xref: /netbsd-src/sys/kern/sys_lwp.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: sys_lwp.c,v 1.61 2017/06/01 02:45:13 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Lightweight process (LWP) system calls.  See kern_lwp.c for a description
34  * of LWPs.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.61 2017/06/01 02:45:13 chs Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
51 
52 #include <uvm/uvm_extern.h>
53 
54 #define	LWP_UNPARK_MAX		1024
55 
56 static syncobj_t lwp_park_sobj = {
57 	SOBJ_SLEEPQ_LIFO,
58 	sleepq_unsleep,
59 	sleepq_changepri,
60 	sleepq_lendpri,
61 	syncobj_noowner,
62 };
63 
64 static sleeptab_t	lwp_park_tab;
65 
66 void
67 lwp_sys_init(void)
68 {
69 	sleeptab_init(&lwp_park_tab);
70 }
71 
72 int
73 do_lwp_create(lwp_t *l, void *arg, u_long flags, lwpid_t *new_lwp,
74     const sigset_t *sigmask, const stack_t *sigstk)
75 {
76 	struct proc *p = l->l_proc;
77 	struct lwp *l2;
78 	struct schedstate_percpu *spc;
79 	vaddr_t uaddr;
80 	int error;
81 
82 	/* XXX check against resource limits */
83 
84 	uaddr = uvm_uarea_alloc();
85 	if (__predict_false(uaddr == 0))
86 		return ENOMEM;
87 
88 	error = lwp_create(l, p, uaddr, flags & LWP_DETACHED, NULL, 0,
89 	    p->p_emul->e_startlwp, arg, &l2, l->l_class, sigmask, &SS_INIT);
90 	if (__predict_false(error)) {
91 		uvm_uarea_free(uaddr);
92 		return error;
93 	}
94 
95 	*new_lwp = l2->l_lid;
96 
97 	/*
98 	 * Set the new LWP running, unless the caller has requested that
99 	 * it be created in suspended state.  If the process is stopping,
100 	 * then the LWP is created stopped.
101 	 */
102 	mutex_enter(p->p_lock);
103 	lwp_lock(l2);
104 	spc = &l2->l_cpu->ci_schedstate;
105 	if ((flags & LWP_SUSPENDED) == 0 &&
106 	    (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
107 	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
108 			KASSERT(l2->l_wchan == NULL);
109 	    		l2->l_stat = LSSTOP;
110 			p->p_nrlwps--;
111 			lwp_unlock_to(l2, spc->spc_lwplock);
112 		} else {
113 			KASSERT(lwp_locked(l2, spc->spc_mutex));
114 			l2->l_stat = LSRUN;
115 			sched_enqueue(l2, false);
116 			lwp_unlock(l2);
117 		}
118 	} else {
119 		l2->l_stat = LSSUSPENDED;
120 		p->p_nrlwps--;
121 		lwp_unlock_to(l2, spc->spc_lwplock);
122 	}
123 	mutex_exit(p->p_lock);
124 
125 	return 0;
126 }
127 
128 int
129 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
130     register_t *retval)
131 {
132 	/* {
133 		syscallarg(const ucontext_t *) ucp;
134 		syscallarg(u_long) flags;
135 		syscallarg(lwpid_t *) new_lwp;
136 	} */
137 	struct proc *p = l->l_proc;
138 	ucontext_t *newuc;
139 	lwpid_t lid;
140 	int error;
141 
142 	newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
143 	error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
144 	if (error)
145 		goto fail;
146 
147 	/* validate the ucontext */
148 	if ((newuc->uc_flags & _UC_CPU) == 0) {
149 		error = EINVAL;
150 		goto fail;
151 	}
152 	error = cpu_mcontext_validate(l, &newuc->uc_mcontext);
153 	if (error)
154 		goto fail;
155 
156 	const sigset_t *sigmask = newuc->uc_flags & _UC_SIGMASK ?
157 	    &newuc->uc_sigmask : &l->l_sigmask;
158 	error = do_lwp_create(l, newuc, SCARG(uap, flags), &lid, sigmask,
159 	    &SS_INIT);
160 	if (error)
161 		goto fail;
162 
163 	/*
164 	 * do not free ucontext in case of an error here,
165 	 * the lwp will actually run and access it
166 	 */
167 	return copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
168 
169 fail:
170 	kmem_free(newuc, sizeof(ucontext_t));
171 	return error;
172 }
173 
174 int
175 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
176 {
177 
178 	lwp_exit(l);
179 	return 0;
180 }
181 
182 int
183 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
184 {
185 
186 	*retval = l->l_lid;
187 	return 0;
188 }
189 
190 int
191 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
192 {
193 
194 	*retval = (uintptr_t)l->l_private;
195 	return 0;
196 }
197 
198 int
199 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
200     register_t *retval)
201 {
202 	/* {
203 		syscallarg(void *) ptr;
204 	} */
205 
206 	return lwp_setprivate(l, SCARG(uap, ptr));
207 }
208 
209 int
210 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
211     register_t *retval)
212 {
213 	/* {
214 		syscallarg(lwpid_t) target;
215 	} */
216 	struct proc *p = l->l_proc;
217 	struct lwp *t;
218 	int error;
219 
220 	mutex_enter(p->p_lock);
221 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
222 		mutex_exit(p->p_lock);
223 		return ESRCH;
224 	}
225 
226 	/*
227 	 * Check for deadlock, which is only possible when we're suspending
228 	 * ourself.  XXX There is a short race here, as p_nrlwps is only
229 	 * incremented when an LWP suspends itself on the kernel/user
230 	 * boundary.  It's still possible to kill -9 the process so we
231 	 * don't bother checking further.
232 	 */
233 	lwp_lock(t);
234 	if ((t == l && p->p_nrlwps == 1) ||
235 	    (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
236 		lwp_unlock(t);
237 		mutex_exit(p->p_lock);
238 		return EDEADLK;
239 	}
240 
241 	/*
242 	 * Suspend the LWP.  XXX If it's on a different CPU, we should wait
243 	 * for it to be preempted, where it will put itself to sleep.
244 	 *
245 	 * Suspension of the current LWP will happen on return to userspace.
246 	 */
247 	error = lwp_suspend(l, t);
248 	if (error) {
249 		mutex_exit(p->p_lock);
250 		return error;
251 	}
252 
253 	/*
254 	 * Wait for:
255 	 *  o process exiting
256 	 *  o target LWP suspended
257 	 *  o target LWP not suspended and L_WSUSPEND clear
258 	 *  o target LWP exited
259 	 */
260 	for (;;) {
261 		error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
262 		if (error) {
263 			error = ERESTART;
264 			break;
265 		}
266 		if (lwp_find(p, SCARG(uap, target)) == NULL) {
267 			error = ESRCH;
268 			break;
269 		}
270 		if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
271 			error = ERESTART;
272 			break;
273 		}
274 		if (t->l_stat == LSSUSPENDED ||
275 		    (t->l_flag & LW_WSUSPEND) == 0)
276 			break;
277 	}
278 	mutex_exit(p->p_lock);
279 
280 	return error;
281 }
282 
283 int
284 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
285     register_t *retval)
286 {
287 	/* {
288 		syscallarg(lwpid_t) target;
289 	} */
290 	int error;
291 	struct proc *p = l->l_proc;
292 	struct lwp *t;
293 
294 	error = 0;
295 
296 	mutex_enter(p->p_lock);
297 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
298 		mutex_exit(p->p_lock);
299 		return ESRCH;
300 	}
301 
302 	lwp_lock(t);
303 	lwp_continue(t);
304 	mutex_exit(p->p_lock);
305 
306 	return error;
307 }
308 
309 int
310 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
311     register_t *retval)
312 {
313 	/* {
314 		syscallarg(lwpid_t) target;
315 	} */
316 	struct lwp *t;
317 	struct proc *p;
318 	int error;
319 
320 	p = l->l_proc;
321 	mutex_enter(p->p_lock);
322 
323 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
324 		mutex_exit(p->p_lock);
325 		return ESRCH;
326 	}
327 
328 	lwp_lock(t);
329 	t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
330 
331 	if (t->l_stat != LSSLEEP) {
332 		lwp_unlock(t);
333 		error = ENODEV;
334 	} else if ((t->l_flag & LW_SINTR) == 0) {
335 		lwp_unlock(t);
336 		error = EBUSY;
337 	} else {
338 		/* Wake it up.  lwp_unsleep() will release the LWP lock. */
339 		lwp_unsleep(t, true);
340 		error = 0;
341 	}
342 
343 	mutex_exit(p->p_lock);
344 
345 	return error;
346 }
347 
348 int
349 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
350     register_t *retval)
351 {
352 	/* {
353 		syscallarg(lwpid_t) wait_for;
354 		syscallarg(lwpid_t *) departed;
355 	} */
356 	struct proc *p = l->l_proc;
357 	int error;
358 	lwpid_t dep;
359 
360 	mutex_enter(p->p_lock);
361 	error = lwp_wait(l, SCARG(uap, wait_for), &dep, false);
362 	mutex_exit(p->p_lock);
363 
364 	if (!error && SCARG(uap, departed)) {
365 		error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
366 	}
367 
368 	return error;
369 }
370 
371 int
372 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
373     register_t *retval)
374 {
375 	/* {
376 		syscallarg(lwpid_t)	target;
377 		syscallarg(int)		signo;
378 	} */
379 	struct proc *p = l->l_proc;
380 	struct lwp *t;
381 	ksiginfo_t ksi;
382 	int signo = SCARG(uap, signo);
383 	int error = 0;
384 
385 	if ((u_int)signo >= NSIG)
386 		return EINVAL;
387 
388 	KSI_INIT(&ksi);
389 	ksi.ksi_signo = signo;
390 	ksi.ksi_code = SI_LWP;
391 	ksi.ksi_pid = p->p_pid;
392 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
393 	ksi.ksi_lid = SCARG(uap, target);
394 
395 	mutex_enter(proc_lock);
396 	mutex_enter(p->p_lock);
397 	if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
398 		error = ESRCH;
399 	else if (signo != 0)
400 		kpsignal2(p, &ksi);
401 	mutex_exit(p->p_lock);
402 	mutex_exit(proc_lock);
403 
404 	return error;
405 }
406 
407 int
408 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
409     register_t *retval)
410 {
411 	/* {
412 		syscallarg(lwpid_t)	target;
413 	} */
414 	struct proc *p;
415 	struct lwp *t;
416 	lwpid_t target;
417 	int error;
418 
419 	target = SCARG(uap, target);
420 	p = l->l_proc;
421 
422 	mutex_enter(p->p_lock);
423 
424 	if (l->l_lid == target)
425 		t = l;
426 	else {
427 		/*
428 		 * We can't use lwp_find() here because the target might
429 		 * be a zombie.
430 		 */
431 		LIST_FOREACH(t, &p->p_lwps, l_sibling)
432 			if (t->l_lid == target)
433 				break;
434 	}
435 
436 	/*
437 	 * If the LWP is already detached, there's nothing to do.
438 	 * If it's a zombie, we need to clean up after it.  LSZOMB
439 	 * is visible with the proc mutex held.
440 	 *
441 	 * After we have detached or released the LWP, kick any
442 	 * other LWPs that may be sitting in _lwp_wait(), waiting
443 	 * for the target LWP to exit.
444 	 */
445 	if (t != NULL && t->l_stat != LSIDL) {
446 		if ((t->l_prflag & LPR_DETACHED) == 0) {
447 			p->p_ndlwps++;
448 			t->l_prflag |= LPR_DETACHED;
449 			if (t->l_stat == LSZOMB) {
450 				/* Releases proc mutex. */
451 				lwp_free(t, false, false);
452 				return 0;
453 			}
454 			error = 0;
455 
456 			/*
457 			 * Have any LWPs sleeping in lwp_wait() recheck
458 			 * for deadlock.
459 			 */
460 			cv_broadcast(&p->p_lwpcv);
461 		} else
462 			error = EINVAL;
463 	} else
464 		error = ESRCH;
465 
466 	mutex_exit(p->p_lock);
467 
468 	return error;
469 }
470 
471 static inline wchan_t
472 lwp_park_wchan(struct proc *p, const void *hint)
473 {
474 
475 	return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
476 }
477 
478 int
479 lwp_unpark(lwpid_t target, const void *hint)
480 {
481 	sleepq_t *sq;
482 	wchan_t wchan;
483 	kmutex_t *mp;
484 	proc_t *p;
485 	lwp_t *t;
486 
487 	/*
488 	 * Easy case: search for the LWP on the sleep queue.  If
489 	 * it's parked, remove it from the queue and set running.
490 	 */
491 	p = curproc;
492 	wchan = lwp_park_wchan(p, hint);
493 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
494 
495 	TAILQ_FOREACH(t, sq, l_sleepchain)
496 		if (t->l_proc == p && t->l_lid == target)
497 			break;
498 
499 	if (__predict_true(t != NULL)) {
500 		sleepq_remove(sq, t);
501 		mutex_spin_exit(mp);
502 		return 0;
503 	}
504 
505 	/*
506 	 * The LWP hasn't parked yet.  Take the hit and mark the
507 	 * operation as pending.
508 	 */
509 	mutex_spin_exit(mp);
510 
511 	mutex_enter(p->p_lock);
512 	if ((t = lwp_find(p, target)) == NULL) {
513 		mutex_exit(p->p_lock);
514 		return ESRCH;
515 	}
516 
517 	/*
518 	 * It may not have parked yet, we may have raced, or it
519 	 * is parked on a different user sync object.
520 	 */
521 	lwp_lock(t);
522 	if (t->l_syncobj == &lwp_park_sobj) {
523 		/* Releases the LWP lock. */
524 		lwp_unsleep(t, true);
525 	} else {
526 		/*
527 		 * Set the operation pending.  The next call to _lwp_park
528 		 * will return early.
529 		 */
530 		t->l_flag |= LW_UNPARKED;
531 		lwp_unlock(t);
532 	}
533 
534 	mutex_exit(p->p_lock);
535 	return 0;
536 }
537 
538 int
539 lwp_park(clockid_t clock_id, int flags, struct timespec *ts, const void *hint)
540 {
541 	sleepq_t *sq;
542 	kmutex_t *mp;
543 	wchan_t wchan;
544 	int timo, error;
545 	lwp_t *l;
546 
547 	if (ts != NULL) {
548 		if ((error = ts2timo(clock_id, flags, ts, &timo, NULL)) != 0)
549 			return error;
550 		KASSERT(timo != 0);
551 	} else {
552 		timo = 0;
553 	}
554 
555 	/* Find and lock the sleep queue. */
556 	l = curlwp;
557 	wchan = lwp_park_wchan(l->l_proc, hint);
558 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
559 
560 	/*
561 	 * Before going the full route and blocking, check to see if an
562 	 * unpark op is pending.
563 	 */
564 	lwp_lock(l);
565 	if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
566 		l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
567 		lwp_unlock(l);
568 		mutex_spin_exit(mp);
569 		return EALREADY;
570 	}
571 	lwp_unlock_to(l, mp);
572 	l->l_biglocks = 0;
573 	sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
574 	error = sleepq_block(timo, true);
575 	switch (error) {
576 	case EWOULDBLOCK:
577 		error = ETIMEDOUT;
578 		break;
579 	case ERESTART:
580 		error = EINTR;
581 		break;
582 	default:
583 		/* nothing */
584 		break;
585 	}
586 	return error;
587 }
588 
589 /*
590  * 'park' an LWP waiting on a user-level synchronisation object.  The LWP
591  * will remain parked until another LWP in the same process calls in and
592  * requests that it be unparked.
593  */
594 int
595 sys____lwp_park60(struct lwp *l, const struct sys____lwp_park60_args *uap,
596     register_t *retval)
597 {
598 	/* {
599 		syscallarg(clockid_t)			clock_id;
600 		syscallarg(int)				flags;
601 		syscallarg(const struct timespec *)	ts;
602 		syscallarg(lwpid_t)			unpark;
603 		syscallarg(const void *)		hint;
604 		syscallarg(const void *)		unparkhint;
605 	} */
606 	struct timespec ts, *tsp;
607 	int error;
608 
609 	if (SCARG(uap, ts) == NULL)
610 		tsp = NULL;
611 	else {
612 		error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
613 		if (error != 0)
614 			return error;
615 		tsp = &ts;
616 	}
617 
618 	if (SCARG(uap, unpark) != 0) {
619 		error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
620 		if (error != 0)
621 			return error;
622 	}
623 
624 	return lwp_park(SCARG(uap, clock_id), SCARG(uap, flags), tsp,
625 	    SCARG(uap, hint));
626 }
627 
628 int
629 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
630     register_t *retval)
631 {
632 	/* {
633 		syscallarg(lwpid_t)		target;
634 		syscallarg(const void *)	hint;
635 	} */
636 
637 	return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
638 }
639 
640 int
641 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
642     register_t *retval)
643 {
644 	/* {
645 		syscallarg(const lwpid_t *)	targets;
646 		syscallarg(size_t)		ntargets;
647 		syscallarg(const void *)	hint;
648 	} */
649 	struct proc *p;
650 	struct lwp *t;
651 	sleepq_t *sq;
652 	wchan_t wchan;
653 	lwpid_t targets[32], *tp, *tpp, *tmax, target;
654 	int error;
655 	kmutex_t *mp;
656 	u_int ntargets;
657 	size_t sz;
658 
659 	p = l->l_proc;
660 	ntargets = SCARG(uap, ntargets);
661 
662 	if (SCARG(uap, targets) == NULL) {
663 		/*
664 		 * Let the caller know how much we are willing to do, and
665 		 * let it unpark the LWPs in blocks.
666 		 */
667 		*retval = LWP_UNPARK_MAX;
668 		return 0;
669 	}
670 	if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
671 		return EINVAL;
672 
673 	/*
674 	 * Copy in the target array.  If it's a small number of LWPs, then
675 	 * place the numbers on the stack.
676 	 */
677 	sz = sizeof(target) * ntargets;
678 	if (sz <= sizeof(targets))
679 		tp = targets;
680 	else
681 		tp = kmem_alloc(sz, KM_SLEEP);
682 	error = copyin(SCARG(uap, targets), tp, sz);
683 	if (error != 0) {
684 		if (tp != targets) {
685 			kmem_free(tp, sz);
686 		}
687 		return error;
688 	}
689 
690 	wchan = lwp_park_wchan(p, SCARG(uap, hint));
691 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
692 
693 	for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
694 		target = *tpp;
695 
696 		/*
697 		 * Easy case: search for the LWP on the sleep queue.  If
698 		 * it's parked, remove it from the queue and set running.
699 		 */
700 		TAILQ_FOREACH(t, sq, l_sleepchain)
701 			if (t->l_proc == p && t->l_lid == target)
702 				break;
703 
704 		if (t != NULL) {
705 			sleepq_remove(sq, t);
706 			continue;
707 		}
708 
709 		/*
710 		 * The LWP hasn't parked yet.  Take the hit and
711 		 * mark the operation as pending.
712 		 */
713 		mutex_spin_exit(mp);
714 		mutex_enter(p->p_lock);
715 		if ((t = lwp_find(p, target)) == NULL) {
716 			mutex_exit(p->p_lock);
717 			mutex_spin_enter(mp);
718 			continue;
719 		}
720 		lwp_lock(t);
721 
722 		/*
723 		 * It may not have parked yet, we may have raced, or
724 		 * it is parked on a different user sync object.
725 		 */
726 		if (t->l_syncobj == &lwp_park_sobj) {
727 			/* Releases the LWP lock. */
728 			lwp_unsleep(t, true);
729 		} else {
730 			/*
731 			 * Set the operation pending.  The next call to
732 			 * _lwp_park will return early.
733 			 */
734 			t->l_flag |= LW_UNPARKED;
735 			lwp_unlock(t);
736 		}
737 
738 		mutex_exit(p->p_lock);
739 		mutex_spin_enter(mp);
740 	}
741 
742 	mutex_spin_exit(mp);
743 	if (tp != targets)
744 		kmem_free(tp, sz);
745 
746 	return 0;
747 }
748 
749 int
750 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
751     register_t *retval)
752 {
753 	/* {
754 		syscallarg(lwpid_t)		target;
755 		syscallarg(const char *)	name;
756 	} */
757 	char *name, *oname;
758 	lwpid_t target;
759 	proc_t *p;
760 	lwp_t *t;
761 	int error;
762 
763 	if ((target = SCARG(uap, target)) == 0)
764 		target = l->l_lid;
765 
766 	name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
767 	error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
768 	switch (error) {
769 	case ENAMETOOLONG:
770 	case 0:
771 		name[MAXCOMLEN - 1] = '\0';
772 		break;
773 	default:
774 		kmem_free(name, MAXCOMLEN);
775 		return error;
776 	}
777 
778 	p = curproc;
779 	mutex_enter(p->p_lock);
780 	if ((t = lwp_find(p, target)) == NULL) {
781 		mutex_exit(p->p_lock);
782 		kmem_free(name, MAXCOMLEN);
783 		return ESRCH;
784 	}
785 	lwp_lock(t);
786 	oname = t->l_name;
787 	t->l_name = name;
788 	lwp_unlock(t);
789 	mutex_exit(p->p_lock);
790 
791 	if (oname != NULL)
792 		kmem_free(oname, MAXCOMLEN);
793 
794 	return 0;
795 }
796 
797 int
798 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
799     register_t *retval)
800 {
801 	/* {
802 		syscallarg(lwpid_t)		target;
803 		syscallarg(char *)		name;
804 		syscallarg(size_t)		len;
805 	} */
806 	char name[MAXCOMLEN];
807 	lwpid_t target;
808 	proc_t *p;
809 	lwp_t *t;
810 
811 	if ((target = SCARG(uap, target)) == 0)
812 		target = l->l_lid;
813 
814 	p = curproc;
815 	mutex_enter(p->p_lock);
816 	if ((t = lwp_find(p, target)) == NULL) {
817 		mutex_exit(p->p_lock);
818 		return ESRCH;
819 	}
820 	lwp_lock(t);
821 	if (t->l_name == NULL)
822 		name[0] = '\0';
823 	else
824 		strlcpy(name, t->l_name, sizeof(name));
825 	lwp_unlock(t);
826 	mutex_exit(p->p_lock);
827 
828 	return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
829 }
830 
831 int
832 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
833     register_t *retval)
834 {
835 	/* {
836 		syscallarg(int)			features;
837 		syscallarg(struct lwpctl **)	address;
838 	} */
839 	int error, features;
840 	vaddr_t vaddr;
841 
842 	features = SCARG(uap, features);
843 	features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
844 	if (features != 0)
845 		return ENODEV;
846 	if ((error = lwp_ctl_alloc(&vaddr)) != 0)
847 		return error;
848 	return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
849 }
850