1 /* $NetBSD: sys_pipe.c,v 1.130 2011/04/10 15:45:33 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1996 John S. Dyson 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice immediately at the beginning of the file, without modification, 41 * this list of conditions, and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Absolutely no warranty of function or purpose is made by the author 46 * John S. Dyson. 47 * 4. Modifications may be freely made to this file if the above conditions 48 * are met. 49 */ 50 51 /* 52 * This file contains a high-performance replacement for the socket-based 53 * pipes scheme originally used. It does not support all features of 54 * sockets, but does do everything that pipes normally do. 55 * 56 * This code has two modes of operation, a small write mode and a large 57 * write mode. The small write mode acts like conventional pipes with 58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space 61 * using the UVM page loan facility from where the receiving process can copy 62 * the data directly from the pages in the sending process. 63 * 64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 65 * happen for small transfers so that the system will not spend all of 66 * its time context switching. PIPE_SIZE is constrained by the 67 * amount of kernel virtual memory. 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.130 2011/04/10 15:45:33 christos Exp $"); 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> 76 #include <sys/fcntl.h> 77 #include <sys/file.h> 78 #include <sys/filedesc.h> 79 #include <sys/filio.h> 80 #include <sys/kernel.h> 81 #include <sys/ttycom.h> 82 #include <sys/stat.h> 83 #include <sys/poll.h> 84 #include <sys/signalvar.h> 85 #include <sys/vnode.h> 86 #include <sys/uio.h> 87 #include <sys/select.h> 88 #include <sys/mount.h> 89 #include <sys/syscallargs.h> 90 #include <sys/sysctl.h> 91 #include <sys/kauth.h> 92 #include <sys/atomic.h> 93 #include <sys/pipe.h> 94 95 #include <uvm/uvm_extern.h> 96 97 /* 98 * Use this to disable direct I/O and decrease the code size: 99 * #define PIPE_NODIRECT 100 */ 101 102 /* XXX Disabled for now; rare hangs switching between direct/buffered */ 103 #define PIPE_NODIRECT 104 105 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int); 106 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int); 107 static int pipe_close(file_t *); 108 static int pipe_poll(file_t *, int); 109 static int pipe_kqfilter(file_t *, struct knote *); 110 static int pipe_stat(file_t *, struct stat *); 111 static int pipe_ioctl(file_t *, u_long, void *); 112 static void pipe_restart(file_t *); 113 114 static const struct fileops pipeops = { 115 .fo_read = pipe_read, 116 .fo_write = pipe_write, 117 .fo_ioctl = pipe_ioctl, 118 .fo_fcntl = fnullop_fcntl, 119 .fo_poll = pipe_poll, 120 .fo_stat = pipe_stat, 121 .fo_close = pipe_close, 122 .fo_kqfilter = pipe_kqfilter, 123 .fo_restart = pipe_restart, 124 }; 125 126 /* 127 * Default pipe buffer size(s), this can be kind-of large now because pipe 128 * space is pageable. The pipe code will try to maintain locality of 129 * reference for performance reasons, so small amounts of outstanding I/O 130 * will not wipe the cache. 131 */ 132 #define MINPIPESIZE (PIPE_SIZE / 3) 133 #define MAXPIPESIZE (2 * PIPE_SIZE / 3) 134 135 /* 136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 137 * is there so that on large systems, we don't exhaust it. 138 */ 139 #define MAXPIPEKVA (8 * 1024 * 1024) 140 static u_int maxpipekva = MAXPIPEKVA; 141 142 /* 143 * Limit for direct transfers, we cannot, of course limit 144 * the amount of kva for pipes in general though. 145 */ 146 #define LIMITPIPEKVA (16 * 1024 * 1024) 147 static u_int limitpipekva = LIMITPIPEKVA; 148 149 /* 150 * Limit the number of "big" pipes 151 */ 152 #define LIMITBIGPIPES 32 153 static u_int maxbigpipes = LIMITBIGPIPES; 154 static u_int nbigpipe = 0; 155 156 /* 157 * Amount of KVA consumed by pipe buffers. 158 */ 159 static u_int amountpipekva = 0; 160 161 static void pipeclose(struct pipe *); 162 static void pipe_free_kmem(struct pipe *); 163 static int pipe_create(struct pipe **, pool_cache_t); 164 static int pipelock(struct pipe *, int); 165 static inline void pipeunlock(struct pipe *); 166 static void pipeselwakeup(struct pipe *, struct pipe *, int); 167 #ifndef PIPE_NODIRECT 168 static int pipe_direct_write(file_t *, struct pipe *, struct uio *); 169 #endif 170 static int pipespace(struct pipe *, int); 171 static int pipe_ctor(void *, void *, int); 172 static void pipe_dtor(void *, void *); 173 174 #ifndef PIPE_NODIRECT 175 static int pipe_loan_alloc(struct pipe *, int); 176 static void pipe_loan_free(struct pipe *); 177 #endif /* PIPE_NODIRECT */ 178 179 static pool_cache_t pipe_wr_cache; 180 static pool_cache_t pipe_rd_cache; 181 182 void 183 pipe_init(void) 184 { 185 186 /* Writer side is not automatically allocated KVA. */ 187 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr", 188 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL); 189 KASSERT(pipe_wr_cache != NULL); 190 191 /* Reader side gets preallocated KVA. */ 192 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd", 193 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1); 194 KASSERT(pipe_rd_cache != NULL); 195 } 196 197 static int 198 pipe_ctor(void *arg, void *obj, int flags) 199 { 200 struct pipe *pipe; 201 vaddr_t va; 202 203 pipe = obj; 204 205 memset(pipe, 0, sizeof(struct pipe)); 206 if (arg != NULL) { 207 /* Preallocate space. */ 208 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0, 209 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 210 KASSERT(va != 0); 211 pipe->pipe_kmem = va; 212 atomic_add_int(&amountpipekva, PIPE_SIZE); 213 } 214 cv_init(&pipe->pipe_rcv, "pipe_rd"); 215 cv_init(&pipe->pipe_wcv, "pipe_wr"); 216 cv_init(&pipe->pipe_draincv, "pipe_drn"); 217 cv_init(&pipe->pipe_lkcv, "pipe_lk"); 218 selinit(&pipe->pipe_sel); 219 pipe->pipe_state = PIPE_SIGNALR; 220 221 return 0; 222 } 223 224 static void 225 pipe_dtor(void *arg, void *obj) 226 { 227 struct pipe *pipe; 228 229 pipe = obj; 230 231 cv_destroy(&pipe->pipe_rcv); 232 cv_destroy(&pipe->pipe_wcv); 233 cv_destroy(&pipe->pipe_draincv); 234 cv_destroy(&pipe->pipe_lkcv); 235 seldestroy(&pipe->pipe_sel); 236 if (pipe->pipe_kmem != 0) { 237 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE, 238 UVM_KMF_PAGEABLE); 239 atomic_add_int(&amountpipekva, -PIPE_SIZE); 240 } 241 } 242 243 /* 244 * The pipe system call for the DTYPE_PIPE type of pipes 245 */ 246 int 247 pipe1(struct lwp *l, register_t *retval, int flags) 248 { 249 struct pipe *rpipe, *wpipe; 250 file_t *rf, *wf; 251 int fd, error; 252 proc_t *p; 253 254 p = curproc; 255 rpipe = wpipe = NULL; 256 if (pipe_create(&rpipe, pipe_rd_cache) || 257 pipe_create(&wpipe, pipe_wr_cache)) { 258 error = ENOMEM; 259 goto free2; 260 } 261 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 262 wpipe->pipe_lock = rpipe->pipe_lock; 263 mutex_obj_hold(wpipe->pipe_lock); 264 265 error = fd_allocfile(&rf, &fd); 266 if (error) 267 goto free2; 268 retval[0] = fd; 269 rf->f_flag = FREAD | flags; 270 rf->f_type = DTYPE_PIPE; 271 rf->f_data = (void *)rpipe; 272 rf->f_ops = &pipeops; 273 274 error = fd_allocfile(&wf, &fd); 275 if (error) 276 goto free3; 277 retval[1] = fd; 278 wf->f_flag = FWRITE | flags; 279 wf->f_type = DTYPE_PIPE; 280 wf->f_data = (void *)wpipe; 281 wf->f_ops = &pipeops; 282 283 rpipe->pipe_peer = wpipe; 284 wpipe->pipe_peer = rpipe; 285 286 fd_affix(p, rf, (int)retval[0]); 287 fd_affix(p, wf, (int)retval[1]); 288 return (0); 289 free3: 290 fd_abort(p, rf, (int)retval[0]); 291 free2: 292 pipeclose(wpipe); 293 pipeclose(rpipe); 294 295 return (error); 296 } 297 298 int 299 sys_pipe(struct lwp *l, const void *v, register_t *retval) 300 { 301 return pipe1(l, retval, 0); 302 } 303 304 /* 305 * Allocate kva for pipe circular buffer, the space is pageable 306 * This routine will 'realloc' the size of a pipe safely, if it fails 307 * it will retain the old buffer. 308 * If it fails it will return ENOMEM. 309 */ 310 static int 311 pipespace(struct pipe *pipe, int size) 312 { 313 void *buffer; 314 315 /* 316 * Allocate pageable virtual address space. Physical memory is 317 * allocated on demand. 318 */ 319 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) { 320 buffer = (void *)pipe->pipe_kmem; 321 } else { 322 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size), 323 0, UVM_KMF_PAGEABLE); 324 if (buffer == NULL) 325 return (ENOMEM); 326 atomic_add_int(&amountpipekva, size); 327 } 328 329 /* free old resources if we're resizing */ 330 pipe_free_kmem(pipe); 331 pipe->pipe_buffer.buffer = buffer; 332 pipe->pipe_buffer.size = size; 333 pipe->pipe_buffer.in = 0; 334 pipe->pipe_buffer.out = 0; 335 pipe->pipe_buffer.cnt = 0; 336 return (0); 337 } 338 339 /* 340 * Initialize and allocate VM and memory for pipe. 341 */ 342 static int 343 pipe_create(struct pipe **pipep, pool_cache_t cache) 344 { 345 struct pipe *pipe; 346 int error; 347 348 pipe = pool_cache_get(cache, PR_WAITOK); 349 KASSERT(pipe != NULL); 350 *pipep = pipe; 351 error = 0; 352 getnanotime(&pipe->pipe_btime); 353 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime; 354 pipe->pipe_lock = NULL; 355 if (cache == pipe_rd_cache) { 356 error = pipespace(pipe, PIPE_SIZE); 357 } else { 358 pipe->pipe_buffer.buffer = NULL; 359 pipe->pipe_buffer.size = 0; 360 pipe->pipe_buffer.in = 0; 361 pipe->pipe_buffer.out = 0; 362 pipe->pipe_buffer.cnt = 0; 363 } 364 return error; 365 } 366 367 /* 368 * Lock a pipe for I/O, blocking other access 369 * Called with pipe spin lock held. 370 */ 371 static int 372 pipelock(struct pipe *pipe, int catch) 373 { 374 int error; 375 376 KASSERT(mutex_owned(pipe->pipe_lock)); 377 378 while (pipe->pipe_state & PIPE_LOCKFL) { 379 pipe->pipe_state |= PIPE_LWANT; 380 if (catch) { 381 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock); 382 if (error != 0) 383 return error; 384 } else 385 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock); 386 } 387 388 pipe->pipe_state |= PIPE_LOCKFL; 389 390 return 0; 391 } 392 393 /* 394 * unlock a pipe I/O lock 395 */ 396 static inline void 397 pipeunlock(struct pipe *pipe) 398 { 399 400 KASSERT(pipe->pipe_state & PIPE_LOCKFL); 401 402 pipe->pipe_state &= ~PIPE_LOCKFL; 403 if (pipe->pipe_state & PIPE_LWANT) { 404 pipe->pipe_state &= ~PIPE_LWANT; 405 cv_broadcast(&pipe->pipe_lkcv); 406 } 407 } 408 409 /* 410 * Select/poll wakup. This also sends SIGIO to peer connected to 411 * 'sigpipe' side of pipe. 412 */ 413 static void 414 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code) 415 { 416 int band; 417 418 switch (code) { 419 case POLL_IN: 420 band = POLLIN|POLLRDNORM; 421 break; 422 case POLL_OUT: 423 band = POLLOUT|POLLWRNORM; 424 break; 425 case POLL_HUP: 426 band = POLLHUP; 427 break; 428 case POLL_ERR: 429 band = POLLERR; 430 break; 431 default: 432 band = 0; 433 #ifdef DIAGNOSTIC 434 printf("bad siginfo code %d in pipe notification.\n", code); 435 #endif 436 break; 437 } 438 439 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT); 440 441 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0) 442 return; 443 444 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp); 445 } 446 447 static int 448 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 449 int flags) 450 { 451 struct pipe *rpipe = (struct pipe *) fp->f_data; 452 struct pipebuf *bp = &rpipe->pipe_buffer; 453 kmutex_t *lock = rpipe->pipe_lock; 454 int error; 455 size_t nread = 0; 456 size_t size; 457 size_t ocnt; 458 unsigned int wakeup_state = 0; 459 460 mutex_enter(lock); 461 ++rpipe->pipe_busy; 462 ocnt = bp->cnt; 463 464 again: 465 error = pipelock(rpipe, 1); 466 if (error) 467 goto unlocked_error; 468 469 while (uio->uio_resid) { 470 /* 471 * Normal pipe buffer receive. 472 */ 473 if (bp->cnt > 0) { 474 size = bp->size - bp->out; 475 if (size > bp->cnt) 476 size = bp->cnt; 477 if (size > uio->uio_resid) 478 size = uio->uio_resid; 479 480 mutex_exit(lock); 481 error = uiomove((char *)bp->buffer + bp->out, size, uio); 482 mutex_enter(lock); 483 if (error) 484 break; 485 486 bp->out += size; 487 if (bp->out >= bp->size) 488 bp->out = 0; 489 490 bp->cnt -= size; 491 492 /* 493 * If there is no more to read in the pipe, reset 494 * its pointers to the beginning. This improves 495 * cache hit stats. 496 */ 497 if (bp->cnt == 0) { 498 bp->in = 0; 499 bp->out = 0; 500 } 501 nread += size; 502 continue; 503 } 504 505 #ifndef PIPE_NODIRECT 506 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) { 507 /* 508 * Direct copy, bypassing a kernel buffer. 509 */ 510 void *va; 511 u_int gen; 512 513 KASSERT(rpipe->pipe_state & PIPE_DIRECTW); 514 515 size = rpipe->pipe_map.cnt; 516 if (size > uio->uio_resid) 517 size = uio->uio_resid; 518 519 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos; 520 gen = rpipe->pipe_map.egen; 521 mutex_exit(lock); 522 523 /* 524 * Consume emap and read the data from loaned pages. 525 */ 526 uvm_emap_consume(gen); 527 error = uiomove(va, size, uio); 528 529 mutex_enter(lock); 530 if (error) 531 break; 532 nread += size; 533 rpipe->pipe_map.pos += size; 534 rpipe->pipe_map.cnt -= size; 535 if (rpipe->pipe_map.cnt == 0) { 536 rpipe->pipe_state &= ~PIPE_DIRECTR; 537 cv_broadcast(&rpipe->pipe_wcv); 538 } 539 continue; 540 } 541 #endif 542 /* 543 * Break if some data was read. 544 */ 545 if (nread > 0) 546 break; 547 548 /* 549 * Detect EOF condition. 550 * Read returns 0 on EOF, no need to set error. 551 */ 552 if (rpipe->pipe_state & PIPE_EOF) 553 break; 554 555 /* 556 * Don't block on non-blocking I/O. 557 */ 558 if (fp->f_flag & FNONBLOCK) { 559 error = EAGAIN; 560 break; 561 } 562 563 /* 564 * Unlock the pipe buffer for our remaining processing. 565 * We will either break out with an error or we will 566 * sleep and relock to loop. 567 */ 568 pipeunlock(rpipe); 569 570 /* 571 * Re-check to see if more direct writes are pending. 572 */ 573 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) 574 goto again; 575 576 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */ 577 /* 578 * We want to read more, wake up select/poll. 579 */ 580 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 581 582 /* 583 * If the "write-side" is blocked, wake it up now. 584 */ 585 cv_broadcast(&rpipe->pipe_wcv); 586 #endif 587 588 if (wakeup_state & PIPE_RESTART) { 589 error = ERESTART; 590 goto unlocked_error; 591 } 592 593 /* Now wait until the pipe is filled */ 594 error = cv_wait_sig(&rpipe->pipe_rcv, lock); 595 if (error != 0) 596 goto unlocked_error; 597 wakeup_state = rpipe->pipe_state; 598 goto again; 599 } 600 601 if (error == 0) 602 getnanotime(&rpipe->pipe_atime); 603 pipeunlock(rpipe); 604 605 unlocked_error: 606 --rpipe->pipe_busy; 607 if (rpipe->pipe_busy == 0) { 608 rpipe->pipe_state &= ~PIPE_RESTART; 609 cv_broadcast(&rpipe->pipe_draincv); 610 } 611 if (bp->cnt < MINPIPESIZE) { 612 cv_broadcast(&rpipe->pipe_wcv); 613 } 614 615 /* 616 * If anything was read off the buffer, signal to the writer it's 617 * possible to write more data. Also send signal if we are here for the 618 * first time after last write. 619 */ 620 if ((bp->size - bp->cnt) >= PIPE_BUF 621 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) { 622 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 623 rpipe->pipe_state &= ~PIPE_SIGNALR; 624 } 625 626 mutex_exit(lock); 627 return (error); 628 } 629 630 #ifndef PIPE_NODIRECT 631 /* 632 * Allocate structure for loan transfer. 633 */ 634 static int 635 pipe_loan_alloc(struct pipe *wpipe, int npages) 636 { 637 vsize_t len; 638 639 len = (vsize_t)npages << PAGE_SHIFT; 640 atomic_add_int(&amountpipekva, len); 641 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0, 642 UVM_KMF_VAONLY | UVM_KMF_WAITVA); 643 if (wpipe->pipe_map.kva == 0) { 644 atomic_add_int(&amountpipekva, -len); 645 return (ENOMEM); 646 } 647 648 wpipe->pipe_map.npages = npages; 649 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *), 650 KM_SLEEP); 651 return (0); 652 } 653 654 /* 655 * Free resources allocated for loan transfer. 656 */ 657 static void 658 pipe_loan_free(struct pipe *wpipe) 659 { 660 vsize_t len; 661 662 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT; 663 uvm_emap_remove(wpipe->pipe_map.kva, len); /* XXX */ 664 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY); 665 wpipe->pipe_map.kva = 0; 666 atomic_add_int(&amountpipekva, -len); 667 kmem_free(wpipe->pipe_map.pgs, 668 wpipe->pipe_map.npages * sizeof(struct vm_page *)); 669 wpipe->pipe_map.pgs = NULL; 670 } 671 672 /* 673 * NetBSD direct write, using uvm_loan() mechanism. 674 * This implements the pipe buffer write mechanism. Note that only 675 * a direct write OR a normal pipe write can be pending at any given time. 676 * If there are any characters in the pipe buffer, the direct write will 677 * be deferred until the receiving process grabs all of the bytes from 678 * the pipe buffer. Then the direct mapping write is set-up. 679 * 680 * Called with the long-term pipe lock held. 681 */ 682 static int 683 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio) 684 { 685 struct vm_page **pgs; 686 vaddr_t bbase, base, bend; 687 vsize_t blen, bcnt; 688 int error, npages; 689 voff_t bpos; 690 kmutex_t *lock = wpipe->pipe_lock; 691 692 KASSERT(mutex_owned(wpipe->pipe_lock)); 693 KASSERT(wpipe->pipe_map.cnt == 0); 694 695 mutex_exit(lock); 696 697 /* 698 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers 699 * not aligned to PAGE_SIZE. 700 */ 701 bbase = (vaddr_t)uio->uio_iov->iov_base; 702 base = trunc_page(bbase); 703 bend = round_page(bbase + uio->uio_iov->iov_len); 704 blen = bend - base; 705 bpos = bbase - base; 706 707 if (blen > PIPE_DIRECT_CHUNK) { 708 blen = PIPE_DIRECT_CHUNK; 709 bend = base + blen; 710 bcnt = PIPE_DIRECT_CHUNK - bpos; 711 } else { 712 bcnt = uio->uio_iov->iov_len; 713 } 714 npages = blen >> PAGE_SHIFT; 715 716 /* 717 * Free the old kva if we need more pages than we have 718 * allocated. 719 */ 720 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages) 721 pipe_loan_free(wpipe); 722 723 /* Allocate new kva. */ 724 if (wpipe->pipe_map.kva == 0) { 725 error = pipe_loan_alloc(wpipe, npages); 726 if (error) { 727 mutex_enter(lock); 728 return (error); 729 } 730 } 731 732 /* Loan the write buffer memory from writer process */ 733 pgs = wpipe->pipe_map.pgs; 734 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen, 735 pgs, UVM_LOAN_TOPAGE); 736 if (error) { 737 pipe_loan_free(wpipe); 738 mutex_enter(lock); 739 return (ENOMEM); /* so that caller fallback to ordinary write */ 740 } 741 742 /* Enter the loaned pages to KVA, produce new emap generation number. */ 743 uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages); 744 wpipe->pipe_map.egen = uvm_emap_produce(); 745 746 /* Now we can put the pipe in direct write mode */ 747 wpipe->pipe_map.pos = bpos; 748 wpipe->pipe_map.cnt = bcnt; 749 750 /* 751 * But before we can let someone do a direct read, we 752 * have to wait until the pipe is drained. Release the 753 * pipe lock while we wait. 754 */ 755 mutex_enter(lock); 756 wpipe->pipe_state |= PIPE_DIRECTW; 757 pipeunlock(wpipe); 758 759 while (error == 0 && wpipe->pipe_buffer.cnt > 0) { 760 cv_broadcast(&wpipe->pipe_rcv); 761 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 762 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 763 error = EPIPE; 764 } 765 766 /* Pipe is drained; next read will off the direct buffer */ 767 wpipe->pipe_state |= PIPE_DIRECTR; 768 769 /* Wait until the reader is done */ 770 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) { 771 cv_broadcast(&wpipe->pipe_rcv); 772 pipeselwakeup(wpipe, wpipe, POLL_IN); 773 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 774 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 775 error = EPIPE; 776 } 777 778 /* Take pipe out of direct write mode */ 779 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR); 780 781 /* Acquire the pipe lock and cleanup */ 782 (void)pipelock(wpipe, 0); 783 mutex_exit(lock); 784 785 if (pgs != NULL) { 786 /* XXX: uvm_emap_remove */ 787 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE); 788 } 789 if (error || amountpipekva > maxpipekva) 790 pipe_loan_free(wpipe); 791 792 mutex_enter(lock); 793 if (error) { 794 pipeselwakeup(wpipe, wpipe, POLL_ERR); 795 796 /* 797 * If nothing was read from what we offered, return error 798 * straight on. Otherwise update uio resid first. Caller 799 * will deal with the error condition, returning short 800 * write, error, or restarting the write(2) as appropriate. 801 */ 802 if (wpipe->pipe_map.cnt == bcnt) { 803 wpipe->pipe_map.cnt = 0; 804 cv_broadcast(&wpipe->pipe_wcv); 805 return (error); 806 } 807 808 bcnt -= wpipe->pipe_map.cnt; 809 } 810 811 uio->uio_resid -= bcnt; 812 /* uio_offset not updated, not set/used for write(2) */ 813 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt; 814 uio->uio_iov->iov_len -= bcnt; 815 if (uio->uio_iov->iov_len == 0) { 816 uio->uio_iov++; 817 uio->uio_iovcnt--; 818 } 819 820 wpipe->pipe_map.cnt = 0; 821 return (error); 822 } 823 #endif /* !PIPE_NODIRECT */ 824 825 static int 826 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 827 int flags) 828 { 829 struct pipe *wpipe, *rpipe; 830 struct pipebuf *bp; 831 kmutex_t *lock; 832 int error; 833 unsigned int wakeup_state = 0; 834 835 /* We want to write to our peer */ 836 rpipe = (struct pipe *) fp->f_data; 837 lock = rpipe->pipe_lock; 838 error = 0; 839 840 mutex_enter(lock); 841 wpipe = rpipe->pipe_peer; 842 843 /* 844 * Detect loss of pipe read side, issue SIGPIPE if lost. 845 */ 846 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) { 847 mutex_exit(lock); 848 return EPIPE; 849 } 850 ++wpipe->pipe_busy; 851 852 /* Aquire the long-term pipe lock */ 853 if ((error = pipelock(wpipe, 1)) != 0) { 854 --wpipe->pipe_busy; 855 if (wpipe->pipe_busy == 0) { 856 wpipe->pipe_state &= ~PIPE_RESTART; 857 cv_broadcast(&wpipe->pipe_draincv); 858 } 859 mutex_exit(lock); 860 return (error); 861 } 862 863 bp = &wpipe->pipe_buffer; 864 865 /* 866 * If it is advantageous to resize the pipe buffer, do so. 867 */ 868 if ((uio->uio_resid > PIPE_SIZE) && 869 (nbigpipe < maxbigpipes) && 870 #ifndef PIPE_NODIRECT 871 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 872 #endif 873 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) { 874 875 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0) 876 atomic_inc_uint(&nbigpipe); 877 } 878 879 while (uio->uio_resid) { 880 size_t space; 881 882 #ifndef PIPE_NODIRECT 883 /* 884 * Pipe buffered writes cannot be coincidental with 885 * direct writes. Also, only one direct write can be 886 * in progress at any one time. We wait until the currently 887 * executing direct write is completed before continuing. 888 * 889 * We break out if a signal occurs or the reader goes away. 890 */ 891 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) { 892 cv_broadcast(&wpipe->pipe_rcv); 893 pipeunlock(wpipe); 894 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 895 (void)pipelock(wpipe, 0); 896 if (wpipe->pipe_state & PIPE_EOF) 897 error = EPIPE; 898 } 899 if (error) 900 break; 901 902 /* 903 * If the transfer is large, we can gain performance if 904 * we do process-to-process copies directly. 905 * If the write is non-blocking, we don't use the 906 * direct write mechanism. 907 * 908 * The direct write mechanism will detect the reader going 909 * away on us. 910 */ 911 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 912 (fp->f_flag & FNONBLOCK) == 0 && 913 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) { 914 error = pipe_direct_write(fp, wpipe, uio); 915 916 /* 917 * Break out if error occurred, unless it's ENOMEM. 918 * ENOMEM means we failed to allocate some resources 919 * for direct write, so we just fallback to ordinary 920 * write. If the direct write was successful, 921 * process rest of data via ordinary write. 922 */ 923 if (error == 0) 924 continue; 925 926 if (error != ENOMEM) 927 break; 928 } 929 #endif /* PIPE_NODIRECT */ 930 931 space = bp->size - bp->cnt; 932 933 /* Writes of size <= PIPE_BUF must be atomic. */ 934 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF)) 935 space = 0; 936 937 if (space > 0) { 938 int size; /* Transfer size */ 939 int segsize; /* first segment to transfer */ 940 941 /* 942 * Transfer size is minimum of uio transfer 943 * and free space in pipe buffer. 944 */ 945 if (space > uio->uio_resid) 946 size = uio->uio_resid; 947 else 948 size = space; 949 /* 950 * First segment to transfer is minimum of 951 * transfer size and contiguous space in 952 * pipe buffer. If first segment to transfer 953 * is less than the transfer size, we've got 954 * a wraparound in the buffer. 955 */ 956 segsize = bp->size - bp->in; 957 if (segsize > size) 958 segsize = size; 959 960 /* Transfer first segment */ 961 mutex_exit(lock); 962 error = uiomove((char *)bp->buffer + bp->in, segsize, 963 uio); 964 965 if (error == 0 && segsize < size) { 966 /* 967 * Transfer remaining part now, to 968 * support atomic writes. Wraparound 969 * happened. 970 */ 971 KASSERT(bp->in + segsize == bp->size); 972 error = uiomove(bp->buffer, 973 size - segsize, uio); 974 } 975 mutex_enter(lock); 976 if (error) 977 break; 978 979 bp->in += size; 980 if (bp->in >= bp->size) { 981 KASSERT(bp->in == size - segsize + bp->size); 982 bp->in = size - segsize; 983 } 984 985 bp->cnt += size; 986 KASSERT(bp->cnt <= bp->size); 987 wakeup_state = 0; 988 } else { 989 /* 990 * If the "read-side" has been blocked, wake it up now. 991 */ 992 cv_broadcast(&wpipe->pipe_rcv); 993 994 /* 995 * Don't block on non-blocking I/O. 996 */ 997 if (fp->f_flag & FNONBLOCK) { 998 error = EAGAIN; 999 break; 1000 } 1001 1002 /* 1003 * We have no more space and have something to offer, 1004 * wake up select/poll. 1005 */ 1006 if (bp->cnt) 1007 pipeselwakeup(wpipe, wpipe, POLL_IN); 1008 1009 if (wakeup_state & PIPE_RESTART) { 1010 error = ERESTART; 1011 break; 1012 } 1013 1014 pipeunlock(wpipe); 1015 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 1016 (void)pipelock(wpipe, 0); 1017 if (error != 0) 1018 break; 1019 /* 1020 * If read side wants to go away, we just issue a signal 1021 * to ourselves. 1022 */ 1023 if (wpipe->pipe_state & PIPE_EOF) { 1024 error = EPIPE; 1025 break; 1026 } 1027 wakeup_state = wpipe->pipe_state; 1028 } 1029 } 1030 1031 --wpipe->pipe_busy; 1032 if (wpipe->pipe_busy == 0) { 1033 wpipe->pipe_state &= ~PIPE_RESTART; 1034 cv_broadcast(&wpipe->pipe_draincv); 1035 } 1036 if (bp->cnt > 0) { 1037 cv_broadcast(&wpipe->pipe_rcv); 1038 } 1039 1040 /* 1041 * Don't return EPIPE if I/O was successful 1042 */ 1043 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0) 1044 error = 0; 1045 1046 if (error == 0) 1047 getnanotime(&wpipe->pipe_mtime); 1048 1049 /* 1050 * We have something to offer, wake up select/poll. 1051 * wpipe->pipe_map.cnt is always 0 in this point (direct write 1052 * is only done synchronously), so check only wpipe->pipe_buffer.cnt 1053 */ 1054 if (bp->cnt) 1055 pipeselwakeup(wpipe, wpipe, POLL_IN); 1056 1057 /* 1058 * Arrange for next read(2) to do a signal. 1059 */ 1060 wpipe->pipe_state |= PIPE_SIGNALR; 1061 1062 pipeunlock(wpipe); 1063 mutex_exit(lock); 1064 return (error); 1065 } 1066 1067 /* 1068 * We implement a very minimal set of ioctls for compatibility with sockets. 1069 */ 1070 int 1071 pipe_ioctl(file_t *fp, u_long cmd, void *data) 1072 { 1073 struct pipe *pipe = fp->f_data; 1074 kmutex_t *lock = pipe->pipe_lock; 1075 1076 switch (cmd) { 1077 1078 case FIONBIO: 1079 return (0); 1080 1081 case FIOASYNC: 1082 mutex_enter(lock); 1083 if (*(int *)data) { 1084 pipe->pipe_state |= PIPE_ASYNC; 1085 } else { 1086 pipe->pipe_state &= ~PIPE_ASYNC; 1087 } 1088 mutex_exit(lock); 1089 return (0); 1090 1091 case FIONREAD: 1092 mutex_enter(lock); 1093 #ifndef PIPE_NODIRECT 1094 if (pipe->pipe_state & PIPE_DIRECTW) 1095 *(int *)data = pipe->pipe_map.cnt; 1096 else 1097 #endif 1098 *(int *)data = pipe->pipe_buffer.cnt; 1099 mutex_exit(lock); 1100 return (0); 1101 1102 case FIONWRITE: 1103 /* Look at other side */ 1104 pipe = pipe->pipe_peer; 1105 mutex_enter(lock); 1106 #ifndef PIPE_NODIRECT 1107 if (pipe->pipe_state & PIPE_DIRECTW) 1108 *(int *)data = pipe->pipe_map.cnt; 1109 else 1110 #endif 1111 *(int *)data = pipe->pipe_buffer.cnt; 1112 mutex_exit(lock); 1113 return (0); 1114 1115 case FIONSPACE: 1116 /* Look at other side */ 1117 pipe = pipe->pipe_peer; 1118 mutex_enter(lock); 1119 #ifndef PIPE_NODIRECT 1120 /* 1121 * If we're in direct-mode, we don't really have a 1122 * send queue, and any other write will block. Thus 1123 * zero seems like the best answer. 1124 */ 1125 if (pipe->pipe_state & PIPE_DIRECTW) 1126 *(int *)data = 0; 1127 else 1128 #endif 1129 *(int *)data = pipe->pipe_buffer.size - 1130 pipe->pipe_buffer.cnt; 1131 mutex_exit(lock); 1132 return (0); 1133 1134 case TIOCSPGRP: 1135 case FIOSETOWN: 1136 return fsetown(&pipe->pipe_pgid, cmd, data); 1137 1138 case TIOCGPGRP: 1139 case FIOGETOWN: 1140 return fgetown(pipe->pipe_pgid, cmd, data); 1141 1142 } 1143 return (EPASSTHROUGH); 1144 } 1145 1146 int 1147 pipe_poll(file_t *fp, int events) 1148 { 1149 struct pipe *rpipe = fp->f_data; 1150 struct pipe *wpipe; 1151 int eof = 0; 1152 int revents = 0; 1153 1154 mutex_enter(rpipe->pipe_lock); 1155 wpipe = rpipe->pipe_peer; 1156 1157 if (events & (POLLIN | POLLRDNORM)) 1158 if ((rpipe->pipe_buffer.cnt > 0) || 1159 #ifndef PIPE_NODIRECT 1160 (rpipe->pipe_state & PIPE_DIRECTR) || 1161 #endif 1162 (rpipe->pipe_state & PIPE_EOF)) 1163 revents |= events & (POLLIN | POLLRDNORM); 1164 1165 eof |= (rpipe->pipe_state & PIPE_EOF); 1166 1167 if (wpipe == NULL) 1168 revents |= events & (POLLOUT | POLLWRNORM); 1169 else { 1170 if (events & (POLLOUT | POLLWRNORM)) 1171 if ((wpipe->pipe_state & PIPE_EOF) || ( 1172 #ifndef PIPE_NODIRECT 1173 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1174 #endif 1175 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1176 revents |= events & (POLLOUT | POLLWRNORM); 1177 1178 eof |= (wpipe->pipe_state & PIPE_EOF); 1179 } 1180 1181 if (wpipe == NULL || eof) 1182 revents |= POLLHUP; 1183 1184 if (revents == 0) { 1185 if (events & (POLLIN | POLLRDNORM)) 1186 selrecord(curlwp, &rpipe->pipe_sel); 1187 1188 if (events & (POLLOUT | POLLWRNORM)) 1189 selrecord(curlwp, &wpipe->pipe_sel); 1190 } 1191 mutex_exit(rpipe->pipe_lock); 1192 1193 return (revents); 1194 } 1195 1196 static int 1197 pipe_stat(file_t *fp, struct stat *ub) 1198 { 1199 struct pipe *pipe = fp->f_data; 1200 1201 mutex_enter(pipe->pipe_lock); 1202 memset(ub, 0, sizeof(*ub)); 1203 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 1204 ub->st_blksize = pipe->pipe_buffer.size; 1205 if (ub->st_blksize == 0 && pipe->pipe_peer) 1206 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size; 1207 ub->st_size = pipe->pipe_buffer.cnt; 1208 ub->st_blocks = (ub->st_size) ? 1 : 0; 1209 ub->st_atimespec = pipe->pipe_atime; 1210 ub->st_mtimespec = pipe->pipe_mtime; 1211 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime; 1212 ub->st_uid = kauth_cred_geteuid(fp->f_cred); 1213 ub->st_gid = kauth_cred_getegid(fp->f_cred); 1214 1215 /* 1216 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1217 * XXX (st_dev, st_ino) should be unique. 1218 */ 1219 mutex_exit(pipe->pipe_lock); 1220 return 0; 1221 } 1222 1223 static int 1224 pipe_close(file_t *fp) 1225 { 1226 struct pipe *pipe = fp->f_data; 1227 1228 fp->f_data = NULL; 1229 pipeclose(pipe); 1230 return (0); 1231 } 1232 1233 static void 1234 pipe_restart(file_t *fp) 1235 { 1236 struct pipe *pipe = fp->f_data; 1237 1238 /* 1239 * Unblock blocked reads/writes in order to allow close() to complete. 1240 * System calls return ERESTART so that the fd is revalidated. 1241 * (Partial writes return the transfer length.) 1242 */ 1243 mutex_enter(pipe->pipe_lock); 1244 pipe->pipe_state |= PIPE_RESTART; 1245 /* Wakeup both cvs, maybe we only need one, but maybe there are some 1246 * other paths where wakeup is needed, and it saves deciding which! */ 1247 cv_broadcast(&pipe->pipe_rcv); 1248 cv_broadcast(&pipe->pipe_wcv); 1249 mutex_exit(pipe->pipe_lock); 1250 } 1251 1252 static void 1253 pipe_free_kmem(struct pipe *pipe) 1254 { 1255 1256 if (pipe->pipe_buffer.buffer != NULL) { 1257 if (pipe->pipe_buffer.size > PIPE_SIZE) { 1258 atomic_dec_uint(&nbigpipe); 1259 } 1260 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) { 1261 uvm_km_free(kernel_map, 1262 (vaddr_t)pipe->pipe_buffer.buffer, 1263 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE); 1264 atomic_add_int(&amountpipekva, 1265 -pipe->pipe_buffer.size); 1266 } 1267 pipe->pipe_buffer.buffer = NULL; 1268 } 1269 #ifndef PIPE_NODIRECT 1270 if (pipe->pipe_map.kva != 0) { 1271 pipe_loan_free(pipe); 1272 pipe->pipe_map.cnt = 0; 1273 pipe->pipe_map.kva = 0; 1274 pipe->pipe_map.pos = 0; 1275 pipe->pipe_map.npages = 0; 1276 } 1277 #endif /* !PIPE_NODIRECT */ 1278 } 1279 1280 /* 1281 * Shutdown the pipe. 1282 */ 1283 static void 1284 pipeclose(struct pipe *pipe) 1285 { 1286 kmutex_t *lock; 1287 struct pipe *ppipe; 1288 1289 if (pipe == NULL) 1290 return; 1291 1292 KASSERT(cv_is_valid(&pipe->pipe_rcv)); 1293 KASSERT(cv_is_valid(&pipe->pipe_wcv)); 1294 KASSERT(cv_is_valid(&pipe->pipe_draincv)); 1295 KASSERT(cv_is_valid(&pipe->pipe_lkcv)); 1296 1297 lock = pipe->pipe_lock; 1298 if (lock == NULL) 1299 /* Must have failed during create */ 1300 goto free_resources; 1301 1302 mutex_enter(lock); 1303 pipeselwakeup(pipe, pipe, POLL_HUP); 1304 1305 /* 1306 * If the other side is blocked, wake it up saying that 1307 * we want to close it down. 1308 */ 1309 pipe->pipe_state |= PIPE_EOF; 1310 if (pipe->pipe_busy) { 1311 while (pipe->pipe_busy) { 1312 cv_broadcast(&pipe->pipe_wcv); 1313 cv_wait_sig(&pipe->pipe_draincv, lock); 1314 } 1315 } 1316 1317 /* 1318 * Disconnect from peer. 1319 */ 1320 if ((ppipe = pipe->pipe_peer) != NULL) { 1321 pipeselwakeup(ppipe, ppipe, POLL_HUP); 1322 ppipe->pipe_state |= PIPE_EOF; 1323 cv_broadcast(&ppipe->pipe_rcv); 1324 ppipe->pipe_peer = NULL; 1325 } 1326 1327 /* 1328 * Any knote objects still left in the list are 1329 * the one attached by peer. Since no one will 1330 * traverse this list, we just clear it. 1331 */ 1332 SLIST_INIT(&pipe->pipe_sel.sel_klist); 1333 1334 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0); 1335 mutex_exit(lock); 1336 mutex_obj_free(lock); 1337 1338 /* 1339 * Free resources. 1340 */ 1341 free_resources: 1342 pipe->pipe_pgid = 0; 1343 pipe->pipe_state = PIPE_SIGNALR; 1344 pipe_free_kmem(pipe); 1345 if (pipe->pipe_kmem != 0) { 1346 pool_cache_put(pipe_rd_cache, pipe); 1347 } else { 1348 pool_cache_put(pipe_wr_cache, pipe); 1349 } 1350 } 1351 1352 static void 1353 filt_pipedetach(struct knote *kn) 1354 { 1355 struct pipe *pipe; 1356 kmutex_t *lock; 1357 1358 pipe = ((file_t *)kn->kn_obj)->f_data; 1359 lock = pipe->pipe_lock; 1360 1361 mutex_enter(lock); 1362 1363 switch(kn->kn_filter) { 1364 case EVFILT_WRITE: 1365 /* Need the peer structure, not our own. */ 1366 pipe = pipe->pipe_peer; 1367 1368 /* If reader end already closed, just return. */ 1369 if (pipe == NULL) { 1370 mutex_exit(lock); 1371 return; 1372 } 1373 1374 break; 1375 default: 1376 /* Nothing to do. */ 1377 break; 1378 } 1379 1380 KASSERT(kn->kn_hook == pipe); 1381 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext); 1382 mutex_exit(lock); 1383 } 1384 1385 static int 1386 filt_piperead(struct knote *kn, long hint) 1387 { 1388 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data; 1389 struct pipe *wpipe; 1390 1391 if ((hint & NOTE_SUBMIT) == 0) { 1392 mutex_enter(rpipe->pipe_lock); 1393 } 1394 wpipe = rpipe->pipe_peer; 1395 kn->kn_data = rpipe->pipe_buffer.cnt; 1396 1397 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1398 kn->kn_data = rpipe->pipe_map.cnt; 1399 1400 if ((rpipe->pipe_state & PIPE_EOF) || 1401 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1402 kn->kn_flags |= EV_EOF; 1403 if ((hint & NOTE_SUBMIT) == 0) { 1404 mutex_exit(rpipe->pipe_lock); 1405 } 1406 return (1); 1407 } 1408 1409 if ((hint & NOTE_SUBMIT) == 0) { 1410 mutex_exit(rpipe->pipe_lock); 1411 } 1412 return (kn->kn_data > 0); 1413 } 1414 1415 static int 1416 filt_pipewrite(struct knote *kn, long hint) 1417 { 1418 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data; 1419 struct pipe *wpipe; 1420 1421 if ((hint & NOTE_SUBMIT) == 0) { 1422 mutex_enter(rpipe->pipe_lock); 1423 } 1424 wpipe = rpipe->pipe_peer; 1425 1426 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1427 kn->kn_data = 0; 1428 kn->kn_flags |= EV_EOF; 1429 if ((hint & NOTE_SUBMIT) == 0) { 1430 mutex_exit(rpipe->pipe_lock); 1431 } 1432 return (1); 1433 } 1434 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1435 if (wpipe->pipe_state & PIPE_DIRECTW) 1436 kn->kn_data = 0; 1437 1438 if ((hint & NOTE_SUBMIT) == 0) { 1439 mutex_exit(rpipe->pipe_lock); 1440 } 1441 return (kn->kn_data >= PIPE_BUF); 1442 } 1443 1444 static const struct filterops pipe_rfiltops = 1445 { 1, NULL, filt_pipedetach, filt_piperead }; 1446 static const struct filterops pipe_wfiltops = 1447 { 1, NULL, filt_pipedetach, filt_pipewrite }; 1448 1449 static int 1450 pipe_kqfilter(file_t *fp, struct knote *kn) 1451 { 1452 struct pipe *pipe; 1453 kmutex_t *lock; 1454 1455 pipe = ((file_t *)kn->kn_obj)->f_data; 1456 lock = pipe->pipe_lock; 1457 1458 mutex_enter(lock); 1459 1460 switch (kn->kn_filter) { 1461 case EVFILT_READ: 1462 kn->kn_fop = &pipe_rfiltops; 1463 break; 1464 case EVFILT_WRITE: 1465 kn->kn_fop = &pipe_wfiltops; 1466 pipe = pipe->pipe_peer; 1467 if (pipe == NULL) { 1468 /* Other end of pipe has been closed. */ 1469 mutex_exit(lock); 1470 return (EBADF); 1471 } 1472 break; 1473 default: 1474 mutex_exit(lock); 1475 return (EINVAL); 1476 } 1477 1478 kn->kn_hook = pipe; 1479 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext); 1480 mutex_exit(lock); 1481 1482 return (0); 1483 } 1484 1485 /* 1486 * Handle pipe sysctls. 1487 */ 1488 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup") 1489 { 1490 1491 sysctl_createv(clog, 0, NULL, NULL, 1492 CTLFLAG_PERMANENT, 1493 CTLTYPE_NODE, "kern", NULL, 1494 NULL, 0, NULL, 0, 1495 CTL_KERN, CTL_EOL); 1496 sysctl_createv(clog, 0, NULL, NULL, 1497 CTLFLAG_PERMANENT, 1498 CTLTYPE_NODE, "pipe", 1499 SYSCTL_DESCR("Pipe settings"), 1500 NULL, 0, NULL, 0, 1501 CTL_KERN, KERN_PIPE, CTL_EOL); 1502 1503 sysctl_createv(clog, 0, NULL, NULL, 1504 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1505 CTLTYPE_INT, "maxkvasz", 1506 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1507 "used for pipes"), 1508 NULL, 0, &maxpipekva, 0, 1509 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL); 1510 sysctl_createv(clog, 0, NULL, NULL, 1511 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1512 CTLTYPE_INT, "maxloankvasz", 1513 SYSCTL_DESCR("Limit for direct transfers via page loan"), 1514 NULL, 0, &limitpipekva, 0, 1515 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL); 1516 sysctl_createv(clog, 0, NULL, NULL, 1517 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1518 CTLTYPE_INT, "maxbigpipes", 1519 SYSCTL_DESCR("Maximum number of \"big\" pipes"), 1520 NULL, 0, &maxbigpipes, 0, 1521 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL); 1522 sysctl_createv(clog, 0, NULL, NULL, 1523 CTLFLAG_PERMANENT, 1524 CTLTYPE_INT, "nbigpipes", 1525 SYSCTL_DESCR("Number of \"big\" pipes"), 1526 NULL, 0, &nbigpipe, 0, 1527 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL); 1528 sysctl_createv(clog, 0, NULL, NULL, 1529 CTLFLAG_PERMANENT, 1530 CTLTYPE_INT, "kvasize", 1531 SYSCTL_DESCR("Amount of kernel memory consumed by pipe " 1532 "buffers"), 1533 NULL, 0, &amountpipekva, 0, 1534 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL); 1535 } 1536