xref: /netbsd-src/sys/kern/sys_pipe.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: sys_pipe.c,v 1.109 2009/04/04 10:12:51 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1996 John S. Dyson
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice immediately at the beginning of the file, without modification,
41  *    this list of conditions, and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Absolutely no warranty of function or purpose is made by the author
46  *    John S. Dyson.
47  * 4. Modifications may be freely made to this file if the above conditions
48  *    are met.
49  */
50 
51 /*
52  * This file contains a high-performance replacement for the socket-based
53  * pipes scheme originally used.  It does not support all features of
54  * sockets, but does do everything that pipes normally do.
55  *
56  * This code has two modes of operation, a small write mode and a large
57  * write mode.  The small write mode acts like conventional pipes with
58  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
59  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
60  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61  * using the UVM page loan facility from where the receiving process can copy
62  * the data directly from the pages in the sending process.
63  *
64  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65  * happen for small transfers so that the system will not spend all of
66  * its time context switching.  PIPE_SIZE is constrained by the
67  * amount of kernel virtual memory.
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.109 2009/04/04 10:12:51 ad Exp $");
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
94 
95 #include <uvm/uvm.h>
96 
97 /* Use this define if you want to disable *fancy* VM things. */
98 /* XXX Disabled for now; rare hangs switching between direct/buffered */
99 #define PIPE_NODIRECT
100 
101 /*
102  * interfaces to the outside world
103  */
104 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
105 		kauth_cred_t cred, int flags);
106 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
107 		kauth_cred_t cred, int flags);
108 static int pipe_close(struct file *fp);
109 static int pipe_poll(struct file *fp, int events);
110 static int pipe_kqfilter(struct file *fp, struct knote *kn);
111 static int pipe_stat(struct file *fp, struct stat *sb);
112 static int pipe_ioctl(struct file *fp, u_long cmd, void *data);
113 
114 static const struct fileops pipeops = {
115 	.fo_read = pipe_read,
116 	.fo_write = pipe_write,
117 	.fo_ioctl = pipe_ioctl,
118 	.fo_fcntl = fnullop_fcntl,
119 	.fo_poll = pipe_poll,
120 	.fo_stat = pipe_stat,
121 	.fo_close = pipe_close,
122 	.fo_kqfilter = pipe_kqfilter,
123 	.fo_drain = fnullop_drain,
124 };
125 
126 /*
127  * Default pipe buffer size(s), this can be kind-of large now because pipe
128  * space is pageable.  The pipe code will try to maintain locality of
129  * reference for performance reasons, so small amounts of outstanding I/O
130  * will not wipe the cache.
131  */
132 #define MINPIPESIZE (PIPE_SIZE/3)
133 #define MAXPIPESIZE (2*PIPE_SIZE/3)
134 
135 /*
136  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137  * is there so that on large systems, we don't exhaust it.
138  */
139 #define MAXPIPEKVA (8*1024*1024)
140 static u_int maxpipekva = MAXPIPEKVA;
141 
142 /*
143  * Limit for direct transfers, we cannot, of course limit
144  * the amount of kva for pipes in general though.
145  */
146 #define LIMITPIPEKVA (16*1024*1024)
147 static u_int limitpipekva = LIMITPIPEKVA;
148 
149 /*
150  * Limit the number of "big" pipes
151  */
152 #define LIMITBIGPIPES  32
153 static u_int maxbigpipes = LIMITBIGPIPES;
154 static u_int nbigpipe = 0;
155 
156 /*
157  * Amount of KVA consumed by pipe buffers.
158  */
159 static u_int amountpipekva = 0;
160 
161 static void pipeclose(struct file *fp, struct pipe *pipe);
162 static void pipe_free_kmem(struct pipe *pipe);
163 static int pipe_create(struct pipe **pipep, pool_cache_t, kmutex_t *);
164 static int pipelock(struct pipe *pipe, int catch);
165 static inline void pipeunlock(struct pipe *pipe);
166 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
167 #ifndef PIPE_NODIRECT
168 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
169     struct uio *uio);
170 #endif
171 static int pipespace(struct pipe *pipe, int size);
172 static int pipe_ctor(void *, void *, int);
173 static void pipe_dtor(void *, void *);
174 
175 #ifndef PIPE_NODIRECT
176 static int pipe_loan_alloc(struct pipe *, int);
177 static void pipe_loan_free(struct pipe *);
178 #endif /* PIPE_NODIRECT */
179 
180 static pool_cache_t pipe_wr_cache;
181 static pool_cache_t pipe_rd_cache;
182 
183 void
184 pipe_init(void)
185 {
186 
187 	/* Writer side is not automatically allocated KVA. */
188 	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
189 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
190 	KASSERT(pipe_wr_cache != NULL);
191 
192 	/* Reader side gets preallocated KVA. */
193 	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
194 	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
195 	KASSERT(pipe_rd_cache != NULL);
196 }
197 
198 static int
199 pipe_ctor(void *arg, void *obj, int flags)
200 {
201 	struct pipe *pipe;
202 	vaddr_t va;
203 
204 	pipe = obj;
205 
206 	memset(pipe, 0, sizeof(struct pipe));
207 	if (arg != NULL) {
208 		/* Preallocate space. */
209 		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
210 		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
211 		KASSERT(va != 0);
212 		pipe->pipe_kmem = va;
213 		atomic_add_int(&amountpipekva, PIPE_SIZE);
214 	}
215 	cv_init(&pipe->pipe_rcv, "piperd");
216 	cv_init(&pipe->pipe_wcv, "pipewr");
217 	cv_init(&pipe->pipe_draincv, "pipedrain");
218 	cv_init(&pipe->pipe_lkcv, "pipelk");
219 	selinit(&pipe->pipe_sel);
220 	pipe->pipe_state = PIPE_SIGNALR;
221 
222 	return 0;
223 }
224 
225 static void
226 pipe_dtor(void *arg, void *obj)
227 {
228 	struct pipe *pipe;
229 
230 	pipe = obj;
231 
232 	cv_destroy(&pipe->pipe_rcv);
233 	cv_destroy(&pipe->pipe_wcv);
234 	cv_destroy(&pipe->pipe_draincv);
235 	cv_destroy(&pipe->pipe_lkcv);
236 	seldestroy(&pipe->pipe_sel);
237 	if (pipe->pipe_kmem != 0) {
238 		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
239 		    UVM_KMF_PAGEABLE);
240 		atomic_add_int(&amountpipekva, -PIPE_SIZE);
241 	}
242 }
243 
244 /*
245  * The pipe system call for the DTYPE_PIPE type of pipes
246  */
247 
248 /* ARGSUSED */
249 int
250 sys_pipe(struct lwp *l, const void *v, register_t *retval)
251 {
252 	struct file *rf, *wf;
253 	struct pipe *rpipe, *wpipe;
254 	kmutex_t *mutex;
255 	int fd, error;
256 	proc_t *p;
257 
258 	p = curproc;
259 	rpipe = wpipe = NULL;
260 	mutex = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
261 	if (mutex == NULL)
262 		return (ENOMEM);
263 	mutex_obj_hold(mutex);
264 	if (pipe_create(&rpipe, pipe_rd_cache, mutex) ||
265 	    pipe_create(&wpipe, pipe_wr_cache, mutex)) {
266 		pipeclose(NULL, rpipe);
267 		pipeclose(NULL, wpipe);
268 		return (ENFILE);
269 	}
270 
271 	error = fd_allocfile(&rf, &fd);
272 	if (error)
273 		goto free2;
274 	retval[0] = fd;
275 	rf->f_flag = FREAD;
276 	rf->f_type = DTYPE_PIPE;
277 	rf->f_data = (void *)rpipe;
278 	rf->f_ops = &pipeops;
279 
280 	error = fd_allocfile(&wf, &fd);
281 	if (error)
282 		goto free3;
283 	retval[1] = fd;
284 	wf->f_flag = FWRITE;
285 	wf->f_type = DTYPE_PIPE;
286 	wf->f_data = (void *)wpipe;
287 	wf->f_ops = &pipeops;
288 
289 	rpipe->pipe_peer = wpipe;
290 	wpipe->pipe_peer = rpipe;
291 
292 	fd_affix(p, rf, (int)retval[0]);
293 	fd_affix(p, wf, (int)retval[1]);
294 	return (0);
295 free3:
296 	fd_abort(p, rf, (int)retval[0]);
297 free2:
298 	pipeclose(NULL, wpipe);
299 	pipeclose(NULL, rpipe);
300 
301 	return (error);
302 }
303 
304 /*
305  * Allocate kva for pipe circular buffer, the space is pageable
306  * This routine will 'realloc' the size of a pipe safely, if it fails
307  * it will retain the old buffer.
308  * If it fails it will return ENOMEM.
309  */
310 static int
311 pipespace(struct pipe *pipe, int size)
312 {
313 	void *buffer;
314 
315 	/*
316 	 * Allocate pageable virtual address space.  Physical memory is
317 	 * allocated on demand.
318 	 */
319 	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
320 		buffer = (void *)pipe->pipe_kmem;
321 	} else {
322 		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
323 		    0, UVM_KMF_PAGEABLE);
324 		if (buffer == NULL)
325 			return (ENOMEM);
326 		atomic_add_int(&amountpipekva, size);
327 	}
328 
329 	/* free old resources if we're resizing */
330 	pipe_free_kmem(pipe);
331 	pipe->pipe_buffer.buffer = buffer;
332 	pipe->pipe_buffer.size = size;
333 	pipe->pipe_buffer.in = 0;
334 	pipe->pipe_buffer.out = 0;
335 	pipe->pipe_buffer.cnt = 0;
336 	return (0);
337 }
338 
339 /*
340  * Initialize and allocate VM and memory for pipe.
341  */
342 static int
343 pipe_create(struct pipe **pipep, pool_cache_t cache, kmutex_t *mutex)
344 {
345 	struct pipe *pipe;
346 	int error;
347 
348 	pipe = pool_cache_get(cache, PR_WAITOK);
349 	KASSERT(pipe != NULL);
350 	*pipep = pipe;
351 	error = 0;
352 	getmicrotime(&pipe->pipe_ctime);
353 	pipe->pipe_atime = pipe->pipe_ctime;
354 	pipe->pipe_mtime = pipe->pipe_ctime;
355 	pipe->pipe_lock = mutex;
356 	if (cache == pipe_rd_cache) {
357 		error = pipespace(pipe, PIPE_SIZE);
358 	} else {
359 		pipe->pipe_buffer.buffer = NULL;
360 		pipe->pipe_buffer.size = 0;
361 		pipe->pipe_buffer.in = 0;
362 		pipe->pipe_buffer.out = 0;
363 		pipe->pipe_buffer.cnt = 0;
364 	}
365 	return error;
366 }
367 
368 /*
369  * Lock a pipe for I/O, blocking other access
370  * Called with pipe spin lock held.
371  * Return with pipe spin lock released on success.
372  */
373 static int
374 pipelock(struct pipe *pipe, int catch)
375 {
376 	int error;
377 
378 	KASSERT(mutex_owned(pipe->pipe_lock));
379 
380 	while (pipe->pipe_state & PIPE_LOCKFL) {
381 		pipe->pipe_state |= PIPE_LWANT;
382 		if (catch) {
383 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
384 			if (error != 0)
385 				return error;
386 		} else
387 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
388 	}
389 
390 	pipe->pipe_state |= PIPE_LOCKFL;
391 
392 	return 0;
393 }
394 
395 /*
396  * unlock a pipe I/O lock
397  */
398 static inline void
399 pipeunlock(struct pipe *pipe)
400 {
401 
402 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
403 
404 	pipe->pipe_state &= ~PIPE_LOCKFL;
405 	if (pipe->pipe_state & PIPE_LWANT) {
406 		pipe->pipe_state &= ~PIPE_LWANT;
407 		cv_broadcast(&pipe->pipe_lkcv);
408 	}
409 }
410 
411 /*
412  * Select/poll wakup. This also sends SIGIO to peer connected to
413  * 'sigpipe' side of pipe.
414  */
415 static void
416 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
417 {
418 	int band;
419 
420 	switch (code) {
421 	case POLL_IN:
422 		band = POLLIN|POLLRDNORM;
423 		break;
424 	case POLL_OUT:
425 		band = POLLOUT|POLLWRNORM;
426 		break;
427 	case POLL_HUP:
428 		band = POLLHUP;
429 		break;
430 	case POLL_ERR:
431 		band = POLLERR;
432 		break;
433 	default:
434 		band = 0;
435 #ifdef DIAGNOSTIC
436 		printf("bad siginfo code %d in pipe notification.\n", code);
437 #endif
438 		break;
439 	}
440 
441 	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
442 
443 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
444 		return;
445 
446 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
447 }
448 
449 /* ARGSUSED */
450 static int
451 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
452     int flags)
453 {
454 	struct pipe *rpipe = (struct pipe *) fp->f_data;
455 	struct pipebuf *bp = &rpipe->pipe_buffer;
456 	kmutex_t *lock = rpipe->pipe_lock;
457 	int error;
458 	size_t nread = 0;
459 	size_t size;
460 	size_t ocnt;
461 
462 	mutex_enter(lock);
463 	++rpipe->pipe_busy;
464 	ocnt = bp->cnt;
465 
466 again:
467 	error = pipelock(rpipe, 1);
468 	if (error)
469 		goto unlocked_error;
470 
471 	while (uio->uio_resid) {
472 		/*
473 		 * normal pipe buffer receive
474 		 */
475 		if (bp->cnt > 0) {
476 			size = bp->size - bp->out;
477 			if (size > bp->cnt)
478 				size = bp->cnt;
479 			if (size > uio->uio_resid)
480 				size = uio->uio_resid;
481 
482 			mutex_exit(lock);
483 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
484 			mutex_enter(lock);
485 			if (error)
486 				break;
487 
488 			bp->out += size;
489 			if (bp->out >= bp->size)
490 				bp->out = 0;
491 
492 			bp->cnt -= size;
493 
494 			/*
495 			 * If there is no more to read in the pipe, reset
496 			 * its pointers to the beginning.  This improves
497 			 * cache hit stats.
498 			 */
499 			if (bp->cnt == 0) {
500 				bp->in = 0;
501 				bp->out = 0;
502 			}
503 			nread += size;
504 			continue;
505 		}
506 
507 #ifndef PIPE_NODIRECT
508 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
509 			/*
510 			 * Direct copy, bypassing a kernel buffer.
511 			 */
512 			void *	va;
513 
514 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
515 
516 			size = rpipe->pipe_map.cnt;
517 			if (size > uio->uio_resid)
518 				size = uio->uio_resid;
519 
520 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
521 			mutex_exit(lock);
522 			error = uiomove(va, size, uio);
523 			mutex_enter(lock);
524 			if (error)
525 				break;
526 			nread += size;
527 			rpipe->pipe_map.pos += size;
528 			rpipe->pipe_map.cnt -= size;
529 			if (rpipe->pipe_map.cnt == 0) {
530 				rpipe->pipe_state &= ~PIPE_DIRECTR;
531 				cv_broadcast(&rpipe->pipe_wcv);
532 			}
533 			continue;
534 		}
535 #endif
536 		/*
537 		 * Break if some data was read.
538 		 */
539 		if (nread > 0)
540 			break;
541 
542 		/*
543 		 * detect EOF condition
544 		 * read returns 0 on EOF, no need to set error
545 		 */
546 		if (rpipe->pipe_state & PIPE_EOF)
547 			break;
548 
549 		/*
550 		 * don't block on non-blocking I/O
551 		 */
552 		if (fp->f_flag & FNONBLOCK) {
553 			error = EAGAIN;
554 			break;
555 		}
556 
557 		/*
558 		 * Unlock the pipe buffer for our remaining processing.
559 		 * We will either break out with an error or we will
560 		 * sleep and relock to loop.
561 		 */
562 		pipeunlock(rpipe);
563 
564 		/*
565 		 * Re-check to see if more direct writes are pending.
566 		 */
567 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
568 			goto again;
569 
570 		/*
571 		 * We want to read more, wake up select/poll.
572 		 */
573 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
574 
575 		/*
576 		 * If the "write-side" is blocked, wake it up now.
577 		 */
578 		cv_broadcast(&rpipe->pipe_wcv);
579 
580 		/* Now wait until the pipe is filled */
581 		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
582 		if (error != 0)
583 			goto unlocked_error;
584 		goto again;
585 	}
586 
587 	if (error == 0)
588 		getmicrotime(&rpipe->pipe_atime);
589 	pipeunlock(rpipe);
590 
591 unlocked_error:
592 	--rpipe->pipe_busy;
593 	if (rpipe->pipe_busy == 0) {
594 		cv_broadcast(&rpipe->pipe_draincv);
595 	}
596 	if (bp->cnt < MINPIPESIZE) {
597 		cv_broadcast(&rpipe->pipe_wcv);
598 	}
599 
600 	/*
601 	 * If anything was read off the buffer, signal to the writer it's
602 	 * possible to write more data. Also send signal if we are here for the
603 	 * first time after last write.
604 	 */
605 	if ((bp->size - bp->cnt) >= PIPE_BUF
606 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
607 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
608 		rpipe->pipe_state &= ~PIPE_SIGNALR;
609 	}
610 
611 	mutex_exit(lock);
612 	return (error);
613 }
614 
615 #ifndef PIPE_NODIRECT
616 /*
617  * Allocate structure for loan transfer.
618  */
619 static int
620 pipe_loan_alloc(struct pipe *wpipe, int npages)
621 {
622 	vsize_t len;
623 
624 	len = (vsize_t)npages << PAGE_SHIFT;
625 	atomic_add_int(&amountpipekva, len);
626 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
627 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
628 	if (wpipe->pipe_map.kva == 0) {
629 		atomic_add_int(&amountpipekva, -len);
630 		return (ENOMEM);
631 	}
632 
633 	wpipe->pipe_map.npages = npages;
634 	wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
635 	    KM_SLEEP);
636 	return (0);
637 }
638 
639 /*
640  * Free resources allocated for loan transfer.
641  */
642 static void
643 pipe_loan_free(struct pipe *wpipe)
644 {
645 	vsize_t len;
646 
647 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
648 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
649 	wpipe->pipe_map.kva = 0;
650 	atomic_add_int(&amountpipekva, -len);
651 	kmem_free(wpipe->pipe_map.pgs,
652 	    wpipe->pipe_map.npages * sizeof(struct vm_page *));
653 	wpipe->pipe_map.pgs = NULL;
654 }
655 
656 /*
657  * NetBSD direct write, using uvm_loan() mechanism.
658  * This implements the pipe buffer write mechanism.  Note that only
659  * a direct write OR a normal pipe write can be pending at any given time.
660  * If there are any characters in the pipe buffer, the direct write will
661  * be deferred until the receiving process grabs all of the bytes from
662  * the pipe buffer.  Then the direct mapping write is set-up.
663  *
664  * Called with the long-term pipe lock held.
665  */
666 static int
667 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
668 {
669 	int error, npages, j;
670 	struct vm_page **pgs;
671 	vaddr_t bbase, kva, base, bend;
672 	vsize_t blen, bcnt;
673 	voff_t bpos;
674 	kmutex_t *lock = wpipe->pipe_lock;
675 
676 	KASSERT(mutex_owned(wpipe->pipe_lock));
677 	KASSERT(wpipe->pipe_map.cnt == 0);
678 
679 	mutex_exit(lock);
680 
681 	/*
682 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
683 	 * not aligned to PAGE_SIZE.
684 	 */
685 	bbase = (vaddr_t)uio->uio_iov->iov_base;
686 	base = trunc_page(bbase);
687 	bend = round_page(bbase + uio->uio_iov->iov_len);
688 	blen = bend - base;
689 	bpos = bbase - base;
690 
691 	if (blen > PIPE_DIRECT_CHUNK) {
692 		blen = PIPE_DIRECT_CHUNK;
693 		bend = base + blen;
694 		bcnt = PIPE_DIRECT_CHUNK - bpos;
695 	} else {
696 		bcnt = uio->uio_iov->iov_len;
697 	}
698 	npages = blen >> PAGE_SHIFT;
699 
700 	/*
701 	 * Free the old kva if we need more pages than we have
702 	 * allocated.
703 	 */
704 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
705 		pipe_loan_free(wpipe);
706 
707 	/* Allocate new kva. */
708 	if (wpipe->pipe_map.kva == 0) {
709 		error = pipe_loan_alloc(wpipe, npages);
710 		if (error) {
711 			mutex_enter(lock);
712 			return (error);
713 		}
714 	}
715 
716 	/* Loan the write buffer memory from writer process */
717 	pgs = wpipe->pipe_map.pgs;
718 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
719 			 pgs, UVM_LOAN_TOPAGE);
720 	if (error) {
721 		pipe_loan_free(wpipe);
722 		mutex_enter(lock);
723 		return (ENOMEM); /* so that caller fallback to ordinary write */
724 	}
725 
726 	/* Enter the loaned pages to kva */
727 	kva = wpipe->pipe_map.kva;
728 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
729 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
730 	}
731 	pmap_update(pmap_kernel());
732 
733 	/* Now we can put the pipe in direct write mode */
734 	wpipe->pipe_map.pos = bpos;
735 	wpipe->pipe_map.cnt = bcnt;
736 
737 	/*
738 	 * But before we can let someone do a direct read, we
739 	 * have to wait until the pipe is drained.  Release the
740 	 * pipe lock while we wait.
741 	 */
742 	mutex_enter(lock);
743 	wpipe->pipe_state |= PIPE_DIRECTW;
744 	pipeunlock(wpipe);
745 
746 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
747 		cv_broadcast(&wpipe->pipe_rcv);
748 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
749 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
750 			error = EPIPE;
751 	}
752 
753 	/* Pipe is drained; next read will off the direct buffer */
754 	wpipe->pipe_state |= PIPE_DIRECTR;
755 
756 	/* Wait until the reader is done */
757 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
758 		cv_broadcast(&wpipe->pipe_rcv);
759 		pipeselwakeup(wpipe, wpipe, POLL_IN);
760 		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
761 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
762 			error = EPIPE;
763 	}
764 
765 	/* Take pipe out of direct write mode */
766 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
767 
768 	/* Acquire the pipe lock and cleanup */
769 	(void)pipelock(wpipe, 0);
770 	mutex_exit(lock);
771 
772 	if (pgs != NULL) {
773 		pmap_kremove(wpipe->pipe_map.kva, blen);
774 		pmap_update(pmap_kernel());
775 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
776 	}
777 	if (error || amountpipekva > maxpipekva)
778 		pipe_loan_free(wpipe);
779 
780 	mutex_enter(lock);
781 	if (error) {
782 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
783 
784 		/*
785 		 * If nothing was read from what we offered, return error
786 		 * straight on. Otherwise update uio resid first. Caller
787 		 * will deal with the error condition, returning short
788 		 * write, error, or restarting the write(2) as appropriate.
789 		 */
790 		if (wpipe->pipe_map.cnt == bcnt) {
791 			wpipe->pipe_map.cnt = 0;
792 			cv_broadcast(&wpipe->pipe_wcv);
793 			return (error);
794 		}
795 
796 		bcnt -= wpipe->pipe_map.cnt;
797 	}
798 
799 	uio->uio_resid -= bcnt;
800 	/* uio_offset not updated, not set/used for write(2) */
801 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
802 	uio->uio_iov->iov_len -= bcnt;
803 	if (uio->uio_iov->iov_len == 0) {
804 		uio->uio_iov++;
805 		uio->uio_iovcnt--;
806 	}
807 
808 	wpipe->pipe_map.cnt = 0;
809 	return (error);
810 }
811 #endif /* !PIPE_NODIRECT */
812 
813 static int
814 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
815     int flags)
816 {
817 	struct pipe *wpipe, *rpipe;
818 	struct pipebuf *bp;
819 	kmutex_t *lock;
820 	int error;
821 
822 	/* We want to write to our peer */
823 	rpipe = (struct pipe *) fp->f_data;
824 	lock = rpipe->pipe_lock;
825 	error = 0;
826 
827 	mutex_enter(lock);
828 	wpipe = rpipe->pipe_peer;
829 
830 	/*
831 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
832 	 */
833 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
834 		mutex_exit(lock);
835 		return EPIPE;
836 	}
837 	++wpipe->pipe_busy;
838 
839 	/* Aquire the long-term pipe lock */
840 	if ((error = pipelock(wpipe, 1)) != 0) {
841 		--wpipe->pipe_busy;
842 		if (wpipe->pipe_busy == 0) {
843 			cv_broadcast(&wpipe->pipe_draincv);
844 		}
845 		mutex_exit(lock);
846 		return (error);
847 	}
848 
849 	bp = &wpipe->pipe_buffer;
850 
851 	/*
852 	 * If it is advantageous to resize the pipe buffer, do so.
853 	 */
854 	if ((uio->uio_resid > PIPE_SIZE) &&
855 	    (nbigpipe < maxbigpipes) &&
856 #ifndef PIPE_NODIRECT
857 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
858 #endif
859 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
860 
861 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
862 			atomic_inc_uint(&nbigpipe);
863 	}
864 
865 	while (uio->uio_resid) {
866 		size_t space;
867 
868 #ifndef PIPE_NODIRECT
869 		/*
870 		 * Pipe buffered writes cannot be coincidental with
871 		 * direct writes.  Also, only one direct write can be
872 		 * in progress at any one time.  We wait until the currently
873 		 * executing direct write is completed before continuing.
874 		 *
875 		 * We break out if a signal occurs or the reader goes away.
876 		 */
877 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
878 			cv_broadcast(&wpipe->pipe_rcv);
879 			pipeunlock(wpipe);
880 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
881 			(void)pipelock(wpipe, 0);
882 			if (wpipe->pipe_state & PIPE_EOF)
883 				error = EPIPE;
884 		}
885 		if (error)
886 			break;
887 
888 		/*
889 		 * If the transfer is large, we can gain performance if
890 		 * we do process-to-process copies directly.
891 		 * If the write is non-blocking, we don't use the
892 		 * direct write mechanism.
893 		 *
894 		 * The direct write mechanism will detect the reader going
895 		 * away on us.
896 		 */
897 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
898 		    (fp->f_flag & FNONBLOCK) == 0 &&
899 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
900 			error = pipe_direct_write(fp, wpipe, uio);
901 
902 			/*
903 			 * Break out if error occurred, unless it's ENOMEM.
904 			 * ENOMEM means we failed to allocate some resources
905 			 * for direct write, so we just fallback to ordinary
906 			 * write. If the direct write was successful,
907 			 * process rest of data via ordinary write.
908 			 */
909 			if (error == 0)
910 				continue;
911 
912 			if (error != ENOMEM)
913 				break;
914 		}
915 #endif /* PIPE_NODIRECT */
916 
917 		space = bp->size - bp->cnt;
918 
919 		/* Writes of size <= PIPE_BUF must be atomic. */
920 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
921 			space = 0;
922 
923 		if (space > 0) {
924 			int size;	/* Transfer size */
925 			int segsize;	/* first segment to transfer */
926 
927 			/*
928 			 * Transfer size is minimum of uio transfer
929 			 * and free space in pipe buffer.
930 			 */
931 			if (space > uio->uio_resid)
932 				size = uio->uio_resid;
933 			else
934 				size = space;
935 			/*
936 			 * First segment to transfer is minimum of
937 			 * transfer size and contiguous space in
938 			 * pipe buffer.  If first segment to transfer
939 			 * is less than the transfer size, we've got
940 			 * a wraparound in the buffer.
941 			 */
942 			segsize = bp->size - bp->in;
943 			if (segsize > size)
944 				segsize = size;
945 
946 			/* Transfer first segment */
947 			mutex_exit(lock);
948 			error = uiomove((char *)bp->buffer + bp->in, segsize,
949 			    uio);
950 
951 			if (error == 0 && segsize < size) {
952 				/*
953 				 * Transfer remaining part now, to
954 				 * support atomic writes.  Wraparound
955 				 * happened.
956 				 */
957 #ifdef DEBUG
958 				if (bp->in + segsize != bp->size)
959 					panic("Expected pipe buffer wraparound disappeared");
960 #endif
961 
962 				error = uiomove(bp->buffer,
963 				    size - segsize, uio);
964 			}
965 			mutex_enter(lock);
966 			if (error)
967 				break;
968 
969 			bp->in += size;
970 			if (bp->in >= bp->size) {
971 #ifdef DEBUG
972 				if (bp->in != size - segsize + bp->size)
973 					panic("Expected wraparound bad");
974 #endif
975 				bp->in = size - segsize;
976 			}
977 
978 			bp->cnt += size;
979 #ifdef DEBUG
980 			if (bp->cnt > bp->size)
981 				panic("Pipe buffer overflow");
982 #endif
983 		} else {
984 			/*
985 			 * If the "read-side" has been blocked, wake it up now.
986 			 */
987 			cv_broadcast(&wpipe->pipe_rcv);
988 
989 			/*
990 			 * don't block on non-blocking I/O
991 			 */
992 			if (fp->f_flag & FNONBLOCK) {
993 				error = EAGAIN;
994 				break;
995 			}
996 
997 			/*
998 			 * We have no more space and have something to offer,
999 			 * wake up select/poll.
1000 			 */
1001 			if (bp->cnt)
1002 				pipeselwakeup(wpipe, wpipe, POLL_IN);
1003 
1004 			pipeunlock(wpipe);
1005 			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1006 			(void)pipelock(wpipe, 0);
1007 			if (error != 0)
1008 				break;
1009 			/*
1010 			 * If read side wants to go away, we just issue a signal
1011 			 * to ourselves.
1012 			 */
1013 			if (wpipe->pipe_state & PIPE_EOF) {
1014 				error = EPIPE;
1015 				break;
1016 			}
1017 		}
1018 	}
1019 
1020 	--wpipe->pipe_busy;
1021 	if (wpipe->pipe_busy == 0) {
1022 		cv_broadcast(&wpipe->pipe_draincv);
1023 	}
1024 	if (bp->cnt > 0) {
1025 		cv_broadcast(&wpipe->pipe_rcv);
1026 	}
1027 
1028 	/*
1029 	 * Don't return EPIPE if I/O was successful
1030 	 */
1031 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1032 		error = 0;
1033 
1034 	if (error == 0)
1035 		getmicrotime(&wpipe->pipe_mtime);
1036 
1037 	/*
1038 	 * We have something to offer, wake up select/poll.
1039 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1040 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1041 	 */
1042 	if (bp->cnt)
1043 		pipeselwakeup(wpipe, wpipe, POLL_IN);
1044 
1045 	/*
1046 	 * Arrange for next read(2) to do a signal.
1047 	 */
1048 	wpipe->pipe_state |= PIPE_SIGNALR;
1049 
1050 	pipeunlock(wpipe);
1051 	mutex_exit(lock);
1052 	return (error);
1053 }
1054 
1055 /*
1056  * we implement a very minimal set of ioctls for compatibility with sockets.
1057  */
1058 int
1059 pipe_ioctl(struct file *fp, u_long cmd, void *data)
1060 {
1061 	struct pipe *pipe = fp->f_data;
1062 	kmutex_t *lock = pipe->pipe_lock;
1063 
1064 	switch (cmd) {
1065 
1066 	case FIONBIO:
1067 		return (0);
1068 
1069 	case FIOASYNC:
1070 		mutex_enter(lock);
1071 		if (*(int *)data) {
1072 			pipe->pipe_state |= PIPE_ASYNC;
1073 		} else {
1074 			pipe->pipe_state &= ~PIPE_ASYNC;
1075 		}
1076 		mutex_exit(lock);
1077 		return (0);
1078 
1079 	case FIONREAD:
1080 		mutex_enter(lock);
1081 #ifndef PIPE_NODIRECT
1082 		if (pipe->pipe_state & PIPE_DIRECTW)
1083 			*(int *)data = pipe->pipe_map.cnt;
1084 		else
1085 #endif
1086 			*(int *)data = pipe->pipe_buffer.cnt;
1087 		mutex_exit(lock);
1088 		return (0);
1089 
1090 	case FIONWRITE:
1091 		/* Look at other side */
1092 		pipe = pipe->pipe_peer;
1093 		mutex_enter(lock);
1094 #ifndef PIPE_NODIRECT
1095 		if (pipe->pipe_state & PIPE_DIRECTW)
1096 			*(int *)data = pipe->pipe_map.cnt;
1097 		else
1098 #endif
1099 			*(int *)data = pipe->pipe_buffer.cnt;
1100 		mutex_exit(lock);
1101 		return (0);
1102 
1103 	case FIONSPACE:
1104 		/* Look at other side */
1105 		pipe = pipe->pipe_peer;
1106 		mutex_enter(lock);
1107 #ifndef PIPE_NODIRECT
1108 		/*
1109 		 * If we're in direct-mode, we don't really have a
1110 		 * send queue, and any other write will block. Thus
1111 		 * zero seems like the best answer.
1112 		 */
1113 		if (pipe->pipe_state & PIPE_DIRECTW)
1114 			*(int *)data = 0;
1115 		else
1116 #endif
1117 			*(int *)data = pipe->pipe_buffer.size -
1118 			    pipe->pipe_buffer.cnt;
1119 		mutex_exit(lock);
1120 		return (0);
1121 
1122 	case TIOCSPGRP:
1123 	case FIOSETOWN:
1124 		return fsetown(&pipe->pipe_pgid, cmd, data);
1125 
1126 	case TIOCGPGRP:
1127 	case FIOGETOWN:
1128 		return fgetown(pipe->pipe_pgid, cmd, data);
1129 
1130 	}
1131 	return (EPASSTHROUGH);
1132 }
1133 
1134 int
1135 pipe_poll(struct file *fp, int events)
1136 {
1137 	struct pipe *rpipe = fp->f_data;
1138 	struct pipe *wpipe;
1139 	int eof = 0;
1140 	int revents = 0;
1141 
1142 	mutex_enter(rpipe->pipe_lock);
1143 	wpipe = rpipe->pipe_peer;
1144 
1145 	if (events & (POLLIN | POLLRDNORM))
1146 		if ((rpipe->pipe_buffer.cnt > 0) ||
1147 #ifndef PIPE_NODIRECT
1148 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
1149 #endif
1150 		    (rpipe->pipe_state & PIPE_EOF))
1151 			revents |= events & (POLLIN | POLLRDNORM);
1152 
1153 	eof |= (rpipe->pipe_state & PIPE_EOF);
1154 
1155 	if (wpipe == NULL)
1156 		revents |= events & (POLLOUT | POLLWRNORM);
1157 	else {
1158 		if (events & (POLLOUT | POLLWRNORM))
1159 			if ((wpipe->pipe_state & PIPE_EOF) || (
1160 #ifndef PIPE_NODIRECT
1161 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1162 #endif
1163 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1164 				revents |= events & (POLLOUT | POLLWRNORM);
1165 
1166 		eof |= (wpipe->pipe_state & PIPE_EOF);
1167 	}
1168 
1169 	if (wpipe == NULL || eof)
1170 		revents |= POLLHUP;
1171 
1172 	if (revents == 0) {
1173 		if (events & (POLLIN | POLLRDNORM))
1174 			selrecord(curlwp, &rpipe->pipe_sel);
1175 
1176 		if (events & (POLLOUT | POLLWRNORM))
1177 			selrecord(curlwp, &wpipe->pipe_sel);
1178 	}
1179 	mutex_exit(rpipe->pipe_lock);
1180 
1181 	return (revents);
1182 }
1183 
1184 static int
1185 pipe_stat(struct file *fp, struct stat *ub)
1186 {
1187 	struct pipe *pipe = fp->f_data;
1188 
1189 	memset((void *)ub, 0, sizeof(*ub));
1190 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1191 	ub->st_blksize = pipe->pipe_buffer.size;
1192 	if (ub->st_blksize == 0 && pipe->pipe_peer)
1193 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1194 	ub->st_size = pipe->pipe_buffer.cnt;
1195 	ub->st_blocks = (ub->st_size) ? 1 : 0;
1196 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1197 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1198 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1199 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1200 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
1201 
1202 	/*
1203 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1204 	 * XXX (st_dev, st_ino) should be unique.
1205 	 */
1206 	return (0);
1207 }
1208 
1209 /* ARGSUSED */
1210 static int
1211 pipe_close(struct file *fp)
1212 {
1213 	struct pipe *pipe = fp->f_data;
1214 
1215 	fp->f_data = NULL;
1216 	pipeclose(fp, pipe);
1217 	return (0);
1218 }
1219 
1220 static void
1221 pipe_free_kmem(struct pipe *pipe)
1222 {
1223 
1224 	if (pipe->pipe_buffer.buffer != NULL) {
1225 		if (pipe->pipe_buffer.size > PIPE_SIZE) {
1226 			atomic_dec_uint(&nbigpipe);
1227 		}
1228 		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1229 			uvm_km_free(kernel_map,
1230 			    (vaddr_t)pipe->pipe_buffer.buffer,
1231 			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1232 			atomic_add_int(&amountpipekva,
1233 			    -pipe->pipe_buffer.size);
1234 		}
1235 		pipe->pipe_buffer.buffer = NULL;
1236 	}
1237 #ifndef PIPE_NODIRECT
1238 	if (pipe->pipe_map.kva != 0) {
1239 		pipe_loan_free(pipe);
1240 		pipe->pipe_map.cnt = 0;
1241 		pipe->pipe_map.kva = 0;
1242 		pipe->pipe_map.pos = 0;
1243 		pipe->pipe_map.npages = 0;
1244 	}
1245 #endif /* !PIPE_NODIRECT */
1246 }
1247 
1248 /*
1249  * shutdown the pipe
1250  */
1251 static void
1252 pipeclose(struct file *fp, struct pipe *pipe)
1253 {
1254 	kmutex_t *lock;
1255 	struct pipe *ppipe;
1256 
1257 	if (pipe == NULL)
1258 		return;
1259 
1260 	KASSERT(cv_is_valid(&pipe->pipe_rcv));
1261 	KASSERT(cv_is_valid(&pipe->pipe_wcv));
1262 	KASSERT(cv_is_valid(&pipe->pipe_draincv));
1263 	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1264 
1265 	lock = pipe->pipe_lock;
1266 	mutex_enter(lock);
1267 	pipeselwakeup(pipe, pipe, POLL_HUP);
1268 
1269 	/*
1270 	 * If the other side is blocked, wake it up saying that
1271 	 * we want to close it down.
1272 	 */
1273 	pipe->pipe_state |= PIPE_EOF;
1274 	if (pipe->pipe_busy) {
1275 		while (pipe->pipe_busy) {
1276 			cv_broadcast(&pipe->pipe_wcv);
1277 			cv_wait_sig(&pipe->pipe_draincv, lock);
1278 		}
1279 	}
1280 
1281 	/*
1282 	 * Disconnect from peer
1283 	 */
1284 	if ((ppipe = pipe->pipe_peer) != NULL) {
1285 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
1286 		ppipe->pipe_state |= PIPE_EOF;
1287 		cv_broadcast(&ppipe->pipe_rcv);
1288 		ppipe->pipe_peer = NULL;
1289 	}
1290 
1291 	/*
1292 	 * Any knote objects still left in the list are
1293 	 * the one attached by peer.  Since no one will
1294 	 * traverse this list, we just clear it.
1295 	 */
1296 	SLIST_INIT(&pipe->pipe_sel.sel_klist);
1297 
1298 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1299 	mutex_exit(lock);
1300 
1301 	/*
1302 	 * free resources
1303 	 */
1304 	pipe->pipe_pgid = 0;
1305 	pipe->pipe_state = PIPE_SIGNALR;
1306 	pipe_free_kmem(pipe);
1307 	if (pipe->pipe_kmem != 0) {
1308 		pool_cache_put(pipe_rd_cache, pipe);
1309 	} else {
1310 		pool_cache_put(pipe_wr_cache, pipe);
1311 	}
1312 	mutex_obj_free(lock);
1313 }
1314 
1315 static void
1316 filt_pipedetach(struct knote *kn)
1317 {
1318 	struct pipe *pipe;
1319 	kmutex_t *lock;
1320 
1321 	pipe = ((file_t *)kn->kn_obj)->f_data;
1322 	lock = pipe->pipe_lock;
1323 
1324 	mutex_enter(lock);
1325 
1326 	switch(kn->kn_filter) {
1327 	case EVFILT_WRITE:
1328 		/* need the peer structure, not our own */
1329 		pipe = pipe->pipe_peer;
1330 
1331 		/* if reader end already closed, just return */
1332 		if (pipe == NULL) {
1333 			mutex_exit(lock);
1334 			return;
1335 		}
1336 
1337 		break;
1338 	default:
1339 		/* nothing to do */
1340 		break;
1341 	}
1342 
1343 #ifdef DIAGNOSTIC
1344 	if (kn->kn_hook != pipe)
1345 		panic("filt_pipedetach: inconsistent knote");
1346 #endif
1347 
1348 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1349 	mutex_exit(lock);
1350 }
1351 
1352 /*ARGSUSED*/
1353 static int
1354 filt_piperead(struct knote *kn, long hint)
1355 {
1356 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1357 	struct pipe *wpipe;
1358 
1359 	if ((hint & NOTE_SUBMIT) == 0) {
1360 		mutex_enter(rpipe->pipe_lock);
1361 	}
1362 	wpipe = rpipe->pipe_peer;
1363 	kn->kn_data = rpipe->pipe_buffer.cnt;
1364 
1365 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1366 		kn->kn_data = rpipe->pipe_map.cnt;
1367 
1368 	if ((rpipe->pipe_state & PIPE_EOF) ||
1369 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1370 		kn->kn_flags |= EV_EOF;
1371 		if ((hint & NOTE_SUBMIT) == 0) {
1372 			mutex_exit(rpipe->pipe_lock);
1373 		}
1374 		return (1);
1375 	}
1376 
1377 	if ((hint & NOTE_SUBMIT) == 0) {
1378 		mutex_exit(rpipe->pipe_lock);
1379 	}
1380 	return (kn->kn_data > 0);
1381 }
1382 
1383 /*ARGSUSED*/
1384 static int
1385 filt_pipewrite(struct knote *kn, long hint)
1386 {
1387 	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1388 	struct pipe *wpipe;
1389 
1390 	if ((hint & NOTE_SUBMIT) == 0) {
1391 		mutex_enter(rpipe->pipe_lock);
1392 	}
1393 	wpipe = rpipe->pipe_peer;
1394 
1395 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1396 		kn->kn_data = 0;
1397 		kn->kn_flags |= EV_EOF;
1398 		if ((hint & NOTE_SUBMIT) == 0) {
1399 			mutex_exit(rpipe->pipe_lock);
1400 		}
1401 		return (1);
1402 	}
1403 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1404 	if (wpipe->pipe_state & PIPE_DIRECTW)
1405 		kn->kn_data = 0;
1406 
1407 	if ((hint & NOTE_SUBMIT) == 0) {
1408 		mutex_exit(rpipe->pipe_lock);
1409 	}
1410 	return (kn->kn_data >= PIPE_BUF);
1411 }
1412 
1413 static const struct filterops pipe_rfiltops =
1414 	{ 1, NULL, filt_pipedetach, filt_piperead };
1415 static const struct filterops pipe_wfiltops =
1416 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
1417 
1418 /*ARGSUSED*/
1419 static int
1420 pipe_kqfilter(struct file *fp, struct knote *kn)
1421 {
1422 	struct pipe *pipe;
1423 	kmutex_t *lock;
1424 
1425 	pipe = ((file_t *)kn->kn_obj)->f_data;
1426 	lock = pipe->pipe_lock;
1427 
1428 	mutex_enter(lock);
1429 
1430 	switch (kn->kn_filter) {
1431 	case EVFILT_READ:
1432 		kn->kn_fop = &pipe_rfiltops;
1433 		break;
1434 	case EVFILT_WRITE:
1435 		kn->kn_fop = &pipe_wfiltops;
1436 		pipe = pipe->pipe_peer;
1437 		if (pipe == NULL) {
1438 			/* other end of pipe has been closed */
1439 			mutex_exit(lock);
1440 			return (EBADF);
1441 		}
1442 		break;
1443 	default:
1444 		mutex_exit(lock);
1445 		return (EINVAL);
1446 	}
1447 
1448 	kn->kn_hook = pipe;
1449 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1450 	mutex_exit(lock);
1451 
1452 	return (0);
1453 }
1454 
1455 /*
1456  * Handle pipe sysctls.
1457  */
1458 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1459 {
1460 
1461 	sysctl_createv(clog, 0, NULL, NULL,
1462 		       CTLFLAG_PERMANENT,
1463 		       CTLTYPE_NODE, "kern", NULL,
1464 		       NULL, 0, NULL, 0,
1465 		       CTL_KERN, CTL_EOL);
1466 	sysctl_createv(clog, 0, NULL, NULL,
1467 		       CTLFLAG_PERMANENT,
1468 		       CTLTYPE_NODE, "pipe",
1469 		       SYSCTL_DESCR("Pipe settings"),
1470 		       NULL, 0, NULL, 0,
1471 		       CTL_KERN, KERN_PIPE, CTL_EOL);
1472 
1473 	sysctl_createv(clog, 0, NULL, NULL,
1474 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1475 		       CTLTYPE_INT, "maxkvasz",
1476 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
1477 				    "used for pipes"),
1478 		       NULL, 0, &maxpipekva, 0,
1479 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1480 	sysctl_createv(clog, 0, NULL, NULL,
1481 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1482 		       CTLTYPE_INT, "maxloankvasz",
1483 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
1484 		       NULL, 0, &limitpipekva, 0,
1485 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1486 	sysctl_createv(clog, 0, NULL, NULL,
1487 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1488 		       CTLTYPE_INT, "maxbigpipes",
1489 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1490 		       NULL, 0, &maxbigpipes, 0,
1491 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1492 	sysctl_createv(clog, 0, NULL, NULL,
1493 		       CTLFLAG_PERMANENT,
1494 		       CTLTYPE_INT, "nbigpipes",
1495 		       SYSCTL_DESCR("Number of \"big\" pipes"),
1496 		       NULL, 0, &nbigpipe, 0,
1497 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1498 	sysctl_createv(clog, 0, NULL, NULL,
1499 		       CTLFLAG_PERMANENT,
1500 		       CTLTYPE_INT, "kvasize",
1501 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1502 				    "buffers"),
1503 		       NULL, 0, &amountpipekva, 0,
1504 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1505 }
1506