xref: /netbsd-src/sys/kern/sys_pipe.c (revision 9ddb6ab554e70fb9bbd90c3d96b812bc57755a14)
1 /*	$NetBSD: sys_pipe.c,v 1.135 2012/01/25 00:28:36 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1996 John S. Dyson
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice immediately at the beginning of the file, without modification,
41  *    this list of conditions, and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Absolutely no warranty of function or purpose is made by the author
46  *    John S. Dyson.
47  * 4. Modifications may be freely made to this file if the above conditions
48  *    are met.
49  */
50 
51 /*
52  * This file contains a high-performance replacement for the socket-based
53  * pipes scheme originally used.  It does not support all features of
54  * sockets, but does do everything that pipes normally do.
55  *
56  * This code has two modes of operation, a small write mode and a large
57  * write mode.  The small write mode acts like conventional pipes with
58  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
59  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
60  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61  * using the UVM page loan facility from where the receiving process can copy
62  * the data directly from the pages in the sending process.
63  *
64  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65  * happen for small transfers so that the system will not spend all of
66  * its time context switching.  PIPE_SIZE is constrained by the
67  * amount of kernel virtual memory.
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.135 2012/01/25 00:28:36 christos Exp $");
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94 
95 #include <uvm/uvm_extern.h>
96 
97 /*
98  * Use this to disable direct I/O and decrease the code size:
99  * #define PIPE_NODIRECT
100  */
101 
102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
103 #define PIPE_NODIRECT
104 
105 static int	pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
106 static int	pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
107 static int	pipe_close(file_t *);
108 static int	pipe_poll(file_t *, int);
109 static int	pipe_kqfilter(file_t *, struct knote *);
110 static int	pipe_stat(file_t *, struct stat *);
111 static int	pipe_ioctl(file_t *, u_long, void *);
112 static void	pipe_restart(file_t *);
113 
114 static const struct fileops pipeops = {
115 	.fo_read = pipe_read,
116 	.fo_write = pipe_write,
117 	.fo_ioctl = pipe_ioctl,
118 	.fo_fcntl = fnullop_fcntl,
119 	.fo_poll = pipe_poll,
120 	.fo_stat = pipe_stat,
121 	.fo_close = pipe_close,
122 	.fo_kqfilter = pipe_kqfilter,
123 	.fo_restart = pipe_restart,
124 };
125 
126 /*
127  * Default pipe buffer size(s), this can be kind-of large now because pipe
128  * space is pageable.  The pipe code will try to maintain locality of
129  * reference for performance reasons, so small amounts of outstanding I/O
130  * will not wipe the cache.
131  */
132 #define	MINPIPESIZE	(PIPE_SIZE / 3)
133 #define	MAXPIPESIZE	(2 * PIPE_SIZE / 3)
134 
135 /*
136  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137  * is there so that on large systems, we don't exhaust it.
138  */
139 #define	MAXPIPEKVA	(8 * 1024 * 1024)
140 static u_int	maxpipekva = MAXPIPEKVA;
141 
142 /*
143  * Limit for direct transfers, we cannot, of course limit
144  * the amount of kva for pipes in general though.
145  */
146 #define	LIMITPIPEKVA	(16 * 1024 * 1024)
147 static u_int	limitpipekva = LIMITPIPEKVA;
148 
149 /*
150  * Limit the number of "big" pipes
151  */
152 #define	LIMITBIGPIPES	32
153 static u_int	maxbigpipes = LIMITBIGPIPES;
154 static u_int	nbigpipe = 0;
155 
156 /*
157  * Amount of KVA consumed by pipe buffers.
158  */
159 static u_int	amountpipekva = 0;
160 
161 static void	pipeclose(struct pipe *);
162 static void	pipe_free_kmem(struct pipe *);
163 static int	pipe_create(struct pipe **, pool_cache_t);
164 static int	pipelock(struct pipe *, int);
165 static inline void pipeunlock(struct pipe *);
166 static void	pipeselwakeup(struct pipe *, struct pipe *, int);
167 #ifndef PIPE_NODIRECT
168 static int	pipe_direct_write(file_t *, struct pipe *, struct uio *);
169 #endif
170 static int	pipespace(struct pipe *, int);
171 static int	pipe_ctor(void *, void *, int);
172 static void	pipe_dtor(void *, void *);
173 
174 #ifndef PIPE_NODIRECT
175 static int	pipe_loan_alloc(struct pipe *, int);
176 static void	pipe_loan_free(struct pipe *);
177 #endif /* PIPE_NODIRECT */
178 
179 static pool_cache_t	pipe_wr_cache;
180 static pool_cache_t	pipe_rd_cache;
181 
182 void
183 pipe_init(void)
184 {
185 
186 	/* Writer side is not automatically allocated KVA. */
187 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
188 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
189 	KASSERT(pipe_wr_cache != NULL);
190 
191 	/* Reader side gets preallocated KVA. */
192 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
193 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
194 	KASSERT(pipe_rd_cache != NULL);
195 }
196 
197 static int
198 pipe_ctor(void *arg, void *obj, int flags)
199 {
200 	struct pipe *pipe;
201 	vaddr_t va;
202 
203 	pipe = obj;
204 
205 	memset(pipe, 0, sizeof(struct pipe));
206 	if (arg != NULL) {
207 		/* Preallocate space. */
208 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
209 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
210 		KASSERT(va != 0);
211 		pipe->pipe_kmem = va;
212 		atomic_add_int(&amountpipekva, PIPE_SIZE);
213 	}
214 	cv_init(&pipe->pipe_rcv, "pipe_rd");
215 	cv_init(&pipe->pipe_wcv, "pipe_wr");
216 	cv_init(&pipe->pipe_draincv, "pipe_drn");
217 	cv_init(&pipe->pipe_lkcv, "pipe_lk");
218 	selinit(&pipe->pipe_sel);
219 	pipe->pipe_state = PIPE_SIGNALR;
220 
221 	return 0;
222 }
223 
224 static void
225 pipe_dtor(void *arg, void *obj)
226 {
227 	struct pipe *pipe;
228 
229 	pipe = obj;
230 
231 	cv_destroy(&pipe->pipe_rcv);
232 	cv_destroy(&pipe->pipe_wcv);
233 	cv_destroy(&pipe->pipe_draincv);
234 	cv_destroy(&pipe->pipe_lkcv);
235 	seldestroy(&pipe->pipe_sel);
236 	if (pipe->pipe_kmem != 0) {
237 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
238 		    UVM_KMF_PAGEABLE);
239 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
240 	}
241 }
242 
243 /*
244  * The pipe system call for the DTYPE_PIPE type of pipes
245  */
246 int
247 pipe1(struct lwp *l, register_t *retval, int flags)
248 {
249 	struct pipe *rpipe, *wpipe;
250 	file_t *rf, *wf;
251 	int fd, error;
252 	proc_t *p;
253 
254 	if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
255 		return EINVAL;
256 	p = curproc;
257 	rpipe = wpipe = NULL;
258 	if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
259 	    (error = pipe_create(&wpipe, pipe_wr_cache))) {
260 		goto free2;
261 	}
262 	rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
263 	wpipe->pipe_lock = rpipe->pipe_lock;
264 	mutex_obj_hold(wpipe->pipe_lock);
265 
266 	error = fd_allocfile(&rf, &fd);
267 	if (error)
268 		goto free2;
269 	retval[0] = fd;
270 	rf->f_flag = FREAD | flags;
271 	rf->f_type = DTYPE_PIPE;
272 	rf->f_data = (void *)rpipe;
273 	rf->f_ops = &pipeops;
274 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
275 
276 	error = fd_allocfile(&wf, &fd);
277 	if (error)
278 		goto free3;
279 	retval[1] = fd;
280 	wf->f_flag = FWRITE | flags;
281 	wf->f_type = DTYPE_PIPE;
282 	wf->f_data = (void *)wpipe;
283 	wf->f_ops = &pipeops;
284 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
285 
286 	rpipe->pipe_peer = wpipe;
287 	wpipe->pipe_peer = rpipe;
288 
289 	fd_affix(p, rf, (int)retval[0]);
290 	fd_affix(p, wf, (int)retval[1]);
291 	return (0);
292 free3:
293 	fd_abort(p, rf, (int)retval[0]);
294 free2:
295 	pipeclose(wpipe);
296 	pipeclose(rpipe);
297 
298 	return (error);
299 }
300 
301 /*
302  * Allocate kva for pipe circular buffer, the space is pageable
303  * This routine will 'realloc' the size of a pipe safely, if it fails
304  * it will retain the old buffer.
305  * If it fails it will return ENOMEM.
306  */
307 static int
308 pipespace(struct pipe *pipe, int size)
309 {
310 	void *buffer;
311 
312 	/*
313 	 * Allocate pageable virtual address space.  Physical memory is
314 	 * allocated on demand.
315 	 */
316 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
317 		buffer = (void *)pipe->pipe_kmem;
318 	} else {
319 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
320 		    0, UVM_KMF_PAGEABLE);
321 		if (buffer == NULL)
322 			return (ENOMEM);
323 		atomic_add_int(&amountpipekva, size);
324 	}
325 
326 	/* free old resources if we're resizing */
327 	pipe_free_kmem(pipe);
328 	pipe->pipe_buffer.buffer = buffer;
329 	pipe->pipe_buffer.size = size;
330 	pipe->pipe_buffer.in = 0;
331 	pipe->pipe_buffer.out = 0;
332 	pipe->pipe_buffer.cnt = 0;
333 	return (0);
334 }
335 
336 /*
337  * Initialize and allocate VM and memory for pipe.
338  */
339 static int
340 pipe_create(struct pipe **pipep, pool_cache_t cache)
341 {
342 	struct pipe *pipe;
343 	int error;
344 
345 	pipe = pool_cache_get(cache, PR_WAITOK);
346 	KASSERT(pipe != NULL);
347 	*pipep = pipe;
348 	error = 0;
349 	getnanotime(&pipe->pipe_btime);
350 	pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
351 	pipe->pipe_lock = NULL;
352 	if (cache == pipe_rd_cache) {
353 		error = pipespace(pipe, PIPE_SIZE);
354 	} else {
355 		pipe->pipe_buffer.buffer = NULL;
356 		pipe->pipe_buffer.size = 0;
357 		pipe->pipe_buffer.in = 0;
358 		pipe->pipe_buffer.out = 0;
359 		pipe->pipe_buffer.cnt = 0;
360 	}
361 	return error;
362 }
363 
364 /*
365  * Lock a pipe for I/O, blocking other access
366  * Called with pipe spin lock held.
367  */
368 static int
369 pipelock(struct pipe *pipe, int catch)
370 {
371 	int error;
372 
373 	KASSERT(mutex_owned(pipe->pipe_lock));
374 
375 	while (pipe->pipe_state & PIPE_LOCKFL) {
376 		pipe->pipe_state |= PIPE_LWANT;
377 		if (catch) {
378 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
379 			if (error != 0)
380 				return error;
381 		} else
382 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
383 	}
384 
385 	pipe->pipe_state |= PIPE_LOCKFL;
386 
387 	return 0;
388 }
389 
390 /*
391  * unlock a pipe I/O lock
392  */
393 static inline void
394 pipeunlock(struct pipe *pipe)
395 {
396 
397 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
398 
399 	pipe->pipe_state &= ~PIPE_LOCKFL;
400 	if (pipe->pipe_state & PIPE_LWANT) {
401 		pipe->pipe_state &= ~PIPE_LWANT;
402 		cv_broadcast(&pipe->pipe_lkcv);
403 	}
404 }
405 
406 /*
407  * Select/poll wakup. This also sends SIGIO to peer connected to
408  * 'sigpipe' side of pipe.
409  */
410 static void
411 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
412 {
413 	int band;
414 
415 	switch (code) {
416 	case POLL_IN:
417 		band = POLLIN|POLLRDNORM;
418 		break;
419 	case POLL_OUT:
420 		band = POLLOUT|POLLWRNORM;
421 		break;
422 	case POLL_HUP:
423 		band = POLLHUP;
424 		break;
425 	case POLL_ERR:
426 		band = POLLERR;
427 		break;
428 	default:
429 		band = 0;
430 #ifdef DIAGNOSTIC
431 		printf("bad siginfo code %d in pipe notification.\n", code);
432 #endif
433 		break;
434 	}
435 
436 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
437 
438 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
439 		return;
440 
441 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
442 }
443 
444 static int
445 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
446     int flags)
447 {
448 	struct pipe *rpipe = (struct pipe *) fp->f_data;
449 	struct pipebuf *bp = &rpipe->pipe_buffer;
450 	kmutex_t *lock = rpipe->pipe_lock;
451 	int error;
452 	size_t nread = 0;
453 	size_t size;
454 	size_t ocnt;
455 	unsigned int wakeup_state = 0;
456 
457 	mutex_enter(lock);
458 	++rpipe->pipe_busy;
459 	ocnt = bp->cnt;
460 
461 again:
462 	error = pipelock(rpipe, 1);
463 	if (error)
464 		goto unlocked_error;
465 
466 	while (uio->uio_resid) {
467 		/*
468 		 * Normal pipe buffer receive.
469 		 */
470 		if (bp->cnt > 0) {
471 			size = bp->size - bp->out;
472 			if (size > bp->cnt)
473 				size = bp->cnt;
474 			if (size > uio->uio_resid)
475 				size = uio->uio_resid;
476 
477 			mutex_exit(lock);
478 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
479 			mutex_enter(lock);
480 			if (error)
481 				break;
482 
483 			bp->out += size;
484 			if (bp->out >= bp->size)
485 				bp->out = 0;
486 
487 			bp->cnt -= size;
488 
489 			/*
490 			 * If there is no more to read in the pipe, reset
491 			 * its pointers to the beginning.  This improves
492 			 * cache hit stats.
493 			 */
494 			if (bp->cnt == 0) {
495 				bp->in = 0;
496 				bp->out = 0;
497 			}
498 			nread += size;
499 			continue;
500 		}
501 
502 #ifndef PIPE_NODIRECT
503 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
504 			/*
505 			 * Direct copy, bypassing a kernel buffer.
506 			 */
507 			void *va;
508 			u_int gen;
509 
510 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
511 
512 			size = rpipe->pipe_map.cnt;
513 			if (size > uio->uio_resid)
514 				size = uio->uio_resid;
515 
516 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
517 			gen = rpipe->pipe_map.egen;
518 			mutex_exit(lock);
519 
520 			/*
521 			 * Consume emap and read the data from loaned pages.
522 			 */
523 			uvm_emap_consume(gen);
524 			error = uiomove(va, size, uio);
525 
526 			mutex_enter(lock);
527 			if (error)
528 				break;
529 			nread += size;
530 			rpipe->pipe_map.pos += size;
531 			rpipe->pipe_map.cnt -= size;
532 			if (rpipe->pipe_map.cnt == 0) {
533 				rpipe->pipe_state &= ~PIPE_DIRECTR;
534 				cv_broadcast(&rpipe->pipe_wcv);
535 			}
536 			continue;
537 		}
538 #endif
539 		/*
540 		 * Break if some data was read.
541 		 */
542 		if (nread > 0)
543 			break;
544 
545 		/*
546 		 * Detect EOF condition.
547 		 * Read returns 0 on EOF, no need to set error.
548 		 */
549 		if (rpipe->pipe_state & PIPE_EOF)
550 			break;
551 
552 		/*
553 		 * Don't block on non-blocking I/O.
554 		 */
555 		if (fp->f_flag & FNONBLOCK) {
556 			error = EAGAIN;
557 			break;
558 		}
559 
560 		/*
561 		 * Unlock the pipe buffer for our remaining processing.
562 		 * We will either break out with an error or we will
563 		 * sleep and relock to loop.
564 		 */
565 		pipeunlock(rpipe);
566 
567 		/*
568 		 * Re-check to see if more direct writes are pending.
569 		 */
570 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
571 			goto again;
572 
573 #if 1   /* XXX (dsl) I'm sure these aren't needed here ... */
574 		/*
575 		 * We want to read more, wake up select/poll.
576 		 */
577 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
578 
579 		/*
580 		 * If the "write-side" is blocked, wake it up now.
581 		 */
582 		cv_broadcast(&rpipe->pipe_wcv);
583 #endif
584 
585 		if (wakeup_state & PIPE_RESTART) {
586 			error = ERESTART;
587 			goto unlocked_error;
588 		}
589 
590 		/* Now wait until the pipe is filled */
591 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
592 		if (error != 0)
593 			goto unlocked_error;
594 		wakeup_state = rpipe->pipe_state;
595 		goto again;
596 	}
597 
598 	if (error == 0)
599 		getnanotime(&rpipe->pipe_atime);
600 	pipeunlock(rpipe);
601 
602 unlocked_error:
603 	--rpipe->pipe_busy;
604 	if (rpipe->pipe_busy == 0) {
605 		rpipe->pipe_state &= ~PIPE_RESTART;
606 		cv_broadcast(&rpipe->pipe_draincv);
607 	}
608 	if (bp->cnt < MINPIPESIZE) {
609 		cv_broadcast(&rpipe->pipe_wcv);
610 	}
611 
612 	/*
613 	 * If anything was read off the buffer, signal to the writer it's
614 	 * possible to write more data. Also send signal if we are here for the
615 	 * first time after last write.
616 	 */
617 	if ((bp->size - bp->cnt) >= PIPE_BUF
618 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
619 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
620 		rpipe->pipe_state &= ~PIPE_SIGNALR;
621 	}
622 
623 	mutex_exit(lock);
624 	return (error);
625 }
626 
627 #ifndef PIPE_NODIRECT
628 /*
629  * Allocate structure for loan transfer.
630  */
631 static int
632 pipe_loan_alloc(struct pipe *wpipe, int npages)
633 {
634 	vsize_t len;
635 
636 	len = (vsize_t)npages << PAGE_SHIFT;
637 	atomic_add_int(&amountpipekva, len);
638 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
639 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
640 	if (wpipe->pipe_map.kva == 0) {
641 		atomic_add_int(&amountpipekva, -len);
642 		return (ENOMEM);
643 	}
644 
645 	wpipe->pipe_map.npages = npages;
646 	wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
647 	    KM_SLEEP);
648 	return (0);
649 }
650 
651 /*
652  * Free resources allocated for loan transfer.
653  */
654 static void
655 pipe_loan_free(struct pipe *wpipe)
656 {
657 	vsize_t len;
658 
659 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
660 	uvm_emap_remove(wpipe->pipe_map.kva, len);	/* XXX */
661 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
662 	wpipe->pipe_map.kva = 0;
663 	atomic_add_int(&amountpipekva, -len);
664 	kmem_free(wpipe->pipe_map.pgs,
665 	    wpipe->pipe_map.npages * sizeof(struct vm_page *));
666 	wpipe->pipe_map.pgs = NULL;
667 }
668 
669 /*
670  * NetBSD direct write, using uvm_loan() mechanism.
671  * This implements the pipe buffer write mechanism.  Note that only
672  * a direct write OR a normal pipe write can be pending at any given time.
673  * If there are any characters in the pipe buffer, the direct write will
674  * be deferred until the receiving process grabs all of the bytes from
675  * the pipe buffer.  Then the direct mapping write is set-up.
676  *
677  * Called with the long-term pipe lock held.
678  */
679 static int
680 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
681 {
682 	struct vm_page **pgs;
683 	vaddr_t bbase, base, bend;
684 	vsize_t blen, bcnt;
685 	int error, npages;
686 	voff_t bpos;
687 	kmutex_t *lock = wpipe->pipe_lock;
688 
689 	KASSERT(mutex_owned(wpipe->pipe_lock));
690 	KASSERT(wpipe->pipe_map.cnt == 0);
691 
692 	mutex_exit(lock);
693 
694 	/*
695 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
696 	 * not aligned to PAGE_SIZE.
697 	 */
698 	bbase = (vaddr_t)uio->uio_iov->iov_base;
699 	base = trunc_page(bbase);
700 	bend = round_page(bbase + uio->uio_iov->iov_len);
701 	blen = bend - base;
702 	bpos = bbase - base;
703 
704 	if (blen > PIPE_DIRECT_CHUNK) {
705 		blen = PIPE_DIRECT_CHUNK;
706 		bend = base + blen;
707 		bcnt = PIPE_DIRECT_CHUNK - bpos;
708 	} else {
709 		bcnt = uio->uio_iov->iov_len;
710 	}
711 	npages = blen >> PAGE_SHIFT;
712 
713 	/*
714 	 * Free the old kva if we need more pages than we have
715 	 * allocated.
716 	 */
717 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
718 		pipe_loan_free(wpipe);
719 
720 	/* Allocate new kva. */
721 	if (wpipe->pipe_map.kva == 0) {
722 		error = pipe_loan_alloc(wpipe, npages);
723 		if (error) {
724 			mutex_enter(lock);
725 			return (error);
726 		}
727 	}
728 
729 	/* Loan the write buffer memory from writer process */
730 	pgs = wpipe->pipe_map.pgs;
731 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
732 			 pgs, UVM_LOAN_TOPAGE);
733 	if (error) {
734 		pipe_loan_free(wpipe);
735 		mutex_enter(lock);
736 		return (ENOMEM); /* so that caller fallback to ordinary write */
737 	}
738 
739 	/* Enter the loaned pages to KVA, produce new emap generation number. */
740 	uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
741 	wpipe->pipe_map.egen = uvm_emap_produce();
742 
743 	/* Now we can put the pipe in direct write mode */
744 	wpipe->pipe_map.pos = bpos;
745 	wpipe->pipe_map.cnt = bcnt;
746 
747 	/*
748 	 * But before we can let someone do a direct read, we
749 	 * have to wait until the pipe is drained.  Release the
750 	 * pipe lock while we wait.
751 	 */
752 	mutex_enter(lock);
753 	wpipe->pipe_state |= PIPE_DIRECTW;
754 	pipeunlock(wpipe);
755 
756 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
757 		cv_broadcast(&wpipe->pipe_rcv);
758 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
759 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
760 			error = EPIPE;
761 	}
762 
763 	/* Pipe is drained; next read will off the direct buffer */
764 	wpipe->pipe_state |= PIPE_DIRECTR;
765 
766 	/* Wait until the reader is done */
767 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
768 		cv_broadcast(&wpipe->pipe_rcv);
769 		pipeselwakeup(wpipe, wpipe, POLL_IN);
770 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
771 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
772 			error = EPIPE;
773 	}
774 
775 	/* Take pipe out of direct write mode */
776 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
777 
778 	/* Acquire the pipe lock and cleanup */
779 	(void)pipelock(wpipe, 0);
780 	mutex_exit(lock);
781 
782 	if (pgs != NULL) {
783 		/* XXX: uvm_emap_remove */
784 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
785 	}
786 	if (error || amountpipekva > maxpipekva)
787 		pipe_loan_free(wpipe);
788 
789 	mutex_enter(lock);
790 	if (error) {
791 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
792 
793 		/*
794 		 * If nothing was read from what we offered, return error
795 		 * straight on. Otherwise update uio resid first. Caller
796 		 * will deal with the error condition, returning short
797 		 * write, error, or restarting the write(2) as appropriate.
798 		 */
799 		if (wpipe->pipe_map.cnt == bcnt) {
800 			wpipe->pipe_map.cnt = 0;
801 			cv_broadcast(&wpipe->pipe_wcv);
802 			return (error);
803 		}
804 
805 		bcnt -= wpipe->pipe_map.cnt;
806 	}
807 
808 	uio->uio_resid -= bcnt;
809 	/* uio_offset not updated, not set/used for write(2) */
810 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
811 	uio->uio_iov->iov_len -= bcnt;
812 	if (uio->uio_iov->iov_len == 0) {
813 		uio->uio_iov++;
814 		uio->uio_iovcnt--;
815 	}
816 
817 	wpipe->pipe_map.cnt = 0;
818 	return (error);
819 }
820 #endif /* !PIPE_NODIRECT */
821 
822 static int
823 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
824     int flags)
825 {
826 	struct pipe *wpipe, *rpipe;
827 	struct pipebuf *bp;
828 	kmutex_t *lock;
829 	int error;
830 	unsigned int wakeup_state = 0;
831 
832 	/* We want to write to our peer */
833 	rpipe = (struct pipe *) fp->f_data;
834 	lock = rpipe->pipe_lock;
835 	error = 0;
836 
837 	mutex_enter(lock);
838 	wpipe = rpipe->pipe_peer;
839 
840 	/*
841 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
842 	 */
843 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
844 		mutex_exit(lock);
845 		return EPIPE;
846 	}
847 	++wpipe->pipe_busy;
848 
849 	/* Aquire the long-term pipe lock */
850 	if ((error = pipelock(wpipe, 1)) != 0) {
851 		--wpipe->pipe_busy;
852 		if (wpipe->pipe_busy == 0) {
853 			wpipe->pipe_state &= ~PIPE_RESTART;
854 			cv_broadcast(&wpipe->pipe_draincv);
855 		}
856 		mutex_exit(lock);
857 		return (error);
858 	}
859 
860 	bp = &wpipe->pipe_buffer;
861 
862 	/*
863 	 * If it is advantageous to resize the pipe buffer, do so.
864 	 */
865 	if ((uio->uio_resid > PIPE_SIZE) &&
866 	    (nbigpipe < maxbigpipes) &&
867 #ifndef PIPE_NODIRECT
868 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
869 #endif
870 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
871 
872 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
873 			atomic_inc_uint(&nbigpipe);
874 	}
875 
876 	while (uio->uio_resid) {
877 		size_t space;
878 
879 #ifndef PIPE_NODIRECT
880 		/*
881 		 * Pipe buffered writes cannot be coincidental with
882 		 * direct writes.  Also, only one direct write can be
883 		 * in progress at any one time.  We wait until the currently
884 		 * executing direct write is completed before continuing.
885 		 *
886 		 * We break out if a signal occurs or the reader goes away.
887 		 */
888 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
889 			cv_broadcast(&wpipe->pipe_rcv);
890 			pipeunlock(wpipe);
891 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
892 			(void)pipelock(wpipe, 0);
893 			if (wpipe->pipe_state & PIPE_EOF)
894 				error = EPIPE;
895 		}
896 		if (error)
897 			break;
898 
899 		/*
900 		 * If the transfer is large, we can gain performance if
901 		 * we do process-to-process copies directly.
902 		 * If the write is non-blocking, we don't use the
903 		 * direct write mechanism.
904 		 *
905 		 * The direct write mechanism will detect the reader going
906 		 * away on us.
907 		 */
908 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
909 		    (fp->f_flag & FNONBLOCK) == 0 &&
910 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
911 			error = pipe_direct_write(fp, wpipe, uio);
912 
913 			/*
914 			 * Break out if error occurred, unless it's ENOMEM.
915 			 * ENOMEM means we failed to allocate some resources
916 			 * for direct write, so we just fallback to ordinary
917 			 * write. If the direct write was successful,
918 			 * process rest of data via ordinary write.
919 			 */
920 			if (error == 0)
921 				continue;
922 
923 			if (error != ENOMEM)
924 				break;
925 		}
926 #endif /* PIPE_NODIRECT */
927 
928 		space = bp->size - bp->cnt;
929 
930 		/* Writes of size <= PIPE_BUF must be atomic. */
931 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
932 			space = 0;
933 
934 		if (space > 0) {
935 			int size;	/* Transfer size */
936 			int segsize;	/* first segment to transfer */
937 
938 			/*
939 			 * Transfer size is minimum of uio transfer
940 			 * and free space in pipe buffer.
941 			 */
942 			if (space > uio->uio_resid)
943 				size = uio->uio_resid;
944 			else
945 				size = space;
946 			/*
947 			 * First segment to transfer is minimum of
948 			 * transfer size and contiguous space in
949 			 * pipe buffer.  If first segment to transfer
950 			 * is less than the transfer size, we've got
951 			 * a wraparound in the buffer.
952 			 */
953 			segsize = bp->size - bp->in;
954 			if (segsize > size)
955 				segsize = size;
956 
957 			/* Transfer first segment */
958 			mutex_exit(lock);
959 			error = uiomove((char *)bp->buffer + bp->in, segsize,
960 			    uio);
961 
962 			if (error == 0 && segsize < size) {
963 				/*
964 				 * Transfer remaining part now, to
965 				 * support atomic writes.  Wraparound
966 				 * happened.
967 				 */
968 				KASSERT(bp->in + segsize == bp->size);
969 				error = uiomove(bp->buffer,
970 				    size - segsize, uio);
971 			}
972 			mutex_enter(lock);
973 			if (error)
974 				break;
975 
976 			bp->in += size;
977 			if (bp->in >= bp->size) {
978 				KASSERT(bp->in == size - segsize + bp->size);
979 				bp->in = size - segsize;
980 			}
981 
982 			bp->cnt += size;
983 			KASSERT(bp->cnt <= bp->size);
984 			wakeup_state = 0;
985 		} else {
986 			/*
987 			 * If the "read-side" has been blocked, wake it up now.
988 			 */
989 			cv_broadcast(&wpipe->pipe_rcv);
990 
991 			/*
992 			 * Don't block on non-blocking I/O.
993 			 */
994 			if (fp->f_flag & FNONBLOCK) {
995 				error = EAGAIN;
996 				break;
997 			}
998 
999 			/*
1000 			 * We have no more space and have something to offer,
1001 			 * wake up select/poll.
1002 			 */
1003 			if (bp->cnt)
1004 				pipeselwakeup(wpipe, wpipe, POLL_IN);
1005 
1006 			if (wakeup_state & PIPE_RESTART) {
1007 				error = ERESTART;
1008 				break;
1009 			}
1010 
1011 			pipeunlock(wpipe);
1012 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1013 			(void)pipelock(wpipe, 0);
1014 			if (error != 0)
1015 				break;
1016 			/*
1017 			 * If read side wants to go away, we just issue a signal
1018 			 * to ourselves.
1019 			 */
1020 			if (wpipe->pipe_state & PIPE_EOF) {
1021 				error = EPIPE;
1022 				break;
1023 			}
1024 			wakeup_state = wpipe->pipe_state;
1025 		}
1026 	}
1027 
1028 	--wpipe->pipe_busy;
1029 	if (wpipe->pipe_busy == 0) {
1030 		wpipe->pipe_state &= ~PIPE_RESTART;
1031 		cv_broadcast(&wpipe->pipe_draincv);
1032 	}
1033 	if (bp->cnt > 0) {
1034 		cv_broadcast(&wpipe->pipe_rcv);
1035 	}
1036 
1037 	/*
1038 	 * Don't return EPIPE if I/O was successful
1039 	 */
1040 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1041 		error = 0;
1042 
1043 	if (error == 0)
1044 		getnanotime(&wpipe->pipe_mtime);
1045 
1046 	/*
1047 	 * We have something to offer, wake up select/poll.
1048 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1049 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1050 	 */
1051 	if (bp->cnt)
1052 		pipeselwakeup(wpipe, wpipe, POLL_IN);
1053 
1054 	/*
1055 	 * Arrange for next read(2) to do a signal.
1056 	 */
1057 	wpipe->pipe_state |= PIPE_SIGNALR;
1058 
1059 	pipeunlock(wpipe);
1060 	mutex_exit(lock);
1061 	return (error);
1062 }
1063 
1064 /*
1065  * We implement a very minimal set of ioctls for compatibility with sockets.
1066  */
1067 int
1068 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1069 {
1070 	struct pipe *pipe = fp->f_data;
1071 	kmutex_t *lock = pipe->pipe_lock;
1072 
1073 	switch (cmd) {
1074 
1075 	case FIONBIO:
1076 		return (0);
1077 
1078 	case FIOASYNC:
1079 		mutex_enter(lock);
1080 		if (*(int *)data) {
1081 			pipe->pipe_state |= PIPE_ASYNC;
1082 		} else {
1083 			pipe->pipe_state &= ~PIPE_ASYNC;
1084 		}
1085 		mutex_exit(lock);
1086 		return (0);
1087 
1088 	case FIONREAD:
1089 		mutex_enter(lock);
1090 #ifndef PIPE_NODIRECT
1091 		if (pipe->pipe_state & PIPE_DIRECTW)
1092 			*(int *)data = pipe->pipe_map.cnt;
1093 		else
1094 #endif
1095 			*(int *)data = pipe->pipe_buffer.cnt;
1096 		mutex_exit(lock);
1097 		return (0);
1098 
1099 	case FIONWRITE:
1100 		/* Look at other side */
1101 		pipe = pipe->pipe_peer;
1102 		mutex_enter(lock);
1103 #ifndef PIPE_NODIRECT
1104 		if (pipe->pipe_state & PIPE_DIRECTW)
1105 			*(int *)data = pipe->pipe_map.cnt;
1106 		else
1107 #endif
1108 			*(int *)data = pipe->pipe_buffer.cnt;
1109 		mutex_exit(lock);
1110 		return (0);
1111 
1112 	case FIONSPACE:
1113 		/* Look at other side */
1114 		pipe = pipe->pipe_peer;
1115 		mutex_enter(lock);
1116 #ifndef PIPE_NODIRECT
1117 		/*
1118 		 * If we're in direct-mode, we don't really have a
1119 		 * send queue, and any other write will block. Thus
1120 		 * zero seems like the best answer.
1121 		 */
1122 		if (pipe->pipe_state & PIPE_DIRECTW)
1123 			*(int *)data = 0;
1124 		else
1125 #endif
1126 			*(int *)data = pipe->pipe_buffer.size -
1127 			    pipe->pipe_buffer.cnt;
1128 		mutex_exit(lock);
1129 		return (0);
1130 
1131 	case TIOCSPGRP:
1132 	case FIOSETOWN:
1133 		return fsetown(&pipe->pipe_pgid, cmd, data);
1134 
1135 	case TIOCGPGRP:
1136 	case FIOGETOWN:
1137 		return fgetown(pipe->pipe_pgid, cmd, data);
1138 
1139 	}
1140 	return (EPASSTHROUGH);
1141 }
1142 
1143 int
1144 pipe_poll(file_t *fp, int events)
1145 {
1146 	struct pipe *rpipe = fp->f_data;
1147 	struct pipe *wpipe;
1148 	int eof = 0;
1149 	int revents = 0;
1150 
1151 	mutex_enter(rpipe->pipe_lock);
1152 	wpipe = rpipe->pipe_peer;
1153 
1154 	if (events & (POLLIN | POLLRDNORM))
1155 		if ((rpipe->pipe_buffer.cnt > 0) ||
1156 #ifndef PIPE_NODIRECT
1157 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
1158 #endif
1159 		    (rpipe->pipe_state & PIPE_EOF))
1160 			revents |= events & (POLLIN | POLLRDNORM);
1161 
1162 	eof |= (rpipe->pipe_state & PIPE_EOF);
1163 
1164 	if (wpipe == NULL)
1165 		revents |= events & (POLLOUT | POLLWRNORM);
1166 	else {
1167 		if (events & (POLLOUT | POLLWRNORM))
1168 			if ((wpipe->pipe_state & PIPE_EOF) || (
1169 #ifndef PIPE_NODIRECT
1170 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1171 #endif
1172 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1173 				revents |= events & (POLLOUT | POLLWRNORM);
1174 
1175 		eof |= (wpipe->pipe_state & PIPE_EOF);
1176 	}
1177 
1178 	if (wpipe == NULL || eof)
1179 		revents |= POLLHUP;
1180 
1181 	if (revents == 0) {
1182 		if (events & (POLLIN | POLLRDNORM))
1183 			selrecord(curlwp, &rpipe->pipe_sel);
1184 
1185 		if (events & (POLLOUT | POLLWRNORM))
1186 			selrecord(curlwp, &wpipe->pipe_sel);
1187 	}
1188 	mutex_exit(rpipe->pipe_lock);
1189 
1190 	return (revents);
1191 }
1192 
1193 static int
1194 pipe_stat(file_t *fp, struct stat *ub)
1195 {
1196 	struct pipe *pipe = fp->f_data;
1197 
1198 	mutex_enter(pipe->pipe_lock);
1199 	memset(ub, 0, sizeof(*ub));
1200 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1201 	ub->st_blksize = pipe->pipe_buffer.size;
1202 	if (ub->st_blksize == 0 && pipe->pipe_peer)
1203 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1204 	ub->st_size = pipe->pipe_buffer.cnt;
1205 	ub->st_blocks = (ub->st_size) ? 1 : 0;
1206 	ub->st_atimespec = pipe->pipe_atime;
1207 	ub->st_mtimespec = pipe->pipe_mtime;
1208 	ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1209 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1210 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
1211 
1212 	/*
1213 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1214 	 * XXX (st_dev, st_ino) should be unique.
1215 	 */
1216 	mutex_exit(pipe->pipe_lock);
1217 	return 0;
1218 }
1219 
1220 static int
1221 pipe_close(file_t *fp)
1222 {
1223 	struct pipe *pipe = fp->f_data;
1224 
1225 	fp->f_data = NULL;
1226 	pipeclose(pipe);
1227 	return (0);
1228 }
1229 
1230 static void
1231 pipe_restart(file_t *fp)
1232 {
1233 	struct pipe *pipe = fp->f_data;
1234 
1235 	/*
1236 	 * Unblock blocked reads/writes in order to allow close() to complete.
1237 	 * System calls return ERESTART so that the fd is revalidated.
1238 	 * (Partial writes return the transfer length.)
1239 	 */
1240 	mutex_enter(pipe->pipe_lock);
1241 	pipe->pipe_state |= PIPE_RESTART;
1242 	/* Wakeup both cvs, maybe we only need one, but maybe there are some
1243 	 * other paths where wakeup is needed, and it saves deciding which! */
1244 	cv_broadcast(&pipe->pipe_rcv);
1245 	cv_broadcast(&pipe->pipe_wcv);
1246 	mutex_exit(pipe->pipe_lock);
1247 }
1248 
1249 static void
1250 pipe_free_kmem(struct pipe *pipe)
1251 {
1252 
1253 	if (pipe->pipe_buffer.buffer != NULL) {
1254 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
1255 			atomic_dec_uint(&nbigpipe);
1256 		}
1257 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1258 			uvm_km_free(kernel_map,
1259 			    (vaddr_t)pipe->pipe_buffer.buffer,
1260 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1261 			atomic_add_int(&amountpipekva,
1262 			    -pipe->pipe_buffer.size);
1263 		}
1264 		pipe->pipe_buffer.buffer = NULL;
1265 	}
1266 #ifndef PIPE_NODIRECT
1267 	if (pipe->pipe_map.kva != 0) {
1268 		pipe_loan_free(pipe);
1269 		pipe->pipe_map.cnt = 0;
1270 		pipe->pipe_map.kva = 0;
1271 		pipe->pipe_map.pos = 0;
1272 		pipe->pipe_map.npages = 0;
1273 	}
1274 #endif /* !PIPE_NODIRECT */
1275 }
1276 
1277 /*
1278  * Shutdown the pipe.
1279  */
1280 static void
1281 pipeclose(struct pipe *pipe)
1282 {
1283 	kmutex_t *lock;
1284 	struct pipe *ppipe;
1285 
1286 	if (pipe == NULL)
1287 		return;
1288 
1289 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
1290 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
1291 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
1292 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1293 
1294 	lock = pipe->pipe_lock;
1295 	if (lock == NULL)
1296 		/* Must have failed during create */
1297 		goto free_resources;
1298 
1299 	mutex_enter(lock);
1300 	pipeselwakeup(pipe, pipe, POLL_HUP);
1301 
1302 	/*
1303 	 * If the other side is blocked, wake it up saying that
1304 	 * we want to close it down.
1305 	 */
1306 	pipe->pipe_state |= PIPE_EOF;
1307 	if (pipe->pipe_busy) {
1308 		while (pipe->pipe_busy) {
1309 			cv_broadcast(&pipe->pipe_wcv);
1310 			cv_wait_sig(&pipe->pipe_draincv, lock);
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * Disconnect from peer.
1316 	 */
1317 	if ((ppipe = pipe->pipe_peer) != NULL) {
1318 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
1319 		ppipe->pipe_state |= PIPE_EOF;
1320 		cv_broadcast(&ppipe->pipe_rcv);
1321 		ppipe->pipe_peer = NULL;
1322 	}
1323 
1324 	/*
1325 	 * Any knote objects still left in the list are
1326 	 * the one attached by peer.  Since no one will
1327 	 * traverse this list, we just clear it.
1328 	 */
1329 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
1330 
1331 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1332 	mutex_exit(lock);
1333 	mutex_obj_free(lock);
1334 
1335 	/*
1336 	 * Free resources.
1337 	 */
1338     free_resources:
1339 	pipe->pipe_pgid = 0;
1340 	pipe->pipe_state = PIPE_SIGNALR;
1341 	pipe_free_kmem(pipe);
1342 	if (pipe->pipe_kmem != 0) {
1343 		pool_cache_put(pipe_rd_cache, pipe);
1344 	} else {
1345 		pool_cache_put(pipe_wr_cache, pipe);
1346 	}
1347 }
1348 
1349 static void
1350 filt_pipedetach(struct knote *kn)
1351 {
1352 	struct pipe *pipe;
1353 	kmutex_t *lock;
1354 
1355 	pipe = ((file_t *)kn->kn_obj)->f_data;
1356 	lock = pipe->pipe_lock;
1357 
1358 	mutex_enter(lock);
1359 
1360 	switch(kn->kn_filter) {
1361 	case EVFILT_WRITE:
1362 		/* Need the peer structure, not our own. */
1363 		pipe = pipe->pipe_peer;
1364 
1365 		/* If reader end already closed, just return. */
1366 		if (pipe == NULL) {
1367 			mutex_exit(lock);
1368 			return;
1369 		}
1370 
1371 		break;
1372 	default:
1373 		/* Nothing to do. */
1374 		break;
1375 	}
1376 
1377 	KASSERT(kn->kn_hook == pipe);
1378 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1379 	mutex_exit(lock);
1380 }
1381 
1382 static int
1383 filt_piperead(struct knote *kn, long hint)
1384 {
1385 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1386 	struct pipe *wpipe;
1387 
1388 	if ((hint & NOTE_SUBMIT) == 0) {
1389 		mutex_enter(rpipe->pipe_lock);
1390 	}
1391 	wpipe = rpipe->pipe_peer;
1392 	kn->kn_data = rpipe->pipe_buffer.cnt;
1393 
1394 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1395 		kn->kn_data = rpipe->pipe_map.cnt;
1396 
1397 	if ((rpipe->pipe_state & PIPE_EOF) ||
1398 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1399 		kn->kn_flags |= EV_EOF;
1400 		if ((hint & NOTE_SUBMIT) == 0) {
1401 			mutex_exit(rpipe->pipe_lock);
1402 		}
1403 		return (1);
1404 	}
1405 
1406 	if ((hint & NOTE_SUBMIT) == 0) {
1407 		mutex_exit(rpipe->pipe_lock);
1408 	}
1409 	return (kn->kn_data > 0);
1410 }
1411 
1412 static int
1413 filt_pipewrite(struct knote *kn, long hint)
1414 {
1415 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1416 	struct pipe *wpipe;
1417 
1418 	if ((hint & NOTE_SUBMIT) == 0) {
1419 		mutex_enter(rpipe->pipe_lock);
1420 	}
1421 	wpipe = rpipe->pipe_peer;
1422 
1423 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1424 		kn->kn_data = 0;
1425 		kn->kn_flags |= EV_EOF;
1426 		if ((hint & NOTE_SUBMIT) == 0) {
1427 			mutex_exit(rpipe->pipe_lock);
1428 		}
1429 		return (1);
1430 	}
1431 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1432 	if (wpipe->pipe_state & PIPE_DIRECTW)
1433 		kn->kn_data = 0;
1434 
1435 	if ((hint & NOTE_SUBMIT) == 0) {
1436 		mutex_exit(rpipe->pipe_lock);
1437 	}
1438 	return (kn->kn_data >= PIPE_BUF);
1439 }
1440 
1441 static const struct filterops pipe_rfiltops =
1442 	{ 1, NULL, filt_pipedetach, filt_piperead };
1443 static const struct filterops pipe_wfiltops =
1444 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
1445 
1446 static int
1447 pipe_kqfilter(file_t *fp, struct knote *kn)
1448 {
1449 	struct pipe *pipe;
1450 	kmutex_t *lock;
1451 
1452 	pipe = ((file_t *)kn->kn_obj)->f_data;
1453 	lock = pipe->pipe_lock;
1454 
1455 	mutex_enter(lock);
1456 
1457 	switch (kn->kn_filter) {
1458 	case EVFILT_READ:
1459 		kn->kn_fop = &pipe_rfiltops;
1460 		break;
1461 	case EVFILT_WRITE:
1462 		kn->kn_fop = &pipe_wfiltops;
1463 		pipe = pipe->pipe_peer;
1464 		if (pipe == NULL) {
1465 			/* Other end of pipe has been closed. */
1466 			mutex_exit(lock);
1467 			return (EBADF);
1468 		}
1469 		break;
1470 	default:
1471 		mutex_exit(lock);
1472 		return (EINVAL);
1473 	}
1474 
1475 	kn->kn_hook = pipe;
1476 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1477 	mutex_exit(lock);
1478 
1479 	return (0);
1480 }
1481 
1482 /*
1483  * Handle pipe sysctls.
1484  */
1485 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1486 {
1487 
1488 	sysctl_createv(clog, 0, NULL, NULL,
1489 		       CTLFLAG_PERMANENT,
1490 		       CTLTYPE_NODE, "kern", NULL,
1491 		       NULL, 0, NULL, 0,
1492 		       CTL_KERN, CTL_EOL);
1493 	sysctl_createv(clog, 0, NULL, NULL,
1494 		       CTLFLAG_PERMANENT,
1495 		       CTLTYPE_NODE, "pipe",
1496 		       SYSCTL_DESCR("Pipe settings"),
1497 		       NULL, 0, NULL, 0,
1498 		       CTL_KERN, KERN_PIPE, CTL_EOL);
1499 
1500 	sysctl_createv(clog, 0, NULL, NULL,
1501 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1502 		       CTLTYPE_INT, "maxkvasz",
1503 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
1504 				    "used for pipes"),
1505 		       NULL, 0, &maxpipekva, 0,
1506 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1507 	sysctl_createv(clog, 0, NULL, NULL,
1508 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1509 		       CTLTYPE_INT, "maxloankvasz",
1510 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
1511 		       NULL, 0, &limitpipekva, 0,
1512 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1513 	sysctl_createv(clog, 0, NULL, NULL,
1514 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1515 		       CTLTYPE_INT, "maxbigpipes",
1516 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1517 		       NULL, 0, &maxbigpipes, 0,
1518 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1519 	sysctl_createv(clog, 0, NULL, NULL,
1520 		       CTLFLAG_PERMANENT,
1521 		       CTLTYPE_INT, "nbigpipes",
1522 		       SYSCTL_DESCR("Number of \"big\" pipes"),
1523 		       NULL, 0, &nbigpipe, 0,
1524 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1525 	sysctl_createv(clog, 0, NULL, NULL,
1526 		       CTLFLAG_PERMANENT,
1527 		       CTLTYPE_INT, "kvasize",
1528 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1529 				    "buffers"),
1530 		       NULL, 0, &amountpipekva, 0,
1531 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1532 }
1533