xref: /netbsd-src/sys/kern/sys_pipe.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: sys_pipe.c,v 1.95 2008/01/28 20:01:50 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1996 John S. Dyson
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice immediately at the beginning of the file, without modification,
48  *    this list of conditions, and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Absolutely no warranty of function or purpose is made by the author
53  *    John S. Dyson.
54  * 4. Modifications may be freely made to this file if the above conditions
55  *    are met.
56  *
57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58  */
59 
60 /*
61  * This file contains a high-performance replacement for the socket-based
62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
63  * all features of sockets, but does do everything that pipes normally
64  * do.
65  *
66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67  * written by Jaromir Dolecek.
68  */
69 
70 /*
71  * This code has two modes of operation, a small write mode and a large
72  * write mode.  The small write mode acts like conventional pipes with
73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76  * using the UVM page loan facility from where the receiving process can copy
77  * the data directly from the pages in the sending process.
78  *
79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80  * happen for small transfers so that the system will not spend all of
81  * its time context switching.  PIPE_SIZE is constrained by the
82  * amount of kernel virtual memory.
83  */
84 
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.95 2008/01/28 20:01:50 ad Exp $");
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/select.h>
104 #include <sys/mount.h>
105 #include <sys/syscallargs.h>
106 #include <sys/sysctl.h>
107 #include <sys/kauth.h>
108 #include <sys/atomic.h>
109 #include <sys/pipe.h>
110 
111 #include <uvm/uvm.h>
112 
113 /*
114  * Use this define if you want to disable *fancy* VM things.  Expect an
115  * approx 30% decrease in transfer rate.
116  */
117 /* #define PIPE_NODIRECT */
118 
119 /*
120  * interfaces to the outside world
121  */
122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
123 		kauth_cred_t cred, int flags);
124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
125 		kauth_cred_t cred, int flags);
126 static int pipe_close(struct file *fp, struct lwp *l);
127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
131 		struct lwp *l);
132 
133 static const struct fileops pipeops = {
134 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
135 	pipe_stat, pipe_close, pipe_kqfilter
136 };
137 
138 /*
139  * Single mutex shared between both ends of the pipe.
140  */
141 
142 struct pipe_mutex {
143 	kmutex_t	pm_mutex;
144 	u_int		pm_refcnt;
145 };
146 
147 /*
148  * Default pipe buffer size(s), this can be kind-of large now because pipe
149  * space is pageable.  The pipe code will try to maintain locality of
150  * reference for performance reasons, so small amounts of outstanding I/O
151  * will not wipe the cache.
152  */
153 #define MINPIPESIZE (PIPE_SIZE/3)
154 #define MAXPIPESIZE (2*PIPE_SIZE/3)
155 
156 /*
157  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
158  * is there so that on large systems, we don't exhaust it.
159  */
160 #define MAXPIPEKVA (8*1024*1024)
161 static u_int maxpipekva = MAXPIPEKVA;
162 
163 /*
164  * Limit for direct transfers, we cannot, of course limit
165  * the amount of kva for pipes in general though.
166  */
167 #define LIMITPIPEKVA (16*1024*1024)
168 static u_int limitpipekva = LIMITPIPEKVA;
169 
170 /*
171  * Limit the number of "big" pipes
172  */
173 #define LIMITBIGPIPES  32
174 static u_int maxbigpipes = LIMITBIGPIPES;
175 static u_int nbigpipe = 0;
176 
177 /*
178  * Amount of KVA consumed by pipe buffers.
179  */
180 static u_int amountpipekva = 0;
181 
182 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
183 
184 static void pipeclose(struct file *fp, struct pipe *pipe);
185 static void pipe_free_kmem(struct pipe *pipe);
186 static int pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *);
187 static int pipelock(struct pipe *pipe, int catch);
188 static inline void pipeunlock(struct pipe *pipe);
189 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
190 #ifndef PIPE_NODIRECT
191 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
192     struct uio *uio);
193 #endif
194 static int pipespace(struct pipe *pipe, int size);
195 
196 #ifndef PIPE_NODIRECT
197 static int pipe_loan_alloc(struct pipe *, int);
198 static void pipe_loan_free(struct pipe *);
199 #endif /* PIPE_NODIRECT */
200 
201 static int pipe_mutex_ctor(void *, void *, int);
202 static void pipe_mutex_dtor(void *, void *);
203 
204 static pool_cache_t pipe_cache;
205 static pool_cache_t pipe_mutex_cache;
206 
207 void
208 pipe_init(void)
209 {
210 	size_t size;
211 
212 	pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
213 	    NULL, IPL_NONE, NULL, NULL, NULL);
214 	KASSERT(pipe_cache != NULL);
215 
216 	size = (sizeof(struct pipe_mutex) + (CACHE_LINE_SIZE - 1)) &
217 	    (CACHE_LINE_SIZE - 1);
218 	pipe_mutex_cache = pool_cache_init(size, CACHE_LINE_SIZE,
219 	    0, 0, "pipemtxpl", NULL, IPL_NONE, pipe_mutex_ctor,
220 	    pipe_mutex_dtor, NULL);
221 	KASSERT(pipe_cache != NULL);
222 }
223 
224 static int
225 pipe_mutex_ctor(void *arg, void *obj, int flag)
226 {
227 	struct pipe_mutex *pm = obj;
228 
229 	mutex_init(&pm->pm_mutex, MUTEX_DEFAULT, IPL_NONE);
230 	pm->pm_refcnt = 0;
231 
232 	return 0;
233 }
234 
235 static void
236 pipe_mutex_dtor(void *arg, void *obj)
237 {
238 	struct pipe_mutex *pm = obj;
239 
240 	KASSERT(pm->pm_refcnt == 0);
241 
242 	mutex_destroy(&pm->pm_mutex);
243 }
244 
245 /*
246  * The pipe system call for the DTYPE_PIPE type of pipes
247  */
248 
249 /* ARGSUSED */
250 int
251 sys_pipe(struct lwp *l, const void *v, register_t *retval)
252 {
253 	struct file *rf, *wf;
254 	struct pipe *rpipe, *wpipe;
255 	struct pipe_mutex *mutex;
256 	int fd, error;
257 
258 	rpipe = wpipe = NULL;
259 	mutex = pool_cache_get(pipe_mutex_cache, PR_WAITOK);
260 	if (mutex == NULL)
261 		return (ENOMEM);
262 	if (pipe_create(&rpipe, 1, mutex) || pipe_create(&wpipe, 0, mutex)) {
263 		pipeclose(NULL, rpipe);
264 		pipeclose(NULL, wpipe);
265 		return (ENFILE);
266 	}
267 
268 	/*
269 	 * Note: the file structure returned from falloc() is marked
270 	 * as 'larval' initially. Unless we mark it as 'mature' by
271 	 * FILE_SET_MATURE(), any attempt to do anything with it would
272 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
273 	 * file descriptor races if we block in the second falloc().
274 	 */
275 
276 	error = falloc(l, &rf, &fd);
277 	if (error)
278 		goto free2;
279 	retval[0] = fd;
280 	rf->f_flag = FREAD;
281 	rf->f_type = DTYPE_PIPE;
282 	rf->f_data = (void *)rpipe;
283 	rf->f_ops = &pipeops;
284 
285 	error = falloc(l, &wf, &fd);
286 	if (error)
287 		goto free3;
288 	retval[1] = fd;
289 	wf->f_flag = FWRITE;
290 	wf->f_type = DTYPE_PIPE;
291 	wf->f_data = (void *)wpipe;
292 	wf->f_ops = &pipeops;
293 
294 	rpipe->pipe_peer = wpipe;
295 	wpipe->pipe_peer = rpipe;
296 
297 	FILE_SET_MATURE(rf);
298 	FILE_SET_MATURE(wf);
299 	FILE_UNUSE(rf, l);
300 	FILE_UNUSE(wf, l);
301 	return (0);
302 free3:
303 	FILE_UNUSE(rf, l);
304 	ffree(rf);
305 	fdremove(l->l_proc->p_fd, retval[0]);
306 free2:
307 	pipeclose(NULL, wpipe);
308 	pipeclose(NULL, rpipe);
309 
310 	return (error);
311 }
312 
313 /*
314  * Allocate kva for pipe circular buffer, the space is pageable
315  * This routine will 'realloc' the size of a pipe safely, if it fails
316  * it will retain the old buffer.
317  * If it fails it will return ENOMEM.
318  */
319 static int
320 pipespace(struct pipe *pipe, int size)
321 {
322 	void *buffer;
323 	/*
324 	 * Allocate pageable virtual address space. Physical memory is
325 	 * allocated on demand.
326 	 */
327 	buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
328 	    UVM_KMF_PAGEABLE);
329 	if (buffer == NULL)
330 		return (ENOMEM);
331 
332 	/* free old resources if we're resizing */
333 	pipe_free_kmem(pipe);
334 	pipe->pipe_buffer.buffer = buffer;
335 	pipe->pipe_buffer.size = size;
336 	pipe->pipe_buffer.in = 0;
337 	pipe->pipe_buffer.out = 0;
338 	pipe->pipe_buffer.cnt = 0;
339 	atomic_add_int(&amountpipekva, pipe->pipe_buffer.size);
340 	return (0);
341 }
342 
343 /*
344  * Initialize and allocate VM and memory for pipe.
345  */
346 static int
347 pipe_create(struct pipe **pipep, int allockva, struct pipe_mutex *mutex)
348 {
349 	struct pipe *pipe;
350 	int error;
351 
352 	pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
353 	mutex->pm_refcnt++;
354 
355 	/* Initialize */
356 	memset(pipe, 0, sizeof(struct pipe));
357 	pipe->pipe_state = PIPE_SIGNALR;
358 
359 	getmicrotime(&pipe->pipe_ctime);
360 	pipe->pipe_atime = pipe->pipe_ctime;
361 	pipe->pipe_mtime = pipe->pipe_ctime;
362 	pipe->pipe_lock = &mutex->pm_mutex;
363 	cv_init(&pipe->pipe_cv, "pipe");
364 	cv_init(&pipe->pipe_lkcv, "pipelk");
365 	selinit(&pipe->pipe_sel);
366 
367 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
368 		return (error);
369 
370 	return (0);
371 }
372 
373 
374 /*
375  * Lock a pipe for I/O, blocking other access
376  * Called with pipe spin lock held.
377  * Return with pipe spin lock released on success.
378  */
379 static int
380 pipelock(struct pipe *pipe, int catch)
381 {
382 	int error;
383 
384 	KASSERT(mutex_owned(pipe->pipe_lock));
385 
386 	while (pipe->pipe_state & PIPE_LOCKFL) {
387 		pipe->pipe_state |= PIPE_LWANT;
388 		if (catch) {
389 			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
390 			if (error != 0)
391 				return error;
392 		} else
393 			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
394 	}
395 
396 	pipe->pipe_state |= PIPE_LOCKFL;
397 
398 	return 0;
399 }
400 
401 /*
402  * unlock a pipe I/O lock
403  */
404 static inline void
405 pipeunlock(struct pipe *pipe)
406 {
407 
408 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
409 
410 	pipe->pipe_state &= ~PIPE_LOCKFL;
411 	if (pipe->pipe_state & PIPE_LWANT) {
412 		pipe->pipe_state &= ~PIPE_LWANT;
413 		cv_broadcast(&pipe->pipe_lkcv);
414 	}
415 }
416 
417 /*
418  * Select/poll wakup. This also sends SIGIO to peer connected to
419  * 'sigpipe' side of pipe.
420  */
421 static void
422 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
423 {
424 	int band;
425 
426 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
427 
428 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
429 		return;
430 
431 	switch (code) {
432 	case POLL_IN:
433 		band = POLLIN|POLLRDNORM;
434 		break;
435 	case POLL_OUT:
436 		band = POLLOUT|POLLWRNORM;
437 		break;
438 	case POLL_HUP:
439 		band = POLLHUP;
440 		break;
441 #if POLL_HUP != POLL_ERR
442 	case POLL_ERR:
443 		band = POLLERR;
444 		break;
445 #endif
446 	default:
447 		band = 0;
448 #ifdef DIAGNOSTIC
449 		printf("bad siginfo code %d in pipe notification.\n", code);
450 #endif
451 		break;
452 	}
453 
454 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
455 }
456 
457 /* ARGSUSED */
458 static int
459 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
460     int flags)
461 {
462 	struct pipe *rpipe = (struct pipe *) fp->f_data;
463 	struct pipebuf *bp = &rpipe->pipe_buffer;
464 	kmutex_t *lock = rpipe->pipe_lock;
465 	int error;
466 	size_t nread = 0;
467 	size_t size;
468 	size_t ocnt;
469 
470 	mutex_enter(lock);
471 	++rpipe->pipe_busy;
472 	ocnt = bp->cnt;
473 
474 again:
475 	error = pipelock(rpipe, 1);
476 	if (error)
477 		goto unlocked_error;
478 
479 	while (uio->uio_resid) {
480 		/*
481 		 * normal pipe buffer receive
482 		 */
483 		if (bp->cnt > 0) {
484 			size = bp->size - bp->out;
485 			if (size > bp->cnt)
486 				size = bp->cnt;
487 			if (size > uio->uio_resid)
488 				size = uio->uio_resid;
489 
490 			mutex_exit(lock);
491 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
492 			mutex_enter(lock);
493 			if (error)
494 				break;
495 
496 			bp->out += size;
497 			if (bp->out >= bp->size)
498 				bp->out = 0;
499 
500 			bp->cnt -= size;
501 
502 			/*
503 			 * If there is no more to read in the pipe, reset
504 			 * its pointers to the beginning.  This improves
505 			 * cache hit stats.
506 			 */
507 			if (bp->cnt == 0) {
508 				bp->in = 0;
509 				bp->out = 0;
510 			}
511 			nread += size;
512 			continue;
513 		}
514 
515 #ifndef PIPE_NODIRECT
516 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
517 			/*
518 			 * Direct copy, bypassing a kernel buffer.
519 			 */
520 			void *	va;
521 
522 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
523 
524 			size = rpipe->pipe_map.cnt;
525 			if (size > uio->uio_resid)
526 				size = uio->uio_resid;
527 
528 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
529 			mutex_exit(lock);
530 			error = uiomove(va, size, uio);
531 			mutex_enter(lock);
532 			if (error)
533 				break;
534 			nread += size;
535 			rpipe->pipe_map.pos += size;
536 			rpipe->pipe_map.cnt -= size;
537 			if (rpipe->pipe_map.cnt == 0) {
538 				rpipe->pipe_state &= ~PIPE_DIRECTR;
539 				cv_broadcast(&rpipe->pipe_cv);
540 			}
541 			continue;
542 		}
543 #endif
544 		/*
545 		 * Break if some data was read.
546 		 */
547 		if (nread > 0)
548 			break;
549 
550 		/*
551 		 * detect EOF condition
552 		 * read returns 0 on EOF, no need to set error
553 		 */
554 		if (rpipe->pipe_state & PIPE_EOF)
555 			break;
556 
557 		/*
558 		 * don't block on non-blocking I/O
559 		 */
560 		if (fp->f_flag & FNONBLOCK) {
561 			error = EAGAIN;
562 			break;
563 		}
564 
565 		/*
566 		 * Unlock the pipe buffer for our remaining processing.
567 		 * We will either break out with an error or we will
568 		 * sleep and relock to loop.
569 		 */
570 		pipeunlock(rpipe);
571 
572 		/*
573 		 * Re-check to see if more direct writes are pending.
574 		 */
575 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
576 			goto again;
577 
578 		/*
579 		 * We want to read more, wake up select/poll.
580 		 */
581 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
582 
583 		/*
584 		 * If the "write-side" is blocked, wake it up now.
585 		 */
586 		cv_broadcast(&rpipe->pipe_cv);
587 
588 		/* Now wait until the pipe is filled */
589 		error = cv_wait_sig(&rpipe->pipe_cv, lock);
590 		if (error != 0)
591 			goto unlocked_error;
592 		goto again;
593 	}
594 
595 	if (error == 0)
596 		getmicrotime(&rpipe->pipe_atime);
597 	pipeunlock(rpipe);
598 
599 unlocked_error:
600 	--rpipe->pipe_busy;
601 	if (rpipe->pipe_busy == 0 || bp->cnt < MINPIPESIZE) {
602 		cv_broadcast(&rpipe->pipe_cv);
603 	}
604 
605 	/*
606 	 * If anything was read off the buffer, signal to the writer it's
607 	 * possible to write more data. Also send signal if we are here for the
608 	 * first time after last write.
609 	 */
610 	if ((bp->size - bp->cnt) >= PIPE_BUF
611 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
612 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
613 		rpipe->pipe_state &= ~PIPE_SIGNALR;
614 	}
615 
616 	mutex_exit(lock);
617 	return (error);
618 }
619 
620 #ifndef PIPE_NODIRECT
621 /*
622  * Allocate structure for loan transfer.
623  */
624 static int
625 pipe_loan_alloc(struct pipe *wpipe, int npages)
626 {
627 	vsize_t len;
628 
629 	len = (vsize_t)npages << PAGE_SHIFT;
630 	atomic_add_int(&amountpipekva, len);
631 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
632 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
633 	if (wpipe->pipe_map.kva == 0) {
634 		atomic_add_int(&amountpipekva, -len);
635 		return (ENOMEM);
636 	}
637 
638 	wpipe->pipe_map.npages = npages;
639 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
640 	    M_WAITOK);
641 	return (0);
642 }
643 
644 /*
645  * Free resources allocated for loan transfer.
646  */
647 static void
648 pipe_loan_free(struct pipe *wpipe)
649 {
650 	vsize_t len;
651 
652 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
653 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
654 	wpipe->pipe_map.kva = 0;
655 	atomic_add_int(&amountpipekva, -len);
656 	free(wpipe->pipe_map.pgs, M_PIPE);
657 	wpipe->pipe_map.pgs = NULL;
658 }
659 
660 /*
661  * NetBSD direct write, using uvm_loan() mechanism.
662  * This implements the pipe buffer write mechanism.  Note that only
663  * a direct write OR a normal pipe write can be pending at any given time.
664  * If there are any characters in the pipe buffer, the direct write will
665  * be deferred until the receiving process grabs all of the bytes from
666  * the pipe buffer.  Then the direct mapping write is set-up.
667  *
668  * Called with the long-term pipe lock held.
669  */
670 static int
671 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
672 {
673 	int error, npages, j;
674 	struct vm_page **pgs;
675 	vaddr_t bbase, kva, base, bend;
676 	vsize_t blen, bcnt;
677 	voff_t bpos;
678 	kmutex_t *lock = wpipe->pipe_lock;
679 
680 	KASSERT(mutex_owned(wpipe->pipe_lock));
681 	KASSERT(wpipe->pipe_map.cnt == 0);
682 
683 	mutex_exit(lock);
684 
685 	/*
686 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
687 	 * not aligned to PAGE_SIZE.
688 	 */
689 	bbase = (vaddr_t)uio->uio_iov->iov_base;
690 	base = trunc_page(bbase);
691 	bend = round_page(bbase + uio->uio_iov->iov_len);
692 	blen = bend - base;
693 	bpos = bbase - base;
694 
695 	if (blen > PIPE_DIRECT_CHUNK) {
696 		blen = PIPE_DIRECT_CHUNK;
697 		bend = base + blen;
698 		bcnt = PIPE_DIRECT_CHUNK - bpos;
699 	} else {
700 		bcnt = uio->uio_iov->iov_len;
701 	}
702 	npages = blen >> PAGE_SHIFT;
703 
704 	/*
705 	 * Free the old kva if we need more pages than we have
706 	 * allocated.
707 	 */
708 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
709 		pipe_loan_free(wpipe);
710 
711 	/* Allocate new kva. */
712 	if (wpipe->pipe_map.kva == 0) {
713 		error = pipe_loan_alloc(wpipe, npages);
714 		if (error) {
715 			mutex_enter(lock);
716 			return (error);
717 		}
718 	}
719 
720 	/* Loan the write buffer memory from writer process */
721 	pgs = wpipe->pipe_map.pgs;
722 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
723 			 pgs, UVM_LOAN_TOPAGE);
724 	if (error) {
725 		pipe_loan_free(wpipe);
726 		mutex_enter(lock);
727 		return (ENOMEM); /* so that caller fallback to ordinary write */
728 	}
729 
730 	/* Enter the loaned pages to kva */
731 	kva = wpipe->pipe_map.kva;
732 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
733 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
734 	}
735 	pmap_update(pmap_kernel());
736 
737 	/* Now we can put the pipe in direct write mode */
738 	wpipe->pipe_map.pos = bpos;
739 	wpipe->pipe_map.cnt = bcnt;
740 
741 	/*
742 	 * But before we can let someone do a direct read, we
743 	 * have to wait until the pipe is drained.  Release the
744 	 * pipe lock while we wait.
745 	 */
746 	mutex_enter(lock);
747 	wpipe->pipe_state |= PIPE_DIRECTW;
748 	pipeunlock(wpipe);
749 
750 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
751 		cv_broadcast(&wpipe->pipe_cv);
752 		error = cv_wait_sig(&wpipe->pipe_cv, lock);
753 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
754 			error = EPIPE;
755 	}
756 
757 	/* Pipe is drained; next read will off the direct buffer */
758 	wpipe->pipe_state |= PIPE_DIRECTR;
759 
760 	/* Wait until the reader is done */
761 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
762 		cv_broadcast(&wpipe->pipe_cv);
763 		pipeselwakeup(wpipe, wpipe, POLL_IN);
764 		error = cv_wait_sig(&wpipe->pipe_cv, lock);
765 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
766 			error = EPIPE;
767 	}
768 
769 	/* Take pipe out of direct write mode */
770 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
771 
772 	/* Acquire the pipe lock and cleanup */
773 	(void)pipelock(wpipe, 0);
774 	mutex_exit(lock);
775 
776 	if (pgs != NULL) {
777 		pmap_kremove(wpipe->pipe_map.kva, blen);
778 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
779 	}
780 	if (error || amountpipekva > maxpipekva)
781 		pipe_loan_free(wpipe);
782 
783 	mutex_enter(lock);
784 	if (error) {
785 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
786 
787 		/*
788 		 * If nothing was read from what we offered, return error
789 		 * straight on. Otherwise update uio resid first. Caller
790 		 * will deal with the error condition, returning short
791 		 * write, error, or restarting the write(2) as appropriate.
792 		 */
793 		if (wpipe->pipe_map.cnt == bcnt) {
794 			wpipe->pipe_map.cnt = 0;
795 			cv_broadcast(&wpipe->pipe_cv);
796 			return (error);
797 		}
798 
799 		bcnt -= wpipe->pipe_map.cnt;
800 	}
801 
802 	uio->uio_resid -= bcnt;
803 	/* uio_offset not updated, not set/used for write(2) */
804 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
805 	uio->uio_iov->iov_len -= bcnt;
806 	if (uio->uio_iov->iov_len == 0) {
807 		uio->uio_iov++;
808 		uio->uio_iovcnt--;
809 	}
810 
811 	wpipe->pipe_map.cnt = 0;
812 	return (error);
813 }
814 #endif /* !PIPE_NODIRECT */
815 
816 static int
817 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
818     int flags)
819 {
820 	struct pipe *wpipe, *rpipe;
821 	struct pipebuf *bp;
822 	kmutex_t *lock;
823 	int error;
824 
825 	/* We want to write to our peer */
826 	rpipe = (struct pipe *) fp->f_data;
827 	lock = rpipe->pipe_lock;
828 	error = 0;
829 
830 	mutex_enter(lock);
831 	wpipe = rpipe->pipe_peer;
832 
833 	/*
834 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
835 	 */
836 	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
837 		mutex_exit(lock);
838 		return EPIPE;
839 	}
840 	++wpipe->pipe_busy;
841 
842 	/* Aquire the long-term pipe lock */
843 	if ((error = pipelock(wpipe, 1)) != 0) {
844 		--wpipe->pipe_busy;
845 		if (wpipe->pipe_busy == 0) {
846 			cv_broadcast(&wpipe->pipe_cv);
847 		}
848 		mutex_exit(lock);
849 		return (error);
850 	}
851 
852 	bp = &wpipe->pipe_buffer;
853 
854 	/*
855 	 * If it is advantageous to resize the pipe buffer, do so.
856 	 */
857 	if ((uio->uio_resid > PIPE_SIZE) &&
858 	    (nbigpipe < maxbigpipes) &&
859 #ifndef PIPE_NODIRECT
860 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
861 #endif
862 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
863 
864 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
865 			atomic_inc_uint(&nbigpipe);
866 	}
867 
868 	while (uio->uio_resid) {
869 		size_t space;
870 
871 #ifndef PIPE_NODIRECT
872 		/*
873 		 * Pipe buffered writes cannot be coincidental with
874 		 * direct writes.  Also, only one direct write can be
875 		 * in progress at any one time.  We wait until the currently
876 		 * executing direct write is completed before continuing.
877 		 *
878 		 * We break out if a signal occurs or the reader goes away.
879 		 */
880 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
881 			cv_broadcast(&wpipe->pipe_cv);
882 			pipeunlock(wpipe);
883 			error = cv_wait_sig(&wpipe->pipe_cv, lock);
884 			(void)pipelock(wpipe, 0);
885 			if (wpipe->pipe_state & PIPE_EOF)
886 				error = EPIPE;
887 		}
888 		if (error)
889 			break;
890 
891 		/*
892 		 * If the transfer is large, we can gain performance if
893 		 * we do process-to-process copies directly.
894 		 * If the write is non-blocking, we don't use the
895 		 * direct write mechanism.
896 		 *
897 		 * The direct write mechanism will detect the reader going
898 		 * away on us.
899 		 */
900 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
901 		    (fp->f_flag & FNONBLOCK) == 0 &&
902 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
903 			error = pipe_direct_write(fp, wpipe, uio);
904 
905 			/*
906 			 * Break out if error occurred, unless it's ENOMEM.
907 			 * ENOMEM means we failed to allocate some resources
908 			 * for direct write, so we just fallback to ordinary
909 			 * write. If the direct write was successful,
910 			 * process rest of data via ordinary write.
911 			 */
912 			if (error == 0)
913 				continue;
914 
915 			if (error != ENOMEM)
916 				break;
917 		}
918 #endif /* PIPE_NODIRECT */
919 
920 		space = bp->size - bp->cnt;
921 
922 		/* Writes of size <= PIPE_BUF must be atomic. */
923 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
924 			space = 0;
925 
926 		if (space > 0) {
927 			int size;	/* Transfer size */
928 			int segsize;	/* first segment to transfer */
929 
930 			/*
931 			 * Transfer size is minimum of uio transfer
932 			 * and free space in pipe buffer.
933 			 */
934 			if (space > uio->uio_resid)
935 				size = uio->uio_resid;
936 			else
937 				size = space;
938 			/*
939 			 * First segment to transfer is minimum of
940 			 * transfer size and contiguous space in
941 			 * pipe buffer.  If first segment to transfer
942 			 * is less than the transfer size, we've got
943 			 * a wraparound in the buffer.
944 			 */
945 			segsize = bp->size - bp->in;
946 			if (segsize > size)
947 				segsize = size;
948 
949 			/* Transfer first segment */
950 			mutex_exit(lock);
951 			error = uiomove((char *)bp->buffer + bp->in, segsize,
952 			    uio);
953 
954 			if (error == 0 && segsize < size) {
955 				/*
956 				 * Transfer remaining part now, to
957 				 * support atomic writes.  Wraparound
958 				 * happened.
959 				 */
960 #ifdef DEBUG
961 				if (bp->in + segsize != bp->size)
962 					panic("Expected pipe buffer wraparound disappeared");
963 #endif
964 
965 				error = uiomove(bp->buffer,
966 				    size - segsize, uio);
967 			}
968 			mutex_enter(lock);
969 			if (error)
970 				break;
971 
972 			bp->in += size;
973 			if (bp->in >= bp->size) {
974 #ifdef DEBUG
975 				if (bp->in != size - segsize + bp->size)
976 					panic("Expected wraparound bad");
977 #endif
978 				bp->in = size - segsize;
979 			}
980 
981 			bp->cnt += size;
982 #ifdef DEBUG
983 			if (bp->cnt > bp->size)
984 				panic("Pipe buffer overflow");
985 #endif
986 		} else {
987 			/*
988 			 * If the "read-side" has been blocked, wake it up now.
989 			 */
990 			cv_broadcast(&wpipe->pipe_cv);
991 
992 			/*
993 			 * don't block on non-blocking I/O
994 			 */
995 			if (fp->f_flag & FNONBLOCK) {
996 				error = EAGAIN;
997 				break;
998 			}
999 
1000 			/*
1001 			 * We have no more space and have something to offer,
1002 			 * wake up select/poll.
1003 			 */
1004 			if (bp->cnt)
1005 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
1006 
1007 			pipeunlock(wpipe);
1008 			error = cv_wait_sig(&wpipe->pipe_cv, lock);
1009 			(void)pipelock(wpipe, 0);
1010 			if (error != 0)
1011 				break;
1012 			/*
1013 			 * If read side wants to go away, we just issue a signal
1014 			 * to ourselves.
1015 			 */
1016 			if (wpipe->pipe_state & PIPE_EOF) {
1017 				error = EPIPE;
1018 				break;
1019 			}
1020 		}
1021 	}
1022 
1023 	--wpipe->pipe_busy;
1024 	if (wpipe->pipe_busy == 0 || bp->cnt > 0) {
1025 		cv_broadcast(&wpipe->pipe_cv);
1026 	}
1027 
1028 	/*
1029 	 * Don't return EPIPE if I/O was successful
1030 	 */
1031 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1032 		error = 0;
1033 
1034 	if (error == 0)
1035 		getmicrotime(&wpipe->pipe_mtime);
1036 
1037 	/*
1038 	 * We have something to offer, wake up select/poll.
1039 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1040 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1041 	 */
1042 	if (bp->cnt)
1043 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
1044 
1045 	/*
1046 	 * Arrange for next read(2) to do a signal.
1047 	 */
1048 	wpipe->pipe_state |= PIPE_SIGNALR;
1049 
1050 	pipeunlock(wpipe);
1051 	mutex_exit(lock);
1052 	return (error);
1053 }
1054 
1055 /*
1056  * we implement a very minimal set of ioctls for compatibility with sockets.
1057  */
1058 int
1059 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1060 {
1061 	struct pipe *pipe = (struct pipe *)fp->f_data;
1062 	struct proc *p = l->l_proc;
1063 	kmutex_t *lock = pipe->pipe_lock;
1064 
1065 	switch (cmd) {
1066 
1067 	case FIONBIO:
1068 		return (0);
1069 
1070 	case FIOASYNC:
1071 		mutex_enter(lock);
1072 		if (*(int *)data) {
1073 			pipe->pipe_state |= PIPE_ASYNC;
1074 		} else {
1075 			pipe->pipe_state &= ~PIPE_ASYNC;
1076 		}
1077 		mutex_exit(lock);
1078 		return (0);
1079 
1080 	case FIONREAD:
1081 		mutex_enter(lock);
1082 #ifndef PIPE_NODIRECT
1083 		if (pipe->pipe_state & PIPE_DIRECTW)
1084 			*(int *)data = pipe->pipe_map.cnt;
1085 		else
1086 #endif
1087 			*(int *)data = pipe->pipe_buffer.cnt;
1088 		mutex_exit(lock);
1089 		return (0);
1090 
1091 	case FIONWRITE:
1092 		/* Look at other side */
1093 		pipe = pipe->pipe_peer;
1094 		mutex_enter(lock);
1095 #ifndef PIPE_NODIRECT
1096 		if (pipe->pipe_state & PIPE_DIRECTW)
1097 			*(int *)data = pipe->pipe_map.cnt;
1098 		else
1099 #endif
1100 			*(int *)data = pipe->pipe_buffer.cnt;
1101 		mutex_exit(lock);
1102 		return (0);
1103 
1104 	case FIONSPACE:
1105 		/* Look at other side */
1106 		pipe = pipe->pipe_peer;
1107 		mutex_enter(lock);
1108 #ifndef PIPE_NODIRECT
1109 		/*
1110 		 * If we're in direct-mode, we don't really have a
1111 		 * send queue, and any other write will block. Thus
1112 		 * zero seems like the best answer.
1113 		 */
1114 		if (pipe->pipe_state & PIPE_DIRECTW)
1115 			*(int *)data = 0;
1116 		else
1117 #endif
1118 			*(int *)data = pipe->pipe_buffer.size -
1119 			    pipe->pipe_buffer.cnt;
1120 		mutex_exit(lock);
1121 		return (0);
1122 
1123 	case TIOCSPGRP:
1124 	case FIOSETOWN:
1125 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
1126 
1127 	case TIOCGPGRP:
1128 	case FIOGETOWN:
1129 		return fgetown(p, pipe->pipe_pgid, cmd, data);
1130 
1131 	}
1132 	return (EPASSTHROUGH);
1133 }
1134 
1135 int
1136 pipe_poll(struct file *fp, int events, struct lwp *l)
1137 {
1138 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1139 	struct pipe *wpipe;
1140 	int eof = 0;
1141 	int revents = 0;
1142 
1143 	mutex_enter(rpipe->pipe_lock);
1144 	wpipe = rpipe->pipe_peer;
1145 
1146 	if (events & (POLLIN | POLLRDNORM))
1147 		if ((rpipe->pipe_buffer.cnt > 0) ||
1148 #ifndef PIPE_NODIRECT
1149 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
1150 #endif
1151 		    (rpipe->pipe_state & PIPE_EOF))
1152 			revents |= events & (POLLIN | POLLRDNORM);
1153 
1154 	eof |= (rpipe->pipe_state & PIPE_EOF);
1155 
1156 	if (wpipe == NULL)
1157 		revents |= events & (POLLOUT | POLLWRNORM);
1158 	else {
1159 		if (events & (POLLOUT | POLLWRNORM))
1160 			if ((wpipe->pipe_state & PIPE_EOF) || (
1161 #ifndef PIPE_NODIRECT
1162 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1163 #endif
1164 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1165 				revents |= events & (POLLOUT | POLLWRNORM);
1166 
1167 		eof |= (wpipe->pipe_state & PIPE_EOF);
1168 	}
1169 
1170 	if (wpipe == NULL || eof)
1171 		revents |= POLLHUP;
1172 
1173 	if (revents == 0) {
1174 		if (events & (POLLIN | POLLRDNORM))
1175 			selrecord(l, &rpipe->pipe_sel);
1176 
1177 		if (events & (POLLOUT | POLLWRNORM))
1178 			selrecord(l, &wpipe->pipe_sel);
1179 	}
1180 	mutex_exit(rpipe->pipe_lock);
1181 
1182 	return (revents);
1183 }
1184 
1185 static int
1186 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1187 {
1188 	struct pipe *pipe = (struct pipe *)fp->f_data;
1189 
1190 	memset((void *)ub, 0, sizeof(*ub));
1191 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1192 	ub->st_blksize = pipe->pipe_buffer.size;
1193 	if (ub->st_blksize == 0 && pipe->pipe_peer)
1194 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1195 	ub->st_size = pipe->pipe_buffer.cnt;
1196 	ub->st_blocks = (ub->st_size) ? 1 : 0;
1197 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1198 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1199 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1200 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1201 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
1202 
1203 	/*
1204 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1205 	 * XXX (st_dev, st_ino) should be unique.
1206 	 */
1207 	return (0);
1208 }
1209 
1210 /* ARGSUSED */
1211 static int
1212 pipe_close(struct file *fp, struct lwp *l)
1213 {
1214 	struct pipe *pipe = (struct pipe *)fp->f_data;
1215 
1216 	fp->f_data = NULL;
1217 	pipeclose(fp, pipe);
1218 	return (0);
1219 }
1220 
1221 static void
1222 pipe_free_kmem(struct pipe *pipe)
1223 {
1224 
1225 	if (pipe->pipe_buffer.buffer != NULL) {
1226 		if (pipe->pipe_buffer.size > PIPE_SIZE)
1227 			atomic_dec_uint(&nbigpipe);
1228 		uvm_km_free(kernel_map,
1229 			(vaddr_t)pipe->pipe_buffer.buffer,
1230 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1231 		atomic_add_int(&amountpipekva, -pipe->pipe_buffer.size);
1232 		pipe->pipe_buffer.buffer = NULL;
1233 	}
1234 #ifndef PIPE_NODIRECT
1235 	if (pipe->pipe_map.kva != 0) {
1236 		pipe_loan_free(pipe);
1237 		pipe->pipe_map.cnt = 0;
1238 		pipe->pipe_map.kva = 0;
1239 		pipe->pipe_map.pos = 0;
1240 		pipe->pipe_map.npages = 0;
1241 	}
1242 #endif /* !PIPE_NODIRECT */
1243 }
1244 
1245 /*
1246  * shutdown the pipe
1247  */
1248 static void
1249 pipeclose(struct file *fp, struct pipe *pipe)
1250 {
1251 	struct pipe_mutex *mutex;
1252 	kmutex_t *lock;
1253 	struct pipe *ppipe;
1254 	u_int refcnt;
1255 
1256 	if (pipe == NULL)
1257 		return;
1258 	lock = pipe->pipe_lock;
1259 	mutex_enter(lock);
1260 	pipeselwakeup(pipe, pipe, POLL_HUP);
1261 
1262 	/*
1263 	 * If the other side is blocked, wake it up saying that
1264 	 * we want to close it down.
1265 	 */
1266 	pipe->pipe_state |= PIPE_EOF;
1267 	if (pipe->pipe_busy) {
1268 		while (pipe->pipe_busy) {
1269 			cv_broadcast(&pipe->pipe_cv);
1270 			cv_wait_sig(&pipe->pipe_cv, lock);
1271 		}
1272 	}
1273 
1274 	/*
1275 	 * Disconnect from peer
1276 	 */
1277 	if ((ppipe = pipe->pipe_peer) != NULL) {
1278 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
1279 		ppipe->pipe_state |= PIPE_EOF;
1280 		cv_broadcast(&ppipe->pipe_cv);
1281 		ppipe->pipe_peer = NULL;
1282 	}
1283 
1284 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1285 
1286 	mutex = (struct pipe_mutex *)lock;
1287 	refcnt = --(mutex->pm_refcnt);
1288 	KASSERT(refcnt == 0 || refcnt == 1);
1289 	mutex_exit(lock);
1290 
1291 	/*
1292 	 * free resources
1293 	 */
1294 	pipe_free_kmem(pipe);
1295 	cv_destroy(&pipe->pipe_cv);
1296 	cv_destroy(&pipe->pipe_lkcv);
1297 	seldestroy(&pipe->pipe_sel);
1298 	pool_cache_put(pipe_cache, pipe);
1299 	if (refcnt == 0)
1300 		pool_cache_put(pipe_mutex_cache, mutex);
1301 }
1302 
1303 static void
1304 filt_pipedetach(struct knote *kn)
1305 {
1306 	struct pipe *pipe;
1307 	kmutex_t *lock;
1308 
1309 	pipe = (struct pipe *)kn->kn_fp->f_data;
1310 	lock = pipe->pipe_lock;
1311 
1312 	mutex_enter(lock);
1313 
1314 	switch(kn->kn_filter) {
1315 	case EVFILT_WRITE:
1316 		/* need the peer structure, not our own */
1317 		pipe = pipe->pipe_peer;
1318 
1319 		/* if reader end already closed, just return */
1320 		if (pipe == NULL) {
1321 			mutex_exit(lock);
1322 			return;
1323 		}
1324 
1325 		break;
1326 	default:
1327 		/* nothing to do */
1328 		break;
1329 	}
1330 
1331 #ifdef DIAGNOSTIC
1332 	if (kn->kn_hook != pipe)
1333 		panic("filt_pipedetach: inconsistent knote");
1334 #endif
1335 
1336 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1337 	mutex_exit(lock);
1338 }
1339 
1340 /*ARGSUSED*/
1341 static int
1342 filt_piperead(struct knote *kn, long hint)
1343 {
1344 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1345 	struct pipe *wpipe;
1346 
1347 	if ((hint & NOTE_SUBMIT) == 0) {
1348 		mutex_enter(rpipe->pipe_lock);
1349 	}
1350 	wpipe = rpipe->pipe_peer;
1351 	kn->kn_data = rpipe->pipe_buffer.cnt;
1352 
1353 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1354 		kn->kn_data = rpipe->pipe_map.cnt;
1355 
1356 	if ((rpipe->pipe_state & PIPE_EOF) ||
1357 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1358 		kn->kn_flags |= EV_EOF;
1359 		if ((hint & NOTE_SUBMIT) == 0) {
1360 			mutex_exit(rpipe->pipe_lock);
1361 		}
1362 		return (1);
1363 	}
1364 
1365 	if ((hint & NOTE_SUBMIT) == 0) {
1366 		mutex_exit(rpipe->pipe_lock);
1367 	}
1368 	return (kn->kn_data > 0);
1369 }
1370 
1371 /*ARGSUSED*/
1372 static int
1373 filt_pipewrite(struct knote *kn, long hint)
1374 {
1375 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1376 	struct pipe *wpipe;
1377 
1378 	if ((hint & NOTE_SUBMIT) == 0) {
1379 		mutex_enter(rpipe->pipe_lock);
1380 	}
1381 	wpipe = rpipe->pipe_peer;
1382 
1383 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1384 		kn->kn_data = 0;
1385 		kn->kn_flags |= EV_EOF;
1386 		if ((hint & NOTE_SUBMIT) == 0) {
1387 			mutex_exit(rpipe->pipe_lock);
1388 		}
1389 		return (1);
1390 	}
1391 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1392 	if (wpipe->pipe_state & PIPE_DIRECTW)
1393 		kn->kn_data = 0;
1394 
1395 	if ((hint & NOTE_SUBMIT) == 0) {
1396 		mutex_exit(rpipe->pipe_lock);
1397 	}
1398 	return (kn->kn_data >= PIPE_BUF);
1399 }
1400 
1401 static const struct filterops pipe_rfiltops =
1402 	{ 1, NULL, filt_pipedetach, filt_piperead };
1403 static const struct filterops pipe_wfiltops =
1404 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
1405 
1406 /*ARGSUSED*/
1407 static int
1408 pipe_kqfilter(struct file *fp, struct knote *kn)
1409 {
1410 	struct pipe *pipe;
1411 	kmutex_t *lock;
1412 
1413 	pipe = (struct pipe *)kn->kn_fp->f_data;
1414 	lock = pipe->pipe_lock;
1415 
1416 	mutex_enter(lock);
1417 
1418 	switch (kn->kn_filter) {
1419 	case EVFILT_READ:
1420 		kn->kn_fop = &pipe_rfiltops;
1421 		break;
1422 	case EVFILT_WRITE:
1423 		kn->kn_fop = &pipe_wfiltops;
1424 		pipe = pipe->pipe_peer;
1425 		if (pipe == NULL) {
1426 			/* other end of pipe has been closed */
1427 			mutex_exit(lock);
1428 			return (EBADF);
1429 		}
1430 		break;
1431 	default:
1432 		mutex_exit(lock);
1433 		return (EINVAL);
1434 	}
1435 
1436 	kn->kn_hook = pipe;
1437 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1438 	mutex_exit(lock);
1439 
1440 	return (0);
1441 }
1442 
1443 /*
1444  * Handle pipe sysctls.
1445  */
1446 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1447 {
1448 
1449 	sysctl_createv(clog, 0, NULL, NULL,
1450 		       CTLFLAG_PERMANENT,
1451 		       CTLTYPE_NODE, "kern", NULL,
1452 		       NULL, 0, NULL, 0,
1453 		       CTL_KERN, CTL_EOL);
1454 	sysctl_createv(clog, 0, NULL, NULL,
1455 		       CTLFLAG_PERMANENT,
1456 		       CTLTYPE_NODE, "pipe",
1457 		       SYSCTL_DESCR("Pipe settings"),
1458 		       NULL, 0, NULL, 0,
1459 		       CTL_KERN, KERN_PIPE, CTL_EOL);
1460 
1461 	sysctl_createv(clog, 0, NULL, NULL,
1462 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1463 		       CTLTYPE_INT, "maxkvasz",
1464 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
1465 				    "used for pipes"),
1466 		       NULL, 0, &maxpipekva, 0,
1467 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1468 	sysctl_createv(clog, 0, NULL, NULL,
1469 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1470 		       CTLTYPE_INT, "maxloankvasz",
1471 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
1472 		       NULL, 0, &limitpipekva, 0,
1473 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1474 	sysctl_createv(clog, 0, NULL, NULL,
1475 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1476 		       CTLTYPE_INT, "maxbigpipes",
1477 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1478 		       NULL, 0, &maxbigpipes, 0,
1479 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1480 	sysctl_createv(clog, 0, NULL, NULL,
1481 		       CTLFLAG_PERMANENT,
1482 		       CTLTYPE_INT, "nbigpipes",
1483 		       SYSCTL_DESCR("Number of \"big\" pipes"),
1484 		       NULL, 0, &nbigpipe, 0,
1485 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1486 	sysctl_createv(clog, 0, NULL, NULL,
1487 		       CTLFLAG_PERMANENT,
1488 		       CTLTYPE_INT, "kvasize",
1489 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1490 				    "buffers"),
1491 		       NULL, 0, &amountpipekva, 0,
1492 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1493 }
1494