of a pipe safely, if it fails 307 * it will retain the old buffer. 308 * If it fails it will return ENOMEM. 309 */ 310 static int 311 pipespace(struct pipe *pipe, int size) 312 { 313 void *buffer; 314 315 /* 316 * Allocate pageable virtual address space. Physical memory is 317 * allocated on demand. 318 */ 319 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) { 320 buffer = (void *)pipe->pipe_kmem; 321 } else { 322 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size), 323 0, UVM_KMF_PAGEABLE); 324 if (buffer == NULL) 325 return (ENOMEM); 326 atomic_add_int(&amountpipekva, size); 327 } 328 329 /* free old resources if we're resizing */ 330 pipe_free_kmem(pipe); 331 pipe->pipe_buffer.buffer = buffer; 332 pipe->pipe_buffer.size = size; 333 pipe->pipe_buffer.in = 0; 334 pipe->pipe_buffer.out = 0; 335 pipe->pipe_buffer.cnt = 0; 336 return (0); 337 } 338 339 /* 340 * Initialize and allocate VM and memory for pipe. 341 */ 342 static int 343 pipe_create(struct pipe **pipep, pool_cache_t cache) 344 { 345 struct pipe *pipe; 346 int error; 347 348 pipe = pool_cache_get(cache, PR_WAITOK); 349 KASSERT(pipe != NULL); 350 *pipep = pipe; 351 error = 0; 352 getnanotime(&pipe->pipe_btime); 353 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime; 354 pipe->pipe_lock = NULL; 355 if (cache == pipe_rd_cache) { 356 error = pipespace(pipe, PIPE_SIZE); 357 } else { 358 pipe->pipe_buffer.buffer = NULL; 359 pipe->pipe_buffer.size = 0; 360 pipe->pipe_buffer.in = 0; 361 pipe->pipe_buffer.out = 0; 362 pipe->pipe_buffer.cnt = 0; 363 } 364 return error; 365 } 366 367 /* 368 * Lock a pipe for I/O, blocking other access 369 * Called with pipe spin lock held. 370 */ 371 static int 372 pipelock(struct pipe *pipe, bool catch_p) 373 { 374 int error; 375 376 KASSERT(mutex_owned(pipe->pipe_lock)); 377 378 while (pipe->pipe_state & PIPE_LOCKFL) { 379 pipe->pipe_state |= PIPE_LWANT; 380 if (catch_p) { 381 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock); 382 if (error != 0) 383 return error; 384 } else 385 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock); 386 } 387 388 pipe->pipe_state |= PIPE_LOCKFL; 389 390 return 0; 391 } 392 393 /* 394 * unlock a pipe I/O lock 395 */ 396 static inline void 397 pipeunlock(struct pipe *pipe) 398 { 399 400 KASSERT(pipe->pipe_state & PIPE_LOCKFL); 401 402 pipe->pipe_state &= ~PIPE_LOCKFL; 403 if (pipe->pipe_state & PIPE_LWANT) { 404 pipe->pipe_state &= ~PIPE_LWANT; 405 cv_broadcast(&pipe->pipe_lkcv); 406 } 407 } 408 409 /* 410 * Select/poll wakup. This also sends SIGIO to peer connected to 411 * 'sigpipe' side of pipe. 412 */ 413 static void 414 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code) 415 { 416 int band; 417 418 switch (code) { 419 case POLL_IN: 420 band = POLLIN|POLLRDNORM; 421 break; 422 case POLL_OUT: 423 band = POLLOUT|POLLWRNORM; 424 break; 425 case POLL_HUP: 426 band = POLLHUP; 427 break; 428 case POLL_ERR: 429 band = POLLERR; 430 break; 431 default: 432 band = 0; 433 #ifdef DIAGNOSTIC 434 printf("bad siginfo code %d in pipe notification.\n", code); 435 #endif 436 break; 437 } 438 439 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT); 440 441 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0) 442 return; 443 444 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp); 445 } 446 447 static int 448 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 449 int flags) 450 { 451 struct pipe *rpipe = fp->f_pipe; 452 struct pipebuf *bp = &rpipe->pipe_buffer; 453 kmutex_t *lock = rpipe->pipe_lock; 454 int error; 455 size_t nread = 0; 456 size_t size; 457 size_t ocnt; 458 unsigned int wakeup_state = 0; 459 460 mutex_enter(lock); 461 ++rpipe->pipe_busy; 462 ocnt = bp->cnt; 463 464 again: 465 error = pipelock(rpipe, true); 466 if (error) 467 goto unlocked_error; 468 469 while (uio->uio_resid) { 470 /* 471 * Normal pipe buffer receive. 472 */ 473 if (bp->cnt > 0) { 474 size = bp->size - bp->out; 475 if (size > bp->cnt) 476 size = bp->cnt; 477 if (size > uio->uio_resid) 478 size = uio->uio_resid; 479 480 mutex_exit(lock); 481 error = uiomove((char *)bp->buffer + bp->out, size, uio); 482 mutex_enter(lock); 483 if (error) 484 break; 485 486 bp->out += size; 487 if (bp->out >= bp->size) 488 bp->out = 0; 489 490 bp->cnt -= size; 491 492 /* 493 * If there is no more to read in the pipe, reset 494 * its pointers to the beginning. This improves 495 * cache hit stats. 496 */ 497 if (bp->cnt == 0) { 498 bp->in = 0; 499 bp->out = 0; 500 } 501 nread += size; 502 continue; 503 } 504 505 #ifndef PIPE_NODIRECT 506 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) { 507 struct pipemapping * const rmap = &rpipe->pipe_map; 508 /* 509 * Direct copy, bypassing a kernel buffer. 510 */ 511 void *va; 512 u_int gen; 513 514 KASSERT(rpipe->pipe_state & PIPE_DIRECTW); 515 516 size = rmap->cnt; 517 if (size > uio->uio_resid) 518 size = uio->uio_resid; 519 520 va = (char *)rmap->kva + rmap->pos; 521 gen = rmap->egen; 522 mutex_exit(lock); 523 524 /* 525 * Consume emap and read the data from loaned pages. 526 */ 527 uvm_emap_consume(gen); 528 error = uiomove(va, size, uio); 529 530 mutex_enter(lock); 531 if (error) 532 break; 533 nread += size; 534 rmap->pos += size; 535 rmap->cnt -= size; 536 if (rmap->cnt == 0) { 537 rpipe->pipe_state &= ~PIPE_DIRECTR; 538 cv_broadcast(&rpipe->pipe_wcv); 539 } 540 continue; 541 } 542 #endif 543 /* 544 * Break if some data was read. 545 */ 546 if (nread > 0) 547 break; 548 549 /* 550 * Detect EOF condition. 551 * Read returns 0 on EOF, no need to set error. 552 */ 553 if (rpipe->pipe_state & PIPE_EOF) 554 break; 555 556 /* 557 * Don't block on non-blocking I/O. 558 */ 559 if (fp->f_flag & FNONBLOCK) { 560 error = EAGAIN; 561 break; 562 } 563 564 /* 565 * Unlock the pipe buffer for our remaining processing. 566 * We will either break out with an error or we will 567 * sleep and relock to loop. 568 */ 569 pipeunlock(rpipe); 570 571 /* 572 * Re-check to see if more direct writes are pending. 573 */ 574 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) 575 goto again; 576 577 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */ 578 /* 579 * We want to read more, wake up select/poll. 580 */ 581 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 582 583 /* 584 * If the "write-side" is blocked, wake it up now. 585 */ 586 cv_broadcast(&rpipe->pipe_wcv); 587 #endif 588 589 if (wakeup_state & PIPE_RESTART) { 590 error = ERESTART; 591 goto unlocked_error; 592 } 593 594 /* Now wait until the pipe is filled */ 595 error = cv_wait_sig(&rpipe->pipe_rcv, lock); 596 if (error != 0) 597 goto unlocked_error; 598 wakeup_state = rpipe->pipe_state; 599 goto again; 600 } 601 602 if (error == 0) 603 getnanotime(&rpipe->pipe_atime); 604 pipeunlock(rpipe); 605 606 unlocked_error: 607 --rpipe->pipe_busy; 608 if (rpipe->pipe_busy == 0) { 609 rpipe->pipe_state &= ~PIPE_RESTART; 610 cv_broadcast(&rpipe->pipe_draincv); 611 } 612 if (bp->cnt < MINPIPESIZE) { 613 cv_broadcast(&rpipe->pipe_wcv); 614 } 615 616 /* 617 * If anything was read off the buffer, signal to the writer it's 618 * possible to write more data. Also send signal if we are here for the 619 * first time after last write. 620 */ 621 if ((bp->size - bp->cnt) >= PIPE_BUF 622 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) { 623 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 624 rpipe->pipe_state &= ~PIPE_SIGNALR; 625 } 626 627 mutex_exit(lock); 628 return (error); 629 } 630 631 #ifndef PIPE_NODIRECT 632 /* 633 * Allocate structure for loan transfer. 634 */ 635 static int 636 pipe_loan_alloc(struct pipe *wpipe, int npages) 637 { 638 struct pipemapping * const wmap = &wpipe->pipe_map; 639 const vsize_t len = ptoa(npages); 640 641 atomic_add_int(&amountpipekva, len); 642 wmap->kva = uvm_km_alloc(kernel_map, len, 0, 643 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 644 if (wmap->kva == 0) { 645 atomic_add_int(&amountpipekva, -len); 646 return (ENOMEM); 647 } 648 649 wmap->npages = npages; 650 wmap->pgs = kmem_alloc(npages * sizeof(struct vm_page *), KM_SLEEP); 651 return (0); 652 } 653 654 /* 655 * Free resources allocated for loan transfer. 656 */ 657 static void 658 pipe_loan_free(struct pipe *wpipe) 659 { 660 struct pipemapping * const wmap = &wpipe->pipe_map; 661 const vsize_t len = ptoa(wmap->npages); 662 663 uvm_emap_remove(wmap->kva, len); /* XXX */ 664 uvm_km_free(kernel_map, wmap->kva, len, UVM_KMF_VAONLY); 665 wmap->kva = 0; 666 atomic_add_int(&amountpipekva, -len); 667 kmem_free(wmap->pgs, wmap->npages * sizeof(struct vm_page *)); 668 wmap->pgs = NULL; 669 #if 0 670 wmap->npages = 0; 671 wmap->pos = 0; 672 wmap->cnt = 0; 673 #endif 674 } 675 676 /* 677 * NetBSD direct write, using uvm_loan() mechanism. 678 * This implements the pipe buffer write mechanism. Note that only 679 * a direct write OR a normal pipe write can be pending at any given time. 680 * If there are any characters in the pipe buffer, the direct write will 681 * be deferred until the receiving process grabs all of the bytes from 682 * the pipe buffer. Then the direct mapping write is set-up. 683 * 684 * Called with the long-term pipe lock held. 685 */ 686 static int 687 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio) 688 { 689 struct pipemapping * const wmap = &wpipe->pipe_map; 690 kmutex_t * const lock = wpipe->pipe_lock; 691 struct vm_page **pgs; 692 vaddr_t bbase, base, bend; 693 vsize_t blen, bcnt; 694 int error, npages; 695 voff_t bpos; 696 u_int starting_color; 697 698 KASSERT(mutex_owned(wpipe->pipe_lock)); 699 KASSERT(wmap->cnt == 0); 700 701 mutex_exit(lock); 702 703 /* 704 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers 705 * not aligned to PAGE_SIZE. 706 */ 707 bbase = (vaddr_t)uio->uio_iov->iov_base; 708 base = trunc_page(bbase); 709 bend = round_page(bbase + uio->uio_iov->iov_len); 710 blen = bend - base; 711 bpos = bbase - base; 712 713 if (blen > PIPE_DIRECT_CHUNK) { 714 blen = PIPE_DIRECT_CHUNK; 715 bend = base + blen; 716 bcnt = PIPE_DIRECT_CHUNK - bpos; 717 } else { 718 bcnt = uio->uio_iov->iov_len; 719 } 720 npages = atop(blen); 721 starting_color = atop(base) & uvmexp.colormask; 722 723 /* 724 * Free the old kva if we need more pages than we have 725 * allocated. 726 */ 727 if (wmap->kva != 0 && starting_color + npages > wmap->npages) 728 pipe_loan_free(wpipe); 729 730 /* Allocate new kva. */ 731 if (wmap->kva == 0) { 732 error = pipe_loan_alloc(wpipe, starting_color + npages); 733 if (error) { 734 mutex_enter(lock); 735 return (error); 736 } 737 } 738 739 /* Loan the write buffer memory from writer process */ 740 pgs = wmap->pgs + starting_color; 741 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen, 742 pgs, UVM_LOAN_TOPAGE); 743 if (error) { 744 pipe_loan_free(wpipe); 745 mutex_enter(lock); 746 return (ENOMEM); /* so that caller fallback to ordinary write */ 747 } 748 749 /* Enter the loaned pages to KVA, produce new emap generation number. */ 750 uvm_emap_enter(wmap->kva + ptoa(starting_color), pgs, npages); 751 wmap->egen = uvm_emap_produce(); 752 753 /* Now we can put the pipe in direct write mode */ 754 wmap->pos = bpos + ptoa(starting_color); 755 wmap->cnt = bcnt; 756 757 /* 758 * But before we can let someone do a direct read, we 759 * have to wait until the pipe is drained. Release the 760 * pipe lock while we wait. 761 */ 762 mutex_enter(lock); 763 wpipe->pipe_state |= PIPE_DIRECTW; 764 pipeunlock(wpipe); 765 766 while (error == 0 && wpipe->pipe_buffer.cnt > 0) { 767 cv_broadcast(&wpipe->pipe_rcv); 768 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 769 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 770 error = EPIPE; 771 } 772 773 /* Pipe is drained; next read will off the direct buffer */ 774 wpipe->pipe_state |= PIPE_DIRECTR; 775 776 /* Wait until the reader is done */ 777 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) { 778 cv_broadcast(&wpipe->pipe_rcv); 779 pipeselwakeup(wpipe, wpipe, POLL_IN); 780 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 781 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 782 error = EPIPE; 783 } 784 785 /* Take pipe out of direct write mode */ 786 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR); 787 788 /* Acquire the pipe lock and cleanup */ 789 (void)pipelock(wpipe, false); 790 mutex_exit(lock); 791 792 if (pgs != NULL) { 793 /* XXX: uvm_emap_remove */ 794 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE); 795 } 796 if (error || amountpipekva > maxpipekva) 797 pipe_loan_free(wpipe); 798 799 mutex_enter(lock); 800 if (error) { 801 pipeselwakeup(wpipe, wpipe, POLL_ERR); 802 803 /* 804 * If nothing was read from what we offered, return error 805 * straight on. Otherwise update uio resid first. Caller 806 * will deal with the error condition, returning short 807 * write, error, or restarting the write(2) as appropriate. 808 */ 809 if (wmap->cnt == bcnt) { 810 wmap->cnt = 0; 811 cv_broadcast(&wpipe->pipe_wcv); 812 return (error); 813 } 814 815 bcnt -= wpipe->cnt; 816 } 817 818 uio->uio_resid -= bcnt; 819 /* uio_offset not updated, not set/used for write(2) */ 820 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt; 821 uio->uio_iov->iov_len -= bcnt; 822 if (uio->uio_iov->iov_len == 0) { 823 uio->uio_iov++; 824 uio->uio_iovcnt--; 825 } 826 827 wmap->cnt = 0; 828 return (error); 829 } 830 #endif /* !PIPE_NODIRECT */ 831 832 static int 833 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 834 int flags) 835 { 836 struct pipe *wpipe, *rpipe; 837 struct pipebuf *bp; 838 kmutex_t *lock; 839 int error; 840 unsigned int wakeup_state = 0; 841 842 /* We want to write to our peer */ 843 rpipe = fp->f_pipe; 844 lock = rpipe->pipe_lock; 845 error = 0; 846 847 mutex_enter(lock); 848 wpipe = rpipe->pipe_peer; 849 850 /* 851 * Detect loss of pipe read side, issue SIGPIPE if lost. 852 */ 853 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) { 854 mutex_exit(lock); 855 return EPIPE; 856 } 857 ++wpipe->pipe_busy; 858 859 /* Aquire the long-term pipe lock */ 860 if ((error = pipelock(wpipe, true)) != 0) { 861 --wpipe->pipe_busy; 862 if (wpipe->pipe_busy == 0) { 863 wpipe->pipe_state &= ~PIPE_RESTART; 864 cv_broadcast(&wpipe->pipe_draincv); 865 } 866 mutex_exit(lock); 867 return (error); 868 } 869 870 bp = &wpipe->pipe_buffer; 871 872 /* 873 * If it is advantageous to resize the pipe buffer, do so. 874 */ 875 if ((uio->uio_resid > PIPE_SIZE) && 876 (nbigpipe < maxbigpipes) && 877 #ifndef PIPE_NODIRECT 878 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 879 #endif 880 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) { 881 882 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0) 883 atomic_inc_uint(&nbigpipe); 884 } 885 886 while (uio->uio_resid) { 887 size_t space; 888 889 #ifndef PIPE_NODIRECT 890 /* 891 * Pipe buffered writes cannot be coincidental with 892 * direct writes. Also, only one direct write can be 893 * in progress at any one time. We wait until the currently 894 * executing direct write is completed before continuing. 895 * 896 * We break out if a signal occurs or the reader goes away. 897 */ 898 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) { 899 cv_broadcast(&wpipe->pipe_rcv); 900 pipeunlock(wpipe); 901 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 902 (void)pipelock(wpipe, false); 903 if (wpipe->pipe_state & PIPE_EOF) 904 error = EPIPE; 905 } 906 if (error) 907 break; 908 909 /* 910 * If the transfer is large, we can gain performance if 911 * we do process-to-process copies directly. 912 * If the write is non-blocking, we don't use the 913 * direct write mechanism. 914 * 915 * The direct write mechanism will detect the reader going 916 * away on us. 917 */ 918 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 919 (fp->f_flag & FNONBLOCK) == 0 && 920 (wmap->kva || (amountpipekva < limitpipekva))) { 921 error = pipe_direct_write(fp, wpipe, uio); 922 923 /* 924 * Break out if error occurred, unless it's ENOMEM. 925 * ENOMEM means we failed to allocate some resources 926 * for direct write, so we just fallback to ordinary 927 * write. If the direct write was successful, 928 * process rest of data via ordinary write. 929 */ 930 if (error == 0) 931 continue; 932 933 if (error != ENOMEM) 934 break; 935 } 936 #endif /* PIPE_NODIRECT */ 937 938 space = bp->size - bp->cnt; 939 940 /* Writes of size <= PIPE_BUF must be atomic. */ 941 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF)) 942 space = 0; 943 944 if (space > 0) { 945 int size; /* Transfer size */ 946 int segsize; /* first segment to transfer */ 947 948 /* 949 * Transfer size is minimum of uio transfer 950 * and free space in pipe buffer. 951 */ 952 if (space > uio->uio_resid) 953 size = uio->uio_resid; 954 else 955 size = space; 956 /* 957 * First segment to transfer is minimum of 958 * transfer size and contiguous space in 959 * pipe buffer. If first segment to transfer 960 * is less than the transfer size, we've got 961 * a wraparound in the buffer. 962 */ 963 segsize = bp->size - bp->in; 964 if (segsize > size) 965 segsize = size; 966 967 /* Transfer first segment */ 968 mutex_exit(lock); 969 error = uiomove((char *)bp->buffer + bp->in, segsize, 970 uio); 971 972 if (error == 0 && segsize < size) { 973 /* 974 * Transfer remaining part now, to 975 * support atomic writes. Wraparound 976 * happened. 977 */ 978 KASSERT(bp->in + segsize == bp->size); 979 error = uiomove(bp->buffer, 980 size - segsize, uio); 981 } 982 mutex_enter(lock); 983 if (error) 984 break; 985 986 bp->in += size; 987 if (bp->in >= bp->size) { 988 KASSERT(bp->in == size - segsize + bp->size); 989 bp->in = size - segsize; 990 } 991 992 bp->cnt += size; 993 KASSERT(bp->cnt <= bp->size); 994 wakeup_state = 0; 995 } else { 996 /* 997 * If the "read-side" has been blocked, wake it up now. 998 */ 999 cv_broadcast(&wpipe->pipe_rcv); 1000 1001 /* 1002 * Don't block on non-blocking I/O. 1003 */ 1004 if (fp->f_flag & FNONBLOCK) { 1005 error = EAGAIN; 1006 break; 1007 } 1008 1009 /* 1010 * We have no more space and have something to offer, 1011 * wake up select/poll. 1012 */ 1013 if (bp->cnt) 1014 pipeselwakeup(wpipe, wpipe, POLL_IN); 1015 1016 if (wakeup_state & PIPE_RESTART) { 1017 error = ERESTART; 1018 break; 1019 } 1020 1021 pipeunlock(wpipe); 1022 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 1023 (void)pipelock(wpipe, false); 1024 if (error != 0) 1025 break; 1026 /* 1027 * If read side wants to go away, we just issue a signal 1028 * to ourselves. 1029 */ 1030 if (wpipe->pipe_state & PIPE_EOF) { 1031 error = EPIPE; 1032 break; 1033 } 1034 wakeup_state = wpipe->pipe_state; 1035 } 1036 } 1037 1038 --wpipe->pipe_busy; 1039 if (wpipe->pipe_busy == 0) { 1040 wpipe->pipe_state &= ~PIPE_RESTART; 1041 cv_broadcast(&wpipe->pipe_draincv); 1042 } 1043 if (bp->cnt > 0) { 1044 cv_broadcast(&wpipe->pipe_rcv); 1045 } 1046 1047 /* 1048 * Don't return EPIPE if I/O was successful 1049 */ 1050 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0) 1051 error = 0; 1052 1053 if (error == 0) 1054 getnanotime(&wpipe->pipe_mtime); 1055 1056 /* 1057 * We have something to offer, wake up select/poll. 1058 * wmap->cnt is always 0 in this point (direct write 1059 * is only done synchronously), so check only wpipe->pipe_buffer.cnt 1060 */ 1061 if (bp->cnt) 1062 pipeselwakeup(wpipe, wpipe, POLL_IN); 1063 1064 /* 1065 * Arrange for next read(2) to do a signal. 1066 */ 1067 wpipe->pipe_state |= PIPE_SIGNALR; 1068 1069 pipeunlock(wpipe); 1070 mutex_exit(lock); 1071 return (error); 1072 } 1073 1074 /* 1075 * We implement a very minimal set of ioctls for compatibility with sockets. 1076 */ 1077 int 1078 pipe_ioctl(file_t *fp, u_long cmd, void *data) 1079 { 1080 struct pipe *pipe = fp->f_pipe; 1081 kmutex_t *lock = pipe->pipe_lock; 1082 1083 switch (cmd) { 1084 1085 case FIONBIO: 1086 return (0); 1087 1088 case FIOASYNC: 1089 mutex_enter(lock); 1090 if (*(int *)data) { 1091 pipe->pipe_state |= PIPE_ASYNC; 1092 } else { 1093 pipe->pipe_state &= ~PIPE_ASYNC; 1094 } 1095 mutex_exit(lock); 1096 return (0); 1097 1098 case FIONREAD: 1099 mutex_enter(lock); 1100 #ifndef PIPE_NODIRECT 1101 if (pipe->pipe_state & PIPE_DIRECTW) 1102 *(int *)data = pipe->pipe_map.cnt; 1103 else 1104 #endif 1105 *(int *)data = pipe->pipe_buffer.cnt; 1106 mutex_exit(lock); 1107 return (0); 1108 1109 case FIONWRITE: 1110 /* Look at other side */ 1111 pipe = pipe->pipe_peer; 1112 mutex_enter(lock); 1113 #ifndef PIPE_NODIRECT 1114 if (pipe->pipe_state & PIPE_DIRECTW) 1115 *(int *)data = pipe->pipe_map.cnt; 1116 else 1117 #endif 1118 *(int *)data = pipe->pipe_buffer.cnt; 1119 mutex_exit(lock); 1120 return (0); 1121 1122 case FIONSPACE: 1123 /* Look at other side */ 1124 pipe = pipe->pipe_peer; 1125 mutex_enter(lock); 1126 #ifndef PIPE_NODIRECT 1127 /* 1128 * If we're in direct-mode, we don't really have a 1129 * send queue, and any other write will block. Thus 1130 * zero seems like the best answer. 1131 */ 1132 if (pipe->pipe_state & PIPE_DIRECTW) 1133 *(int *)data = 0; 1134 else 1135 #endif 1136 *(int *)data = pipe->pipe_buffer.size - 1137 pipe->pipe_buffer.cnt; 1138 mutex_exit(lock); 1139 return (0); 1140 1141 case TIOCSPGRP: 1142 case FIOSETOWN: 1143 return fsetown(&pipe->pipe_pgid, cmd, data); 1144 1145 case TIOCGPGRP: 1146 case FIOGETOWN: 1147 return fgetown(pipe->pipe_pgid, cmd, data); 1148 1149 } 1150 return (EPASSTHROUGH); 1151 } 1152 1153 int 1154 pipe_poll(file_t *fp, int events) 1155 { 1156 struct pipe *rpipe = fp->f_pipe; 1157 struct pipe *wpipe; 1158 int eof = 0; 1159 int revents = 0; 1160 1161 mutex_enter(rpipe->pipe_lock); 1162 wpipe = rpipe->pipe_peer; 1163 1164 if (events & (POLLIN | POLLRDNORM)) 1165 if ((rpipe->pipe_buffer.cnt > 0) || 1166 #ifndef PIPE_NODIRECT 1167 (rpipe->pipe_state & PIPE_DIRECTR) || 1168 #endif 1169 (rpipe->pipe_state & PIPE_EOF)) 1170 revents |= events & (POLLIN | POLLRDNORM); 1171 1172 eof |= (rpipe->pipe_state & PIPE_EOF); 1173 1174 if (wpipe == NULL) 1175 revents |= events & (POLLOUT | POLLWRNORM); 1176 else { 1177 if (events & (POLLOUT | POLLWRNORM)) 1178 if ((wpipe->pipe_state & PIPE_EOF) || ( 1179 #ifndef PIPE_NODIRECT 1180 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1181 #endif 1182 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1183 revents |= events & (POLLOUT | POLLWRNORM); 1184 1185 eof |= (wpipe->pipe_state & PIPE_EOF); 1186 } 1187 1188 if (wpipe == NULL || eof) 1189 revents |= POLLHUP; 1190 1191 if (revents == 0) { 1192 if (events & (POLLIN | POLLRDNORM)) 1193 selrecord(curlwp, &rpipe->pipe_sel); 1194 1195 if (events & (POLLOUT | POLLWRNORM)) 1196 selrecord(curlwp, &wpipe->pipe_sel); 1197 } 1198 mutex_exit(rpipe->pipe_lock); 1199 1200 return (revents); 1201 } 1202 1203 static int 1204 pipe_stat(file_t *fp, struct stat *ub) 1205 { 1206 struct pipe *pipe = fp->f_pipe; 1207 1208 mutex_enter(pipe->pipe_lock); 1209 memset(ub, 0, sizeof(*ub)); 1210 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 1211 ub->st_blksize = pipe->pipe_buffer.size; 1212 if (ub->st_blksize == 0 && pipe->pipe_peer) 1213 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size; 1214 ub->st_size = pipe->pipe_buffer.cnt; 1215 ub->st_blocks = (ub->st_size) ? 1 : 0; 1216 ub->st_atimespec = pipe->pipe_atime; 1217 ub->st_mtimespec = pipe->pipe_mtime; 1218 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime; 1219 ub->st_uid = kauth_cred_geteuid(fp->f_cred); 1220 ub->st_gid = kauth_cred_getegid(fp->f_cred); 1221 1222 /* 1223 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1224 * XXX (st_dev, st_ino) should be unique. 1225 */ 1226 mutex_exit(pipe->pipe_lock); 1227 return 0; 1228 } 1229 1230 static int 1231 pipe_close(file_t *fp) 1232 { 1233 struct pipe *pipe = fp->f_pipe; 1234 1235 fp->f_pipe = NULL; 1236 pipeclose(pipe); 1237 return (0); 1238 } 1239 1240 static void 1241 pipe_restart(file_t *fp) 1242 { 1243 struct pipe *pipe = fp->f_pipe; 1244 1245 /* 1246 * Unblock blocked reads/writes in order to allow close() to complete. 1247 * System calls return ERESTART so that the fd is revalidated. 1248 * (Partial writes return the transfer length.) 1249 */ 1250 mutex_enter(pipe->pipe_lock); 1251 pipe->pipe_state |= PIPE_RESTART; 1252 /* Wakeup both cvs, maybe we only need one, but maybe there are some 1253 * other paths where wakeup is needed, and it saves deciding which! */ 1254 cv_broadcast(&pipe->pipe_rcv); 1255 cv_broadcast(&pipe->pipe_wcv); 1256 mutex_exit(pipe->pipe_lock); 1257 } 1258 1259 static void 1260 pipe_free_kmem(struct pipe *pipe) 1261 { 1262 1263 if (pipe->pipe_buffer.buffer != NULL) { 1264 if (pipe->pipe_buffer.size > PIPE_SIZE) { 1265 atomic_dec_uint(&nbigpipe); 1266 } 1267 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) { 1268 uvm_km_free(kernel_map, 1269 (vaddr_t)pipe->pipe_buffer.buffer, 1270 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE); 1271 atomic_add_int(&amountpipekva, 1272 -pipe->pipe_buffer.size); 1273 } 1274 pipe->pipe_buffer.buffer = NULL; 1275 } 1276 #ifndef PIPE_NODIRECT 1277 if (pipe->pipe_map.kva != 0) { 1278 pipe_loan_free(pipe); 1279 pipe->pipe_map.cnt = 0; 1280 pipe->pipe_map.pos = 0; 1281 pipe->pipe_map.npages = 0; 1282 } 1283 #endif /* !PIPE_NODIRECT */ 1284 } 1285 1286 /* 1287 * Shutdown the pipe. 1288 */ 1289 static void 1290 pipeclose(struct pipe *pipe) 1291 { 1292 kmutex_t *lock; 1293 struct pipe *ppipe; 1294 1295 if (pipe == NULL) 1296 return; 1297 1298 KASSERT(cv_is_valid(&pipe->pipe_rcv)); 1299 KASSERT(cv_is_valid(&pipe->pipe_wcv)); 1300 KASSERT(cv_is_valid(&pipe->pipe_draincv)); 1301 KASSERT(cv_is_valid(&pipe->pipe_lkcv)); 1302 1303 lock = pipe->pipe_lock; 1304 if (lock == NULL) 1305 /* Must have failed during create */ 1306 goto free_resources; 1307 1308 mutex_enter(lock); 1309 pipeselwakeup(pipe, pipe, POLL_HUP); 1310 1311 /* 1312 * If the other side is blocked, wake it up saying that 1313 * we want to close it down. 1314 */ 1315 pipe->pipe_state |= PIPE_EOF; 1316 if (pipe->pipe_busy) { 1317 while (pipe->pipe_busy) { 1318 cv_broadcast(&pipe->pipe_wcv); 1319 cv_wait_sig(&pipe->pipe_draincv, lock); 1320 } 1321 } 1322 1323 /* 1324 * Disconnect from peer. 1325 */ 1326 if ((ppipe = pipe->pipe_peer) != NULL) { 1327 pipeselwakeup(ppipe, ppipe, POLL_HUP); 1328 ppipe->pipe_state |= PIPE_EOF; 1329 cv_broadcast(&ppipe->pipe_rcv); 1330 ppipe->pipe_peer = NULL; 1331 } 1332 1333 /* 1334 * Any knote objects still left in the list are 1335 * the one attached by peer. Since no one will 1336 * traverse this list, we just clear it. 1337 */ 1338 SLIST_INIT(&pipe->pipe_sel.sel_klist); 1339 1340 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0); 1341 mutex_exit(lock); 1342 mutex_obj_free(lock); 1343 1344 /* 1345 * Free resources. 1346 */ 1347 free_resources: 1348 pipe->pipe_pgid = 0; 1349 pipe->pipe_state = PIPE_SIGNALR; 1350 pipe_free_kmem(pipe); 1351 if (pipe->pipe_kmem != 0) { 1352 pool_cache_put(pipe_rd_cache, pipe); 1353 } else { 1354 pool_cache_put(pipe_wr_cache, pipe); 1355 } 1356 } 1357 1358 static void 1359 filt_pipedetach(struct knote *kn) 1360 { 1361 struct pipe *pipe; 1362 kmutex_t *lock; 1363 1364 pipe = ((file_t *)kn->kn_obj)->f_pipe; 1365 lock = pipe->pipe_lock; 1366 1367 mutex_enter(lock); 1368 1369 switch(kn->kn_filter) { 1370 case EVFILT_WRITE: 1371 /* Need the peer structure, not our own. */ 1372 pipe = pipe->pipe_peer; 1373 1374 /* If reader end already closed, just return. */ 1375 if (pipe == NULL) { 1376 mutex_exit(lock); 1377 return; 1378 } 1379 1380 break; 1381 default: 1382 /* Nothing to do. */ 1383 break; 1384 } 1385 1386 KASSERT(kn->kn_hook == pipe); 1387 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext); 1388 mutex_exit(lock); 1389 } 1390 1391 static int 1392 filt_piperead(struct knote *kn, long hint) 1393 { 1394 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe; 1395 struct pipe *wpipe; 1396 1397 if ((hint & NOTE_SUBMIT) == 0) { 1398 mutex_enter(rpipe->pipe_lock); 1399 } 1400 wpipe = rpipe->pipe_peer; 1401 kn->kn_data = rpipe->pipe_buffer.cnt; 1402 1403 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1404 kn->kn_data = rpipe->pipe_map.cnt; 1405 1406 if ((rpipe->pipe_state & PIPE_EOF) || 1407 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1408 kn->kn_flags |= EV_EOF; 1409 if ((hint & NOTE_SUBMIT) == 0) { 1410 mutex_exit(rpipe->pipe_lock); 1411 } 1412 return (1); 1413 } 1414 1415 if ((hint & NOTE_SUBMIT) == 0) { 1416 mutex_exit(rpipe->pipe_lock); 1417 } 1418 return (kn->kn_data > 0); 1419 } 1420 1421 static int 1422 filt_pipewrite(struct knote *kn, long hint) 1423 { 1424 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe; 1425 struct pipe *wpipe; 1426 1427 if ((hint & NOTE_SUBMIT) == 0) { 1428 mutex_enter(rpipe->pipe_lock); 1429 } 1430 wpipe = rpipe->pipe_peer; 1431 1432 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1433 kn->kn_data = 0; 1434 kn->kn_flags |= EV_EOF; 1435 if ((hint & NOTE_SUBMIT) == 0) { 1436 mutex_exit(rpipe->pipe_lock); 1437 } 1438 return (1); 1439 } 1440 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1441 if (wpipe->pipe_state & PIPE_DIRECTW) 1442 kn->kn_data = 0; 1443 1444 if ((hint & NOTE_SUBMIT) == 0) { 1445 mutex_exit(rpipe->pipe_lock); 1446 } 1447 return (kn->kn_data >= PIPE_BUF); 1448 } 1449 1450 static const struct filterops pipe_rfiltops = { 1451 .f_isfd = 1, 1452 .f_attach = NULL, 1453 .f_detach = filt_pipedetach, 1454 .f_event = filt_piperead, 1455 }; 1456 1457 static const struct filterops pipe_wfiltops = { 1458 .f_isfd = 1, 1459 .f_attach = NULL, 1460 .f_detach = filt_pipedetach, 1461 .f_event = filt_pipewrite, 1462 }; 1463 1464 static int 1465 pipe_kqfilter(file_t *fp, struct knote *kn) 1466 { 1467 struct pipe *pipe; 1468 kmutex_t *lock; 1469 1470 pipe = ((file_t *)kn->kn_obj)->f_pipe; 1471 lock = pipe->pipe_lock; 1472 1473 mutex_enter(lock); 1474 1475 switch (kn->kn_filter) { 1476 case EVFILT_READ: 1477 kn->kn_fop = &pipe_rfiltops; 1478 break; 1479 case EVFILT_WRITE: 1480 kn->kn_fop = &pipe_wfiltops; 1481 pipe = pipe->pipe_peer; 1482 if (pipe == NULL) { 1483 /* Other end of pipe has been closed. */ 1484 mutex_exit(lock); 1485 return (EBADF); 1486 } 1487 break; 1488 default: 1489 mutex_exit(lock); 1490 return (EINVAL); 1491 } 1492 1493 kn->kn_hook = pipe; 1494 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext); 1495 mutex_exit(lock); 1496 1497 return (0); 1498 } 1499 1500 /* 1501 * Handle pipe sysctls. 1502 */ 1503 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup") 1504 { 1505 1506 sysctl_createv(clog, 0, NULL, NULL, 1507 CTLFLAG_PERMANENT, 1508 CTLTYPE_NODE, "pipe", 1509 SYSCTL_DESCR("Pipe settings"), 1510 NULL, 0, NULL, 0, 1511 CTL_KERN, KERN_PIPE, CTL_EOL); 1512 1513 sysctl_createv(clog, 0, NULL, NULL, 1514 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1515 CTLTYPE_INT, "maxkvasz", 1516 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1517 "used for pipes"), 1518 NULL, 0, &maxpipekva, 0, 1519 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL); 1520 sysctl_createv(clog, 0, NULL, NULL, 1521 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1522 CTLTYPE_INT, "maxloankvasz", 1523 SYSCTL_DESCR("Limit for direct transfers via page loan"), 1524 NULL, 0, &limitpipekva, 0, 1525 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL); 1526 sysctl_createv(clog, 0, NULL, NULL, 1527 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1528 CTLTYPE_INT, "maxbigpipes", 1529 SYSCTL_DESCR("Maximum number of \"big\" pipes"), 1530 NULL, 0, &maxbigpipes, 0, 1531 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL); 1532 sysctl_createv(clog, 0, NULL, NULL, 1533 CTLFLAG_PERMANENT, 1534 CTLTYPE_INT, "nbigpipes", 1535 SYSCTL_DESCR("Number of \"big\" pipes"), 1536 NULL, 0, &nbigpipe, 0, 1537 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL); 1538 sysctl_createv(clog, 0, NULL, NULL, 1539 CTLFLAG_PERMANENT, 1540 CTLTYPE_INT, "kvasize", 1541 SYSCTL_DESCR("Amount of kernel memory consumed by pipe " 1542 "buffers"), 1543 NULL, 0, &amountpipekva, 0, 1544 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL); 1545 } 1546