xref: /netbsd-src/sys/kern/sys_lwp.c (revision bd1f9e680783606ba327ccadf6002a15ffbdf514)
1 /*	$NetBSD: sys_lwp.c,v 1.47 2009/10/22 13:12:47 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Lightweight process (LWP) system calls.  See kern_lwp.c for a description
34  * of LWPs.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.47 2009/10/22 13:12:47 rmind Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
51 
52 #include <uvm/uvm_extern.h>
53 
54 #include "opt_sa.h"
55 
56 #define	LWP_UNPARK_MAX		1024
57 
58 static syncobj_t lwp_park_sobj = {
59 	SOBJ_SLEEPQ_LIFO,
60 	sleepq_unsleep,
61 	sleepq_changepri,
62 	sleepq_lendpri,
63 	syncobj_noowner,
64 };
65 
66 static sleeptab_t	lwp_park_tab;
67 
68 void
69 lwp_sys_init(void)
70 {
71 	sleeptab_init(&lwp_park_tab);
72 }
73 
74 int
75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
76     register_t *retval)
77 {
78 	/* {
79 		syscallarg(const ucontext_t *) ucp;
80 		syscallarg(u_long) flags;
81 		syscallarg(lwpid_t *) new_lwp;
82 	} */
83 	struct proc *p = l->l_proc;
84 	struct lwp *l2;
85 	vaddr_t uaddr;
86 	ucontext_t *newuc;
87 	int error, lid;
88 
89 #ifdef KERN_SA
90 	mutex_enter(p->p_lock);
91 	if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
92 		mutex_exit(p->p_lock);
93 		return EINVAL;
94 	}
95 	mutex_exit(p->p_lock);
96 #endif
97 
98 	newuc = pool_get(&lwp_uc_pool, PR_WAITOK);
99 
100 	error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
101 	if (error) {
102 		pool_put(&lwp_uc_pool, newuc);
103 		return error;
104 	}
105 
106 	/* XXX check against resource limits */
107 
108 	uaddr = uvm_uarea_alloc();
109 	if (__predict_false(uaddr == 0)) {
110 		pool_put(&lwp_uc_pool, newuc);
111 		return ENOMEM;
112 	}
113 
114 	error = lwp_create(l, p, uaddr, SCARG(uap, flags) & LWP_DETACHED,
115 	    NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
116 	if (__predict_false(error)) {
117 		uvm_uarea_free(uaddr);
118 		pool_put(&lwp_uc_pool, newuc);
119 		return error;
120 	}
121 
122 	lid = l2->l_lid;
123 	error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
124 	if (error) {
125 		lwp_exit(l2);
126 		pool_put(&lwp_uc_pool, newuc);
127 		return error;
128 	}
129 
130 	/*
131 	 * Set the new LWP running, unless the caller has requested that
132 	 * it be created in suspended state.  If the process is stopping,
133 	 * then the LWP is created stopped.
134 	 */
135 	mutex_enter(p->p_lock);
136 	lwp_lock(l2);
137 	if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
138 	    (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
139 	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0)
140 	    		l2->l_stat = LSSTOP;
141 		else {
142 			KASSERT(lwp_locked(l2, l2->l_cpu->ci_schedstate.spc_mutex));
143 			p->p_nrlwps++;
144 			l2->l_stat = LSRUN;
145 			sched_enqueue(l2, false);
146 		}
147 		lwp_unlock(l2);
148 	} else {
149 		l2->l_stat = LSSUSPENDED;
150 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_lwplock);
151 	}
152 	mutex_exit(p->p_lock);
153 
154 	return 0;
155 }
156 
157 int
158 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
159 {
160 
161 	lwp_exit(l);
162 	return 0;
163 }
164 
165 int
166 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
167 {
168 
169 	*retval = l->l_lid;
170 	return 0;
171 }
172 
173 int
174 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
175 {
176 
177 	*retval = (uintptr_t)l->l_private;
178 	return 0;
179 }
180 
181 int
182 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
183     register_t *retval)
184 {
185 	/* {
186 		syscallarg(void *) ptr;
187 	} */
188 
189 	l->l_private = SCARG(uap, ptr);
190 #ifdef __HAVE_CPU_LWP_SETPRIVATE
191 	cpu_lwp_setprivate(l, SCARG(uap, ptr));
192 #endif
193 
194 	return 0;
195 }
196 
197 int
198 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
199     register_t *retval)
200 {
201 	/* {
202 		syscallarg(lwpid_t) target;
203 	} */
204 	struct proc *p = l->l_proc;
205 	struct lwp *t;
206 	int error;
207 
208 	mutex_enter(p->p_lock);
209 
210 #ifdef KERN_SA
211 	if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
212 		mutex_exit(p->p_lock);
213 		return EINVAL;
214 	}
215 #endif
216 
217 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
218 		mutex_exit(p->p_lock);
219 		return ESRCH;
220 	}
221 
222 	/*
223 	 * Check for deadlock, which is only possible when we're suspending
224 	 * ourself.  XXX There is a short race here, as p_nrlwps is only
225 	 * incremented when an LWP suspends itself on the kernel/user
226 	 * boundary.  It's still possible to kill -9 the process so we
227 	 * don't bother checking further.
228 	 */
229 	lwp_lock(t);
230 	if ((t == l && p->p_nrlwps == 1) ||
231 	    (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
232 		lwp_unlock(t);
233 		mutex_exit(p->p_lock);
234 		return EDEADLK;
235 	}
236 
237 	/*
238 	 * Suspend the LWP.  XXX If it's on a different CPU, we should wait
239 	 * for it to be preempted, where it will put itself to sleep.
240 	 *
241 	 * Suspension of the current LWP will happen on return to userspace.
242 	 */
243 	error = lwp_suspend(l, t);
244 	if (error) {
245 		mutex_exit(p->p_lock);
246 		return error;
247 	}
248 
249 	/*
250 	 * Wait for:
251 	 *  o process exiting
252 	 *  o target LWP suspended
253 	 *  o target LWP not suspended and L_WSUSPEND clear
254 	 *  o target LWP exited
255 	 */
256 	for (;;) {
257 		error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
258 		if (error) {
259 			error = ERESTART;
260 			break;
261 		}
262 		if (lwp_find(p, SCARG(uap, target)) == NULL) {
263 			error = ESRCH;
264 			break;
265 		}
266 		if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
267 			error = ERESTART;
268 			break;
269 		}
270 		if (t->l_stat == LSSUSPENDED ||
271 		    (t->l_flag & LW_WSUSPEND) == 0)
272 			break;
273 	}
274 	mutex_exit(p->p_lock);
275 
276 	return error;
277 }
278 
279 int
280 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
281     register_t *retval)
282 {
283 	/* {
284 		syscallarg(lwpid_t) target;
285 	} */
286 	int error;
287 	struct proc *p = l->l_proc;
288 	struct lwp *t;
289 
290 	error = 0;
291 
292 	mutex_enter(p->p_lock);
293 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
294 		mutex_exit(p->p_lock);
295 		return ESRCH;
296 	}
297 
298 	lwp_lock(t);
299 	lwp_continue(t);
300 	mutex_exit(p->p_lock);
301 
302 	return error;
303 }
304 
305 int
306 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
307     register_t *retval)
308 {
309 	/* {
310 		syscallarg(lwpid_t) target;
311 	} */
312 	struct lwp *t;
313 	struct proc *p;
314 	int error;
315 
316 	p = l->l_proc;
317 	mutex_enter(p->p_lock);
318 
319 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
320 		mutex_exit(p->p_lock);
321 		return ESRCH;
322 	}
323 
324 	lwp_lock(t);
325 	t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
326 
327 	if (t->l_stat != LSSLEEP) {
328 		lwp_unlock(t);
329 		error = ENODEV;
330 	} else if ((t->l_flag & LW_SINTR) == 0) {
331 		lwp_unlock(t);
332 		error = EBUSY;
333 	} else {
334 		/* Wake it up.  lwp_unsleep() will release the LWP lock. */
335 		lwp_unsleep(t, true);
336 		error = 0;
337 	}
338 
339 	mutex_exit(p->p_lock);
340 
341 	return error;
342 }
343 
344 int
345 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
346     register_t *retval)
347 {
348 	/* {
349 		syscallarg(lwpid_t) wait_for;
350 		syscallarg(lwpid_t *) departed;
351 	} */
352 	struct proc *p = l->l_proc;
353 	int error;
354 	lwpid_t dep;
355 
356 	mutex_enter(p->p_lock);
357 	error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
358 	mutex_exit(p->p_lock);
359 
360 	if (error)
361 		return error;
362 
363 	if (SCARG(uap, departed)) {
364 		error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
365 		if (error)
366 			return error;
367 	}
368 
369 	return 0;
370 }
371 
372 int
373 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
374     register_t *retval)
375 {
376 	/* {
377 		syscallarg(lwpid_t)	target;
378 		syscallarg(int)		signo;
379 	} */
380 	struct proc *p = l->l_proc;
381 	struct lwp *t;
382 	ksiginfo_t ksi;
383 	int signo = SCARG(uap, signo);
384 	int error = 0;
385 
386 	if ((u_int)signo >= NSIG)
387 		return EINVAL;
388 
389 	KSI_INIT(&ksi);
390 	ksi.ksi_signo = signo;
391 	ksi.ksi_code = SI_LWP;
392 	ksi.ksi_pid = p->p_pid;
393 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
394 	ksi.ksi_lid = SCARG(uap, target);
395 
396 	mutex_enter(proc_lock);
397 	mutex_enter(p->p_lock);
398 	if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
399 		error = ESRCH;
400 	else if (signo != 0)
401 		kpsignal2(p, &ksi);
402 	mutex_exit(p->p_lock);
403 	mutex_exit(proc_lock);
404 
405 	return error;
406 }
407 
408 int
409 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
410     register_t *retval)
411 {
412 	/* {
413 		syscallarg(lwpid_t)	target;
414 	} */
415 	struct proc *p;
416 	struct lwp *t;
417 	lwpid_t target;
418 	int error;
419 
420 	target = SCARG(uap, target);
421 	p = l->l_proc;
422 
423 	mutex_enter(p->p_lock);
424 
425 	if (l->l_lid == target)
426 		t = l;
427 	else {
428 		/*
429 		 * We can't use lwp_find() here because the target might
430 		 * be a zombie.
431 		 */
432 		LIST_FOREACH(t, &p->p_lwps, l_sibling)
433 			if (t->l_lid == target)
434 				break;
435 	}
436 
437 	/*
438 	 * If the LWP is already detached, there's nothing to do.
439 	 * If it's a zombie, we need to clean up after it.  LSZOMB
440 	 * is visible with the proc mutex held.
441 	 *
442 	 * After we have detached or released the LWP, kick any
443 	 * other LWPs that may be sitting in _lwp_wait(), waiting
444 	 * for the target LWP to exit.
445 	 */
446 	if (t != NULL && t->l_stat != LSIDL) {
447 		if ((t->l_prflag & LPR_DETACHED) == 0) {
448 			p->p_ndlwps++;
449 			t->l_prflag |= LPR_DETACHED;
450 			if (t->l_stat == LSZOMB) {
451 				/* Releases proc mutex. */
452 				lwp_free(t, false, false);
453 				return 0;
454 			}
455 			error = 0;
456 
457 			/*
458 			 * Have any LWPs sleeping in lwp_wait() recheck
459 			 * for deadlock.
460 			 */
461 			cv_broadcast(&p->p_lwpcv);
462 		} else
463 			error = EINVAL;
464 	} else
465 		error = ESRCH;
466 
467 	mutex_exit(p->p_lock);
468 
469 	return error;
470 }
471 
472 static inline wchan_t
473 lwp_park_wchan(struct proc *p, const void *hint)
474 {
475 
476 	return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
477 }
478 
479 int
480 lwp_unpark(lwpid_t target, const void *hint)
481 {
482 	sleepq_t *sq;
483 	wchan_t wchan;
484 	kmutex_t *mp;
485 	proc_t *p;
486 	lwp_t *t;
487 
488 	/*
489 	 * Easy case: search for the LWP on the sleep queue.  If
490 	 * it's parked, remove it from the queue and set running.
491 	 */
492 	p = curproc;
493 	wchan = lwp_park_wchan(p, hint);
494 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
495 
496 	TAILQ_FOREACH(t, sq, l_sleepchain)
497 		if (t->l_proc == p && t->l_lid == target)
498 			break;
499 
500 	if (__predict_true(t != NULL)) {
501 		sleepq_remove(sq, t);
502 		mutex_spin_exit(mp);
503 		return 0;
504 	}
505 
506 	/*
507 	 * The LWP hasn't parked yet.  Take the hit and mark the
508 	 * operation as pending.
509 	 */
510 	mutex_spin_exit(mp);
511 
512 	mutex_enter(p->p_lock);
513 	if ((t = lwp_find(p, target)) == NULL) {
514 		mutex_exit(p->p_lock);
515 		return ESRCH;
516 	}
517 
518 	/*
519 	 * It may not have parked yet, we may have raced, or it
520 	 * is parked on a different user sync object.
521 	 */
522 	lwp_lock(t);
523 	if (t->l_syncobj == &lwp_park_sobj) {
524 		/* Releases the LWP lock. */
525 		lwp_unsleep(t, true);
526 	} else {
527 		/*
528 		 * Set the operation pending.  The next call to _lwp_park
529 		 * will return early.
530 		 */
531 		t->l_flag |= LW_UNPARKED;
532 		lwp_unlock(t);
533 	}
534 
535 	mutex_exit(p->p_lock);
536 	return 0;
537 }
538 
539 int
540 lwp_park(struct timespec *ts, const void *hint)
541 {
542 	struct timespec tsx;
543 	sleepq_t *sq;
544 	kmutex_t *mp;
545 	wchan_t wchan;
546 	int timo, error;
547 	lwp_t *l;
548 
549 	/* Fix up the given timeout value. */
550 	if (ts != NULL) {
551 		getnanotime(&tsx);
552 		timespecsub(ts, &tsx, &tsx);
553 		if (tsx.tv_sec < 0 || (tsx.tv_sec == 0 && tsx.tv_nsec <= 0))
554 			return ETIMEDOUT;
555 		if ((error = itimespecfix(&tsx)) != 0)
556 			return error;
557 		timo = tstohz(&tsx);
558 		KASSERT(timo != 0);
559 	} else
560 		timo = 0;
561 
562 	/* Find and lock the sleep queue. */
563 	l = curlwp;
564 	wchan = lwp_park_wchan(l->l_proc, hint);
565 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
566 
567 	/*
568 	 * Before going the full route and blocking, check to see if an
569 	 * unpark op is pending.
570 	 */
571 	lwp_lock(l);
572 	if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
573 		l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
574 		lwp_unlock(l);
575 		mutex_spin_exit(mp);
576 		return EALREADY;
577 	}
578 	lwp_unlock_to(l, mp);
579 	l->l_biglocks = 0;
580 	sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
581 	error = sleepq_block(timo, true);
582 	switch (error) {
583 	case EWOULDBLOCK:
584 		error = ETIMEDOUT;
585 		break;
586 	case ERESTART:
587 		error = EINTR;
588 		break;
589 	default:
590 		/* nothing */
591 		break;
592 	}
593 	return error;
594 }
595 
596 /*
597  * 'park' an LWP waiting on a user-level synchronisation object.  The LWP
598  * will remain parked until another LWP in the same process calls in and
599  * requests that it be unparked.
600  */
601 int
602 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
603     register_t *retval)
604 {
605 	/* {
606 		syscallarg(const struct timespec *)	ts;
607 		syscallarg(lwpid_t)			unpark;
608 		syscallarg(const void *)		hint;
609 		syscallarg(const void *)		unparkhint;
610 	} */
611 	struct timespec ts, *tsp;
612 	int error;
613 
614 	if (SCARG(uap, ts) == NULL)
615 		tsp = NULL;
616 	else {
617 		error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
618 		if (error != 0)
619 			return error;
620 		tsp = &ts;
621 	}
622 
623 	if (SCARG(uap, unpark) != 0) {
624 		error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
625 		if (error != 0)
626 			return error;
627 	}
628 
629 	return lwp_park(tsp, SCARG(uap, hint));
630 }
631 
632 int
633 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
634     register_t *retval)
635 {
636 	/* {
637 		syscallarg(lwpid_t)		target;
638 		syscallarg(const void *)	hint;
639 	} */
640 
641 	return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
642 }
643 
644 int
645 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
646     register_t *retval)
647 {
648 	/* {
649 		syscallarg(const lwpid_t *)	targets;
650 		syscallarg(size_t)		ntargets;
651 		syscallarg(const void *)	hint;
652 	} */
653 	struct proc *p;
654 	struct lwp *t;
655 	sleepq_t *sq;
656 	wchan_t wchan;
657 	lwpid_t targets[32], *tp, *tpp, *tmax, target;
658 	int error;
659 	kmutex_t *mp;
660 	u_int ntargets;
661 	size_t sz;
662 
663 	p = l->l_proc;
664 	ntargets = SCARG(uap, ntargets);
665 
666 	if (SCARG(uap, targets) == NULL) {
667 		/*
668 		 * Let the caller know how much we are willing to do, and
669 		 * let it unpark the LWPs in blocks.
670 		 */
671 		*retval = LWP_UNPARK_MAX;
672 		return 0;
673 	}
674 	if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
675 		return EINVAL;
676 
677 	/*
678 	 * Copy in the target array.  If it's a small number of LWPs, then
679 	 * place the numbers on the stack.
680 	 */
681 	sz = sizeof(target) * ntargets;
682 	if (sz <= sizeof(targets))
683 		tp = targets;
684 	else {
685 		tp = kmem_alloc(sz, KM_SLEEP);
686 		if (tp == NULL)
687 			return ENOMEM;
688 	}
689 	error = copyin(SCARG(uap, targets), tp, sz);
690 	if (error != 0) {
691 		if (tp != targets) {
692 			kmem_free(tp, sz);
693 		}
694 		return error;
695 	}
696 
697 	wchan = lwp_park_wchan(p, SCARG(uap, hint));
698 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
699 
700 	for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
701 		target = *tpp;
702 
703 		/*
704 		 * Easy case: search for the LWP on the sleep queue.  If
705 		 * it's parked, remove it from the queue and set running.
706 		 */
707 		TAILQ_FOREACH(t, sq, l_sleepchain)
708 			if (t->l_proc == p && t->l_lid == target)
709 				break;
710 
711 		if (t != NULL) {
712 			sleepq_remove(sq, t);
713 			continue;
714 		}
715 
716 		/*
717 		 * The LWP hasn't parked yet.  Take the hit and
718 		 * mark the operation as pending.
719 		 */
720 		mutex_spin_exit(mp);
721 		mutex_enter(p->p_lock);
722 		if ((t = lwp_find(p, target)) == NULL) {
723 			mutex_exit(p->p_lock);
724 			mutex_spin_enter(mp);
725 			continue;
726 		}
727 		lwp_lock(t);
728 
729 		/*
730 		 * It may not have parked yet, we may have raced, or
731 		 * it is parked on a different user sync object.
732 		 */
733 		if (t->l_syncobj == &lwp_park_sobj) {
734 			/* Releases the LWP lock. */
735 			lwp_unsleep(t, true);
736 		} else {
737 			/*
738 			 * Set the operation pending.  The next call to
739 			 * _lwp_park will return early.
740 			 */
741 			t->l_flag |= LW_UNPARKED;
742 			lwp_unlock(t);
743 		}
744 
745 		mutex_exit(p->p_lock);
746 		mutex_spin_enter(mp);
747 	}
748 
749 	mutex_spin_exit(mp);
750 	if (tp != targets)
751 		kmem_free(tp, sz);
752 
753 	return 0;
754 }
755 
756 int
757 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
758     register_t *retval)
759 {
760 	/* {
761 		syscallarg(lwpid_t)		target;
762 		syscallarg(const char *)	name;
763 	} */
764 	char *name, *oname;
765 	lwpid_t target;
766 	proc_t *p;
767 	lwp_t *t;
768 	int error;
769 
770 	if ((target = SCARG(uap, target)) == 0)
771 		target = l->l_lid;
772 
773 	name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
774 	if (name == NULL)
775 		return ENOMEM;
776 	error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
777 	switch (error) {
778 	case ENAMETOOLONG:
779 	case 0:
780 		name[MAXCOMLEN - 1] = '\0';
781 		break;
782 	default:
783 		kmem_free(name, MAXCOMLEN);
784 		return error;
785 	}
786 
787 	p = curproc;
788 	mutex_enter(p->p_lock);
789 	if ((t = lwp_find(p, target)) == NULL) {
790 		mutex_exit(p->p_lock);
791 		kmem_free(name, MAXCOMLEN);
792 		return ESRCH;
793 	}
794 	lwp_lock(t);
795 	oname = t->l_name;
796 	t->l_name = name;
797 	lwp_unlock(t);
798 	mutex_exit(p->p_lock);
799 
800 	if (oname != NULL)
801 		kmem_free(oname, MAXCOMLEN);
802 
803 	return 0;
804 }
805 
806 int
807 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
808     register_t *retval)
809 {
810 	/* {
811 		syscallarg(lwpid_t)		target;
812 		syscallarg(char *)		name;
813 		syscallarg(size_t)		len;
814 	} */
815 	char name[MAXCOMLEN];
816 	lwpid_t target;
817 	proc_t *p;
818 	lwp_t *t;
819 
820 	if ((target = SCARG(uap, target)) == 0)
821 		target = l->l_lid;
822 
823 	p = curproc;
824 	mutex_enter(p->p_lock);
825 	if ((t = lwp_find(p, target)) == NULL) {
826 		mutex_exit(p->p_lock);
827 		return ESRCH;
828 	}
829 	lwp_lock(t);
830 	if (t->l_name == NULL)
831 		name[0] = '\0';
832 	else
833 		strcpy(name, t->l_name);
834 	lwp_unlock(t);
835 	mutex_exit(p->p_lock);
836 
837 	return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
838 }
839 
840 int
841 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
842     register_t *retval)
843 {
844 	/* {
845 		syscallarg(int)			features;
846 		syscallarg(struct lwpctl **)	address;
847 	} */
848 	int error, features;
849 	vaddr_t vaddr;
850 
851 	features = SCARG(uap, features);
852 	features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
853 	if (features != 0)
854 		return ENODEV;
855 	if ((error = lwp_ctl_alloc(&vaddr)) != 0)
856 		return error;
857 	return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
858 }
859