1 /* $NetBSD: sys_pipe.c,v 1.112 2009/04/11 23:05:26 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1996 John S. Dyson 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice immediately at the beginning of the file, without modification, 41 * this list of conditions, and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Absolutely no warranty of function or purpose is made by the author 46 * John S. Dyson. 47 * 4. Modifications may be freely made to this file if the above conditions 48 * are met. 49 */ 50 51 /* 52 * This file contains a high-performance replacement for the socket-based 53 * pipes scheme originally used. It does not support all features of 54 * sockets, but does do everything that pipes normally do. 55 * 56 * This code has two modes of operation, a small write mode and a large 57 * write mode. The small write mode acts like conventional pipes with 58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space 61 * using the UVM page loan facility from where the receiving process can copy 62 * the data directly from the pages in the sending process. 63 * 64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 65 * happen for small transfers so that the system will not spend all of 66 * its time context switching. PIPE_SIZE is constrained by the 67 * amount of kernel virtual memory. 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.112 2009/04/11 23:05:26 christos Exp $"); 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> 76 #include <sys/fcntl.h> 77 #include <sys/file.h> 78 #include <sys/filedesc.h> 79 #include <sys/filio.h> 80 #include <sys/kernel.h> 81 #include <sys/ttycom.h> 82 #include <sys/stat.h> 83 #include <sys/poll.h> 84 #include <sys/signalvar.h> 85 #include <sys/vnode.h> 86 #include <sys/uio.h> 87 #include <sys/select.h> 88 #include <sys/mount.h> 89 #include <sys/syscallargs.h> 90 #include <sys/sysctl.h> 91 #include <sys/kauth.h> 92 #include <sys/atomic.h> 93 #include <sys/pipe.h> 94 95 #include <uvm/uvm.h> 96 97 /* Use this define if you want to disable *fancy* VM things. */ 98 /* XXX Disabled for now; rare hangs switching between direct/buffered */ 99 #define PIPE_NODIRECT 100 101 /* 102 * interfaces to the outside world 103 */ 104 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio, 105 kauth_cred_t cred, int flags); 106 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio, 107 kauth_cred_t cred, int flags); 108 static int pipe_close(struct file *fp); 109 static int pipe_poll(struct file *fp, int events); 110 static int pipe_kqfilter(struct file *fp, struct knote *kn); 111 static int pipe_stat(struct file *fp, struct stat *sb); 112 static int pipe_ioctl(struct file *fp, u_long cmd, void *data); 113 114 static const struct fileops pipeops = { 115 .fo_read = pipe_read, 116 .fo_write = pipe_write, 117 .fo_ioctl = pipe_ioctl, 118 .fo_fcntl = fnullop_fcntl, 119 .fo_poll = pipe_poll, 120 .fo_stat = pipe_stat, 121 .fo_close = pipe_close, 122 .fo_kqfilter = pipe_kqfilter, 123 .fo_drain = fnullop_drain, 124 }; 125 126 /* 127 * Default pipe buffer size(s), this can be kind-of large now because pipe 128 * space is pageable. The pipe code will try to maintain locality of 129 * reference for performance reasons, so small amounts of outstanding I/O 130 * will not wipe the cache. 131 */ 132 #define MINPIPESIZE (PIPE_SIZE/3) 133 #define MAXPIPESIZE (2*PIPE_SIZE/3) 134 135 /* 136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 137 * is there so that on large systems, we don't exhaust it. 138 */ 139 #define MAXPIPEKVA (8*1024*1024) 140 static u_int maxpipekva = MAXPIPEKVA; 141 142 /* 143 * Limit for direct transfers, we cannot, of course limit 144 * the amount of kva for pipes in general though. 145 */ 146 #define LIMITPIPEKVA (16*1024*1024) 147 static u_int limitpipekva = LIMITPIPEKVA; 148 149 /* 150 * Limit the number of "big" pipes 151 */ 152 #define LIMITBIGPIPES 32 153 static u_int maxbigpipes = LIMITBIGPIPES; 154 static u_int nbigpipe = 0; 155 156 /* 157 * Amount of KVA consumed by pipe buffers. 158 */ 159 static u_int amountpipekva = 0; 160 161 static void pipeclose(struct file *fp, struct pipe *pipe); 162 static void pipe_free_kmem(struct pipe *pipe); 163 static int pipe_create(struct pipe **pipep, pool_cache_t, kmutex_t *); 164 static int pipelock(struct pipe *pipe, int catch); 165 static inline void pipeunlock(struct pipe *pipe); 166 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code); 167 #ifndef PIPE_NODIRECT 168 static int pipe_direct_write(struct file *fp, struct pipe *wpipe, 169 struct uio *uio); 170 #endif 171 static int pipespace(struct pipe *pipe, int size); 172 static int pipe_ctor(void *, void *, int); 173 static void pipe_dtor(void *, void *); 174 175 #ifndef PIPE_NODIRECT 176 static int pipe_loan_alloc(struct pipe *, int); 177 static void pipe_loan_free(struct pipe *); 178 #endif /* PIPE_NODIRECT */ 179 180 static pool_cache_t pipe_wr_cache; 181 static pool_cache_t pipe_rd_cache; 182 183 void 184 pipe_init(void) 185 { 186 187 /* Writer side is not automatically allocated KVA. */ 188 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr", 189 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL); 190 KASSERT(pipe_wr_cache != NULL); 191 192 /* Reader side gets preallocated KVA. */ 193 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd", 194 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1); 195 KASSERT(pipe_rd_cache != NULL); 196 } 197 198 static int 199 pipe_ctor(void *arg, void *obj, int flags) 200 { 201 struct pipe *pipe; 202 vaddr_t va; 203 204 pipe = obj; 205 206 memset(pipe, 0, sizeof(struct pipe)); 207 if (arg != NULL) { 208 /* Preallocate space. */ 209 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0, 210 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 211 KASSERT(va != 0); 212 pipe->pipe_kmem = va; 213 atomic_add_int(&amountpipekva, PIPE_SIZE); 214 } 215 cv_init(&pipe->pipe_rcv, "piperd"); 216 cv_init(&pipe->pipe_wcv, "pipewr"); 217 cv_init(&pipe->pipe_draincv, "pipedrain"); 218 cv_init(&pipe->pipe_lkcv, "pipelk"); 219 selinit(&pipe->pipe_sel); 220 pipe->pipe_state = PIPE_SIGNALR; 221 222 return 0; 223 } 224 225 static void 226 pipe_dtor(void *arg, void *obj) 227 { 228 struct pipe *pipe; 229 230 pipe = obj; 231 232 cv_destroy(&pipe->pipe_rcv); 233 cv_destroy(&pipe->pipe_wcv); 234 cv_destroy(&pipe->pipe_draincv); 235 cv_destroy(&pipe->pipe_lkcv); 236 seldestroy(&pipe->pipe_sel); 237 if (pipe->pipe_kmem != 0) { 238 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE, 239 UVM_KMF_PAGEABLE); 240 atomic_add_int(&amountpipekva, -PIPE_SIZE); 241 } 242 } 243 244 /* 245 * The pipe system call for the DTYPE_PIPE type of pipes 246 */ 247 248 /* ARGSUSED */ 249 int 250 sys_pipe(struct lwp *l, const void *v, register_t *retval) 251 { 252 struct file *rf, *wf; 253 struct pipe *rpipe, *wpipe; 254 kmutex_t *mutex; 255 int fd, error; 256 proc_t *p; 257 258 p = curproc; 259 rpipe = wpipe = NULL; 260 mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 261 if (mutex == NULL) 262 return (ENOMEM); 263 mutex_obj_hold(mutex); 264 if (pipe_create(&rpipe, pipe_rd_cache, mutex) || 265 pipe_create(&wpipe, pipe_wr_cache, mutex)) { 266 pipeclose(NULL, rpipe); 267 pipeclose(NULL, wpipe); 268 return (ENFILE); 269 } 270 271 error = fd_allocfile(&rf, &fd); 272 if (error) 273 goto free2; 274 retval[0] = fd; 275 rf->f_flag = FREAD; 276 rf->f_type = DTYPE_PIPE; 277 rf->f_data = (void *)rpipe; 278 rf->f_ops = &pipeops; 279 280 error = fd_allocfile(&wf, &fd); 281 if (error) 282 goto free3; 283 retval[1] = fd; 284 wf->f_flag = FWRITE; 285 wf->f_type = DTYPE_PIPE; 286 wf->f_data = (void *)wpipe; 287 wf->f_ops = &pipeops; 288 289 rpipe->pipe_peer = wpipe; 290 wpipe->pipe_peer = rpipe; 291 292 fd_affix(p, rf, (int)retval[0]); 293 fd_affix(p, wf, (int)retval[1]); 294 return (0); 295 free3: 296 fd_abort(p, rf, (int)retval[0]); 297 free2: 298 pipeclose(NULL, wpipe); 299 pipeclose(NULL, rpipe); 300 301 return (error); 302 } 303 304 /* 305 * Allocate kva for pipe circular buffer, the space is pageable 306 * This routine will 'realloc' the size of a pipe safely, if it fails 307 * it will retain the old buffer. 308 * If it fails it will return ENOMEM. 309 */ 310 static int 311 pipespace(struct pipe *pipe, int size) 312 { 313 void *buffer; 314 315 /* 316 * Allocate pageable virtual address space. Physical memory is 317 * allocated on demand. 318 */ 319 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) { 320 buffer = (void *)pipe->pipe_kmem; 321 } else { 322 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size), 323 0, UVM_KMF_PAGEABLE); 324 if (buffer == NULL) 325 return (ENOMEM); 326 atomic_add_int(&amountpipekva, size); 327 } 328 329 /* free old resources if we're resizing */ 330 pipe_free_kmem(pipe); 331 pipe->pipe_buffer.buffer = buffer; 332 pipe->pipe_buffer.size = size; 333 pipe->pipe_buffer.in = 0; 334 pipe->pipe_buffer.out = 0; 335 pipe->pipe_buffer.cnt = 0; 336 return (0); 337 } 338 339 /* 340 * Initialize and allocate VM and memory for pipe. 341 */ 342 static int 343 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex) 344 { 345 struct pipe *pipe; 346 int error; 347 348 pipe = pool_cache_get(cache, PR_WAITOK); 349 KASSERT(pipe != NULL); 350 *pipep = pipe; 351 error = 0; 352 getnanotime(&pipe->pipe_btime); 353 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime; 354 pipe->pipe_lock = mutex; 355 if (cache == pipe_rd_cache) { 356 error = pipespace(pipe, PIPE_SIZE); 357 } else { 358 pipe->pipe_buffer.buffer = NULL; 359 pipe->pipe_buffer.size = 0; 360 pipe->pipe_buffer.in = 0; 361 pipe->pipe_buffer.out = 0; 362 pipe->pipe_buffer.cnt = 0; 363 } 364 return error; 365 } 366 367 /* 368 * Lock a pipe for I/O, blocking other access 369 * Called with pipe spin lock held. 370 * Return with pipe spin lock released on success. 371 */ 372 static int 373 pipelock(struct pipe *pipe, int catch) 374 { 375 int error; 376 377 KASSERT(mutex_owned(pipe->pipe_lock)); 378 379 while (pipe->pipe_state & PIPE_LOCKFL) { 380 pipe->pipe_state |= PIPE_LWANT; 381 if (catch) { 382 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock); 383 if (error != 0) 384 return error; 385 } else 386 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock); 387 } 388 389 pipe->pipe_state |= PIPE_LOCKFL; 390 391 return 0; 392 } 393 394 /* 395 * unlock a pipe I/O lock 396 */ 397 static inline void 398 pipeunlock(struct pipe *pipe) 399 { 400 401 KASSERT(pipe->pipe_state & PIPE_LOCKFL); 402 403 pipe->pipe_state &= ~PIPE_LOCKFL; 404 if (pipe->pipe_state & PIPE_LWANT) { 405 pipe->pipe_state &= ~PIPE_LWANT; 406 cv_broadcast(&pipe->pipe_lkcv); 407 } 408 } 409 410 /* 411 * Select/poll wakup. This also sends SIGIO to peer connected to 412 * 'sigpipe' side of pipe. 413 */ 414 static void 415 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code) 416 { 417 int band; 418 419 switch (code) { 420 case POLL_IN: 421 band = POLLIN|POLLRDNORM; 422 break; 423 case POLL_OUT: 424 band = POLLOUT|POLLWRNORM; 425 break; 426 case POLL_HUP: 427 band = POLLHUP; 428 break; 429 case POLL_ERR: 430 band = POLLERR; 431 break; 432 default: 433 band = 0; 434 #ifdef DIAGNOSTIC 435 printf("bad siginfo code %d in pipe notification.\n", code); 436 #endif 437 break; 438 } 439 440 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT); 441 442 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0) 443 return; 444 445 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp); 446 } 447 448 /* ARGSUSED */ 449 static int 450 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 451 int flags) 452 { 453 struct pipe *rpipe = (struct pipe *) fp->f_data; 454 struct pipebuf *bp = &rpipe->pipe_buffer; 455 kmutex_t *lock = rpipe->pipe_lock; 456 int error; 457 size_t nread = 0; 458 size_t size; 459 size_t ocnt; 460 461 mutex_enter(lock); 462 ++rpipe->pipe_busy; 463 ocnt = bp->cnt; 464 465 again: 466 error = pipelock(rpipe, 1); 467 if (error) 468 goto unlocked_error; 469 470 while (uio->uio_resid) { 471 /* 472 * normal pipe buffer receive 473 */ 474 if (bp->cnt > 0) { 475 size = bp->size - bp->out; 476 if (size > bp->cnt) 477 size = bp->cnt; 478 if (size > uio->uio_resid) 479 size = uio->uio_resid; 480 481 mutex_exit(lock); 482 error = uiomove((char *)bp->buffer + bp->out, size, uio); 483 mutex_enter(lock); 484 if (error) 485 break; 486 487 bp->out += size; 488 if (bp->out >= bp->size) 489 bp->out = 0; 490 491 bp->cnt -= size; 492 493 /* 494 * If there is no more to read in the pipe, reset 495 * its pointers to the beginning. This improves 496 * cache hit stats. 497 */ 498 if (bp->cnt == 0) { 499 bp->in = 0; 500 bp->out = 0; 501 } 502 nread += size; 503 continue; 504 } 505 506 #ifndef PIPE_NODIRECT 507 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) { 508 /* 509 * Direct copy, bypassing a kernel buffer. 510 */ 511 void * va; 512 513 KASSERT(rpipe->pipe_state & PIPE_DIRECTW); 514 515 size = rpipe->pipe_map.cnt; 516 if (size > uio->uio_resid) 517 size = uio->uio_resid; 518 519 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos; 520 mutex_exit(lock); 521 error = uiomove(va, size, uio); 522 mutex_enter(lock); 523 if (error) 524 break; 525 nread += size; 526 rpipe->pipe_map.pos += size; 527 rpipe->pipe_map.cnt -= size; 528 if (rpipe->pipe_map.cnt == 0) { 529 rpipe->pipe_state &= ~PIPE_DIRECTR; 530 cv_broadcast(&rpipe->pipe_wcv); 531 } 532 continue; 533 } 534 #endif 535 /* 536 * Break if some data was read. 537 */ 538 if (nread > 0) 539 break; 540 541 /* 542 * detect EOF condition 543 * read returns 0 on EOF, no need to set error 544 */ 545 if (rpipe->pipe_state & PIPE_EOF) 546 break; 547 548 /* 549 * don't block on non-blocking I/O 550 */ 551 if (fp->f_flag & FNONBLOCK) { 552 error = EAGAIN; 553 break; 554 } 555 556 /* 557 * Unlock the pipe buffer for our remaining processing. 558 * We will either break out with an error or we will 559 * sleep and relock to loop. 560 */ 561 pipeunlock(rpipe); 562 563 /* 564 * Re-check to see if more direct writes are pending. 565 */ 566 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) 567 goto again; 568 569 /* 570 * We want to read more, wake up select/poll. 571 */ 572 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 573 574 /* 575 * If the "write-side" is blocked, wake it up now. 576 */ 577 cv_broadcast(&rpipe->pipe_wcv); 578 579 /* Now wait until the pipe is filled */ 580 error = cv_wait_sig(&rpipe->pipe_rcv, lock); 581 if (error != 0) 582 goto unlocked_error; 583 goto again; 584 } 585 586 if (error == 0) 587 getnanotime(&rpipe->pipe_atime); 588 pipeunlock(rpipe); 589 590 unlocked_error: 591 --rpipe->pipe_busy; 592 if (rpipe->pipe_busy == 0) { 593 cv_broadcast(&rpipe->pipe_draincv); 594 } 595 if (bp->cnt < MINPIPESIZE) { 596 cv_broadcast(&rpipe->pipe_wcv); 597 } 598 599 /* 600 * If anything was read off the buffer, signal to the writer it's 601 * possible to write more data. Also send signal if we are here for the 602 * first time after last write. 603 */ 604 if ((bp->size - bp->cnt) >= PIPE_BUF 605 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) { 606 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 607 rpipe->pipe_state &= ~PIPE_SIGNALR; 608 } 609 610 mutex_exit(lock); 611 return (error); 612 } 613 614 #ifndef PIPE_NODIRECT 615 /* 616 * Allocate structure for loan transfer. 617 */ 618 static int 619 pipe_loan_alloc(struct pipe *wpipe, int npages) 620 { 621 vsize_t len; 622 623 len = (vsize_t)npages << PAGE_SHIFT; 624 atomic_add_int(&amountpipekva, len); 625 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0, 626 UVM_KMF_VAONLY | UVM_KMF_WAITVA); 627 if (wpipe->pipe_map.kva == 0) { 628 atomic_add_int(&amountpipekva, -len); 629 return (ENOMEM); 630 } 631 632 wpipe->pipe_map.npages = npages; 633 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *), 634 KM_SLEEP); 635 return (0); 636 } 637 638 /* 639 * Free resources allocated for loan transfer. 640 */ 641 static void 642 pipe_loan_free(struct pipe *wpipe) 643 { 644 vsize_t len; 645 646 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT; 647 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY); 648 wpipe->pipe_map.kva = 0; 649 atomic_add_int(&amountpipekva, -len); 650 kmem_free(wpipe->pipe_map.pgs, 651 wpipe->pipe_map.npages * sizeof(struct vm_page *)); 652 wpipe->pipe_map.pgs = NULL; 653 } 654 655 /* 656 * NetBSD direct write, using uvm_loan() mechanism. 657 * This implements the pipe buffer write mechanism. Note that only 658 * a direct write OR a normal pipe write can be pending at any given time. 659 * If there are any characters in the pipe buffer, the direct write will 660 * be deferred until the receiving process grabs all of the bytes from 661 * the pipe buffer. Then the direct mapping write is set-up. 662 * 663 * Called with the long-term pipe lock held. 664 */ 665 static int 666 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio) 667 { 668 int error, npages, j; 669 struct vm_page **pgs; 670 vaddr_t bbase, kva, base, bend; 671 vsize_t blen, bcnt; 672 voff_t bpos; 673 kmutex_t *lock = wpipe->pipe_lock; 674 675 KASSERT(mutex_owned(wpipe->pipe_lock)); 676 KASSERT(wpipe->pipe_map.cnt == 0); 677 678 mutex_exit(lock); 679 680 /* 681 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers 682 * not aligned to PAGE_SIZE. 683 */ 684 bbase = (vaddr_t)uio->uio_iov->iov_base; 685 base = trunc_page(bbase); 686 bend = round_page(bbase + uio->uio_iov->iov_len); 687 blen = bend - base; 688 bpos = bbase - base; 689 690 if (blen > PIPE_DIRECT_CHUNK) { 691 blen = PIPE_DIRECT_CHUNK; 692 bend = base + blen; 693 bcnt = PIPE_DIRECT_CHUNK - bpos; 694 } else { 695 bcnt = uio->uio_iov->iov_len; 696 } 697 npages = blen >> PAGE_SHIFT; 698 699 /* 700 * Free the old kva if we need more pages than we have 701 * allocated. 702 */ 703 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages) 704 pipe_loan_free(wpipe); 705 706 /* Allocate new kva. */ 707 if (wpipe->pipe_map.kva == 0) { 708 error = pipe_loan_alloc(wpipe, npages); 709 if (error) { 710 mutex_enter(lock); 711 return (error); 712 } 713 } 714 715 /* Loan the write buffer memory from writer process */ 716 pgs = wpipe->pipe_map.pgs; 717 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen, 718 pgs, UVM_LOAN_TOPAGE); 719 if (error) { 720 pipe_loan_free(wpipe); 721 mutex_enter(lock); 722 return (ENOMEM); /* so that caller fallback to ordinary write */ 723 } 724 725 /* Enter the loaned pages to kva */ 726 kva = wpipe->pipe_map.kva; 727 for (j = 0; j < npages; j++, kva += PAGE_SIZE) { 728 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ); 729 } 730 pmap_update(pmap_kernel()); 731 732 /* Now we can put the pipe in direct write mode */ 733 wpipe->pipe_map.pos = bpos; 734 wpipe->pipe_map.cnt = bcnt; 735 736 /* 737 * But before we can let someone do a direct read, we 738 * have to wait until the pipe is drained. Release the 739 * pipe lock while we wait. 740 */ 741 mutex_enter(lock); 742 wpipe->pipe_state |= PIPE_DIRECTW; 743 pipeunlock(wpipe); 744 745 while (error == 0 && wpipe->pipe_buffer.cnt > 0) { 746 cv_broadcast(&wpipe->pipe_rcv); 747 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 748 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 749 error = EPIPE; 750 } 751 752 /* Pipe is drained; next read will off the direct buffer */ 753 wpipe->pipe_state |= PIPE_DIRECTR; 754 755 /* Wait until the reader is done */ 756 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) { 757 cv_broadcast(&wpipe->pipe_rcv); 758 pipeselwakeup(wpipe, wpipe, POLL_IN); 759 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 760 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 761 error = EPIPE; 762 } 763 764 /* Take pipe out of direct write mode */ 765 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR); 766 767 /* Acquire the pipe lock and cleanup */ 768 (void)pipelock(wpipe, 0); 769 mutex_exit(lock); 770 771 if (pgs != NULL) { 772 pmap_kremove(wpipe->pipe_map.kva, blen); 773 pmap_update(pmap_kernel()); 774 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE); 775 } 776 if (error || amountpipekva > maxpipekva) 777 pipe_loan_free(wpipe); 778 779 mutex_enter(lock); 780 if (error) { 781 pipeselwakeup(wpipe, wpipe, POLL_ERR); 782 783 /* 784 * If nothing was read from what we offered, return error 785 * straight on. Otherwise update uio resid first. Caller 786 * will deal with the error condition, returning short 787 * write, error, or restarting the write(2) as appropriate. 788 */ 789 if (wpipe->pipe_map.cnt == bcnt) { 790 wpipe->pipe_map.cnt = 0; 791 cv_broadcast(&wpipe->pipe_wcv); 792 return (error); 793 } 794 795 bcnt -= wpipe->pipe_map.cnt; 796 } 797 798 uio->uio_resid -= bcnt; 799 /* uio_offset not updated, not set/used for write(2) */ 800 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt; 801 uio->uio_iov->iov_len -= bcnt; 802 if (uio->uio_iov->iov_len == 0) { 803 uio->uio_iov++; 804 uio->uio_iovcnt--; 805 } 806 807 wpipe->pipe_map.cnt = 0; 808 return (error); 809 } 810 #endif /* !PIPE_NODIRECT */ 811 812 static int 813 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 814 int flags) 815 { 816 struct pipe *wpipe, *rpipe; 817 struct pipebuf *bp; 818 kmutex_t *lock; 819 int error; 820 821 /* We want to write to our peer */ 822 rpipe = (struct pipe *) fp->f_data; 823 lock = rpipe->pipe_lock; 824 error = 0; 825 826 mutex_enter(lock); 827 wpipe = rpipe->pipe_peer; 828 829 /* 830 * Detect loss of pipe read side, issue SIGPIPE if lost. 831 */ 832 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) { 833 mutex_exit(lock); 834 return EPIPE; 835 } 836 ++wpipe->pipe_busy; 837 838 /* Aquire the long-term pipe lock */ 839 if ((error = pipelock(wpipe, 1)) != 0) { 840 --wpipe->pipe_busy; 841 if (wpipe->pipe_busy == 0) { 842 cv_broadcast(&wpipe->pipe_draincv); 843 } 844 mutex_exit(lock); 845 return (error); 846 } 847 848 bp = &wpipe->pipe_buffer; 849 850 /* 851 * If it is advantageous to resize the pipe buffer, do so. 852 */ 853 if ((uio->uio_resid > PIPE_SIZE) && 854 (nbigpipe < maxbigpipes) && 855 #ifndef PIPE_NODIRECT 856 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 857 #endif 858 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) { 859 860 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0) 861 atomic_inc_uint(&nbigpipe); 862 } 863 864 while (uio->uio_resid) { 865 size_t space; 866 867 #ifndef PIPE_NODIRECT 868 /* 869 * Pipe buffered writes cannot be coincidental with 870 * direct writes. Also, only one direct write can be 871 * in progress at any one time. We wait until the currently 872 * executing direct write is completed before continuing. 873 * 874 * We break out if a signal occurs or the reader goes away. 875 */ 876 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) { 877 cv_broadcast(&wpipe->pipe_rcv); 878 pipeunlock(wpipe); 879 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 880 (void)pipelock(wpipe, 0); 881 if (wpipe->pipe_state & PIPE_EOF) 882 error = EPIPE; 883 } 884 if (error) 885 break; 886 887 /* 888 * If the transfer is large, we can gain performance if 889 * we do process-to-process copies directly. 890 * If the write is non-blocking, we don't use the 891 * direct write mechanism. 892 * 893 * The direct write mechanism will detect the reader going 894 * away on us. 895 */ 896 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 897 (fp->f_flag & FNONBLOCK) == 0 && 898 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) { 899 error = pipe_direct_write(fp, wpipe, uio); 900 901 /* 902 * Break out if error occurred, unless it's ENOMEM. 903 * ENOMEM means we failed to allocate some resources 904 * for direct write, so we just fallback to ordinary 905 * write. If the direct write was successful, 906 * process rest of data via ordinary write. 907 */ 908 if (error == 0) 909 continue; 910 911 if (error != ENOMEM) 912 break; 913 } 914 #endif /* PIPE_NODIRECT */ 915 916 space = bp->size - bp->cnt; 917 918 /* Writes of size <= PIPE_BUF must be atomic. */ 919 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF)) 920 space = 0; 921 922 if (space > 0) { 923 int size; /* Transfer size */ 924 int segsize; /* first segment to transfer */ 925 926 /* 927 * Transfer size is minimum of uio transfer 928 * and free space in pipe buffer. 929 */ 930 if (space > uio->uio_resid) 931 size = uio->uio_resid; 932 else 933 size = space; 934 /* 935 * First segment to transfer is minimum of 936 * transfer size and contiguous space in 937 * pipe buffer. If first segment to transfer 938 * is less than the transfer size, we've got 939 * a wraparound in the buffer. 940 */ 941 segsize = bp->size - bp->in; 942 if (segsize > size) 943 segsize = size; 944 945 /* Transfer first segment */ 946 mutex_exit(lock); 947 error = uiomove((char *)bp->buffer + bp->in, segsize, 948 uio); 949 950 if (error == 0 && segsize < size) { 951 /* 952 * Transfer remaining part now, to 953 * support atomic writes. Wraparound 954 * happened. 955 */ 956 #ifdef DEBUG 957 if (bp->in + segsize != bp->size) 958 panic("Expected pipe buffer wraparound disappeared"); 959 #endif 960 961 error = uiomove(bp->buffer, 962 size - segsize, uio); 963 } 964 mutex_enter(lock); 965 if (error) 966 break; 967 968 bp->in += size; 969 if (bp->in >= bp->size) { 970 #ifdef DEBUG 971 if (bp->in != size - segsize + bp->size) 972 panic("Expected wraparound bad"); 973 #endif 974 bp->in = size - segsize; 975 } 976 977 bp->cnt += size; 978 #ifdef DEBUG 979 if (bp->cnt > bp->size) 980 panic("Pipe buffer overflow"); 981 #endif 982 } else { 983 /* 984 * If the "read-side" has been blocked, wake it up now. 985 */ 986 cv_broadcast(&wpipe->pipe_rcv); 987 988 /* 989 * don't block on non-blocking I/O 990 */ 991 if (fp->f_flag & FNONBLOCK) { 992 error = EAGAIN; 993 break; 994 } 995 996 /* 997 * We have no more space and have something to offer, 998 * wake up select/poll. 999 */ 1000 if (bp->cnt) 1001 pipeselwakeup(wpipe, wpipe, POLL_IN); 1002 1003 pipeunlock(wpipe); 1004 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 1005 (void)pipelock(wpipe, 0); 1006 if (error != 0) 1007 break; 1008 /* 1009 * If read side wants to go away, we just issue a signal 1010 * to ourselves. 1011 */ 1012 if (wpipe->pipe_state & PIPE_EOF) { 1013 error = EPIPE; 1014 break; 1015 } 1016 } 1017 } 1018 1019 --wpipe->pipe_busy; 1020 if (wpipe->pipe_busy == 0) { 1021 cv_broadcast(&wpipe->pipe_draincv); 1022 } 1023 if (bp->cnt > 0) { 1024 cv_broadcast(&wpipe->pipe_rcv); 1025 } 1026 1027 /* 1028 * Don't return EPIPE if I/O was successful 1029 */ 1030 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0) 1031 error = 0; 1032 1033 if (error == 0) 1034 getnanotime(&wpipe->pipe_mtime); 1035 1036 /* 1037 * We have something to offer, wake up select/poll. 1038 * wpipe->pipe_map.cnt is always 0 in this point (direct write 1039 * is only done synchronously), so check only wpipe->pipe_buffer.cnt 1040 */ 1041 if (bp->cnt) 1042 pipeselwakeup(wpipe, wpipe, POLL_IN); 1043 1044 /* 1045 * Arrange for next read(2) to do a signal. 1046 */ 1047 wpipe->pipe_state |= PIPE_SIGNALR; 1048 1049 pipeunlock(wpipe); 1050 mutex_exit(lock); 1051 return (error); 1052 } 1053 1054 /* 1055 * we implement a very minimal set of ioctls for compatibility with sockets. 1056 */ 1057 int 1058 pipe_ioctl(struct file *fp, u_long cmd, void *data) 1059 { 1060 struct pipe *pipe = fp->f_data; 1061 kmutex_t *lock = pipe->pipe_lock; 1062 1063 switch (cmd) { 1064 1065 case FIONBIO: 1066 return (0); 1067 1068 case FIOASYNC: 1069 mutex_enter(lock); 1070 if (*(int *)data) { 1071 pipe->pipe_state |= PIPE_ASYNC; 1072 } else { 1073 pipe->pipe_state &= ~PIPE_ASYNC; 1074 } 1075 mutex_exit(lock); 1076 return (0); 1077 1078 case FIONREAD: 1079 mutex_enter(lock); 1080 #ifndef PIPE_NODIRECT 1081 if (pipe->pipe_state & PIPE_DIRECTW) 1082 *(int *)data = pipe->pipe_map.cnt; 1083 else 1084 #endif 1085 *(int *)data = pipe->pipe_buffer.cnt; 1086 mutex_exit(lock); 1087 return (0); 1088 1089 case FIONWRITE: 1090 /* Look at other side */ 1091 pipe = pipe->pipe_peer; 1092 mutex_enter(lock); 1093 #ifndef PIPE_NODIRECT 1094 if (pipe->pipe_state & PIPE_DIRECTW) 1095 *(int *)data = pipe->pipe_map.cnt; 1096 else 1097 #endif 1098 *(int *)data = pipe->pipe_buffer.cnt; 1099 mutex_exit(lock); 1100 return (0); 1101 1102 case FIONSPACE: 1103 /* Look at other side */ 1104 pipe = pipe->pipe_peer; 1105 mutex_enter(lock); 1106 #ifndef PIPE_NODIRECT 1107 /* 1108 * If we're in direct-mode, we don't really have a 1109 * send queue, and any other write will block. Thus 1110 * zero seems like the best answer. 1111 */ 1112 if (pipe->pipe_state & PIPE_DIRECTW) 1113 *(int *)data = 0; 1114 else 1115 #endif 1116 *(int *)data = pipe->pipe_buffer.size - 1117 pipe->pipe_buffer.cnt; 1118 mutex_exit(lock); 1119 return (0); 1120 1121 case TIOCSPGRP: 1122 case FIOSETOWN: 1123 return fsetown(&pipe->pipe_pgid, cmd, data); 1124 1125 case TIOCGPGRP: 1126 case FIOGETOWN: 1127 return fgetown(pipe->pipe_pgid, cmd, data); 1128 1129 } 1130 return (EPASSTHROUGH); 1131 } 1132 1133 int 1134 pipe_poll(struct file *fp, int events) 1135 { 1136 struct pipe *rpipe = fp->f_data; 1137 struct pipe *wpipe; 1138 int eof = 0; 1139 int revents = 0; 1140 1141 mutex_enter(rpipe->pipe_lock); 1142 wpipe = rpipe->pipe_peer; 1143 1144 if (events & (POLLIN | POLLRDNORM)) 1145 if ((rpipe->pipe_buffer.cnt > 0) || 1146 #ifndef PIPE_NODIRECT 1147 (rpipe->pipe_state & PIPE_DIRECTR) || 1148 #endif 1149 (rpipe->pipe_state & PIPE_EOF)) 1150 revents |= events & (POLLIN | POLLRDNORM); 1151 1152 eof |= (rpipe->pipe_state & PIPE_EOF); 1153 1154 if (wpipe == NULL) 1155 revents |= events & (POLLOUT | POLLWRNORM); 1156 else { 1157 if (events & (POLLOUT | POLLWRNORM)) 1158 if ((wpipe->pipe_state & PIPE_EOF) || ( 1159 #ifndef PIPE_NODIRECT 1160 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1161 #endif 1162 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1163 revents |= events & (POLLOUT | POLLWRNORM); 1164 1165 eof |= (wpipe->pipe_state & PIPE_EOF); 1166 } 1167 1168 if (wpipe == NULL || eof) 1169 revents |= POLLHUP; 1170 1171 if (revents == 0) { 1172 if (events & (POLLIN | POLLRDNORM)) 1173 selrecord(curlwp, &rpipe->pipe_sel); 1174 1175 if (events & (POLLOUT | POLLWRNORM)) 1176 selrecord(curlwp, &wpipe->pipe_sel); 1177 } 1178 mutex_exit(rpipe->pipe_lock); 1179 1180 return (revents); 1181 } 1182 1183 static int 1184 pipe_stat(struct file *fp, struct stat *ub) 1185 { 1186 struct pipe *pipe = fp->f_data; 1187 1188 mutex_enter(pipe->pipe_lock); 1189 memset(ub, 0, sizeof(*ub)); 1190 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 1191 ub->st_blksize = pipe->pipe_buffer.size; 1192 if (ub->st_blksize == 0 && pipe->pipe_peer) 1193 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size; 1194 ub->st_size = pipe->pipe_buffer.cnt; 1195 ub->st_blocks = (ub->st_size) ? 1 : 0; 1196 ub->st_atimespec = pipe->pipe_atime; 1197 ub->st_mtimespec = pipe->pipe_mtime; 1198 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime; 1199 ub->st_uid = kauth_cred_geteuid(fp->f_cred); 1200 ub->st_gid = kauth_cred_getegid(fp->f_cred); 1201 1202 /* 1203 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1204 * XXX (st_dev, st_ino) should be unique. 1205 */ 1206 mutex_exit(pipe->pipe_lock); 1207 return 0; 1208 } 1209 1210 /* ARGSUSED */ 1211 static int 1212 pipe_close(struct file *fp) 1213 { 1214 struct pipe *pipe = fp->f_data; 1215 1216 fp->f_data = NULL; 1217 pipeclose(fp, pipe); 1218 return (0); 1219 } 1220 1221 static void 1222 pipe_free_kmem(struct pipe *pipe) 1223 { 1224 1225 if (pipe->pipe_buffer.buffer != NULL) { 1226 if (pipe->pipe_buffer.size > PIPE_SIZE) { 1227 atomic_dec_uint(&nbigpipe); 1228 } 1229 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) { 1230 uvm_km_free(kernel_map, 1231 (vaddr_t)pipe->pipe_buffer.buffer, 1232 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE); 1233 atomic_add_int(&amountpipekva, 1234 -pipe->pipe_buffer.size); 1235 } 1236 pipe->pipe_buffer.buffer = NULL; 1237 } 1238 #ifndef PIPE_NODIRECT 1239 if (pipe->pipe_map.kva != 0) { 1240 pipe_loan_free(pipe); 1241 pipe->pipe_map.cnt = 0; 1242 pipe->pipe_map.kva = 0; 1243 pipe->pipe_map.pos = 0; 1244 pipe->pipe_map.npages = 0; 1245 } 1246 #endif /* !PIPE_NODIRECT */ 1247 } 1248 1249 /* 1250 * shutdown the pipe 1251 */ 1252 static void 1253 pipeclose(struct file *fp, struct pipe *pipe) 1254 { 1255 kmutex_t *lock; 1256 struct pipe *ppipe; 1257 1258 if (pipe == NULL) 1259 return; 1260 1261 KASSERT(cv_is_valid(&pipe->pipe_rcv)); 1262 KASSERT(cv_is_valid(&pipe->pipe_wcv)); 1263 KASSERT(cv_is_valid(&pipe->pipe_draincv)); 1264 KASSERT(cv_is_valid(&pipe->pipe_lkcv)); 1265 1266 lock = pipe->pipe_lock; 1267 mutex_enter(lock); 1268 pipeselwakeup(pipe, pipe, POLL_HUP); 1269 1270 /* 1271 * If the other side is blocked, wake it up saying that 1272 * we want to close it down. 1273 */ 1274 pipe->pipe_state |= PIPE_EOF; 1275 if (pipe->pipe_busy) { 1276 while (pipe->pipe_busy) { 1277 cv_broadcast(&pipe->pipe_wcv); 1278 cv_wait_sig(&pipe->pipe_draincv, lock); 1279 } 1280 } 1281 1282 /* 1283 * Disconnect from peer 1284 */ 1285 if ((ppipe = pipe->pipe_peer) != NULL) { 1286 pipeselwakeup(ppipe, ppipe, POLL_HUP); 1287 ppipe->pipe_state |= PIPE_EOF; 1288 cv_broadcast(&ppipe->pipe_rcv); 1289 ppipe->pipe_peer = NULL; 1290 } 1291 1292 /* 1293 * Any knote objects still left in the list are 1294 * the one attached by peer. Since no one will 1295 * traverse this list, we just clear it. 1296 */ 1297 SLIST_INIT(&pipe->pipe_sel.sel_klist); 1298 1299 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0); 1300 mutex_exit(lock); 1301 1302 /* 1303 * free resources 1304 */ 1305 pipe->pipe_pgid = 0; 1306 pipe->pipe_state = PIPE_SIGNALR; 1307 pipe_free_kmem(pipe); 1308 if (pipe->pipe_kmem != 0) { 1309 pool_cache_put(pipe_rd_cache, pipe); 1310 } else { 1311 pool_cache_put(pipe_wr_cache, pipe); 1312 } 1313 mutex_obj_free(lock); 1314 } 1315 1316 static void 1317 filt_pipedetach(struct knote *kn) 1318 { 1319 struct pipe *pipe; 1320 kmutex_t *lock; 1321 1322 pipe = ((file_t *)kn->kn_obj)->f_data; 1323 lock = pipe->pipe_lock; 1324 1325 mutex_enter(lock); 1326 1327 switch(kn->kn_filter) { 1328 case EVFILT_WRITE: 1329 /* need the peer structure, not our own */ 1330 pipe = pipe->pipe_peer; 1331 1332 /* if reader end already closed, just return */ 1333 if (pipe == NULL) { 1334 mutex_exit(lock); 1335 return; 1336 } 1337 1338 break; 1339 default: 1340 /* nothing to do */ 1341 break; 1342 } 1343 1344 #ifdef DIAGNOSTIC 1345 if (kn->kn_hook != pipe) 1346 panic("filt_pipedetach: inconsistent knote"); 1347 #endif 1348 1349 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext); 1350 mutex_exit(lock); 1351 } 1352 1353 /*ARGSUSED*/ 1354 static int 1355 filt_piperead(struct knote *kn, long hint) 1356 { 1357 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data; 1358 struct pipe *wpipe; 1359 1360 if ((hint & NOTE_SUBMIT) == 0) { 1361 mutex_enter(rpipe->pipe_lock); 1362 } 1363 wpipe = rpipe->pipe_peer; 1364 kn->kn_data = rpipe->pipe_buffer.cnt; 1365 1366 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1367 kn->kn_data = rpipe->pipe_map.cnt; 1368 1369 if ((rpipe->pipe_state & PIPE_EOF) || 1370 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1371 kn->kn_flags |= EV_EOF; 1372 if ((hint & NOTE_SUBMIT) == 0) { 1373 mutex_exit(rpipe->pipe_lock); 1374 } 1375 return (1); 1376 } 1377 1378 if ((hint & NOTE_SUBMIT) == 0) { 1379 mutex_exit(rpipe->pipe_lock); 1380 } 1381 return (kn->kn_data > 0); 1382 } 1383 1384 /*ARGSUSED*/ 1385 static int 1386 filt_pipewrite(struct knote *kn, long hint) 1387 { 1388 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data; 1389 struct pipe *wpipe; 1390 1391 if ((hint & NOTE_SUBMIT) == 0) { 1392 mutex_enter(rpipe->pipe_lock); 1393 } 1394 wpipe = rpipe->pipe_peer; 1395 1396 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1397 kn->kn_data = 0; 1398 kn->kn_flags |= EV_EOF; 1399 if ((hint & NOTE_SUBMIT) == 0) { 1400 mutex_exit(rpipe->pipe_lock); 1401 } 1402 return (1); 1403 } 1404 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1405 if (wpipe->pipe_state & PIPE_DIRECTW) 1406 kn->kn_data = 0; 1407 1408 if ((hint & NOTE_SUBMIT) == 0) { 1409 mutex_exit(rpipe->pipe_lock); 1410 } 1411 return (kn->kn_data >= PIPE_BUF); 1412 } 1413 1414 static const struct filterops pipe_rfiltops = 1415 { 1, NULL, filt_pipedetach, filt_piperead }; 1416 static const struct filterops pipe_wfiltops = 1417 { 1, NULL, filt_pipedetach, filt_pipewrite }; 1418 1419 /*ARGSUSED*/ 1420 static int 1421 pipe_kqfilter(struct file *fp, struct knote *kn) 1422 { 1423 struct pipe *pipe; 1424 kmutex_t *lock; 1425 1426 pipe = ((file_t *)kn->kn_obj)->f_data; 1427 lock = pipe->pipe_lock; 1428 1429 mutex_enter(lock); 1430 1431 switch (kn->kn_filter) { 1432 case EVFILT_READ: 1433 kn->kn_fop = &pipe_rfiltops; 1434 break; 1435 case EVFILT_WRITE: 1436 kn->kn_fop = &pipe_wfiltops; 1437 pipe = pipe->pipe_peer; 1438 if (pipe == NULL) { 1439 /* other end of pipe has been closed */ 1440 mutex_exit(lock); 1441 return (EBADF); 1442 } 1443 break; 1444 default: 1445 mutex_exit(lock); 1446 return (EINVAL); 1447 } 1448 1449 kn->kn_hook = pipe; 1450 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext); 1451 mutex_exit(lock); 1452 1453 return (0); 1454 } 1455 1456 /* 1457 * Handle pipe sysctls. 1458 */ 1459 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup") 1460 { 1461 1462 sysctl_createv(clog, 0, NULL, NULL, 1463 CTLFLAG_PERMANENT, 1464 CTLTYPE_NODE, "kern", NULL, 1465 NULL, 0, NULL, 0, 1466 CTL_KERN, CTL_EOL); 1467 sysctl_createv(clog, 0, NULL, NULL, 1468 CTLFLAG_PERMANENT, 1469 CTLTYPE_NODE, "pipe", 1470 SYSCTL_DESCR("Pipe settings"), 1471 NULL, 0, NULL, 0, 1472 CTL_KERN, KERN_PIPE, CTL_EOL); 1473 1474 sysctl_createv(clog, 0, NULL, NULL, 1475 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1476 CTLTYPE_INT, "maxkvasz", 1477 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1478 "used for pipes"), 1479 NULL, 0, &maxpipekva, 0, 1480 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL); 1481 sysctl_createv(clog, 0, NULL, NULL, 1482 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1483 CTLTYPE_INT, "maxloankvasz", 1484 SYSCTL_DESCR("Limit for direct transfers via page loan"), 1485 NULL, 0, &limitpipekva, 0, 1486 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL); 1487 sysctl_createv(clog, 0, NULL, NULL, 1488 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1489 CTLTYPE_INT, "maxbigpipes", 1490 SYSCTL_DESCR("Maximum number of \"big\" pipes"), 1491 NULL, 0, &maxbigpipes, 0, 1492 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL); 1493 sysctl_createv(clog, 0, NULL, NULL, 1494 CTLFLAG_PERMANENT, 1495 CTLTYPE_INT, "nbigpipes", 1496 SYSCTL_DESCR("Number of \"big\" pipes"), 1497 NULL, 0, &nbigpipe, 0, 1498 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL); 1499 sysctl_createv(clog, 0, NULL, NULL, 1500 CTLFLAG_PERMANENT, 1501 CTLTYPE_INT, "kvasize", 1502 SYSCTL_DESCR("Amount of kernel memory consumed by pipe " 1503 "buffers"), 1504 NULL, 0, &amountpipekva, 0, 1505 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL); 1506 } 1507