1 /* $NetBSD: sys_pipe.c,v 1.108 2009/02/15 00:07:54 enami Exp $ */ 2 3 /*- 4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1996 John S. Dyson 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice immediately at the beginning of the file, without modification, 41 * this list of conditions, and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Absolutely no warranty of function or purpose is made by the author 46 * John S. Dyson. 47 * 4. Modifications may be freely made to this file if the above conditions 48 * are met. 49 */ 50 51 /* 52 * This file contains a high-performance replacement for the socket-based 53 * pipes scheme originally used. It does not support all features of 54 * sockets, but does do everything that pipes normally do. 55 * 56 * This code has two modes of operation, a small write mode and a large 57 * write mode. The small write mode acts like conventional pipes with 58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space 61 * using the UVM page loan facility from where the receiving process can copy 62 * the data directly from the pages in the sending process. 63 * 64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 65 * happen for small transfers so that the system will not spend all of 66 * its time context switching. PIPE_SIZE is constrained by the 67 * amount of kernel virtual memory. 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.108 2009/02/15 00:07:54 enami Exp $"); 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> 76 #include <sys/fcntl.h> 77 #include <sys/file.h> 78 #include <sys/filedesc.h> 79 #include <sys/filio.h> 80 #include <sys/kernel.h> 81 #include <sys/ttycom.h> 82 #include <sys/stat.h> 83 #include <sys/poll.h> 84 #include <sys/signalvar.h> 85 #include <sys/vnode.h> 86 #include <sys/uio.h> 87 #include <sys/select.h> 88 #include <sys/mount.h> 89 #include <sys/syscallargs.h> 90 #include <sys/sysctl.h> 91 #include <sys/kauth.h> 92 #include <sys/atomic.h> 93 #include <sys/pipe.h> 94 95 #include <uvm/uvm.h> 96 97 /* Use this define if you want to disable *fancy* VM things. */ 98 /* XXX Disabled for now; rare hangs switching between direct/buffered */ 99 #define PIPE_NODIRECT 100 101 /* 102 * interfaces to the outside world 103 */ 104 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio, 105 kauth_cred_t cred, int flags); 106 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio, 107 kauth_cred_t cred, int flags); 108 static int pipe_close(struct file *fp); 109 static int pipe_poll(struct file *fp, int events); 110 static int pipe_kqfilter(struct file *fp, struct knote *kn); 111 static int pipe_stat(struct file *fp, struct stat *sb); 112 static int pipe_ioctl(struct file *fp, u_long cmd, void *data); 113 114 static const struct fileops pipeops = { 115 pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll, 116 pipe_stat, pipe_close, pipe_kqfilter 117 }; 118 119 /* 120 * Default pipe buffer size(s), this can be kind-of large now because pipe 121 * space is pageable. The pipe code will try to maintain locality of 122 * reference for performance reasons, so small amounts of outstanding I/O 123 * will not wipe the cache. 124 */ 125 #define MINPIPESIZE (PIPE_SIZE/3) 126 #define MAXPIPESIZE (2*PIPE_SIZE/3) 127 128 /* 129 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 130 * is there so that on large systems, we don't exhaust it. 131 */ 132 #define MAXPIPEKVA (8*1024*1024) 133 static u_int maxpipekva = MAXPIPEKVA; 134 135 /* 136 * Limit for direct transfers, we cannot, of course limit 137 * the amount of kva for pipes in general though. 138 */ 139 #define LIMITPIPEKVA (16*1024*1024) 140 static u_int limitpipekva = LIMITPIPEKVA; 141 142 /* 143 * Limit the number of "big" pipes 144 */ 145 #define LIMITBIGPIPES 32 146 static u_int maxbigpipes = LIMITBIGPIPES; 147 static u_int nbigpipe = 0; 148 149 /* 150 * Amount of KVA consumed by pipe buffers. 151 */ 152 static u_int amountpipekva = 0; 153 154 static void pipeclose(struct file *fp, struct pipe *pipe); 155 static void pipe_free_kmem(struct pipe *pipe); 156 static int pipe_create(struct pipe **pipep, pool_cache_t, kmutex_t *); 157 static int pipelock(struct pipe *pipe, int catch); 158 static inline void pipeunlock(struct pipe *pipe); 159 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code); 160 #ifndef PIPE_NODIRECT 161 static int pipe_direct_write(struct file *fp, struct pipe *wpipe, 162 struct uio *uio); 163 #endif 164 static int pipespace(struct pipe *pipe, int size); 165 static int pipe_ctor(void *, void *, int); 166 static void pipe_dtor(void *, void *); 167 168 #ifndef PIPE_NODIRECT 169 static int pipe_loan_alloc(struct pipe *, int); 170 static void pipe_loan_free(struct pipe *); 171 #endif /* PIPE_NODIRECT */ 172 173 static pool_cache_t pipe_wr_cache; 174 static pool_cache_t pipe_rd_cache; 175 176 void 177 pipe_init(void) 178 { 179 180 /* Writer side is not automatically allocated KVA. */ 181 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr", 182 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL); 183 KASSERT(pipe_wr_cache != NULL); 184 185 /* Reader side gets preallocated KVA. */ 186 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd", 187 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1); 188 KASSERT(pipe_rd_cache != NULL); 189 } 190 191 static int 192 pipe_ctor(void *arg, void *obj, int flags) 193 { 194 struct pipe *pipe; 195 vaddr_t va; 196 197 pipe = obj; 198 199 memset(pipe, 0, sizeof(struct pipe)); 200 if (arg != NULL) { 201 /* Preallocate space. */ 202 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0, 203 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 204 KASSERT(va != 0); 205 pipe->pipe_kmem = va; 206 atomic_add_int(&amountpipekva, PIPE_SIZE); 207 } 208 cv_init(&pipe->pipe_rcv, "piperd"); 209 cv_init(&pipe->pipe_wcv, "pipewr"); 210 cv_init(&pipe->pipe_draincv, "pipedrain"); 211 cv_init(&pipe->pipe_lkcv, "pipelk"); 212 selinit(&pipe->pipe_sel); 213 pipe->pipe_state = PIPE_SIGNALR; 214 215 return 0; 216 } 217 218 static void 219 pipe_dtor(void *arg, void *obj) 220 { 221 struct pipe *pipe; 222 223 pipe = obj; 224 225 cv_destroy(&pipe->pipe_rcv); 226 cv_destroy(&pipe->pipe_wcv); 227 cv_destroy(&pipe->pipe_draincv); 228 cv_destroy(&pipe->pipe_lkcv); 229 seldestroy(&pipe->pipe_sel); 230 if (pipe->pipe_kmem != 0) { 231 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE, 232 UVM_KMF_PAGEABLE); 233 atomic_add_int(&amountpipekva, -PIPE_SIZE); 234 } 235 } 236 237 /* 238 * The pipe system call for the DTYPE_PIPE type of pipes 239 */ 240 241 /* ARGSUSED */ 242 int 243 sys_pipe(struct lwp *l, const void *v, register_t *retval) 244 { 245 struct file *rf, *wf; 246 struct pipe *rpipe, *wpipe; 247 kmutex_t *mutex; 248 int fd, error; 249 proc_t *p; 250 251 p = curproc; 252 rpipe = wpipe = NULL; 253 mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 254 if (mutex == NULL) 255 return (ENOMEM); 256 mutex_obj_hold(mutex); 257 if (pipe_create(&rpipe, pipe_rd_cache, mutex) || 258 pipe_create(&wpipe, pipe_wr_cache, mutex)) { 259 pipeclose(NULL, rpipe); 260 pipeclose(NULL, wpipe); 261 return (ENFILE); 262 } 263 264 error = fd_allocfile(&rf, &fd); 265 if (error) 266 goto free2; 267 retval[0] = fd; 268 rf->f_flag = FREAD; 269 rf->f_type = DTYPE_PIPE; 270 rf->f_data = (void *)rpipe; 271 rf->f_ops = &pipeops; 272 273 error = fd_allocfile(&wf, &fd); 274 if (error) 275 goto free3; 276 retval[1] = fd; 277 wf->f_flag = FWRITE; 278 wf->f_type = DTYPE_PIPE; 279 wf->f_data = (void *)wpipe; 280 wf->f_ops = &pipeops; 281 282 rpipe->pipe_peer = wpipe; 283 wpipe->pipe_peer = rpipe; 284 285 fd_affix(p, rf, (int)retval[0]); 286 fd_affix(p, wf, (int)retval[1]); 287 return (0); 288 free3: 289 fd_abort(p, rf, (int)retval[0]); 290 free2: 291 pipeclose(NULL, wpipe); 292 pipeclose(NULL, rpipe); 293 294 return (error); 295 } 296 297 /* 298 * Allocate kva for pipe circular buffer, the space is pageable 299 * This routine will 'realloc' the size of a pipe safely, if it fails 300 * it will retain the old buffer. 301 * If it fails it will return ENOMEM. 302 */ 303 static int 304 pipespace(struct pipe *pipe, int size) 305 { 306 void *buffer; 307 308 /* 309 * Allocate pageable virtual address space. Physical memory is 310 * allocated on demand. 311 */ 312 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) { 313 buffer = (void *)pipe->pipe_kmem; 314 } else { 315 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size), 316 0, UVM_KMF_PAGEABLE); 317 if (buffer == NULL) 318 return (ENOMEM); 319 atomic_add_int(&amountpipekva, size); 320 } 321 322 /* free old resources if we're resizing */ 323 pipe_free_kmem(pipe); 324 pipe->pipe_buffer.buffer = buffer; 325 pipe->pipe_buffer.size = size; 326 pipe->pipe_buffer.in = 0; 327 pipe->pipe_buffer.out = 0; 328 pipe->pipe_buffer.cnt = 0; 329 return (0); 330 } 331 332 /* 333 * Initialize and allocate VM and memory for pipe. 334 */ 335 static int 336 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex) 337 { 338 struct pipe *pipe; 339 int error; 340 341 pipe = pool_cache_get(cache, PR_WAITOK); 342 KASSERT(pipe != NULL); 343 *pipep = pipe; 344 error = 0; 345 getmicrotime(&pipe->pipe_ctime); 346 pipe->pipe_atime = pipe->pipe_ctime; 347 pipe->pipe_mtime = pipe->pipe_ctime; 348 pipe->pipe_lock = mutex; 349 if (cache == pipe_rd_cache) { 350 error = pipespace(pipe, PIPE_SIZE); 351 } else { 352 pipe->pipe_buffer.buffer = NULL; 353 pipe->pipe_buffer.size = 0; 354 pipe->pipe_buffer.in = 0; 355 pipe->pipe_buffer.out = 0; 356 pipe->pipe_buffer.cnt = 0; 357 } 358 return error; 359 } 360 361 /* 362 * Lock a pipe for I/O, blocking other access 363 * Called with pipe spin lock held. 364 * Return with pipe spin lock released on success. 365 */ 366 static int 367 pipelock(struct pipe *pipe, int catch) 368 { 369 int error; 370 371 KASSERT(mutex_owned(pipe->pipe_lock)); 372 373 while (pipe->pipe_state & PIPE_LOCKFL) { 374 pipe->pipe_state |= PIPE_LWANT; 375 if (catch) { 376 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock); 377 if (error != 0) 378 return error; 379 } else 380 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock); 381 } 382 383 pipe->pipe_state |= PIPE_LOCKFL; 384 385 return 0; 386 } 387 388 /* 389 * unlock a pipe I/O lock 390 */ 391 static inline void 392 pipeunlock(struct pipe *pipe) 393 { 394 395 KASSERT(pipe->pipe_state & PIPE_LOCKFL); 396 397 pipe->pipe_state &= ~PIPE_LOCKFL; 398 if (pipe->pipe_state & PIPE_LWANT) { 399 pipe->pipe_state &= ~PIPE_LWANT; 400 cv_broadcast(&pipe->pipe_lkcv); 401 } 402 } 403 404 /* 405 * Select/poll wakup. This also sends SIGIO to peer connected to 406 * 'sigpipe' side of pipe. 407 */ 408 static void 409 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code) 410 { 411 int band; 412 413 switch (code) { 414 case POLL_IN: 415 band = POLLIN|POLLRDNORM; 416 break; 417 case POLL_OUT: 418 band = POLLOUT|POLLWRNORM; 419 break; 420 case POLL_HUP: 421 band = POLLHUP; 422 break; 423 case POLL_ERR: 424 band = POLLERR; 425 break; 426 default: 427 band = 0; 428 #ifdef DIAGNOSTIC 429 printf("bad siginfo code %d in pipe notification.\n", code); 430 #endif 431 break; 432 } 433 434 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT); 435 436 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0) 437 return; 438 439 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp); 440 } 441 442 /* ARGSUSED */ 443 static int 444 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 445 int flags) 446 { 447 struct pipe *rpipe = (struct pipe *) fp->f_data; 448 struct pipebuf *bp = &rpipe->pipe_buffer; 449 kmutex_t *lock = rpipe->pipe_lock; 450 int error; 451 size_t nread = 0; 452 size_t size; 453 size_t ocnt; 454 455 mutex_enter(lock); 456 ++rpipe->pipe_busy; 457 ocnt = bp->cnt; 458 459 again: 460 error = pipelock(rpipe, 1); 461 if (error) 462 goto unlocked_error; 463 464 while (uio->uio_resid) { 465 /* 466 * normal pipe buffer receive 467 */ 468 if (bp->cnt > 0) { 469 size = bp->size - bp->out; 470 if (size > bp->cnt) 471 size = bp->cnt; 472 if (size > uio->uio_resid) 473 size = uio->uio_resid; 474 475 mutex_exit(lock); 476 error = uiomove((char *)bp->buffer + bp->out, size, uio); 477 mutex_enter(lock); 478 if (error) 479 break; 480 481 bp->out += size; 482 if (bp->out >= bp->size) 483 bp->out = 0; 484 485 bp->cnt -= size; 486 487 /* 488 * If there is no more to read in the pipe, reset 489 * its pointers to the beginning. This improves 490 * cache hit stats. 491 */ 492 if (bp->cnt == 0) { 493 bp->in = 0; 494 bp->out = 0; 495 } 496 nread += size; 497 continue; 498 } 499 500 #ifndef PIPE_NODIRECT 501 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) { 502 /* 503 * Direct copy, bypassing a kernel buffer. 504 */ 505 void * va; 506 507 KASSERT(rpipe->pipe_state & PIPE_DIRECTW); 508 509 size = rpipe->pipe_map.cnt; 510 if (size > uio->uio_resid) 511 size = uio->uio_resid; 512 513 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos; 514 mutex_exit(lock); 515 error = uiomove(va, size, uio); 516 mutex_enter(lock); 517 if (error) 518 break; 519 nread += size; 520 rpipe->pipe_map.pos += size; 521 rpipe->pipe_map.cnt -= size; 522 if (rpipe->pipe_map.cnt == 0) { 523 rpipe->pipe_state &= ~PIPE_DIRECTR; 524 cv_broadcast(&rpipe->pipe_wcv); 525 } 526 continue; 527 } 528 #endif 529 /* 530 * Break if some data was read. 531 */ 532 if (nread > 0) 533 break; 534 535 /* 536 * detect EOF condition 537 * read returns 0 on EOF, no need to set error 538 */ 539 if (rpipe->pipe_state & PIPE_EOF) 540 break; 541 542 /* 543 * don't block on non-blocking I/O 544 */ 545 if (fp->f_flag & FNONBLOCK) { 546 error = EAGAIN; 547 break; 548 } 549 550 /* 551 * Unlock the pipe buffer for our remaining processing. 552 * We will either break out with an error or we will 553 * sleep and relock to loop. 554 */ 555 pipeunlock(rpipe); 556 557 /* 558 * Re-check to see if more direct writes are pending. 559 */ 560 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) 561 goto again; 562 563 /* 564 * We want to read more, wake up select/poll. 565 */ 566 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 567 568 /* 569 * If the "write-side" is blocked, wake it up now. 570 */ 571 cv_broadcast(&rpipe->pipe_wcv); 572 573 /* Now wait until the pipe is filled */ 574 error = cv_wait_sig(&rpipe->pipe_rcv, lock); 575 if (error != 0) 576 goto unlocked_error; 577 goto again; 578 } 579 580 if (error == 0) 581 getmicrotime(&rpipe->pipe_atime); 582 pipeunlock(rpipe); 583 584 unlocked_error: 585 --rpipe->pipe_busy; 586 if (rpipe->pipe_busy == 0) { 587 cv_broadcast(&rpipe->pipe_draincv); 588 } 589 if (bp->cnt < MINPIPESIZE) { 590 cv_broadcast(&rpipe->pipe_wcv); 591 } 592 593 /* 594 * If anything was read off the buffer, signal to the writer it's 595 * possible to write more data. Also send signal if we are here for the 596 * first time after last write. 597 */ 598 if ((bp->size - bp->cnt) >= PIPE_BUF 599 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) { 600 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 601 rpipe->pipe_state &= ~PIPE_SIGNALR; 602 } 603 604 mutex_exit(lock); 605 return (error); 606 } 607 608 #ifndef PIPE_NODIRECT 609 /* 610 * Allocate structure for loan transfer. 611 */ 612 static int 613 pipe_loan_alloc(struct pipe *wpipe, int npages) 614 { 615 vsize_t len; 616 617 len = (vsize_t)npages << PAGE_SHIFT; 618 atomic_add_int(&amountpipekva, len); 619 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0, 620 UVM_KMF_VAONLY | UVM_KMF_WAITVA); 621 if (wpipe->pipe_map.kva == 0) { 622 atomic_add_int(&amountpipekva, -len); 623 return (ENOMEM); 624 } 625 626 wpipe->pipe_map.npages = npages; 627 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *), 628 KM_SLEEP); 629 return (0); 630 } 631 632 /* 633 * Free resources allocated for loan transfer. 634 */ 635 static void 636 pipe_loan_free(struct pipe *wpipe) 637 { 638 vsize_t len; 639 640 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT; 641 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY); 642 wpipe->pipe_map.kva = 0; 643 atomic_add_int(&amountpipekva, -len); 644 kmem_free(wpipe->pipe_map.pgs, 645 wpipe->pipe_map.npages * sizeof(struct vm_page *)); 646 wpipe->pipe_map.pgs = NULL; 647 } 648 649 /* 650 * NetBSD direct write, using uvm_loan() mechanism. 651 * This implements the pipe buffer write mechanism. Note that only 652 * a direct write OR a normal pipe write can be pending at any given time. 653 * If there are any characters in the pipe buffer, the direct write will 654 * be deferred until the receiving process grabs all of the bytes from 655 * the pipe buffer. Then the direct mapping write is set-up. 656 * 657 * Called with the long-term pipe lock held. 658 */ 659 static int 660 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio) 661 { 662 int error, npages, j; 663 struct vm_page **pgs; 664 vaddr_t bbase, kva, base, bend; 665 vsize_t blen, bcnt; 666 voff_t bpos; 667 kmutex_t *lock = wpipe->pipe_lock; 668 669 KASSERT(mutex_owned(wpipe->pipe_lock)); 670 KASSERT(wpipe->pipe_map.cnt == 0); 671 672 mutex_exit(lock); 673 674 /* 675 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers 676 * not aligned to PAGE_SIZE. 677 */ 678 bbase = (vaddr_t)uio->uio_iov->iov_base; 679 base = trunc_page(bbase); 680 bend = round_page(bbase + uio->uio_iov->iov_len); 681 blen = bend - base; 682 bpos = bbase - base; 683 684 if (blen > PIPE_DIRECT_CHUNK) { 685 blen = PIPE_DIRECT_CHUNK; 686 bend = base + blen; 687 bcnt = PIPE_DIRECT_CHUNK - bpos; 688 } else { 689 bcnt = uio->uio_iov->iov_len; 690 } 691 npages = blen >> PAGE_SHIFT; 692 693 /* 694 * Free the old kva if we need more pages than we have 695 * allocated. 696 */ 697 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages) 698 pipe_loan_free(wpipe); 699 700 /* Allocate new kva. */ 701 if (wpipe->pipe_map.kva == 0) { 702 error = pipe_loan_alloc(wpipe, npages); 703 if (error) { 704 mutex_enter(lock); 705 return (error); 706 } 707 } 708 709 /* Loan the write buffer memory from writer process */ 710 pgs = wpipe->pipe_map.pgs; 711 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen, 712 pgs, UVM_LOAN_TOPAGE); 713 if (error) { 714 pipe_loan_free(wpipe); 715 mutex_enter(lock); 716 return (ENOMEM); /* so that caller fallback to ordinary write */ 717 } 718 719 /* Enter the loaned pages to kva */ 720 kva = wpipe->pipe_map.kva; 721 for (j = 0; j < npages; j++, kva += PAGE_SIZE) { 722 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ); 723 } 724 pmap_update(pmap_kernel()); 725 726 /* Now we can put the pipe in direct write mode */ 727 wpipe->pipe_map.pos = bpos; 728 wpipe->pipe_map.cnt = bcnt; 729 730 /* 731 * But before we can let someone do a direct read, we 732 * have to wait until the pipe is drained. Release the 733 * pipe lock while we wait. 734 */ 735 mutex_enter(lock); 736 wpipe->pipe_state |= PIPE_DIRECTW; 737 pipeunlock(wpipe); 738 739 while (error == 0 && wpipe->pipe_buffer.cnt > 0) { 740 cv_broadcast(&wpipe->pipe_rcv); 741 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 742 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 743 error = EPIPE; 744 } 745 746 /* Pipe is drained; next read will off the direct buffer */ 747 wpipe->pipe_state |= PIPE_DIRECTR; 748 749 /* Wait until the reader is done */ 750 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) { 751 cv_broadcast(&wpipe->pipe_rcv); 752 pipeselwakeup(wpipe, wpipe, POLL_IN); 753 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 754 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 755 error = EPIPE; 756 } 757 758 /* Take pipe out of direct write mode */ 759 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR); 760 761 /* Acquire the pipe lock and cleanup */ 762 (void)pipelock(wpipe, 0); 763 mutex_exit(lock); 764 765 if (pgs != NULL) { 766 pmap_kremove(wpipe->pipe_map.kva, blen); 767 pmap_update(pmap_kernel()); 768 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE); 769 } 770 if (error || amountpipekva > maxpipekva) 771 pipe_loan_free(wpipe); 772 773 mutex_enter(lock); 774 if (error) { 775 pipeselwakeup(wpipe, wpipe, POLL_ERR); 776 777 /* 778 * If nothing was read from what we offered, return error 779 * straight on. Otherwise update uio resid first. Caller 780 * will deal with the error condition, returning short 781 * write, error, or restarting the write(2) as appropriate. 782 */ 783 if (wpipe->pipe_map.cnt == bcnt) { 784 wpipe->pipe_map.cnt = 0; 785 cv_broadcast(&wpipe->pipe_wcv); 786 return (error); 787 } 788 789 bcnt -= wpipe->pipe_map.cnt; 790 } 791 792 uio->uio_resid -= bcnt; 793 /* uio_offset not updated, not set/used for write(2) */ 794 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt; 795 uio->uio_iov->iov_len -= bcnt; 796 if (uio->uio_iov->iov_len == 0) { 797 uio->uio_iov++; 798 uio->uio_iovcnt--; 799 } 800 801 wpipe->pipe_map.cnt = 0; 802 return (error); 803 } 804 #endif /* !PIPE_NODIRECT */ 805 806 static int 807 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 808 int flags) 809 { 810 struct pipe *wpipe, *rpipe; 811 struct pipebuf *bp; 812 kmutex_t *lock; 813 int error; 814 815 /* We want to write to our peer */ 816 rpipe = (struct pipe *) fp->f_data; 817 lock = rpipe->pipe_lock; 818 error = 0; 819 820 mutex_enter(lock); 821 wpipe = rpipe->pipe_peer; 822 823 /* 824 * Detect loss of pipe read side, issue SIGPIPE if lost. 825 */ 826 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) { 827 mutex_exit(lock); 828 return EPIPE; 829 } 830 ++wpipe->pipe_busy; 831 832 /* Aquire the long-term pipe lock */ 833 if ((error = pipelock(wpipe, 1)) != 0) { 834 --wpipe->pipe_busy; 835 if (wpipe->pipe_busy == 0) { 836 cv_broadcast(&wpipe->pipe_draincv); 837 } 838 mutex_exit(lock); 839 return (error); 840 } 841 842 bp = &wpipe->pipe_buffer; 843 844 /* 845 * If it is advantageous to resize the pipe buffer, do so. 846 */ 847 if ((uio->uio_resid > PIPE_SIZE) && 848 (nbigpipe < maxbigpipes) && 849 #ifndef PIPE_NODIRECT 850 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 851 #endif 852 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) { 853 854 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0) 855 atomic_inc_uint(&nbigpipe); 856 } 857 858 while (uio->uio_resid) { 859 size_t space; 860 861 #ifndef PIPE_NODIRECT 862 /* 863 * Pipe buffered writes cannot be coincidental with 864 * direct writes. Also, only one direct write can be 865 * in progress at any one time. We wait until the currently 866 * executing direct write is completed before continuing. 867 * 868 * We break out if a signal occurs or the reader goes away. 869 */ 870 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) { 871 cv_broadcast(&wpipe->pipe_rcv); 872 pipeunlock(wpipe); 873 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 874 (void)pipelock(wpipe, 0); 875 if (wpipe->pipe_state & PIPE_EOF) 876 error = EPIPE; 877 } 878 if (error) 879 break; 880 881 /* 882 * If the transfer is large, we can gain performance if 883 * we do process-to-process copies directly. 884 * If the write is non-blocking, we don't use the 885 * direct write mechanism. 886 * 887 * The direct write mechanism will detect the reader going 888 * away on us. 889 */ 890 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 891 (fp->f_flag & FNONBLOCK) == 0 && 892 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) { 893 error = pipe_direct_write(fp, wpipe, uio); 894 895 /* 896 * Break out if error occurred, unless it's ENOMEM. 897 * ENOMEM means we failed to allocate some resources 898 * for direct write, so we just fallback to ordinary 899 * write. If the direct write was successful, 900 * process rest of data via ordinary write. 901 */ 902 if (error == 0) 903 continue; 904 905 if (error != ENOMEM) 906 break; 907 } 908 #endif /* PIPE_NODIRECT */ 909 910 space = bp->size - bp->cnt; 911 912 /* Writes of size <= PIPE_BUF must be atomic. */ 913 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF)) 914 space = 0; 915 916 if (space > 0) { 917 int size; /* Transfer size */ 918 int segsize; /* first segment to transfer */ 919 920 /* 921 * Transfer size is minimum of uio transfer 922 * and free space in pipe buffer. 923 */ 924 if (space > uio->uio_resid) 925 size = uio->uio_resid; 926 else 927 size = space; 928 /* 929 * First segment to transfer is minimum of 930 * transfer size and contiguous space in 931 * pipe buffer. If first segment to transfer 932 * is less than the transfer size, we've got 933 * a wraparound in the buffer. 934 */ 935 segsize = bp->size - bp->in; 936 if (segsize > size) 937 segsize = size; 938 939 /* Transfer first segment */ 940 mutex_exit(lock); 941 error = uiomove((char *)bp->buffer + bp->in, segsize, 942 uio); 943 944 if (error == 0 && segsize < size) { 945 /* 946 * Transfer remaining part now, to 947 * support atomic writes. Wraparound 948 * happened. 949 */ 950 #ifdef DEBUG 951 if (bp->in + segsize != bp->size) 952 panic("Expected pipe buffer wraparound disappeared"); 953 #endif 954 955 error = uiomove(bp->buffer, 956 size - segsize, uio); 957 } 958 mutex_enter(lock); 959 if (error) 960 break; 961 962 bp->in += size; 963 if (bp->in >= bp->size) { 964 #ifdef DEBUG 965 if (bp->in != size - segsize + bp->size) 966 panic("Expected wraparound bad"); 967 #endif 968 bp->in = size - segsize; 969 } 970 971 bp->cnt += size; 972 #ifdef DEBUG 973 if (bp->cnt > bp->size) 974 panic("Pipe buffer overflow"); 975 #endif 976 } else { 977 /* 978 * If the "read-side" has been blocked, wake it up now. 979 */ 980 cv_broadcast(&wpipe->pipe_rcv); 981 982 /* 983 * don't block on non-blocking I/O 984 */ 985 if (fp->f_flag & FNONBLOCK) { 986 error = EAGAIN; 987 break; 988 } 989 990 /* 991 * We have no more space and have something to offer, 992 * wake up select/poll. 993 */ 994 if (bp->cnt) 995 pipeselwakeup(wpipe, wpipe, POLL_IN); 996 997 pipeunlock(wpipe); 998 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 999 (void)pipelock(wpipe, 0); 1000 if (error != 0) 1001 break; 1002 /* 1003 * If read side wants to go away, we just issue a signal 1004 * to ourselves. 1005 */ 1006 if (wpipe->pipe_state & PIPE_EOF) { 1007 error = EPIPE; 1008 break; 1009 } 1010 } 1011 } 1012 1013 --wpipe->pipe_busy; 1014 if (wpipe->pipe_busy == 0) { 1015 cv_broadcast(&wpipe->pipe_draincv); 1016 } 1017 if (bp->cnt > 0) { 1018 cv_broadcast(&wpipe->pipe_rcv); 1019 } 1020 1021 /* 1022 * Don't return EPIPE if I/O was successful 1023 */ 1024 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0) 1025 error = 0; 1026 1027 if (error == 0) 1028 getmicrotime(&wpipe->pipe_mtime); 1029 1030 /* 1031 * We have something to offer, wake up select/poll. 1032 * wpipe->pipe_map.cnt is always 0 in this point (direct write 1033 * is only done synchronously), so check only wpipe->pipe_buffer.cnt 1034 */ 1035 if (bp->cnt) 1036 pipeselwakeup(wpipe, wpipe, POLL_IN); 1037 1038 /* 1039 * Arrange for next read(2) to do a signal. 1040 */ 1041 wpipe->pipe_state |= PIPE_SIGNALR; 1042 1043 pipeunlock(wpipe); 1044 mutex_exit(lock); 1045 return (error); 1046 } 1047 1048 /* 1049 * we implement a very minimal set of ioctls for compatibility with sockets. 1050 */ 1051 int 1052 pipe_ioctl(struct file *fp, u_long cmd, void *data) 1053 { 1054 struct pipe *pipe = fp->f_data; 1055 kmutex_t *lock = pipe->pipe_lock; 1056 1057 switch (cmd) { 1058 1059 case FIONBIO: 1060 return (0); 1061 1062 case FIOASYNC: 1063 mutex_enter(lock); 1064 if (*(int *)data) { 1065 pipe->pipe_state |= PIPE_ASYNC; 1066 } else { 1067 pipe->pipe_state &= ~PIPE_ASYNC; 1068 } 1069 mutex_exit(lock); 1070 return (0); 1071 1072 case FIONREAD: 1073 mutex_enter(lock); 1074 #ifndef PIPE_NODIRECT 1075 if (pipe->pipe_state & PIPE_DIRECTW) 1076 *(int *)data = pipe->pipe_map.cnt; 1077 else 1078 #endif 1079 *(int *)data = pipe->pipe_buffer.cnt; 1080 mutex_exit(lock); 1081 return (0); 1082 1083 case FIONWRITE: 1084 /* Look at other side */ 1085 pipe = pipe->pipe_peer; 1086 mutex_enter(lock); 1087 #ifndef PIPE_NODIRECT 1088 if (pipe->pipe_state & PIPE_DIRECTW) 1089 *(int *)data = pipe->pipe_map.cnt; 1090 else 1091 #endif 1092 *(int *)data = pipe->pipe_buffer.cnt; 1093 mutex_exit(lock); 1094 return (0); 1095 1096 case FIONSPACE: 1097 /* Look at other side */ 1098 pipe = pipe->pipe_peer; 1099 mutex_enter(lock); 1100 #ifndef PIPE_NODIRECT 1101 /* 1102 * If we're in direct-mode, we don't really have a 1103 * send queue, and any other write will block. Thus 1104 * zero seems like the best answer. 1105 */ 1106 if (pipe->pipe_state & PIPE_DIRECTW) 1107 *(int *)data = 0; 1108 else 1109 #endif 1110 *(int *)data = pipe->pipe_buffer.size - 1111 pipe->pipe_buffer.cnt; 1112 mutex_exit(lock); 1113 return (0); 1114 1115 case TIOCSPGRP: 1116 case FIOSETOWN: 1117 return fsetown(&pipe->pipe_pgid, cmd, data); 1118 1119 case TIOCGPGRP: 1120 case FIOGETOWN: 1121 return fgetown(pipe->pipe_pgid, cmd, data); 1122 1123 } 1124 return (EPASSTHROUGH); 1125 } 1126 1127 int 1128 pipe_poll(struct file *fp, int events) 1129 { 1130 struct pipe *rpipe = fp->f_data; 1131 struct pipe *wpipe; 1132 int eof = 0; 1133 int revents = 0; 1134 1135 mutex_enter(rpipe->pipe_lock); 1136 wpipe = rpipe->pipe_peer; 1137 1138 if (events & (POLLIN | POLLRDNORM)) 1139 if ((rpipe->pipe_buffer.cnt > 0) || 1140 #ifndef PIPE_NODIRECT 1141 (rpipe->pipe_state & PIPE_DIRECTR) || 1142 #endif 1143 (rpipe->pipe_state & PIPE_EOF)) 1144 revents |= events & (POLLIN | POLLRDNORM); 1145 1146 eof |= (rpipe->pipe_state & PIPE_EOF); 1147 1148 if (wpipe == NULL) 1149 revents |= events & (POLLOUT | POLLWRNORM); 1150 else { 1151 if (events & (POLLOUT | POLLWRNORM)) 1152 if ((wpipe->pipe_state & PIPE_EOF) || ( 1153 #ifndef PIPE_NODIRECT 1154 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1155 #endif 1156 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1157 revents |= events & (POLLOUT | POLLWRNORM); 1158 1159 eof |= (wpipe->pipe_state & PIPE_EOF); 1160 } 1161 1162 if (wpipe == NULL || eof) 1163 revents |= POLLHUP; 1164 1165 if (revents == 0) { 1166 if (events & (POLLIN | POLLRDNORM)) 1167 selrecord(curlwp, &rpipe->pipe_sel); 1168 1169 if (events & (POLLOUT | POLLWRNORM)) 1170 selrecord(curlwp, &wpipe->pipe_sel); 1171 } 1172 mutex_exit(rpipe->pipe_lock); 1173 1174 return (revents); 1175 } 1176 1177 static int 1178 pipe_stat(struct file *fp, struct stat *ub) 1179 { 1180 struct pipe *pipe = fp->f_data; 1181 1182 memset((void *)ub, 0, sizeof(*ub)); 1183 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 1184 ub->st_blksize = pipe->pipe_buffer.size; 1185 if (ub->st_blksize == 0 && pipe->pipe_peer) 1186 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size; 1187 ub->st_size = pipe->pipe_buffer.cnt; 1188 ub->st_blocks = (ub->st_size) ? 1 : 0; 1189 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec); 1190 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec); 1191 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec); 1192 ub->st_uid = kauth_cred_geteuid(fp->f_cred); 1193 ub->st_gid = kauth_cred_getegid(fp->f_cred); 1194 1195 /* 1196 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1197 * XXX (st_dev, st_ino) should be unique. 1198 */ 1199 return (0); 1200 } 1201 1202 /* ARGSUSED */ 1203 static int 1204 pipe_close(struct file *fp) 1205 { 1206 struct pipe *pipe = fp->f_data; 1207 1208 fp->f_data = NULL; 1209 pipeclose(fp, pipe); 1210 return (0); 1211 } 1212 1213 static void 1214 pipe_free_kmem(struct pipe *pipe) 1215 { 1216 1217 if (pipe->pipe_buffer.buffer != NULL) { 1218 if (pipe->pipe_buffer.size > PIPE_SIZE) { 1219 atomic_dec_uint(&nbigpipe); 1220 } 1221 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) { 1222 uvm_km_free(kernel_map, 1223 (vaddr_t)pipe->pipe_buffer.buffer, 1224 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE); 1225 atomic_add_int(&amountpipekva, 1226 -pipe->pipe_buffer.size); 1227 } 1228 pipe->pipe_buffer.buffer = NULL; 1229 } 1230 #ifndef PIPE_NODIRECT 1231 if (pipe->pipe_map.kva != 0) { 1232 pipe_loan_free(pipe); 1233 pipe->pipe_map.cnt = 0; 1234 pipe->pipe_map.kva = 0; 1235 pipe->pipe_map.pos = 0; 1236 pipe->pipe_map.npages = 0; 1237 } 1238 #endif /* !PIPE_NODIRECT */ 1239 } 1240 1241 /* 1242 * shutdown the pipe 1243 */ 1244 static void 1245 pipeclose(struct file *fp, struct pipe *pipe) 1246 { 1247 kmutex_t *lock; 1248 struct pipe *ppipe; 1249 1250 if (pipe == NULL) 1251 return; 1252 1253 KASSERT(cv_is_valid(&pipe->pipe_rcv)); 1254 KASSERT(cv_is_valid(&pipe->pipe_wcv)); 1255 KASSERT(cv_is_valid(&pipe->pipe_draincv)); 1256 KASSERT(cv_is_valid(&pipe->pipe_lkcv)); 1257 1258 lock = pipe->pipe_lock; 1259 mutex_enter(lock); 1260 pipeselwakeup(pipe, pipe, POLL_HUP); 1261 1262 /* 1263 * If the other side is blocked, wake it up saying that 1264 * we want to close it down. 1265 */ 1266 pipe->pipe_state |= PIPE_EOF; 1267 if (pipe->pipe_busy) { 1268 while (pipe->pipe_busy) { 1269 cv_broadcast(&pipe->pipe_wcv); 1270 cv_wait_sig(&pipe->pipe_draincv, lock); 1271 } 1272 } 1273 1274 /* 1275 * Disconnect from peer 1276 */ 1277 if ((ppipe = pipe->pipe_peer) != NULL) { 1278 pipeselwakeup(ppipe, ppipe, POLL_HUP); 1279 ppipe->pipe_state |= PIPE_EOF; 1280 cv_broadcast(&ppipe->pipe_rcv); 1281 ppipe->pipe_peer = NULL; 1282 } 1283 1284 /* 1285 * Any knote objects still left in the list are 1286 * the one attached by peer. Since no one will 1287 * traverse this list, we just clear it. 1288 */ 1289 SLIST_INIT(&pipe->pipe_sel.sel_klist); 1290 1291 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0); 1292 mutex_exit(lock); 1293 1294 /* 1295 * free resources 1296 */ 1297 pipe->pipe_pgid = 0; 1298 pipe->pipe_state = PIPE_SIGNALR; 1299 pipe_free_kmem(pipe); 1300 if (pipe->pipe_kmem != 0) { 1301 pool_cache_put(pipe_rd_cache, pipe); 1302 } else { 1303 pool_cache_put(pipe_wr_cache, pipe); 1304 } 1305 mutex_obj_free(lock); 1306 } 1307 1308 static void 1309 filt_pipedetach(struct knote *kn) 1310 { 1311 struct pipe *pipe; 1312 kmutex_t *lock; 1313 1314 pipe = ((file_t *)kn->kn_obj)->f_data; 1315 lock = pipe->pipe_lock; 1316 1317 mutex_enter(lock); 1318 1319 switch(kn->kn_filter) { 1320 case EVFILT_WRITE: 1321 /* need the peer structure, not our own */ 1322 pipe = pipe->pipe_peer; 1323 1324 /* if reader end already closed, just return */ 1325 if (pipe == NULL) { 1326 mutex_exit(lock); 1327 return; 1328 } 1329 1330 break; 1331 default: 1332 /* nothing to do */ 1333 break; 1334 } 1335 1336 #ifdef DIAGNOSTIC 1337 if (kn->kn_hook != pipe) 1338 panic("filt_pipedetach: inconsistent knote"); 1339 #endif 1340 1341 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext); 1342 mutex_exit(lock); 1343 } 1344 1345 /*ARGSUSED*/ 1346 static int 1347 filt_piperead(struct knote *kn, long hint) 1348 { 1349 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data; 1350 struct pipe *wpipe; 1351 1352 if ((hint & NOTE_SUBMIT) == 0) { 1353 mutex_enter(rpipe->pipe_lock); 1354 } 1355 wpipe = rpipe->pipe_peer; 1356 kn->kn_data = rpipe->pipe_buffer.cnt; 1357 1358 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1359 kn->kn_data = rpipe->pipe_map.cnt; 1360 1361 if ((rpipe->pipe_state & PIPE_EOF) || 1362 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1363 kn->kn_flags |= EV_EOF; 1364 if ((hint & NOTE_SUBMIT) == 0) { 1365 mutex_exit(rpipe->pipe_lock); 1366 } 1367 return (1); 1368 } 1369 1370 if ((hint & NOTE_SUBMIT) == 0) { 1371 mutex_exit(rpipe->pipe_lock); 1372 } 1373 return (kn->kn_data > 0); 1374 } 1375 1376 /*ARGSUSED*/ 1377 static int 1378 filt_pipewrite(struct knote *kn, long hint) 1379 { 1380 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data; 1381 struct pipe *wpipe; 1382 1383 if ((hint & NOTE_SUBMIT) == 0) { 1384 mutex_enter(rpipe->pipe_lock); 1385 } 1386 wpipe = rpipe->pipe_peer; 1387 1388 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1389 kn->kn_data = 0; 1390 kn->kn_flags |= EV_EOF; 1391 if ((hint & NOTE_SUBMIT) == 0) { 1392 mutex_exit(rpipe->pipe_lock); 1393 } 1394 return (1); 1395 } 1396 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1397 if (wpipe->pipe_state & PIPE_DIRECTW) 1398 kn->kn_data = 0; 1399 1400 if ((hint & NOTE_SUBMIT) == 0) { 1401 mutex_exit(rpipe->pipe_lock); 1402 } 1403 return (kn->kn_data >= PIPE_BUF); 1404 } 1405 1406 static const struct filterops pipe_rfiltops = 1407 { 1, NULL, filt_pipedetach, filt_piperead }; 1408 static const struct filterops pipe_wfiltops = 1409 { 1, NULL, filt_pipedetach, filt_pipewrite }; 1410 1411 /*ARGSUSED*/ 1412 static int 1413 pipe_kqfilter(struct file *fp, struct knote *kn) 1414 { 1415 struct pipe *pipe; 1416 kmutex_t *lock; 1417 1418 pipe = ((file_t *)kn->kn_obj)->f_data; 1419 lock = pipe->pipe_lock; 1420 1421 mutex_enter(lock); 1422 1423 switch (kn->kn_filter) { 1424 case EVFILT_READ: 1425 kn->kn_fop = &pipe_rfiltops; 1426 break; 1427 case EVFILT_WRITE: 1428 kn->kn_fop = &pipe_wfiltops; 1429 pipe = pipe->pipe_peer; 1430 if (pipe == NULL) { 1431 /* other end of pipe has been closed */ 1432 mutex_exit(lock); 1433 return (EBADF); 1434 } 1435 break; 1436 default: 1437 mutex_exit(lock); 1438 return (EINVAL); 1439 } 1440 1441 kn->kn_hook = pipe; 1442 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext); 1443 mutex_exit(lock); 1444 1445 return (0); 1446 } 1447 1448 /* 1449 * Handle pipe sysctls. 1450 */ 1451 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup") 1452 { 1453 1454 sysctl_createv(clog, 0, NULL, NULL, 1455 CTLFLAG_PERMANENT, 1456 CTLTYPE_NODE, "kern", NULL, 1457 NULL, 0, NULL, 0, 1458 CTL_KERN, CTL_EOL); 1459 sysctl_createv(clog, 0, NULL, NULL, 1460 CTLFLAG_PERMANENT, 1461 CTLTYPE_NODE, "pipe", 1462 SYSCTL_DESCR("Pipe settings"), 1463 NULL, 0, NULL, 0, 1464 CTL_KERN, KERN_PIPE, CTL_EOL); 1465 1466 sysctl_createv(clog, 0, NULL, NULL, 1467 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1468 CTLTYPE_INT, "maxkvasz", 1469 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1470 "used for pipes"), 1471 NULL, 0, &maxpipekva, 0, 1472 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL); 1473 sysctl_createv(clog, 0, NULL, NULL, 1474 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1475 CTLTYPE_INT, "maxloankvasz", 1476 SYSCTL_DESCR("Limit for direct transfers via page loan"), 1477 NULL, 0, &limitpipekva, 0, 1478 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL); 1479 sysctl_createv(clog, 0, NULL, NULL, 1480 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1481 CTLTYPE_INT, "maxbigpipes", 1482 SYSCTL_DESCR("Maximum number of \"big\" pipes"), 1483 NULL, 0, &maxbigpipes, 0, 1484 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL); 1485 sysctl_createv(clog, 0, NULL, NULL, 1486 CTLFLAG_PERMANENT, 1487 CTLTYPE_INT, "nbigpipes", 1488 SYSCTL_DESCR("Number of \"big\" pipes"), 1489 NULL, 0, &nbigpipe, 0, 1490 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL); 1491 sysctl_createv(clog, 0, NULL, NULL, 1492 CTLFLAG_PERMANENT, 1493 CTLTYPE_INT, "kvasize", 1494 SYSCTL_DESCR("Amount of kernel memory consumed by pipe " 1495 "buffers"), 1496 NULL, 0, &amountpipekva, 0, 1497 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL); 1498 } 1499