xref: /netbsd-src/sys/kern/sys_pipe.c (revision c8a35b6227034951e874c2def577388e79ede4a5)
1 /*	$NetBSD: sys_pipe.c,v 1.108 2009/02/15 00:07:54 enami Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1996 John S. Dyson
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice immediately at the beginning of the file, without modification,
41  *    this list of conditions, and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Absolutely no warranty of function or purpose is made by the author
46  *    John S. Dyson.
47  * 4. Modifications may be freely made to this file if the above conditions
48  *    are met.
49  */
50 
51 /*
52  * This file contains a high-performance replacement for the socket-based
53  * pipes scheme originally used.  It does not support all features of
54  * sockets, but does do everything that pipes normally do.
55  *
56  * This code has two modes of operation, a small write mode and a large
57  * write mode.  The small write mode acts like conventional pipes with
58  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
59  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
60  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61  * using the UVM page loan facility from where the receiving process can copy
62  * the data directly from the pages in the sending process.
63  *
64  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65  * happen for small transfers so that the system will not spend all of
66  * its time context switching.  PIPE_SIZE is constrained by the
67  * amount of kernel virtual memory.
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.108 2009/02/15 00:07:54 enami Exp $");
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94 
95 #include <uvm/uvm.h>
96 
97 /* Use this define if you want to disable *fancy* VM things. */
98 /* XXX Disabled for now; rare hangs switching between direct/buffered */
99 #define PIPE_NODIRECT
100 
101 /*
102  * interfaces to the outside world
103  */
104 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
105 		kauth_cred_t cred, int flags);
106 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
107 		kauth_cred_t cred, int flags);
108 static int pipe_close(struct file *fp);
109 static int pipe_poll(struct file *fp, int events);
110 static int pipe_kqfilter(struct file *fp, struct knote *kn);
111 static int pipe_stat(struct file *fp, struct stat *sb);
112 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
113 
114 static const struct fileops pipeops = {
115 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
116 	pipe_stat, pipe_close, pipe_kqfilter
117 };
118 
119 /*
120  * Default pipe buffer size(s), this can be kind-of large now because pipe
121  * space is pageable.  The pipe code will try to maintain locality of
122  * reference for performance reasons, so small amounts of outstanding I/O
123  * will not wipe the cache.
124  */
125 #define MINPIPESIZE (PIPE_SIZE/3)
126 #define MAXPIPESIZE (2*PIPE_SIZE/3)
127 
128 /*
129  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
130  * is there so that on large systems, we don't exhaust it.
131  */
132 #define MAXPIPEKVA (8*1024*1024)
133 static u_int maxpipekva = MAXPIPEKVA;
134 
135 /*
136  * Limit for direct transfers, we cannot, of course limit
137  * the amount of kva for pipes in general though.
138  */
139 #define LIMITPIPEKVA (16*1024*1024)
140 static u_int limitpipekva = LIMITPIPEKVA;
141 
142 /*
143  * Limit the number of "big" pipes
144  */
145 #define LIMITBIGPIPES  32
146 static u_int maxbigpipes = LIMITBIGPIPES;
147 static u_int nbigpipe = 0;
148 
149 /*
150  * Amount of KVA consumed by pipe buffers.
151  */
152 static u_int amountpipekva = 0;
153 
154 static void pipeclose(struct file *fp, struct pipe *pipe);
155 static void pipe_free_kmem(struct pipe *pipe);
156 static int pipe_create(struct pipe **pipep, pool_cache_t, kmutex_t *);
157 static int pipelock(struct pipe *pipe, int catch);
158 static inline void pipeunlock(struct pipe *pipe);
159 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
160 #ifndef PIPE_NODIRECT
161 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
162     struct uio *uio);
163 #endif
164 static int pipespace(struct pipe *pipe, int size);
165 static int pipe_ctor(void *, void *, int);
166 static void pipe_dtor(void *, void *);
167 
168 #ifndef PIPE_NODIRECT
169 static int pipe_loan_alloc(struct pipe *, int);
170 static void pipe_loan_free(struct pipe *);
171 #endif /* PIPE_NODIRECT */
172 
173 static pool_cache_t pipe_wr_cache;
174 static pool_cache_t pipe_rd_cache;
175 
176 void
177 pipe_init(void)
178 {
179 
180 	/* Writer side is not automatically allocated KVA. */
181 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
182 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
183 	KASSERT(pipe_wr_cache != NULL);
184 
185 	/* Reader side gets preallocated KVA. */
186 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
187 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
188 	KASSERT(pipe_rd_cache != NULL);
189 }
190 
191 static int
192 pipe_ctor(void *arg, void *obj, int flags)
193 {
194 	struct pipe *pipe;
195 	vaddr_t va;
196 
197 	pipe = obj;
198 
199 	memset(pipe, 0, sizeof(struct pipe));
200 	if (arg != NULL) {
201 		/* Preallocate space. */
202 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
203 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
204 		KASSERT(va != 0);
205 		pipe->pipe_kmem = va;
206 		atomic_add_int(&amountpipekva, PIPE_SIZE);
207 	}
208 	cv_init(&pipe->pipe_rcv, "piperd");
209 	cv_init(&pipe->pipe_wcv, "pipewr");
210 	cv_init(&pipe->pipe_draincv, "pipedrain");
211 	cv_init(&pipe->pipe_lkcv, "pipelk");
212 	selinit(&pipe->pipe_sel);
213 	pipe->pipe_state = PIPE_SIGNALR;
214 
215 	return 0;
216 }
217 
218 static void
219 pipe_dtor(void *arg, void *obj)
220 {
221 	struct pipe *pipe;
222 
223 	pipe = obj;
224 
225 	cv_destroy(&pipe->pipe_rcv);
226 	cv_destroy(&pipe->pipe_wcv);
227 	cv_destroy(&pipe->pipe_draincv);
228 	cv_destroy(&pipe->pipe_lkcv);
229 	seldestroy(&pipe->pipe_sel);
230 	if (pipe->pipe_kmem != 0) {
231 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
232 		    UVM_KMF_PAGEABLE);
233 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
234 	}
235 }
236 
237 /*
238  * The pipe system call for the DTYPE_PIPE type of pipes
239  */
240 
241 /* ARGSUSED */
242 int
243 sys_pipe(struct lwp *l, const void *v, register_t *retval)
244 {
245 	struct file *rf, *wf;
246 	struct pipe *rpipe, *wpipe;
247 	kmutex_t *mutex;
248 	int fd, error;
249 	proc_t *p;
250 
251 	p = curproc;
252 	rpipe = wpipe = NULL;
253 	mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
254 	if (mutex == NULL)
255 		return (ENOMEM);
256 	mutex_obj_hold(mutex);
257 	if (pipe_create(&rpipe, pipe_rd_cache, mutex) ||
258 	    pipe_create(&wpipe, pipe_wr_cache, mutex)) {
259 		pipeclose(NULL, rpipe);
260 		pipeclose(NULL, wpipe);
261 		return (ENFILE);
262 	}
263 
264 	error = fd_allocfile(&rf, &fd);
265 	if (error)
266 		goto free2;
267 	retval[0] = fd;
268 	rf->f_flag = FREAD;
269 	rf->f_type = DTYPE_PIPE;
270 	rf->f_data = (void *)rpipe;
271 	rf->f_ops = &pipeops;
272 
273 	error = fd_allocfile(&wf, &fd);
274 	if (error)
275 		goto free3;
276 	retval[1] = fd;
277 	wf->f_flag = FWRITE;
278 	wf->f_type = DTYPE_PIPE;
279 	wf->f_data = (void *)wpipe;
280 	wf->f_ops = &pipeops;
281 
282 	rpipe->pipe_peer = wpipe;
283 	wpipe->pipe_peer = rpipe;
284 
285 	fd_affix(p, rf, (int)retval[0]);
286 	fd_affix(p, wf, (int)retval[1]);
287 	return (0);
288 free3:
289 	fd_abort(p, rf, (int)retval[0]);
290 free2:
291 	pipeclose(NULL, wpipe);
292 	pipeclose(NULL, rpipe);
293 
294 	return (error);
295 }
296 
297 /*
298  * Allocate kva for pipe circular buffer, the space is pageable
299  * This routine will 'realloc' the size of a pipe safely, if it fails
300  * it will retain the old buffer.
301  * If it fails it will return ENOMEM.
302  */
303 static int
304 pipespace(struct pipe *pipe, int size)
305 {
306 	void *buffer;
307 
308 	/*
309 	 * Allocate pageable virtual address space.  Physical memory is
310 	 * allocated on demand.
311 	 */
312 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
313 		buffer = (void *)pipe->pipe_kmem;
314 	} else {
315 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
316 		    0, UVM_KMF_PAGEABLE);
317 		if (buffer == NULL)
318 			return (ENOMEM);
319 		atomic_add_int(&amountpipekva, size);
320 	}
321 
322 	/* free old resources if we're resizing */
323 	pipe_free_kmem(pipe);
324 	pipe->pipe_buffer.buffer = buffer;
325 	pipe->pipe_buffer.size = size;
326 	pipe->pipe_buffer.in = 0;
327 	pipe->pipe_buffer.out = 0;
328 	pipe->pipe_buffer.cnt = 0;
329 	return (0);
330 }
331 
332 /*
333  * Initialize and allocate VM and memory for pipe.
334  */
335 static int
336 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex)
337 {
338 	struct pipe *pipe;
339 	int error;
340 
341 	pipe = pool_cache_get(cache, PR_WAITOK);
342 	KASSERT(pipe != NULL);
343 	*pipep = pipe;
344 	error = 0;
345 	getmicrotime(&pipe->pipe_ctime);
346 	pipe->pipe_atime = pipe->pipe_ctime;
347 	pipe->pipe_mtime = pipe->pipe_ctime;
348 	pipe->pipe_lock = mutex;
349 	if (cache == pipe_rd_cache) {
350 		error = pipespace(pipe, PIPE_SIZE);
351 	} else {
352 		pipe->pipe_buffer.buffer = NULL;
353 		pipe->pipe_buffer.size = 0;
354 		pipe->pipe_buffer.in = 0;
355 		pipe->pipe_buffer.out = 0;
356 		pipe->pipe_buffer.cnt = 0;
357 	}
358 	return error;
359 }
360 
361 /*
362  * Lock a pipe for I/O, blocking other access
363  * Called with pipe spin lock held.
364  * Return with pipe spin lock released on success.
365  */
366 static int
367 pipelock(struct pipe *pipe, int catch)
368 {
369 	int error;
370 
371 	KASSERT(mutex_owned(pipe->pipe_lock));
372 
373 	while (pipe->pipe_state & PIPE_LOCKFL) {
374 		pipe->pipe_state |= PIPE_LWANT;
375 		if (catch) {
376 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
377 			if (error != 0)
378 				return error;
379 		} else
380 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
381 	}
382 
383 	pipe->pipe_state |= PIPE_LOCKFL;
384 
385 	return 0;
386 }
387 
388 /*
389  * unlock a pipe I/O lock
390  */
391 static inline void
392 pipeunlock(struct pipe *pipe)
393 {
394 
395 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
396 
397 	pipe->pipe_state &= ~PIPE_LOCKFL;
398 	if (pipe->pipe_state & PIPE_LWANT) {
399 		pipe->pipe_state &= ~PIPE_LWANT;
400 		cv_broadcast(&pipe->pipe_lkcv);
401 	}
402 }
403 
404 /*
405  * Select/poll wakup. This also sends SIGIO to peer connected to
406  * 'sigpipe' side of pipe.
407  */
408 static void
409 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
410 {
411 	int band;
412 
413 	switch (code) {
414 	case POLL_IN:
415 		band = POLLIN|POLLRDNORM;
416 		break;
417 	case POLL_OUT:
418 		band = POLLOUT|POLLWRNORM;
419 		break;
420 	case POLL_HUP:
421 		band = POLLHUP;
422 		break;
423 	case POLL_ERR:
424 		band = POLLERR;
425 		break;
426 	default:
427 		band = 0;
428 #ifdef DIAGNOSTIC
429 		printf("bad siginfo code %d in pipe notification.\n", code);
430 #endif
431 		break;
432 	}
433 
434 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
435 
436 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
437 		return;
438 
439 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
440 }
441 
442 /* ARGSUSED */
443 static int
444 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
445     int flags)
446 {
447 	struct pipe *rpipe = (struct pipe *) fp->f_data;
448 	struct pipebuf *bp = &rpipe->pipe_buffer;
449 	kmutex_t *lock = rpipe->pipe_lock;
450 	int error;
451 	size_t nread = 0;
452 	size_t size;
453 	size_t ocnt;
454 
455 	mutex_enter(lock);
456 	++rpipe->pipe_busy;
457 	ocnt = bp->cnt;
458 
459 again:
460 	error = pipelock(rpipe, 1);
461 	if (error)
462 		goto unlocked_error;
463 
464 	while (uio->uio_resid) {
465 		/*
466 		 * normal pipe buffer receive
467 		 */
468 		if (bp->cnt > 0) {
469 			size = bp->size - bp->out;
470 			if (size > bp->cnt)
471 				size = bp->cnt;
472 			if (size > uio->uio_resid)
473 				size = uio->uio_resid;
474 
475 			mutex_exit(lock);
476 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
477 			mutex_enter(lock);
478 			if (error)
479 				break;
480 
481 			bp->out += size;
482 			if (bp->out >= bp->size)
483 				bp->out = 0;
484 
485 			bp->cnt -= size;
486 
487 			/*
488 			 * If there is no more to read in the pipe, reset
489 			 * its pointers to the beginning.  This improves
490 			 * cache hit stats.
491 			 */
492 			if (bp->cnt == 0) {
493 				bp->in = 0;
494 				bp->out = 0;
495 			}
496 			nread += size;
497 			continue;
498 		}
499 
500 #ifndef PIPE_NODIRECT
501 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
502 			/*
503 			 * Direct copy, bypassing a kernel buffer.
504 			 */
505 			void *	va;
506 
507 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
508 
509 			size = rpipe->pipe_map.cnt;
510 			if (size > uio->uio_resid)
511 				size = uio->uio_resid;
512 
513 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
514 			mutex_exit(lock);
515 			error = uiomove(va, size, uio);
516 			mutex_enter(lock);
517 			if (error)
518 				break;
519 			nread += size;
520 			rpipe->pipe_map.pos += size;
521 			rpipe->pipe_map.cnt -= size;
522 			if (rpipe->pipe_map.cnt == 0) {
523 				rpipe->pipe_state &= ~PIPE_DIRECTR;
524 				cv_broadcast(&rpipe->pipe_wcv);
525 			}
526 			continue;
527 		}
528 #endif
529 		/*
530 		 * Break if some data was read.
531 		 */
532 		if (nread > 0)
533 			break;
534 
535 		/*
536 		 * detect EOF condition
537 		 * read returns 0 on EOF, no need to set error
538 		 */
539 		if (rpipe->pipe_state & PIPE_EOF)
540 			break;
541 
542 		/*
543 		 * don't block on non-blocking I/O
544 		 */
545 		if (fp->f_flag & FNONBLOCK) {
546 			error = EAGAIN;
547 			break;
548 		}
549 
550 		/*
551 		 * Unlock the pipe buffer for our remaining processing.
552 		 * We will either break out with an error or we will
553 		 * sleep and relock to loop.
554 		 */
555 		pipeunlock(rpipe);
556 
557 		/*
558 		 * Re-check to see if more direct writes are pending.
559 		 */
560 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
561 			goto again;
562 
563 		/*
564 		 * We want to read more, wake up select/poll.
565 		 */
566 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
567 
568 		/*
569 		 * If the "write-side" is blocked, wake it up now.
570 		 */
571 		cv_broadcast(&rpipe->pipe_wcv);
572 
573 		/* Now wait until the pipe is filled */
574 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
575 		if (error != 0)
576 			goto unlocked_error;
577 		goto again;
578 	}
579 
580 	if (error == 0)
581 		getmicrotime(&rpipe->pipe_atime);
582 	pipeunlock(rpipe);
583 
584 unlocked_error:
585 	--rpipe->pipe_busy;
586 	if (rpipe->pipe_busy == 0) {
587 		cv_broadcast(&rpipe->pipe_draincv);
588 	}
589 	if (bp->cnt < MINPIPESIZE) {
590 		cv_broadcast(&rpipe->pipe_wcv);
591 	}
592 
593 	/*
594 	 * If anything was read off the buffer, signal to the writer it's
595 	 * possible to write more data. Also send signal if we are here for the
596 	 * first time after last write.
597 	 */
598 	if ((bp->size - bp->cnt) >= PIPE_BUF
599 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
600 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
601 		rpipe->pipe_state &= ~PIPE_SIGNALR;
602 	}
603 
604 	mutex_exit(lock);
605 	return (error);
606 }
607 
608 #ifndef PIPE_NODIRECT
609 /*
610  * Allocate structure for loan transfer.
611  */
612 static int
613 pipe_loan_alloc(struct pipe *wpipe, int npages)
614 {
615 	vsize_t len;
616 
617 	len = (vsize_t)npages << PAGE_SHIFT;
618 	atomic_add_int(&amountpipekva, len);
619 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
620 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
621 	if (wpipe->pipe_map.kva == 0) {
622 		atomic_add_int(&amountpipekva, -len);
623 		return (ENOMEM);
624 	}
625 
626 	wpipe->pipe_map.npages = npages;
627 	wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
628 	    KM_SLEEP);
629 	return (0);
630 }
631 
632 /*
633  * Free resources allocated for loan transfer.
634  */
635 static void
636 pipe_loan_free(struct pipe *wpipe)
637 {
638 	vsize_t len;
639 
640 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
641 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
642 	wpipe->pipe_map.kva = 0;
643 	atomic_add_int(&amountpipekva, -len);
644 	kmem_free(wpipe->pipe_map.pgs,
645 	    wpipe->pipe_map.npages * sizeof(struct vm_page *));
646 	wpipe->pipe_map.pgs = NULL;
647 }
648 
649 /*
650  * NetBSD direct write, using uvm_loan() mechanism.
651  * This implements the pipe buffer write mechanism.  Note that only
652  * a direct write OR a normal pipe write can be pending at any given time.
653  * If there are any characters in the pipe buffer, the direct write will
654  * be deferred until the receiving process grabs all of the bytes from
655  * the pipe buffer.  Then the direct mapping write is set-up.
656  *
657  * Called with the long-term pipe lock held.
658  */
659 static int
660 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
661 {
662 	int error, npages, j;
663 	struct vm_page **pgs;
664 	vaddr_t bbase, kva, base, bend;
665 	vsize_t blen, bcnt;
666 	voff_t bpos;
667 	kmutex_t *lock = wpipe->pipe_lock;
668 
669 	KASSERT(mutex_owned(wpipe->pipe_lock));
670 	KASSERT(wpipe->pipe_map.cnt == 0);
671 
672 	mutex_exit(lock);
673 
674 	/*
675 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
676 	 * not aligned to PAGE_SIZE.
677 	 */
678 	bbase = (vaddr_t)uio->uio_iov->iov_base;
679 	base = trunc_page(bbase);
680 	bend = round_page(bbase + uio->uio_iov->iov_len);
681 	blen = bend - base;
682 	bpos = bbase - base;
683 
684 	if (blen > PIPE_DIRECT_CHUNK) {
685 		blen = PIPE_DIRECT_CHUNK;
686 		bend = base + blen;
687 		bcnt = PIPE_DIRECT_CHUNK - bpos;
688 	} else {
689 		bcnt = uio->uio_iov->iov_len;
690 	}
691 	npages = blen >> PAGE_SHIFT;
692 
693 	/*
694 	 * Free the old kva if we need more pages than we have
695 	 * allocated.
696 	 */
697 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
698 		pipe_loan_free(wpipe);
699 
700 	/* Allocate new kva. */
701 	if (wpipe->pipe_map.kva == 0) {
702 		error = pipe_loan_alloc(wpipe, npages);
703 		if (error) {
704 			mutex_enter(lock);
705 			return (error);
706 		}
707 	}
708 
709 	/* Loan the write buffer memory from writer process */
710 	pgs = wpipe->pipe_map.pgs;
711 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
712 			 pgs, UVM_LOAN_TOPAGE);
713 	if (error) {
714 		pipe_loan_free(wpipe);
715 		mutex_enter(lock);
716 		return (ENOMEM); /* so that caller fallback to ordinary write */
717 	}
718 
719 	/* Enter the loaned pages to kva */
720 	kva = wpipe->pipe_map.kva;
721 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
722 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
723 	}
724 	pmap_update(pmap_kernel());
725 
726 	/* Now we can put the pipe in direct write mode */
727 	wpipe->pipe_map.pos = bpos;
728 	wpipe->pipe_map.cnt = bcnt;
729 
730 	/*
731 	 * But before we can let someone do a direct read, we
732 	 * have to wait until the pipe is drained.  Release the
733 	 * pipe lock while we wait.
734 	 */
735 	mutex_enter(lock);
736 	wpipe->pipe_state |= PIPE_DIRECTW;
737 	pipeunlock(wpipe);
738 
739 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
740 		cv_broadcast(&wpipe->pipe_rcv);
741 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
742 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
743 			error = EPIPE;
744 	}
745 
746 	/* Pipe is drained; next read will off the direct buffer */
747 	wpipe->pipe_state |= PIPE_DIRECTR;
748 
749 	/* Wait until the reader is done */
750 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
751 		cv_broadcast(&wpipe->pipe_rcv);
752 		pipeselwakeup(wpipe, wpipe, POLL_IN);
753 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
754 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
755 			error = EPIPE;
756 	}
757 
758 	/* Take pipe out of direct write mode */
759 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
760 
761 	/* Acquire the pipe lock and cleanup */
762 	(void)pipelock(wpipe, 0);
763 	mutex_exit(lock);
764 
765 	if (pgs != NULL) {
766 		pmap_kremove(wpipe->pipe_map.kva, blen);
767 		pmap_update(pmap_kernel());
768 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
769 	}
770 	if (error || amountpipekva > maxpipekva)
771 		pipe_loan_free(wpipe);
772 
773 	mutex_enter(lock);
774 	if (error) {
775 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
776 
777 		/*
778 		 * If nothing was read from what we offered, return error
779 		 * straight on. Otherwise update uio resid first. Caller
780 		 * will deal with the error condition, returning short
781 		 * write, error, or restarting the write(2) as appropriate.
782 		 */
783 		if (wpipe->pipe_map.cnt == bcnt) {
784 			wpipe->pipe_map.cnt = 0;
785 			cv_broadcast(&wpipe->pipe_wcv);
786 			return (error);
787 		}
788 
789 		bcnt -= wpipe->pipe_map.cnt;
790 	}
791 
792 	uio->uio_resid -= bcnt;
793 	/* uio_offset not updated, not set/used for write(2) */
794 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
795 	uio->uio_iov->iov_len -= bcnt;
796 	if (uio->uio_iov->iov_len == 0) {
797 		uio->uio_iov++;
798 		uio->uio_iovcnt--;
799 	}
800 
801 	wpipe->pipe_map.cnt = 0;
802 	return (error);
803 }
804 #endif /* !PIPE_NODIRECT */
805 
806 static int
807 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
808     int flags)
809 {
810 	struct pipe *wpipe, *rpipe;
811 	struct pipebuf *bp;
812 	kmutex_t *lock;
813 	int error;
814 
815 	/* We want to write to our peer */
816 	rpipe = (struct pipe *) fp->f_data;
817 	lock = rpipe->pipe_lock;
818 	error = 0;
819 
820 	mutex_enter(lock);
821 	wpipe = rpipe->pipe_peer;
822 
823 	/*
824 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
825 	 */
826 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
827 		mutex_exit(lock);
828 		return EPIPE;
829 	}
830 	++wpipe->pipe_busy;
831 
832 	/* Aquire the long-term pipe lock */
833 	if ((error = pipelock(wpipe, 1)) != 0) {
834 		--wpipe->pipe_busy;
835 		if (wpipe->pipe_busy == 0) {
836 			cv_broadcast(&wpipe->pipe_draincv);
837 		}
838 		mutex_exit(lock);
839 		return (error);
840 	}
841 
842 	bp = &wpipe->pipe_buffer;
843 
844 	/*
845 	 * If it is advantageous to resize the pipe buffer, do so.
846 	 */
847 	if ((uio->uio_resid > PIPE_SIZE) &&
848 	    (nbigpipe < maxbigpipes) &&
849 #ifndef PIPE_NODIRECT
850 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
851 #endif
852 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
853 
854 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
855 			atomic_inc_uint(&nbigpipe);
856 	}
857 
858 	while (uio->uio_resid) {
859 		size_t space;
860 
861 #ifndef PIPE_NODIRECT
862 		/*
863 		 * Pipe buffered writes cannot be coincidental with
864 		 * direct writes.  Also, only one direct write can be
865 		 * in progress at any one time.  We wait until the currently
866 		 * executing direct write is completed before continuing.
867 		 *
868 		 * We break out if a signal occurs or the reader goes away.
869 		 */
870 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
871 			cv_broadcast(&wpipe->pipe_rcv);
872 			pipeunlock(wpipe);
873 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
874 			(void)pipelock(wpipe, 0);
875 			if (wpipe->pipe_state & PIPE_EOF)
876 				error = EPIPE;
877 		}
878 		if (error)
879 			break;
880 
881 		/*
882 		 * If the transfer is large, we can gain performance if
883 		 * we do process-to-process copies directly.
884 		 * If the write is non-blocking, we don't use the
885 		 * direct write mechanism.
886 		 *
887 		 * The direct write mechanism will detect the reader going
888 		 * away on us.
889 		 */
890 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
891 		    (fp->f_flag & FNONBLOCK) == 0 &&
892 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
893 			error = pipe_direct_write(fp, wpipe, uio);
894 
895 			/*
896 			 * Break out if error occurred, unless it's ENOMEM.
897 			 * ENOMEM means we failed to allocate some resources
898 			 * for direct write, so we just fallback to ordinary
899 			 * write. If the direct write was successful,
900 			 * process rest of data via ordinary write.
901 			 */
902 			if (error == 0)
903 				continue;
904 
905 			if (error != ENOMEM)
906 				break;
907 		}
908 #endif /* PIPE_NODIRECT */
909 
910 		space = bp->size - bp->cnt;
911 
912 		/* Writes of size <= PIPE_BUF must be atomic. */
913 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
914 			space = 0;
915 
916 		if (space > 0) {
917 			int size;	/* Transfer size */
918 			int segsize;	/* first segment to transfer */
919 
920 			/*
921 			 * Transfer size is minimum of uio transfer
922 			 * and free space in pipe buffer.
923 			 */
924 			if (space > uio->uio_resid)
925 				size = uio->uio_resid;
926 			else
927 				size = space;
928 			/*
929 			 * First segment to transfer is minimum of
930 			 * transfer size and contiguous space in
931 			 * pipe buffer.  If first segment to transfer
932 			 * is less than the transfer size, we've got
933 			 * a wraparound in the buffer.
934 			 */
935 			segsize = bp->size - bp->in;
936 			if (segsize > size)
937 				segsize = size;
938 
939 			/* Transfer first segment */
940 			mutex_exit(lock);
941 			error = uiomove((char *)bp->buffer + bp->in, segsize,
942 			    uio);
943 
944 			if (error == 0 && segsize < size) {
945 				/*
946 				 * Transfer remaining part now, to
947 				 * support atomic writes.  Wraparound
948 				 * happened.
949 				 */
950 #ifdef DEBUG
951 				if (bp->in + segsize != bp->size)
952 					panic("Expected pipe buffer wraparound disappeared");
953 #endif
954 
955 				error = uiomove(bp->buffer,
956 				    size - segsize, uio);
957 			}
958 			mutex_enter(lock);
959 			if (error)
960 				break;
961 
962 			bp->in += size;
963 			if (bp->in >= bp->size) {
964 #ifdef DEBUG
965 				if (bp->in != size - segsize + bp->size)
966 					panic("Expected wraparound bad");
967 #endif
968 				bp->in = size - segsize;
969 			}
970 
971 			bp->cnt += size;
972 #ifdef DEBUG
973 			if (bp->cnt > bp->size)
974 				panic("Pipe buffer overflow");
975 #endif
976 		} else {
977 			/*
978 			 * If the "read-side" has been blocked, wake it up now.
979 			 */
980 			cv_broadcast(&wpipe->pipe_rcv);
981 
982 			/*
983 			 * don't block on non-blocking I/O
984 			 */
985 			if (fp->f_flag & FNONBLOCK) {
986 				error = EAGAIN;
987 				break;
988 			}
989 
990 			/*
991 			 * We have no more space and have something to offer,
992 			 * wake up select/poll.
993 			 */
994 			if (bp->cnt)
995 				pipeselwakeup(wpipe, wpipe, POLL_IN);
996 
997 			pipeunlock(wpipe);
998 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
999 			(void)pipelock(wpipe, 0);
1000 			if (error != 0)
1001 				break;
1002 			/*
1003 			 * If read side wants to go away, we just issue a signal
1004 			 * to ourselves.
1005 			 */
1006 			if (wpipe->pipe_state & PIPE_EOF) {
1007 				error = EPIPE;
1008 				break;
1009 			}
1010 		}
1011 	}
1012 
1013 	--wpipe->pipe_busy;
1014 	if (wpipe->pipe_busy == 0) {
1015 		cv_broadcast(&wpipe->pipe_draincv);
1016 	}
1017 	if (bp->cnt > 0) {
1018 		cv_broadcast(&wpipe->pipe_rcv);
1019 	}
1020 
1021 	/*
1022 	 * Don't return EPIPE if I/O was successful
1023 	 */
1024 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1025 		error = 0;
1026 
1027 	if (error == 0)
1028 		getmicrotime(&wpipe->pipe_mtime);
1029 
1030 	/*
1031 	 * We have something to offer, wake up select/poll.
1032 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1033 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1034 	 */
1035 	if (bp->cnt)
1036 		pipeselwakeup(wpipe, wpipe, POLL_IN);
1037 
1038 	/*
1039 	 * Arrange for next read(2) to do a signal.
1040 	 */
1041 	wpipe->pipe_state |= PIPE_SIGNALR;
1042 
1043 	pipeunlock(wpipe);
1044 	mutex_exit(lock);
1045 	return (error);
1046 }
1047 
1048 /*
1049  * we implement a very minimal set of ioctls for compatibility with sockets.
1050  */
1051 int
1052 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1053 {
1054 	struct pipe *pipe = fp->f_data;
1055 	kmutex_t *lock = pipe->pipe_lock;
1056 
1057 	switch (cmd) {
1058 
1059 	case FIONBIO:
1060 		return (0);
1061 
1062 	case FIOASYNC:
1063 		mutex_enter(lock);
1064 		if (*(int *)data) {
1065 			pipe->pipe_state |= PIPE_ASYNC;
1066 		} else {
1067 			pipe->pipe_state &= ~PIPE_ASYNC;
1068 		}
1069 		mutex_exit(lock);
1070 		return (0);
1071 
1072 	case FIONREAD:
1073 		mutex_enter(lock);
1074 #ifndef PIPE_NODIRECT
1075 		if (pipe->pipe_state & PIPE_DIRECTW)
1076 			*(int *)data = pipe->pipe_map.cnt;
1077 		else
1078 #endif
1079 			*(int *)data = pipe->pipe_buffer.cnt;
1080 		mutex_exit(lock);
1081 		return (0);
1082 
1083 	case FIONWRITE:
1084 		/* Look at other side */
1085 		pipe = pipe->pipe_peer;
1086 		mutex_enter(lock);
1087 #ifndef PIPE_NODIRECT
1088 		if (pipe->pipe_state & PIPE_DIRECTW)
1089 			*(int *)data = pipe->pipe_map.cnt;
1090 		else
1091 #endif
1092 			*(int *)data = pipe->pipe_buffer.cnt;
1093 		mutex_exit(lock);
1094 		return (0);
1095 
1096 	case FIONSPACE:
1097 		/* Look at other side */
1098 		pipe = pipe->pipe_peer;
1099 		mutex_enter(lock);
1100 #ifndef PIPE_NODIRECT
1101 		/*
1102 		 * If we're in direct-mode, we don't really have a
1103 		 * send queue, and any other write will block. Thus
1104 		 * zero seems like the best answer.
1105 		 */
1106 		if (pipe->pipe_state & PIPE_DIRECTW)
1107 			*(int *)data = 0;
1108 		else
1109 #endif
1110 			*(int *)data = pipe->pipe_buffer.size -
1111 			    pipe->pipe_buffer.cnt;
1112 		mutex_exit(lock);
1113 		return (0);
1114 
1115 	case TIOCSPGRP:
1116 	case FIOSETOWN:
1117 		return fsetown(&pipe->pipe_pgid, cmd, data);
1118 
1119 	case TIOCGPGRP:
1120 	case FIOGETOWN:
1121 		return fgetown(pipe->pipe_pgid, cmd, data);
1122 
1123 	}
1124 	return (EPASSTHROUGH);
1125 }
1126 
1127 int
1128 pipe_poll(struct file *fp, int events)
1129 {
1130 	struct pipe *rpipe = fp->f_data;
1131 	struct pipe *wpipe;
1132 	int eof = 0;
1133 	int revents = 0;
1134 
1135 	mutex_enter(rpipe->pipe_lock);
1136 	wpipe = rpipe->pipe_peer;
1137 
1138 	if (events & (POLLIN | POLLRDNORM))
1139 		if ((rpipe->pipe_buffer.cnt > 0) ||
1140 #ifndef PIPE_NODIRECT
1141 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
1142 #endif
1143 		    (rpipe->pipe_state & PIPE_EOF))
1144 			revents |= events & (POLLIN | POLLRDNORM);
1145 
1146 	eof |= (rpipe->pipe_state & PIPE_EOF);
1147 
1148 	if (wpipe == NULL)
1149 		revents |= events & (POLLOUT | POLLWRNORM);
1150 	else {
1151 		if (events & (POLLOUT | POLLWRNORM))
1152 			if ((wpipe->pipe_state & PIPE_EOF) || (
1153 #ifndef PIPE_NODIRECT
1154 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1155 #endif
1156 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1157 				revents |= events & (POLLOUT | POLLWRNORM);
1158 
1159 		eof |= (wpipe->pipe_state & PIPE_EOF);
1160 	}
1161 
1162 	if (wpipe == NULL || eof)
1163 		revents |= POLLHUP;
1164 
1165 	if (revents == 0) {
1166 		if (events & (POLLIN | POLLRDNORM))
1167 			selrecord(curlwp, &rpipe->pipe_sel);
1168 
1169 		if (events & (POLLOUT | POLLWRNORM))
1170 			selrecord(curlwp, &wpipe->pipe_sel);
1171 	}
1172 	mutex_exit(rpipe->pipe_lock);
1173 
1174 	return (revents);
1175 }
1176 
1177 static int
1178 pipe_stat(struct file *fp, struct stat *ub)
1179 {
1180 	struct pipe *pipe = fp->f_data;
1181 
1182 	memset((void *)ub, 0, sizeof(*ub));
1183 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1184 	ub->st_blksize = pipe->pipe_buffer.size;
1185 	if (ub->st_blksize == 0 && pipe->pipe_peer)
1186 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1187 	ub->st_size = pipe->pipe_buffer.cnt;
1188 	ub->st_blocks = (ub->st_size) ? 1 : 0;
1189 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1190 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1191 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1192 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1193 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
1194 
1195 	/*
1196 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1197 	 * XXX (st_dev, st_ino) should be unique.
1198 	 */
1199 	return (0);
1200 }
1201 
1202 /* ARGSUSED */
1203 static int
1204 pipe_close(struct file *fp)
1205 {
1206 	struct pipe *pipe = fp->f_data;
1207 
1208 	fp->f_data = NULL;
1209 	pipeclose(fp, pipe);
1210 	return (0);
1211 }
1212 
1213 static void
1214 pipe_free_kmem(struct pipe *pipe)
1215 {
1216 
1217 	if (pipe->pipe_buffer.buffer != NULL) {
1218 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
1219 			atomic_dec_uint(&nbigpipe);
1220 		}
1221 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1222 			uvm_km_free(kernel_map,
1223 			    (vaddr_t)pipe->pipe_buffer.buffer,
1224 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1225 			atomic_add_int(&amountpipekva,
1226 			    -pipe->pipe_buffer.size);
1227 		}
1228 		pipe->pipe_buffer.buffer = NULL;
1229 	}
1230 #ifndef PIPE_NODIRECT
1231 	if (pipe->pipe_map.kva != 0) {
1232 		pipe_loan_free(pipe);
1233 		pipe->pipe_map.cnt = 0;
1234 		pipe->pipe_map.kva = 0;
1235 		pipe->pipe_map.pos = 0;
1236 		pipe->pipe_map.npages = 0;
1237 	}
1238 #endif /* !PIPE_NODIRECT */
1239 }
1240 
1241 /*
1242  * shutdown the pipe
1243  */
1244 static void
1245 pipeclose(struct file *fp, struct pipe *pipe)
1246 {
1247 	kmutex_t *lock;
1248 	struct pipe *ppipe;
1249 
1250 	if (pipe == NULL)
1251 		return;
1252 
1253 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
1254 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
1255 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
1256 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1257 
1258 	lock = pipe->pipe_lock;
1259 	mutex_enter(lock);
1260 	pipeselwakeup(pipe, pipe, POLL_HUP);
1261 
1262 	/*
1263 	 * If the other side is blocked, wake it up saying that
1264 	 * we want to close it down.
1265 	 */
1266 	pipe->pipe_state |= PIPE_EOF;
1267 	if (pipe->pipe_busy) {
1268 		while (pipe->pipe_busy) {
1269 			cv_broadcast(&pipe->pipe_wcv);
1270 			cv_wait_sig(&pipe->pipe_draincv, lock);
1271 		}
1272 	}
1273 
1274 	/*
1275 	 * Disconnect from peer
1276 	 */
1277 	if ((ppipe = pipe->pipe_peer) != NULL) {
1278 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
1279 		ppipe->pipe_state |= PIPE_EOF;
1280 		cv_broadcast(&ppipe->pipe_rcv);
1281 		ppipe->pipe_peer = NULL;
1282 	}
1283 
1284 	/*
1285 	 * Any knote objects still left in the list are
1286 	 * the one attached by peer.  Since no one will
1287 	 * traverse this list, we just clear it.
1288 	 */
1289 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
1290 
1291 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1292 	mutex_exit(lock);
1293 
1294 	/*
1295 	 * free resources
1296 	 */
1297 	pipe->pipe_pgid = 0;
1298 	pipe->pipe_state = PIPE_SIGNALR;
1299 	pipe_free_kmem(pipe);
1300 	if (pipe->pipe_kmem != 0) {
1301 		pool_cache_put(pipe_rd_cache, pipe);
1302 	} else {
1303 		pool_cache_put(pipe_wr_cache, pipe);
1304 	}
1305 	mutex_obj_free(lock);
1306 }
1307 
1308 static void
1309 filt_pipedetach(struct knote *kn)
1310 {
1311 	struct pipe *pipe;
1312 	kmutex_t *lock;
1313 
1314 	pipe = ((file_t *)kn->kn_obj)->f_data;
1315 	lock = pipe->pipe_lock;
1316 
1317 	mutex_enter(lock);
1318 
1319 	switch(kn->kn_filter) {
1320 	case EVFILT_WRITE:
1321 		/* need the peer structure, not our own */
1322 		pipe = pipe->pipe_peer;
1323 
1324 		/* if reader end already closed, just return */
1325 		if (pipe == NULL) {
1326 			mutex_exit(lock);
1327 			return;
1328 		}
1329 
1330 		break;
1331 	default:
1332 		/* nothing to do */
1333 		break;
1334 	}
1335 
1336 #ifdef DIAGNOSTIC
1337 	if (kn->kn_hook != pipe)
1338 		panic("filt_pipedetach: inconsistent knote");
1339 #endif
1340 
1341 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1342 	mutex_exit(lock);
1343 }
1344 
1345 /*ARGSUSED*/
1346 static int
1347 filt_piperead(struct knote *kn, long hint)
1348 {
1349 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1350 	struct pipe *wpipe;
1351 
1352 	if ((hint & NOTE_SUBMIT) == 0) {
1353 		mutex_enter(rpipe->pipe_lock);
1354 	}
1355 	wpipe = rpipe->pipe_peer;
1356 	kn->kn_data = rpipe->pipe_buffer.cnt;
1357 
1358 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1359 		kn->kn_data = rpipe->pipe_map.cnt;
1360 
1361 	if ((rpipe->pipe_state & PIPE_EOF) ||
1362 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1363 		kn->kn_flags |= EV_EOF;
1364 		if ((hint & NOTE_SUBMIT) == 0) {
1365 			mutex_exit(rpipe->pipe_lock);
1366 		}
1367 		return (1);
1368 	}
1369 
1370 	if ((hint & NOTE_SUBMIT) == 0) {
1371 		mutex_exit(rpipe->pipe_lock);
1372 	}
1373 	return (kn->kn_data > 0);
1374 }
1375 
1376 /*ARGSUSED*/
1377 static int
1378 filt_pipewrite(struct knote *kn, long hint)
1379 {
1380 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1381 	struct pipe *wpipe;
1382 
1383 	if ((hint & NOTE_SUBMIT) == 0) {
1384 		mutex_enter(rpipe->pipe_lock);
1385 	}
1386 	wpipe = rpipe->pipe_peer;
1387 
1388 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1389 		kn->kn_data = 0;
1390 		kn->kn_flags |= EV_EOF;
1391 		if ((hint & NOTE_SUBMIT) == 0) {
1392 			mutex_exit(rpipe->pipe_lock);
1393 		}
1394 		return (1);
1395 	}
1396 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1397 	if (wpipe->pipe_state & PIPE_DIRECTW)
1398 		kn->kn_data = 0;
1399 
1400 	if ((hint & NOTE_SUBMIT) == 0) {
1401 		mutex_exit(rpipe->pipe_lock);
1402 	}
1403 	return (kn->kn_data >= PIPE_BUF);
1404 }
1405 
1406 static const struct filterops pipe_rfiltops =
1407 	{ 1, NULL, filt_pipedetach, filt_piperead };
1408 static const struct filterops pipe_wfiltops =
1409 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
1410 
1411 /*ARGSUSED*/
1412 static int
1413 pipe_kqfilter(struct file *fp, struct knote *kn)
1414 {
1415 	struct pipe *pipe;
1416 	kmutex_t *lock;
1417 
1418 	pipe = ((file_t *)kn->kn_obj)->f_data;
1419 	lock = pipe->pipe_lock;
1420 
1421 	mutex_enter(lock);
1422 
1423 	switch (kn->kn_filter) {
1424 	case EVFILT_READ:
1425 		kn->kn_fop = &pipe_rfiltops;
1426 		break;
1427 	case EVFILT_WRITE:
1428 		kn->kn_fop = &pipe_wfiltops;
1429 		pipe = pipe->pipe_peer;
1430 		if (pipe == NULL) {
1431 			/* other end of pipe has been closed */
1432 			mutex_exit(lock);
1433 			return (EBADF);
1434 		}
1435 		break;
1436 	default:
1437 		mutex_exit(lock);
1438 		return (EINVAL);
1439 	}
1440 
1441 	kn->kn_hook = pipe;
1442 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1443 	mutex_exit(lock);
1444 
1445 	return (0);
1446 }
1447 
1448 /*
1449  * Handle pipe sysctls.
1450  */
1451 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1452 {
1453 
1454 	sysctl_createv(clog, 0, NULL, NULL,
1455 		       CTLFLAG_PERMANENT,
1456 		       CTLTYPE_NODE, "kern", NULL,
1457 		       NULL, 0, NULL, 0,
1458 		       CTL_KERN, CTL_EOL);
1459 	sysctl_createv(clog, 0, NULL, NULL,
1460 		       CTLFLAG_PERMANENT,
1461 		       CTLTYPE_NODE, "pipe",
1462 		       SYSCTL_DESCR("Pipe settings"),
1463 		       NULL, 0, NULL, 0,
1464 		       CTL_KERN, KERN_PIPE, CTL_EOL);
1465 
1466 	sysctl_createv(clog, 0, NULL, NULL,
1467 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1468 		       CTLTYPE_INT, "maxkvasz",
1469 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
1470 				    "used for pipes"),
1471 		       NULL, 0, &maxpipekva, 0,
1472 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1473 	sysctl_createv(clog, 0, NULL, NULL,
1474 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1475 		       CTLTYPE_INT, "maxloankvasz",
1476 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
1477 		       NULL, 0, &limitpipekva, 0,
1478 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1479 	sysctl_createv(clog, 0, NULL, NULL,
1480 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1481 		       CTLTYPE_INT, "maxbigpipes",
1482 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1483 		       NULL, 0, &maxbigpipes, 0,
1484 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1485 	sysctl_createv(clog, 0, NULL, NULL,
1486 		       CTLFLAG_PERMANENT,
1487 		       CTLTYPE_INT, "nbigpipes",
1488 		       SYSCTL_DESCR("Number of \"big\" pipes"),
1489 		       NULL, 0, &nbigpipe, 0,
1490 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1491 	sysctl_createv(clog, 0, NULL, NULL,
1492 		       CTLFLAG_PERMANENT,
1493 		       CTLTYPE_INT, "kvasize",
1494 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1495 				    "buffers"),
1496 		       NULL, 0, &amountpipekva, 0,
1497 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1498 }
1499