1 /* $NetBSD: sys_pipe.c,v 1.109 2009/04/04 10:12:51 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1996 John S. Dyson 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice immediately at the beginning of the file, without modification, 41 * this list of conditions, and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Absolutely no warranty of function or purpose is made by the author 46 * John S. Dyson. 47 * 4. Modifications may be freely made to this file if the above conditions 48 * are met. 49 */ 50 51 /* 52 * This file contains a high-performance replacement for the socket-based 53 * pipes scheme originally used. It does not support all features of 54 * sockets, but does do everything that pipes normally do. 55 * 56 * This code has two modes of operation, a small write mode and a large 57 * write mode. The small write mode acts like conventional pipes with 58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space 61 * using the UVM page loan facility from where the receiving process can copy 62 * the data directly from the pages in the sending process. 63 * 64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 65 * happen for small transfers so that the system will not spend all of 66 * its time context switching. PIPE_SIZE is constrained by the 67 * amount of kernel virtual memory. 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.109 2009/04/04 10:12:51 ad Exp $"); 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> 76 #include <sys/fcntl.h> 77 #include <sys/file.h> 78 #include <sys/filedesc.h> 79 #include <sys/filio.h> 80 #include <sys/kernel.h> 81 #include <sys/ttycom.h> 82 #include <sys/stat.h> 83 #include <sys/poll.h> 84 #include <sys/signalvar.h> 85 #include <sys/vnode.h> 86 #include <sys/uio.h> 87 #include <sys/select.h> 88 #include <sys/mount.h> 89 #include <sys/syscallargs.h> 90 #include <sys/sysctl.h> 91 #include <sys/kauth.h> 92 #include <sys/atomic.h> 93 #include <sys/pipe.h> 94 95 #include <uvm/uvm.h> 96 97 /* Use this define if you want to disable *fancy* VM things. */ 98 /* XXX Disabled for now; rare hangs switching between direct/buffered */ 99 #define PIPE_NODIRECT 100 101 /* 102 * interfaces to the outside world 103 */ 104 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio, 105 kauth_cred_t cred, int flags); 106 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio, 107 kauth_cred_t cred, int flags); 108 static int pipe_close(struct file *fp); 109 static int pipe_poll(struct file *fp, int events); 110 static int pipe_kqfilter(struct file *fp, struct knote *kn); 111 static int pipe_stat(struct file *fp, struct stat *sb); 112 static int pipe_ioctl(struct file *fp, u_long cmd, void *data); 113 114 static const struct fileops pipeops = { 115 .fo_read = pipe_read, 116 .fo_write = pipe_write, 117 .fo_ioctl = pipe_ioctl, 118 .fo_fcntl = fnullop_fcntl, 119 .fo_poll = pipe_poll, 120 .fo_stat = pipe_stat, 121 .fo_close = pipe_close, 122 .fo_kqfilter = pipe_kqfilter, 123 .fo_drain = fnullop_drain, 124 }; 125 126 /* 127 * Default pipe buffer size(s), this can be kind-of large now because pipe 128 * space is pageable. The pipe code will try to maintain locality of 129 * reference for performance reasons, so small amounts of outstanding I/O 130 * will not wipe the cache. 131 */ 132 #define MINPIPESIZE (PIPE_SIZE/3) 133 #define MAXPIPESIZE (2*PIPE_SIZE/3) 134 135 /* 136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 137 * is there so that on large systems, we don't exhaust it. 138 */ 139 #define MAXPIPEKVA (8*1024*1024) 140 static u_int maxpipekva = MAXPIPEKVA; 141 142 /* 143 * Limit for direct transfers, we cannot, of course limit 144 * the amount of kva for pipes in general though. 145 */ 146 #define LIMITPIPEKVA (16*1024*1024) 147 static u_int limitpipekva = LIMITPIPEKVA; 148 149 /* 150 * Limit the number of "big" pipes 151 */ 152 #define LIMITBIGPIPES 32 153 static u_int maxbigpipes = LIMITBIGPIPES; 154 static u_int nbigpipe = 0; 155 156 /* 157 * Amount of KVA consumed by pipe buffers. 158 */ 159 static u_int amountpipekva = 0; 160 161 static void pipeclose(struct file *fp, struct pipe *pipe); 162 static void pipe_free_kmem(struct pipe *pipe); 163 static int pipe_create(struct pipe **pipep, pool_cache_t, kmutex_t *); 164 static int pipelock(struct pipe *pipe, int catch); 165 static inline void pipeunlock(struct pipe *pipe); 166 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code); 167 #ifndef PIPE_NODIRECT 168 static int pipe_direct_write(struct file *fp, struct pipe *wpipe, 169 struct uio *uio); 170 #endif 171 static int pipespace(struct pipe *pipe, int size); 172 static int pipe_ctor(void *, void *, int); 173 static void pipe_dtor(void *, void *); 174 175 #ifndef PIPE_NODIRECT 176 static int pipe_loan_alloc(struct pipe *, int); 177 static void pipe_loan_free(struct pipe *); 178 #endif /* PIPE_NODIRECT */ 179 180 static pool_cache_t pipe_wr_cache; 181 static pool_cache_t pipe_rd_cache; 182 183 void 184 pipe_init(void) 185 { 186 187 /* Writer side is not automatically allocated KVA. */ 188 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr", 189 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL); 190 KASSERT(pipe_wr_cache != NULL); 191 192 /* Reader side gets preallocated KVA. */ 193 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd", 194 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1); 195 KASSERT(pipe_rd_cache != NULL); 196 } 197 198 static int 199 pipe_ctor(void *arg, void *obj, int flags) 200 { 201 struct pipe *pipe; 202 vaddr_t va; 203 204 pipe = obj; 205 206 memset(pipe, 0, sizeof(struct pipe)); 207 if (arg != NULL) { 208 /* Preallocate space. */ 209 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0, 210 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 211 KASSERT(va != 0); 212 pipe->pipe_kmem = va; 213 atomic_add_int(&amountpipekva, PIPE_SIZE); 214 } 215 cv_init(&pipe->pipe_rcv, "piperd"); 216 cv_init(&pipe->pipe_wcv, "pipewr"); 217 cv_init(&pipe->pipe_draincv, "pipedrain"); 218 cv_init(&pipe->pipe_lkcv, "pipelk"); 219 selinit(&pipe->pipe_sel); 220 pipe->pipe_state = PIPE_SIGNALR; 221 222 return 0; 223 } 224 225 static void 226 pipe_dtor(void *arg, void *obj) 227 { 228 struct pipe *pipe; 229 230 pipe = obj; 231 232 cv_destroy(&pipe->pipe_rcv); 233 cv_destroy(&pipe->pipe_wcv); 234 cv_destroy(&pipe->pipe_draincv); 235 cv_destroy(&pipe->pipe_lkcv); 236 seldestroy(&pipe->pipe_sel); 237 if (pipe->pipe_kmem != 0) { 238 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE, 239 UVM_KMF_PAGEABLE); 240 atomic_add_int(&amountpipekva, -PIPE_SIZE); 241 } 242 } 243 244 /* 245 * The pipe system call for the DTYPE_PIPE type of pipes 246 */ 247 248 /* ARGSUSED */ 249 int 250 sys_pipe(struct lwp *l, const void *v, register_t *retval) 251 { 252 struct file *rf, *wf; 253 struct pipe *rpipe, *wpipe; 254 kmutex_t *mutex; 255 int fd, error; 256 proc_t *p; 257 258 p = curproc; 259 rpipe = wpipe = NULL; 260 mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 261 if (mutex == NULL) 262 return (ENOMEM); 263 mutex_obj_hold(mutex); 264 if (pipe_create(&rpipe, pipe_rd_cache, mutex) || 265 pipe_create(&wpipe, pipe_wr_cache, mutex)) { 266 pipeclose(NULL, rpipe); 267 pipeclose(NULL, wpipe); 268 return (ENFILE); 269 } 270 271 error = fd_allocfile(&rf, &fd); 272 if (error) 273 goto free2; 274 retval[0] = fd; 275 rf->f_flag = FREAD; 276 rf->f_type = DTYPE_PIPE; 277 rf->f_data = (void *)rpipe; 278 rf->f_ops = &pipeops; 279 280 error = fd_allocfile(&wf, &fd); 281 if (error) 282 goto free3; 283 retval[1] = fd; 284 wf->f_flag = FWRITE; 285 wf->f_type = DTYPE_PIPE; 286 wf->f_data = (void *)wpipe; 287 wf->f_ops = &pipeops; 288 289 rpipe->pipe_peer = wpipe; 290 wpipe->pipe_peer = rpipe; 291 292 fd_affix(p, rf, (int)retval[0]); 293 fd_affix(p, wf, (int)retval[1]); 294 return (0); 295 free3: 296 fd_abort(p, rf, (int)retval[0]); 297 free2: 298 pipeclose(NULL, wpipe); 299 pipeclose(NULL, rpipe); 300 301 return (error); 302 } 303 304 /* 305 * Allocate kva for pipe circular buffer, the space is pageable 306 * This routine will 'realloc' the size of a pipe safely, if it fails 307 * it will retain the old buffer. 308 * If it fails it will return ENOMEM. 309 */ 310 static int 311 pipespace(struct pipe *pipe, int size) 312 { 313 void *buffer; 314 315 /* 316 * Allocate pageable virtual address space. Physical memory is 317 * allocated on demand. 318 */ 319 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) { 320 buffer = (void *)pipe->pipe_kmem; 321 } else { 322 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size), 323 0, UVM_KMF_PAGEABLE); 324 if (buffer == NULL) 325 return (ENOMEM); 326 atomic_add_int(&amountpipekva, size); 327 } 328 329 /* free old resources if we're resizing */ 330 pipe_free_kmem(pipe); 331 pipe->pipe_buffer.buffer = buffer; 332 pipe->pipe_buffer.size = size; 333 pipe->pipe_buffer.in = 0; 334 pipe->pipe_buffer.out = 0; 335 pipe->pipe_buffer.cnt = 0; 336 return (0); 337 } 338 339 /* 340 * Initialize and allocate VM and memory for pipe. 341 */ 342 static int 343 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex) 344 { 345 struct pipe *pipe; 346 int error; 347 348 pipe = pool_cache_get(cache, PR_WAITOK); 349 KASSERT(pipe != NULL); 350 *pipep = pipe; 351 error = 0; 352 getmicrotime(&pipe->pipe_ctime); 353 pipe->pipe_atime = pipe->pipe_ctime; 354 pipe->pipe_mtime = pipe->pipe_ctime; 355 pipe->pipe_lock = mutex; 356 if (cache == pipe_rd_cache) { 357 error = pipespace(pipe, PIPE_SIZE); 358 } else { 359 pipe->pipe_buffer.buffer = NULL; 360 pipe->pipe_buffer.size = 0; 361 pipe->pipe_buffer.in = 0; 362 pipe->pipe_buffer.out = 0; 363 pipe->pipe_buffer.cnt = 0; 364 } 365 return error; 366 } 367 368 /* 369 * Lock a pipe for I/O, blocking other access 370 * Called with pipe spin lock held. 371 * Return with pipe spin lock released on success. 372 */ 373 static int 374 pipelock(struct pipe *pipe, int catch) 375 { 376 int error; 377 378 KASSERT(mutex_owned(pipe->pipe_lock)); 379 380 while (pipe->pipe_state & PIPE_LOCKFL) { 381 pipe->pipe_state |= PIPE_LWANT; 382 if (catch) { 383 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock); 384 if (error != 0) 385 return error; 386 } else 387 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock); 388 } 389 390 pipe->pipe_state |= PIPE_LOCKFL; 391 392 return 0; 393 } 394 395 /* 396 * unlock a pipe I/O lock 397 */ 398 static inline void 399 pipeunlock(struct pipe *pipe) 400 { 401 402 KASSERT(pipe->pipe_state & PIPE_LOCKFL); 403 404 pipe->pipe_state &= ~PIPE_LOCKFL; 405 if (pipe->pipe_state & PIPE_LWANT) { 406 pipe->pipe_state &= ~PIPE_LWANT; 407 cv_broadcast(&pipe->pipe_lkcv); 408 } 409 } 410 411 /* 412 * Select/poll wakup. This also sends SIGIO to peer connected to 413 * 'sigpipe' side of pipe. 414 */ 415 static void 416 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code) 417 { 418 int band; 419 420 switch (code) { 421 case POLL_IN: 422 band = POLLIN|POLLRDNORM; 423 break; 424 case POLL_OUT: 425 band = POLLOUT|POLLWRNORM; 426 break; 427 case POLL_HUP: 428 band = POLLHUP; 429 break; 430 case POLL_ERR: 431 band = POLLERR; 432 break; 433 default: 434 band = 0; 435 #ifdef DIAGNOSTIC 436 printf("bad siginfo code %d in pipe notification.\n", code); 437 #endif 438 break; 439 } 440 441 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT); 442 443 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0) 444 return; 445 446 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp); 447 } 448 449 /* ARGSUSED */ 450 static int 451 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 452 int flags) 453 { 454 struct pipe *rpipe = (struct pipe *) fp->f_data; 455 struct pipebuf *bp = &rpipe->pipe_buffer; 456 kmutex_t *lock = rpipe->pipe_lock; 457 int error; 458 size_t nread = 0; 459 size_t size; 460 size_t ocnt; 461 462 mutex_enter(lock); 463 ++rpipe->pipe_busy; 464 ocnt = bp->cnt; 465 466 again: 467 error = pipelock(rpipe, 1); 468 if (error) 469 goto unlocked_error; 470 471 while (uio->uio_resid) { 472 /* 473 * normal pipe buffer receive 474 */ 475 if (bp->cnt > 0) { 476 size = bp->size - bp->out; 477 if (size > bp->cnt) 478 size = bp->cnt; 479 if (size > uio->uio_resid) 480 size = uio->uio_resid; 481 482 mutex_exit(lock); 483 error = uiomove((char *)bp->buffer + bp->out, size, uio); 484 mutex_enter(lock); 485 if (error) 486 break; 487 488 bp->out += size; 489 if (bp->out >= bp->size) 490 bp->out = 0; 491 492 bp->cnt -= size; 493 494 /* 495 * If there is no more to read in the pipe, reset 496 * its pointers to the beginning. This improves 497 * cache hit stats. 498 */ 499 if (bp->cnt == 0) { 500 bp->in = 0; 501 bp->out = 0; 502 } 503 nread += size; 504 continue; 505 } 506 507 #ifndef PIPE_NODIRECT 508 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) { 509 /* 510 * Direct copy, bypassing a kernel buffer. 511 */ 512 void * va; 513 514 KASSERT(rpipe->pipe_state & PIPE_DIRECTW); 515 516 size = rpipe->pipe_map.cnt; 517 if (size > uio->uio_resid) 518 size = uio->uio_resid; 519 520 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos; 521 mutex_exit(lock); 522 error = uiomove(va, size, uio); 523 mutex_enter(lock); 524 if (error) 525 break; 526 nread += size; 527 rpipe->pipe_map.pos += size; 528 rpipe->pipe_map.cnt -= size; 529 if (rpipe->pipe_map.cnt == 0) { 530 rpipe->pipe_state &= ~PIPE_DIRECTR; 531 cv_broadcast(&rpipe->pipe_wcv); 532 } 533 continue; 534 } 535 #endif 536 /* 537 * Break if some data was read. 538 */ 539 if (nread > 0) 540 break; 541 542 /* 543 * detect EOF condition 544 * read returns 0 on EOF, no need to set error 545 */ 546 if (rpipe->pipe_state & PIPE_EOF) 547 break; 548 549 /* 550 * don't block on non-blocking I/O 551 */ 552 if (fp->f_flag & FNONBLOCK) { 553 error = EAGAIN; 554 break; 555 } 556 557 /* 558 * Unlock the pipe buffer for our remaining processing. 559 * We will either break out with an error or we will 560 * sleep and relock to loop. 561 */ 562 pipeunlock(rpipe); 563 564 /* 565 * Re-check to see if more direct writes are pending. 566 */ 567 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) 568 goto again; 569 570 /* 571 * We want to read more, wake up select/poll. 572 */ 573 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 574 575 /* 576 * If the "write-side" is blocked, wake it up now. 577 */ 578 cv_broadcast(&rpipe->pipe_wcv); 579 580 /* Now wait until the pipe is filled */ 581 error = cv_wait_sig(&rpipe->pipe_rcv, lock); 582 if (error != 0) 583 goto unlocked_error; 584 goto again; 585 } 586 587 if (error == 0) 588 getmicrotime(&rpipe->pipe_atime); 589 pipeunlock(rpipe); 590 591 unlocked_error: 592 --rpipe->pipe_busy; 593 if (rpipe->pipe_busy == 0) { 594 cv_broadcast(&rpipe->pipe_draincv); 595 } 596 if (bp->cnt < MINPIPESIZE) { 597 cv_broadcast(&rpipe->pipe_wcv); 598 } 599 600 /* 601 * If anything was read off the buffer, signal to the writer it's 602 * possible to write more data. Also send signal if we are here for the 603 * first time after last write. 604 */ 605 if ((bp->size - bp->cnt) >= PIPE_BUF 606 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) { 607 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT); 608 rpipe->pipe_state &= ~PIPE_SIGNALR; 609 } 610 611 mutex_exit(lock); 612 return (error); 613 } 614 615 #ifndef PIPE_NODIRECT 616 /* 617 * Allocate structure for loan transfer. 618 */ 619 static int 620 pipe_loan_alloc(struct pipe *wpipe, int npages) 621 { 622 vsize_t len; 623 624 len = (vsize_t)npages << PAGE_SHIFT; 625 atomic_add_int(&amountpipekva, len); 626 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0, 627 UVM_KMF_VAONLY | UVM_KMF_WAITVA); 628 if (wpipe->pipe_map.kva == 0) { 629 atomic_add_int(&amountpipekva, -len); 630 return (ENOMEM); 631 } 632 633 wpipe->pipe_map.npages = npages; 634 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *), 635 KM_SLEEP); 636 return (0); 637 } 638 639 /* 640 * Free resources allocated for loan transfer. 641 */ 642 static void 643 pipe_loan_free(struct pipe *wpipe) 644 { 645 vsize_t len; 646 647 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT; 648 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY); 649 wpipe->pipe_map.kva = 0; 650 atomic_add_int(&amountpipekva, -len); 651 kmem_free(wpipe->pipe_map.pgs, 652 wpipe->pipe_map.npages * sizeof(struct vm_page *)); 653 wpipe->pipe_map.pgs = NULL; 654 } 655 656 /* 657 * NetBSD direct write, using uvm_loan() mechanism. 658 * This implements the pipe buffer write mechanism. Note that only 659 * a direct write OR a normal pipe write can be pending at any given time. 660 * If there are any characters in the pipe buffer, the direct write will 661 * be deferred until the receiving process grabs all of the bytes from 662 * the pipe buffer. Then the direct mapping write is set-up. 663 * 664 * Called with the long-term pipe lock held. 665 */ 666 static int 667 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio) 668 { 669 int error, npages, j; 670 struct vm_page **pgs; 671 vaddr_t bbase, kva, base, bend; 672 vsize_t blen, bcnt; 673 voff_t bpos; 674 kmutex_t *lock = wpipe->pipe_lock; 675 676 KASSERT(mutex_owned(wpipe->pipe_lock)); 677 KASSERT(wpipe->pipe_map.cnt == 0); 678 679 mutex_exit(lock); 680 681 /* 682 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers 683 * not aligned to PAGE_SIZE. 684 */ 685 bbase = (vaddr_t)uio->uio_iov->iov_base; 686 base = trunc_page(bbase); 687 bend = round_page(bbase + uio->uio_iov->iov_len); 688 blen = bend - base; 689 bpos = bbase - base; 690 691 if (blen > PIPE_DIRECT_CHUNK) { 692 blen = PIPE_DIRECT_CHUNK; 693 bend = base + blen; 694 bcnt = PIPE_DIRECT_CHUNK - bpos; 695 } else { 696 bcnt = uio->uio_iov->iov_len; 697 } 698 npages = blen >> PAGE_SHIFT; 699 700 /* 701 * Free the old kva if we need more pages than we have 702 * allocated. 703 */ 704 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages) 705 pipe_loan_free(wpipe); 706 707 /* Allocate new kva. */ 708 if (wpipe->pipe_map.kva == 0) { 709 error = pipe_loan_alloc(wpipe, npages); 710 if (error) { 711 mutex_enter(lock); 712 return (error); 713 } 714 } 715 716 /* Loan the write buffer memory from writer process */ 717 pgs = wpipe->pipe_map.pgs; 718 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen, 719 pgs, UVM_LOAN_TOPAGE); 720 if (error) { 721 pipe_loan_free(wpipe); 722 mutex_enter(lock); 723 return (ENOMEM); /* so that caller fallback to ordinary write */ 724 } 725 726 /* Enter the loaned pages to kva */ 727 kva = wpipe->pipe_map.kva; 728 for (j = 0; j < npages; j++, kva += PAGE_SIZE) { 729 pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ); 730 } 731 pmap_update(pmap_kernel()); 732 733 /* Now we can put the pipe in direct write mode */ 734 wpipe->pipe_map.pos = bpos; 735 wpipe->pipe_map.cnt = bcnt; 736 737 /* 738 * But before we can let someone do a direct read, we 739 * have to wait until the pipe is drained. Release the 740 * pipe lock while we wait. 741 */ 742 mutex_enter(lock); 743 wpipe->pipe_state |= PIPE_DIRECTW; 744 pipeunlock(wpipe); 745 746 while (error == 0 && wpipe->pipe_buffer.cnt > 0) { 747 cv_broadcast(&wpipe->pipe_rcv); 748 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 749 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 750 error = EPIPE; 751 } 752 753 /* Pipe is drained; next read will off the direct buffer */ 754 wpipe->pipe_state |= PIPE_DIRECTR; 755 756 /* Wait until the reader is done */ 757 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) { 758 cv_broadcast(&wpipe->pipe_rcv); 759 pipeselwakeup(wpipe, wpipe, POLL_IN); 760 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 761 if (error == 0 && wpipe->pipe_state & PIPE_EOF) 762 error = EPIPE; 763 } 764 765 /* Take pipe out of direct write mode */ 766 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR); 767 768 /* Acquire the pipe lock and cleanup */ 769 (void)pipelock(wpipe, 0); 770 mutex_exit(lock); 771 772 if (pgs != NULL) { 773 pmap_kremove(wpipe->pipe_map.kva, blen); 774 pmap_update(pmap_kernel()); 775 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE); 776 } 777 if (error || amountpipekva > maxpipekva) 778 pipe_loan_free(wpipe); 779 780 mutex_enter(lock); 781 if (error) { 782 pipeselwakeup(wpipe, wpipe, POLL_ERR); 783 784 /* 785 * If nothing was read from what we offered, return error 786 * straight on. Otherwise update uio resid first. Caller 787 * will deal with the error condition, returning short 788 * write, error, or restarting the write(2) as appropriate. 789 */ 790 if (wpipe->pipe_map.cnt == bcnt) { 791 wpipe->pipe_map.cnt = 0; 792 cv_broadcast(&wpipe->pipe_wcv); 793 return (error); 794 } 795 796 bcnt -= wpipe->pipe_map.cnt; 797 } 798 799 uio->uio_resid -= bcnt; 800 /* uio_offset not updated, not set/used for write(2) */ 801 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt; 802 uio->uio_iov->iov_len -= bcnt; 803 if (uio->uio_iov->iov_len == 0) { 804 uio->uio_iov++; 805 uio->uio_iovcnt--; 806 } 807 808 wpipe->pipe_map.cnt = 0; 809 return (error); 810 } 811 #endif /* !PIPE_NODIRECT */ 812 813 static int 814 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred, 815 int flags) 816 { 817 struct pipe *wpipe, *rpipe; 818 struct pipebuf *bp; 819 kmutex_t *lock; 820 int error; 821 822 /* We want to write to our peer */ 823 rpipe = (struct pipe *) fp->f_data; 824 lock = rpipe->pipe_lock; 825 error = 0; 826 827 mutex_enter(lock); 828 wpipe = rpipe->pipe_peer; 829 830 /* 831 * Detect loss of pipe read side, issue SIGPIPE if lost. 832 */ 833 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) { 834 mutex_exit(lock); 835 return EPIPE; 836 } 837 ++wpipe->pipe_busy; 838 839 /* Aquire the long-term pipe lock */ 840 if ((error = pipelock(wpipe, 1)) != 0) { 841 --wpipe->pipe_busy; 842 if (wpipe->pipe_busy == 0) { 843 cv_broadcast(&wpipe->pipe_draincv); 844 } 845 mutex_exit(lock); 846 return (error); 847 } 848 849 bp = &wpipe->pipe_buffer; 850 851 /* 852 * If it is advantageous to resize the pipe buffer, do so. 853 */ 854 if ((uio->uio_resid > PIPE_SIZE) && 855 (nbigpipe < maxbigpipes) && 856 #ifndef PIPE_NODIRECT 857 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 858 #endif 859 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) { 860 861 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0) 862 atomic_inc_uint(&nbigpipe); 863 } 864 865 while (uio->uio_resid) { 866 size_t space; 867 868 #ifndef PIPE_NODIRECT 869 /* 870 * Pipe buffered writes cannot be coincidental with 871 * direct writes. Also, only one direct write can be 872 * in progress at any one time. We wait until the currently 873 * executing direct write is completed before continuing. 874 * 875 * We break out if a signal occurs or the reader goes away. 876 */ 877 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) { 878 cv_broadcast(&wpipe->pipe_rcv); 879 pipeunlock(wpipe); 880 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 881 (void)pipelock(wpipe, 0); 882 if (wpipe->pipe_state & PIPE_EOF) 883 error = EPIPE; 884 } 885 if (error) 886 break; 887 888 /* 889 * If the transfer is large, we can gain performance if 890 * we do process-to-process copies directly. 891 * If the write is non-blocking, we don't use the 892 * direct write mechanism. 893 * 894 * The direct write mechanism will detect the reader going 895 * away on us. 896 */ 897 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 898 (fp->f_flag & FNONBLOCK) == 0 && 899 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) { 900 error = pipe_direct_write(fp, wpipe, uio); 901 902 /* 903 * Break out if error occurred, unless it's ENOMEM. 904 * ENOMEM means we failed to allocate some resources 905 * for direct write, so we just fallback to ordinary 906 * write. If the direct write was successful, 907 * process rest of data via ordinary write. 908 */ 909 if (error == 0) 910 continue; 911 912 if (error != ENOMEM) 913 break; 914 } 915 #endif /* PIPE_NODIRECT */ 916 917 space = bp->size - bp->cnt; 918 919 /* Writes of size <= PIPE_BUF must be atomic. */ 920 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF)) 921 space = 0; 922 923 if (space > 0) { 924 int size; /* Transfer size */ 925 int segsize; /* first segment to transfer */ 926 927 /* 928 * Transfer size is minimum of uio transfer 929 * and free space in pipe buffer. 930 */ 931 if (space > uio->uio_resid) 932 size = uio->uio_resid; 933 else 934 size = space; 935 /* 936 * First segment to transfer is minimum of 937 * transfer size and contiguous space in 938 * pipe buffer. If first segment to transfer 939 * is less than the transfer size, we've got 940 * a wraparound in the buffer. 941 */ 942 segsize = bp->size - bp->in; 943 if (segsize > size) 944 segsize = size; 945 946 /* Transfer first segment */ 947 mutex_exit(lock); 948 error = uiomove((char *)bp->buffer + bp->in, segsize, 949 uio); 950 951 if (error == 0 && segsize < size) { 952 /* 953 * Transfer remaining part now, to 954 * support atomic writes. Wraparound 955 * happened. 956 */ 957 #ifdef DEBUG 958 if (bp->in + segsize != bp->size) 959 panic("Expected pipe buffer wraparound disappeared"); 960 #endif 961 962 error = uiomove(bp->buffer, 963 size - segsize, uio); 964 } 965 mutex_enter(lock); 966 if (error) 967 break; 968 969 bp->in += size; 970 if (bp->in >= bp->size) { 971 #ifdef DEBUG 972 if (bp->in != size - segsize + bp->size) 973 panic("Expected wraparound bad"); 974 #endif 975 bp->in = size - segsize; 976 } 977 978 bp->cnt += size; 979 #ifdef DEBUG 980 if (bp->cnt > bp->size) 981 panic("Pipe buffer overflow"); 982 #endif 983 } else { 984 /* 985 * If the "read-side" has been blocked, wake it up now. 986 */ 987 cv_broadcast(&wpipe->pipe_rcv); 988 989 /* 990 * don't block on non-blocking I/O 991 */ 992 if (fp->f_flag & FNONBLOCK) { 993 error = EAGAIN; 994 break; 995 } 996 997 /* 998 * We have no more space and have something to offer, 999 * wake up select/poll. 1000 */ 1001 if (bp->cnt) 1002 pipeselwakeup(wpipe, wpipe, POLL_IN); 1003 1004 pipeunlock(wpipe); 1005 error = cv_wait_sig(&wpipe->pipe_wcv, lock); 1006 (void)pipelock(wpipe, 0); 1007 if (error != 0) 1008 break; 1009 /* 1010 * If read side wants to go away, we just issue a signal 1011 * to ourselves. 1012 */ 1013 if (wpipe->pipe_state & PIPE_EOF) { 1014 error = EPIPE; 1015 break; 1016 } 1017 } 1018 } 1019 1020 --wpipe->pipe_busy; 1021 if (wpipe->pipe_busy == 0) { 1022 cv_broadcast(&wpipe->pipe_draincv); 1023 } 1024 if (bp->cnt > 0) { 1025 cv_broadcast(&wpipe->pipe_rcv); 1026 } 1027 1028 /* 1029 * Don't return EPIPE if I/O was successful 1030 */ 1031 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0) 1032 error = 0; 1033 1034 if (error == 0) 1035 getmicrotime(&wpipe->pipe_mtime); 1036 1037 /* 1038 * We have something to offer, wake up select/poll. 1039 * wpipe->pipe_map.cnt is always 0 in this point (direct write 1040 * is only done synchronously), so check only wpipe->pipe_buffer.cnt 1041 */ 1042 if (bp->cnt) 1043 pipeselwakeup(wpipe, wpipe, POLL_IN); 1044 1045 /* 1046 * Arrange for next read(2) to do a signal. 1047 */ 1048 wpipe->pipe_state |= PIPE_SIGNALR; 1049 1050 pipeunlock(wpipe); 1051 mutex_exit(lock); 1052 return (error); 1053 } 1054 1055 /* 1056 * we implement a very minimal set of ioctls for compatibility with sockets. 1057 */ 1058 int 1059 pipe_ioctl(struct file *fp, u_long cmd, void *data) 1060 { 1061 struct pipe *pipe = fp->f_data; 1062 kmutex_t *lock = pipe->pipe_lock; 1063 1064 switch (cmd) { 1065 1066 case FIONBIO: 1067 return (0); 1068 1069 case FIOASYNC: 1070 mutex_enter(lock); 1071 if (*(int *)data) { 1072 pipe->pipe_state |= PIPE_ASYNC; 1073 } else { 1074 pipe->pipe_state &= ~PIPE_ASYNC; 1075 } 1076 mutex_exit(lock); 1077 return (0); 1078 1079 case FIONREAD: 1080 mutex_enter(lock); 1081 #ifndef PIPE_NODIRECT 1082 if (pipe->pipe_state & PIPE_DIRECTW) 1083 *(int *)data = pipe->pipe_map.cnt; 1084 else 1085 #endif 1086 *(int *)data = pipe->pipe_buffer.cnt; 1087 mutex_exit(lock); 1088 return (0); 1089 1090 case FIONWRITE: 1091 /* Look at other side */ 1092 pipe = pipe->pipe_peer; 1093 mutex_enter(lock); 1094 #ifndef PIPE_NODIRECT 1095 if (pipe->pipe_state & PIPE_DIRECTW) 1096 *(int *)data = pipe->pipe_map.cnt; 1097 else 1098 #endif 1099 *(int *)data = pipe->pipe_buffer.cnt; 1100 mutex_exit(lock); 1101 return (0); 1102 1103 case FIONSPACE: 1104 /* Look at other side */ 1105 pipe = pipe->pipe_peer; 1106 mutex_enter(lock); 1107 #ifndef PIPE_NODIRECT 1108 /* 1109 * If we're in direct-mode, we don't really have a 1110 * send queue, and any other write will block. Thus 1111 * zero seems like the best answer. 1112 */ 1113 if (pipe->pipe_state & PIPE_DIRECTW) 1114 *(int *)data = 0; 1115 else 1116 #endif 1117 *(int *)data = pipe->pipe_buffer.size - 1118 pipe->pipe_buffer.cnt; 1119 mutex_exit(lock); 1120 return (0); 1121 1122 case TIOCSPGRP: 1123 case FIOSETOWN: 1124 return fsetown(&pipe->pipe_pgid, cmd, data); 1125 1126 case TIOCGPGRP: 1127 case FIOGETOWN: 1128 return fgetown(pipe->pipe_pgid, cmd, data); 1129 1130 } 1131 return (EPASSTHROUGH); 1132 } 1133 1134 int 1135 pipe_poll(struct file *fp, int events) 1136 { 1137 struct pipe *rpipe = fp->f_data; 1138 struct pipe *wpipe; 1139 int eof = 0; 1140 int revents = 0; 1141 1142 mutex_enter(rpipe->pipe_lock); 1143 wpipe = rpipe->pipe_peer; 1144 1145 if (events & (POLLIN | POLLRDNORM)) 1146 if ((rpipe->pipe_buffer.cnt > 0) || 1147 #ifndef PIPE_NODIRECT 1148 (rpipe->pipe_state & PIPE_DIRECTR) || 1149 #endif 1150 (rpipe->pipe_state & PIPE_EOF)) 1151 revents |= events & (POLLIN | POLLRDNORM); 1152 1153 eof |= (rpipe->pipe_state & PIPE_EOF); 1154 1155 if (wpipe == NULL) 1156 revents |= events & (POLLOUT | POLLWRNORM); 1157 else { 1158 if (events & (POLLOUT | POLLWRNORM)) 1159 if ((wpipe->pipe_state & PIPE_EOF) || ( 1160 #ifndef PIPE_NODIRECT 1161 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1162 #endif 1163 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1164 revents |= events & (POLLOUT | POLLWRNORM); 1165 1166 eof |= (wpipe->pipe_state & PIPE_EOF); 1167 } 1168 1169 if (wpipe == NULL || eof) 1170 revents |= POLLHUP; 1171 1172 if (revents == 0) { 1173 if (events & (POLLIN | POLLRDNORM)) 1174 selrecord(curlwp, &rpipe->pipe_sel); 1175 1176 if (events & (POLLOUT | POLLWRNORM)) 1177 selrecord(curlwp, &wpipe->pipe_sel); 1178 } 1179 mutex_exit(rpipe->pipe_lock); 1180 1181 return (revents); 1182 } 1183 1184 static int 1185 pipe_stat(struct file *fp, struct stat *ub) 1186 { 1187 struct pipe *pipe = fp->f_data; 1188 1189 memset((void *)ub, 0, sizeof(*ub)); 1190 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 1191 ub->st_blksize = pipe->pipe_buffer.size; 1192 if (ub->st_blksize == 0 && pipe->pipe_peer) 1193 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size; 1194 ub->st_size = pipe->pipe_buffer.cnt; 1195 ub->st_blocks = (ub->st_size) ? 1 : 0; 1196 TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec); 1197 TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec); 1198 TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec); 1199 ub->st_uid = kauth_cred_geteuid(fp->f_cred); 1200 ub->st_gid = kauth_cred_getegid(fp->f_cred); 1201 1202 /* 1203 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1204 * XXX (st_dev, st_ino) should be unique. 1205 */ 1206 return (0); 1207 } 1208 1209 /* ARGSUSED */ 1210 static int 1211 pipe_close(struct file *fp) 1212 { 1213 struct pipe *pipe = fp->f_data; 1214 1215 fp->f_data = NULL; 1216 pipeclose(fp, pipe); 1217 return (0); 1218 } 1219 1220 static void 1221 pipe_free_kmem(struct pipe *pipe) 1222 { 1223 1224 if (pipe->pipe_buffer.buffer != NULL) { 1225 if (pipe->pipe_buffer.size > PIPE_SIZE) { 1226 atomic_dec_uint(&nbigpipe); 1227 } 1228 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) { 1229 uvm_km_free(kernel_map, 1230 (vaddr_t)pipe->pipe_buffer.buffer, 1231 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE); 1232 atomic_add_int(&amountpipekva, 1233 -pipe->pipe_buffer.size); 1234 } 1235 pipe->pipe_buffer.buffer = NULL; 1236 } 1237 #ifndef PIPE_NODIRECT 1238 if (pipe->pipe_map.kva != 0) { 1239 pipe_loan_free(pipe); 1240 pipe->pipe_map.cnt = 0; 1241 pipe->pipe_map.kva = 0; 1242 pipe->pipe_map.pos = 0; 1243 pipe->pipe_map.npages = 0; 1244 } 1245 #endif /* !PIPE_NODIRECT */ 1246 } 1247 1248 /* 1249 * shutdown the pipe 1250 */ 1251 static void 1252 pipeclose(struct file *fp, struct pipe *pipe) 1253 { 1254 kmutex_t *lock; 1255 struct pipe *ppipe; 1256 1257 if (pipe == NULL) 1258 return; 1259 1260 KASSERT(cv_is_valid(&pipe->pipe_rcv)); 1261 KASSERT(cv_is_valid(&pipe->pipe_wcv)); 1262 KASSERT(cv_is_valid(&pipe->pipe_draincv)); 1263 KASSERT(cv_is_valid(&pipe->pipe_lkcv)); 1264 1265 lock = pipe->pipe_lock; 1266 mutex_enter(lock); 1267 pipeselwakeup(pipe, pipe, POLL_HUP); 1268 1269 /* 1270 * If the other side is blocked, wake it up saying that 1271 * we want to close it down. 1272 */ 1273 pipe->pipe_state |= PIPE_EOF; 1274 if (pipe->pipe_busy) { 1275 while (pipe->pipe_busy) { 1276 cv_broadcast(&pipe->pipe_wcv); 1277 cv_wait_sig(&pipe->pipe_draincv, lock); 1278 } 1279 } 1280 1281 /* 1282 * Disconnect from peer 1283 */ 1284 if ((ppipe = pipe->pipe_peer) != NULL) { 1285 pipeselwakeup(ppipe, ppipe, POLL_HUP); 1286 ppipe->pipe_state |= PIPE_EOF; 1287 cv_broadcast(&ppipe->pipe_rcv); 1288 ppipe->pipe_peer = NULL; 1289 } 1290 1291 /* 1292 * Any knote objects still left in the list are 1293 * the one attached by peer. Since no one will 1294 * traverse this list, we just clear it. 1295 */ 1296 SLIST_INIT(&pipe->pipe_sel.sel_klist); 1297 1298 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0); 1299 mutex_exit(lock); 1300 1301 /* 1302 * free resources 1303 */ 1304 pipe->pipe_pgid = 0; 1305 pipe->pipe_state = PIPE_SIGNALR; 1306 pipe_free_kmem(pipe); 1307 if (pipe->pipe_kmem != 0) { 1308 pool_cache_put(pipe_rd_cache, pipe); 1309 } else { 1310 pool_cache_put(pipe_wr_cache, pipe); 1311 } 1312 mutex_obj_free(lock); 1313 } 1314 1315 static void 1316 filt_pipedetach(struct knote *kn) 1317 { 1318 struct pipe *pipe; 1319 kmutex_t *lock; 1320 1321 pipe = ((file_t *)kn->kn_obj)->f_data; 1322 lock = pipe->pipe_lock; 1323 1324 mutex_enter(lock); 1325 1326 switch(kn->kn_filter) { 1327 case EVFILT_WRITE: 1328 /* need the peer structure, not our own */ 1329 pipe = pipe->pipe_peer; 1330 1331 /* if reader end already closed, just return */ 1332 if (pipe == NULL) { 1333 mutex_exit(lock); 1334 return; 1335 } 1336 1337 break; 1338 default: 1339 /* nothing to do */ 1340 break; 1341 } 1342 1343 #ifdef DIAGNOSTIC 1344 if (kn->kn_hook != pipe) 1345 panic("filt_pipedetach: inconsistent knote"); 1346 #endif 1347 1348 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext); 1349 mutex_exit(lock); 1350 } 1351 1352 /*ARGSUSED*/ 1353 static int 1354 filt_piperead(struct knote *kn, long hint) 1355 { 1356 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data; 1357 struct pipe *wpipe; 1358 1359 if ((hint & NOTE_SUBMIT) == 0) { 1360 mutex_enter(rpipe->pipe_lock); 1361 } 1362 wpipe = rpipe->pipe_peer; 1363 kn->kn_data = rpipe->pipe_buffer.cnt; 1364 1365 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1366 kn->kn_data = rpipe->pipe_map.cnt; 1367 1368 if ((rpipe->pipe_state & PIPE_EOF) || 1369 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1370 kn->kn_flags |= EV_EOF; 1371 if ((hint & NOTE_SUBMIT) == 0) { 1372 mutex_exit(rpipe->pipe_lock); 1373 } 1374 return (1); 1375 } 1376 1377 if ((hint & NOTE_SUBMIT) == 0) { 1378 mutex_exit(rpipe->pipe_lock); 1379 } 1380 return (kn->kn_data > 0); 1381 } 1382 1383 /*ARGSUSED*/ 1384 static int 1385 filt_pipewrite(struct knote *kn, long hint) 1386 { 1387 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data; 1388 struct pipe *wpipe; 1389 1390 if ((hint & NOTE_SUBMIT) == 0) { 1391 mutex_enter(rpipe->pipe_lock); 1392 } 1393 wpipe = rpipe->pipe_peer; 1394 1395 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1396 kn->kn_data = 0; 1397 kn->kn_flags |= EV_EOF; 1398 if ((hint & NOTE_SUBMIT) == 0) { 1399 mutex_exit(rpipe->pipe_lock); 1400 } 1401 return (1); 1402 } 1403 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1404 if (wpipe->pipe_state & PIPE_DIRECTW) 1405 kn->kn_data = 0; 1406 1407 if ((hint & NOTE_SUBMIT) == 0) { 1408 mutex_exit(rpipe->pipe_lock); 1409 } 1410 return (kn->kn_data >= PIPE_BUF); 1411 } 1412 1413 static const struct filterops pipe_rfiltops = 1414 { 1, NULL, filt_pipedetach, filt_piperead }; 1415 static const struct filterops pipe_wfiltops = 1416 { 1, NULL, filt_pipedetach, filt_pipewrite }; 1417 1418 /*ARGSUSED*/ 1419 static int 1420 pipe_kqfilter(struct file *fp, struct knote *kn) 1421 { 1422 struct pipe *pipe; 1423 kmutex_t *lock; 1424 1425 pipe = ((file_t *)kn->kn_obj)->f_data; 1426 lock = pipe->pipe_lock; 1427 1428 mutex_enter(lock); 1429 1430 switch (kn->kn_filter) { 1431 case EVFILT_READ: 1432 kn->kn_fop = &pipe_rfiltops; 1433 break; 1434 case EVFILT_WRITE: 1435 kn->kn_fop = &pipe_wfiltops; 1436 pipe = pipe->pipe_peer; 1437 if (pipe == NULL) { 1438 /* other end of pipe has been closed */ 1439 mutex_exit(lock); 1440 return (EBADF); 1441 } 1442 break; 1443 default: 1444 mutex_exit(lock); 1445 return (EINVAL); 1446 } 1447 1448 kn->kn_hook = pipe; 1449 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext); 1450 mutex_exit(lock); 1451 1452 return (0); 1453 } 1454 1455 /* 1456 * Handle pipe sysctls. 1457 */ 1458 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup") 1459 { 1460 1461 sysctl_createv(clog, 0, NULL, NULL, 1462 CTLFLAG_PERMANENT, 1463 CTLTYPE_NODE, "kern", NULL, 1464 NULL, 0, NULL, 0, 1465 CTL_KERN, CTL_EOL); 1466 sysctl_createv(clog, 0, NULL, NULL, 1467 CTLFLAG_PERMANENT, 1468 CTLTYPE_NODE, "pipe", 1469 SYSCTL_DESCR("Pipe settings"), 1470 NULL, 0, NULL, 0, 1471 CTL_KERN, KERN_PIPE, CTL_EOL); 1472 1473 sysctl_createv(clog, 0, NULL, NULL, 1474 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1475 CTLTYPE_INT, "maxkvasz", 1476 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1477 "used for pipes"), 1478 NULL, 0, &maxpipekva, 0, 1479 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL); 1480 sysctl_createv(clog, 0, NULL, NULL, 1481 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1482 CTLTYPE_INT, "maxloankvasz", 1483 SYSCTL_DESCR("Limit for direct transfers via page loan"), 1484 NULL, 0, &limitpipekva, 0, 1485 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL); 1486 sysctl_createv(clog, 0, NULL, NULL, 1487 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1488 CTLTYPE_INT, "maxbigpipes", 1489 SYSCTL_DESCR("Maximum number of \"big\" pipes"), 1490 NULL, 0, &maxbigpipes, 0, 1491 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL); 1492 sysctl_createv(clog, 0, NULL, NULL, 1493 CTLFLAG_PERMANENT, 1494 CTLTYPE_INT, "nbigpipes", 1495 SYSCTL_DESCR("Number of \"big\" pipes"), 1496 NULL, 0, &nbigpipe, 0, 1497 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL); 1498 sysctl_createv(clog, 0, NULL, NULL, 1499 CTLFLAG_PERMANENT, 1500 CTLTYPE_INT, "kvasize", 1501 SYSCTL_DESCR("Amount of kernel memory consumed by pipe " 1502 "buffers"), 1503 NULL, 0, &amountpipekva, 0, 1504 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL); 1505 } 1506