xref: /netbsd-src/sys/kern/sys_lwp.c (revision 5c46dd73a9bcb28b2994504ea090f64066b17a77)
1 /*	$NetBSD: sys_lwp.c,v 1.51 2010/06/13 04:13:32 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Lightweight process (LWP) system calls.  See kern_lwp.c for a description
34  * of LWPs.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.51 2010/06/13 04:13:32 yamt Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
51 
52 #include <uvm/uvm_extern.h>
53 
54 #include "opt_sa.h"
55 
56 #define	LWP_UNPARK_MAX		1024
57 
58 static syncobj_t lwp_park_sobj = {
59 	SOBJ_SLEEPQ_LIFO,
60 	sleepq_unsleep,
61 	sleepq_changepri,
62 	sleepq_lendpri,
63 	syncobj_noowner,
64 };
65 
66 static sleeptab_t	lwp_park_tab;
67 
68 void
69 lwp_sys_init(void)
70 {
71 	sleeptab_init(&lwp_park_tab);
72 }
73 
74 int
75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
76     register_t *retval)
77 {
78 	/* {
79 		syscallarg(const ucontext_t *) ucp;
80 		syscallarg(u_long) flags;
81 		syscallarg(lwpid_t *) new_lwp;
82 	} */
83 	struct proc *p = l->l_proc;
84 	struct lwp *l2;
85 	struct schedstate_percpu *spc;
86 	vaddr_t uaddr;
87 	ucontext_t *newuc;
88 	int error, lid;
89 
90 #ifdef KERN_SA
91 	mutex_enter(p->p_lock);
92 	if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
93 		mutex_exit(p->p_lock);
94 		return EINVAL;
95 	}
96 	mutex_exit(p->p_lock);
97 #endif
98 
99 	newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
100 	error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
101 	if (error) {
102 		kmem_free(newuc, sizeof(ucontext_t));
103 		return error;
104 	}
105 
106 	/* XXX check against resource limits */
107 
108 	uaddr = uvm_uarea_alloc();
109 	if (__predict_false(uaddr == 0)) {
110 		kmem_free(newuc, sizeof(ucontext_t));
111 		return ENOMEM;
112 	}
113 
114 	error = lwp_create(l, p, uaddr, SCARG(uap, flags) & LWP_DETACHED,
115 	    NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
116 	if (__predict_false(error)) {
117 		uvm_uarea_free(uaddr);
118 		kmem_free(newuc, sizeof(ucontext_t));
119 		return error;
120 	}
121 
122 	lid = l2->l_lid;
123 	error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
124 	if (error) {
125 		lwp_exit(l2);
126 		kmem_free(newuc, sizeof(ucontext_t));
127 		return error;
128 	}
129 
130 	/*
131 	 * Set the new LWP running, unless the caller has requested that
132 	 * it be created in suspended state.  If the process is stopping,
133 	 * then the LWP is created stopped.
134 	 */
135 	mutex_enter(p->p_lock);
136 	lwp_lock(l2);
137 	spc = &l2->l_cpu->ci_schedstate;
138 	if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
139 	    (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
140 	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
141 			KASSERT(l2->l_wchan == NULL);
142 	    		l2->l_stat = LSSTOP;
143 			p->p_nrlwps--;
144 			lwp_unlock_to(l2, spc->spc_lwplock);
145 		} else {
146 			KASSERT(lwp_locked(l2, spc->spc_mutex));
147 			l2->l_stat = LSRUN;
148 			sched_enqueue(l2, false);
149 			lwp_unlock(l2);
150 		}
151 	} else {
152 		l2->l_stat = LSSUSPENDED;
153 		p->p_nrlwps--;
154 		lwp_unlock_to(l2, spc->spc_lwplock);
155 	}
156 	mutex_exit(p->p_lock);
157 
158 	return 0;
159 }
160 
161 int
162 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
163 {
164 
165 	lwp_exit(l);
166 	return 0;
167 }
168 
169 int
170 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
171 {
172 
173 	*retval = l->l_lid;
174 	return 0;
175 }
176 
177 int
178 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
179 {
180 
181 	*retval = (uintptr_t)l->l_private;
182 	return 0;
183 }
184 
185 int
186 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
187     register_t *retval)
188 {
189 	/* {
190 		syscallarg(void *) ptr;
191 	} */
192 
193 	l->l_private = SCARG(uap, ptr);
194 #ifdef __HAVE_CPU_LWP_SETPRIVATE
195 	cpu_lwp_setprivate(l, SCARG(uap, ptr));
196 #endif
197 
198 	return 0;
199 }
200 
201 int
202 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
203     register_t *retval)
204 {
205 	/* {
206 		syscallarg(lwpid_t) target;
207 	} */
208 	struct proc *p = l->l_proc;
209 	struct lwp *t;
210 	int error;
211 
212 	mutex_enter(p->p_lock);
213 
214 #ifdef KERN_SA
215 	if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
216 		mutex_exit(p->p_lock);
217 		return EINVAL;
218 	}
219 #endif
220 
221 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
222 		mutex_exit(p->p_lock);
223 		return ESRCH;
224 	}
225 
226 	/*
227 	 * Check for deadlock, which is only possible when we're suspending
228 	 * ourself.  XXX There is a short race here, as p_nrlwps is only
229 	 * incremented when an LWP suspends itself on the kernel/user
230 	 * boundary.  It's still possible to kill -9 the process so we
231 	 * don't bother checking further.
232 	 */
233 	lwp_lock(t);
234 	if ((t == l && p->p_nrlwps == 1) ||
235 	    (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
236 		lwp_unlock(t);
237 		mutex_exit(p->p_lock);
238 		return EDEADLK;
239 	}
240 
241 	/*
242 	 * Suspend the LWP.  XXX If it's on a different CPU, we should wait
243 	 * for it to be preempted, where it will put itself to sleep.
244 	 *
245 	 * Suspension of the current LWP will happen on return to userspace.
246 	 */
247 	error = lwp_suspend(l, t);
248 	if (error) {
249 		mutex_exit(p->p_lock);
250 		return error;
251 	}
252 
253 	/*
254 	 * Wait for:
255 	 *  o process exiting
256 	 *  o target LWP suspended
257 	 *  o target LWP not suspended and L_WSUSPEND clear
258 	 *  o target LWP exited
259 	 */
260 	for (;;) {
261 		error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
262 		if (error) {
263 			error = ERESTART;
264 			break;
265 		}
266 		if (lwp_find(p, SCARG(uap, target)) == NULL) {
267 			error = ESRCH;
268 			break;
269 		}
270 		if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
271 			error = ERESTART;
272 			break;
273 		}
274 		if (t->l_stat == LSSUSPENDED ||
275 		    (t->l_flag & LW_WSUSPEND) == 0)
276 			break;
277 	}
278 	mutex_exit(p->p_lock);
279 
280 	return error;
281 }
282 
283 int
284 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
285     register_t *retval)
286 {
287 	/* {
288 		syscallarg(lwpid_t) target;
289 	} */
290 	int error;
291 	struct proc *p = l->l_proc;
292 	struct lwp *t;
293 
294 	error = 0;
295 
296 	mutex_enter(p->p_lock);
297 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
298 		mutex_exit(p->p_lock);
299 		return ESRCH;
300 	}
301 
302 	lwp_lock(t);
303 	lwp_continue(t);
304 	mutex_exit(p->p_lock);
305 
306 	return error;
307 }
308 
309 int
310 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
311     register_t *retval)
312 {
313 	/* {
314 		syscallarg(lwpid_t) target;
315 	} */
316 	struct lwp *t;
317 	struct proc *p;
318 	int error;
319 
320 	p = l->l_proc;
321 	mutex_enter(p->p_lock);
322 
323 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
324 		mutex_exit(p->p_lock);
325 		return ESRCH;
326 	}
327 
328 	lwp_lock(t);
329 	t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
330 
331 	if (t->l_stat != LSSLEEP) {
332 		lwp_unlock(t);
333 		error = ENODEV;
334 	} else if ((t->l_flag & LW_SINTR) == 0) {
335 		lwp_unlock(t);
336 		error = EBUSY;
337 	} else {
338 		/* Wake it up.  lwp_unsleep() will release the LWP lock. */
339 		lwp_unsleep(t, true);
340 		error = 0;
341 	}
342 
343 	mutex_exit(p->p_lock);
344 
345 	return error;
346 }
347 
348 int
349 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
350     register_t *retval)
351 {
352 	/* {
353 		syscallarg(lwpid_t) wait_for;
354 		syscallarg(lwpid_t *) departed;
355 	} */
356 	struct proc *p = l->l_proc;
357 	int error;
358 	lwpid_t dep;
359 
360 	mutex_enter(p->p_lock);
361 	error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
362 	mutex_exit(p->p_lock);
363 
364 	if (error)
365 		return error;
366 
367 	if (SCARG(uap, departed)) {
368 		error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
369 		if (error)
370 			return error;
371 	}
372 
373 	return 0;
374 }
375 
376 int
377 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
378     register_t *retval)
379 {
380 	/* {
381 		syscallarg(lwpid_t)	target;
382 		syscallarg(int)		signo;
383 	} */
384 	struct proc *p = l->l_proc;
385 	struct lwp *t;
386 	ksiginfo_t ksi;
387 	int signo = SCARG(uap, signo);
388 	int error = 0;
389 
390 	if ((u_int)signo >= NSIG)
391 		return EINVAL;
392 
393 	KSI_INIT(&ksi);
394 	ksi.ksi_signo = signo;
395 	ksi.ksi_code = SI_LWP;
396 	ksi.ksi_pid = p->p_pid;
397 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
398 	ksi.ksi_lid = SCARG(uap, target);
399 
400 	mutex_enter(proc_lock);
401 	mutex_enter(p->p_lock);
402 	if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
403 		error = ESRCH;
404 	else if (signo != 0)
405 		kpsignal2(p, &ksi);
406 	mutex_exit(p->p_lock);
407 	mutex_exit(proc_lock);
408 
409 	return error;
410 }
411 
412 int
413 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
414     register_t *retval)
415 {
416 	/* {
417 		syscallarg(lwpid_t)	target;
418 	} */
419 	struct proc *p;
420 	struct lwp *t;
421 	lwpid_t target;
422 	int error;
423 
424 	target = SCARG(uap, target);
425 	p = l->l_proc;
426 
427 	mutex_enter(p->p_lock);
428 
429 	if (l->l_lid == target)
430 		t = l;
431 	else {
432 		/*
433 		 * We can't use lwp_find() here because the target might
434 		 * be a zombie.
435 		 */
436 		LIST_FOREACH(t, &p->p_lwps, l_sibling)
437 			if (t->l_lid == target)
438 				break;
439 	}
440 
441 	/*
442 	 * If the LWP is already detached, there's nothing to do.
443 	 * If it's a zombie, we need to clean up after it.  LSZOMB
444 	 * is visible with the proc mutex held.
445 	 *
446 	 * After we have detached or released the LWP, kick any
447 	 * other LWPs that may be sitting in _lwp_wait(), waiting
448 	 * for the target LWP to exit.
449 	 */
450 	if (t != NULL && t->l_stat != LSIDL) {
451 		if ((t->l_prflag & LPR_DETACHED) == 0) {
452 			p->p_ndlwps++;
453 			t->l_prflag |= LPR_DETACHED;
454 			if (t->l_stat == LSZOMB) {
455 				/* Releases proc mutex. */
456 				lwp_free(t, false, false);
457 				return 0;
458 			}
459 			error = 0;
460 
461 			/*
462 			 * Have any LWPs sleeping in lwp_wait() recheck
463 			 * for deadlock.
464 			 */
465 			cv_broadcast(&p->p_lwpcv);
466 		} else
467 			error = EINVAL;
468 	} else
469 		error = ESRCH;
470 
471 	mutex_exit(p->p_lock);
472 
473 	return error;
474 }
475 
476 static inline wchan_t
477 lwp_park_wchan(struct proc *p, const void *hint)
478 {
479 
480 	return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
481 }
482 
483 int
484 lwp_unpark(lwpid_t target, const void *hint)
485 {
486 	sleepq_t *sq;
487 	wchan_t wchan;
488 	kmutex_t *mp;
489 	proc_t *p;
490 	lwp_t *t;
491 
492 	/*
493 	 * Easy case: search for the LWP on the sleep queue.  If
494 	 * it's parked, remove it from the queue and set running.
495 	 */
496 	p = curproc;
497 	wchan = lwp_park_wchan(p, hint);
498 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
499 
500 	TAILQ_FOREACH(t, sq, l_sleepchain)
501 		if (t->l_proc == p && t->l_lid == target)
502 			break;
503 
504 	if (__predict_true(t != NULL)) {
505 		sleepq_remove(sq, t);
506 		mutex_spin_exit(mp);
507 		return 0;
508 	}
509 
510 	/*
511 	 * The LWP hasn't parked yet.  Take the hit and mark the
512 	 * operation as pending.
513 	 */
514 	mutex_spin_exit(mp);
515 
516 	mutex_enter(p->p_lock);
517 	if ((t = lwp_find(p, target)) == NULL) {
518 		mutex_exit(p->p_lock);
519 		return ESRCH;
520 	}
521 
522 	/*
523 	 * It may not have parked yet, we may have raced, or it
524 	 * is parked on a different user sync object.
525 	 */
526 	lwp_lock(t);
527 	if (t->l_syncobj == &lwp_park_sobj) {
528 		/* Releases the LWP lock. */
529 		lwp_unsleep(t, true);
530 	} else {
531 		/*
532 		 * Set the operation pending.  The next call to _lwp_park
533 		 * will return early.
534 		 */
535 		t->l_flag |= LW_UNPARKED;
536 		lwp_unlock(t);
537 	}
538 
539 	mutex_exit(p->p_lock);
540 	return 0;
541 }
542 
543 int
544 lwp_park(struct timespec *ts, const void *hint)
545 {
546 	sleepq_t *sq;
547 	kmutex_t *mp;
548 	wchan_t wchan;
549 	int timo, error;
550 	lwp_t *l;
551 
552 	/* Fix up the given timeout value. */
553 	if (ts != NULL) {
554 		error = abstimeout2timo(ts, &timo);
555 		if (error) {
556 			return error;
557 		}
558 		KASSERT(timo != 0);
559 	} else {
560 		timo = 0;
561 	}
562 
563 	/* Find and lock the sleep queue. */
564 	l = curlwp;
565 	wchan = lwp_park_wchan(l->l_proc, hint);
566 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
567 
568 	/*
569 	 * Before going the full route and blocking, check to see if an
570 	 * unpark op is pending.
571 	 */
572 	lwp_lock(l);
573 	if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
574 		l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
575 		lwp_unlock(l);
576 		mutex_spin_exit(mp);
577 		return EALREADY;
578 	}
579 	lwp_unlock_to(l, mp);
580 	l->l_biglocks = 0;
581 	sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
582 	error = sleepq_block(timo, true);
583 	switch (error) {
584 	case EWOULDBLOCK:
585 		error = ETIMEDOUT;
586 		break;
587 	case ERESTART:
588 		error = EINTR;
589 		break;
590 	default:
591 		/* nothing */
592 		break;
593 	}
594 	return error;
595 }
596 
597 /*
598  * 'park' an LWP waiting on a user-level synchronisation object.  The LWP
599  * will remain parked until another LWP in the same process calls in and
600  * requests that it be unparked.
601  */
602 int
603 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
604     register_t *retval)
605 {
606 	/* {
607 		syscallarg(const struct timespec *)	ts;
608 		syscallarg(lwpid_t)			unpark;
609 		syscallarg(const void *)		hint;
610 		syscallarg(const void *)		unparkhint;
611 	} */
612 	struct timespec ts, *tsp;
613 	int error;
614 
615 	if (SCARG(uap, ts) == NULL)
616 		tsp = NULL;
617 	else {
618 		error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
619 		if (error != 0)
620 			return error;
621 		tsp = &ts;
622 	}
623 
624 	if (SCARG(uap, unpark) != 0) {
625 		error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
626 		if (error != 0)
627 			return error;
628 	}
629 
630 	return lwp_park(tsp, SCARG(uap, hint));
631 }
632 
633 int
634 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
635     register_t *retval)
636 {
637 	/* {
638 		syscallarg(lwpid_t)		target;
639 		syscallarg(const void *)	hint;
640 	} */
641 
642 	return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
643 }
644 
645 int
646 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
647     register_t *retval)
648 {
649 	/* {
650 		syscallarg(const lwpid_t *)	targets;
651 		syscallarg(size_t)		ntargets;
652 		syscallarg(const void *)	hint;
653 	} */
654 	struct proc *p;
655 	struct lwp *t;
656 	sleepq_t *sq;
657 	wchan_t wchan;
658 	lwpid_t targets[32], *tp, *tpp, *tmax, target;
659 	int error;
660 	kmutex_t *mp;
661 	u_int ntargets;
662 	size_t sz;
663 
664 	p = l->l_proc;
665 	ntargets = SCARG(uap, ntargets);
666 
667 	if (SCARG(uap, targets) == NULL) {
668 		/*
669 		 * Let the caller know how much we are willing to do, and
670 		 * let it unpark the LWPs in blocks.
671 		 */
672 		*retval = LWP_UNPARK_MAX;
673 		return 0;
674 	}
675 	if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
676 		return EINVAL;
677 
678 	/*
679 	 * Copy in the target array.  If it's a small number of LWPs, then
680 	 * place the numbers on the stack.
681 	 */
682 	sz = sizeof(target) * ntargets;
683 	if (sz <= sizeof(targets))
684 		tp = targets;
685 	else {
686 		tp = kmem_alloc(sz, KM_SLEEP);
687 		if (tp == NULL)
688 			return ENOMEM;
689 	}
690 	error = copyin(SCARG(uap, targets), tp, sz);
691 	if (error != 0) {
692 		if (tp != targets) {
693 			kmem_free(tp, sz);
694 		}
695 		return error;
696 	}
697 
698 	wchan = lwp_park_wchan(p, SCARG(uap, hint));
699 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
700 
701 	for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
702 		target = *tpp;
703 
704 		/*
705 		 * Easy case: search for the LWP on the sleep queue.  If
706 		 * it's parked, remove it from the queue and set running.
707 		 */
708 		TAILQ_FOREACH(t, sq, l_sleepchain)
709 			if (t->l_proc == p && t->l_lid == target)
710 				break;
711 
712 		if (t != NULL) {
713 			sleepq_remove(sq, t);
714 			continue;
715 		}
716 
717 		/*
718 		 * The LWP hasn't parked yet.  Take the hit and
719 		 * mark the operation as pending.
720 		 */
721 		mutex_spin_exit(mp);
722 		mutex_enter(p->p_lock);
723 		if ((t = lwp_find(p, target)) == NULL) {
724 			mutex_exit(p->p_lock);
725 			mutex_spin_enter(mp);
726 			continue;
727 		}
728 		lwp_lock(t);
729 
730 		/*
731 		 * It may not have parked yet, we may have raced, or
732 		 * it is parked on a different user sync object.
733 		 */
734 		if (t->l_syncobj == &lwp_park_sobj) {
735 			/* Releases the LWP lock. */
736 			lwp_unsleep(t, true);
737 		} else {
738 			/*
739 			 * Set the operation pending.  The next call to
740 			 * _lwp_park will return early.
741 			 */
742 			t->l_flag |= LW_UNPARKED;
743 			lwp_unlock(t);
744 		}
745 
746 		mutex_exit(p->p_lock);
747 		mutex_spin_enter(mp);
748 	}
749 
750 	mutex_spin_exit(mp);
751 	if (tp != targets)
752 		kmem_free(tp, sz);
753 
754 	return 0;
755 }
756 
757 int
758 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
759     register_t *retval)
760 {
761 	/* {
762 		syscallarg(lwpid_t)		target;
763 		syscallarg(const char *)	name;
764 	} */
765 	char *name, *oname;
766 	lwpid_t target;
767 	proc_t *p;
768 	lwp_t *t;
769 	int error;
770 
771 	if ((target = SCARG(uap, target)) == 0)
772 		target = l->l_lid;
773 
774 	name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
775 	if (name == NULL)
776 		return ENOMEM;
777 	error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
778 	switch (error) {
779 	case ENAMETOOLONG:
780 	case 0:
781 		name[MAXCOMLEN - 1] = '\0';
782 		break;
783 	default:
784 		kmem_free(name, MAXCOMLEN);
785 		return error;
786 	}
787 
788 	p = curproc;
789 	mutex_enter(p->p_lock);
790 	if ((t = lwp_find(p, target)) == NULL) {
791 		mutex_exit(p->p_lock);
792 		kmem_free(name, MAXCOMLEN);
793 		return ESRCH;
794 	}
795 	lwp_lock(t);
796 	oname = t->l_name;
797 	t->l_name = name;
798 	lwp_unlock(t);
799 	mutex_exit(p->p_lock);
800 
801 	if (oname != NULL)
802 		kmem_free(oname, MAXCOMLEN);
803 
804 	return 0;
805 }
806 
807 int
808 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
809     register_t *retval)
810 {
811 	/* {
812 		syscallarg(lwpid_t)		target;
813 		syscallarg(char *)		name;
814 		syscallarg(size_t)		len;
815 	} */
816 	char name[MAXCOMLEN];
817 	lwpid_t target;
818 	proc_t *p;
819 	lwp_t *t;
820 
821 	if ((target = SCARG(uap, target)) == 0)
822 		target = l->l_lid;
823 
824 	p = curproc;
825 	mutex_enter(p->p_lock);
826 	if ((t = lwp_find(p, target)) == NULL) {
827 		mutex_exit(p->p_lock);
828 		return ESRCH;
829 	}
830 	lwp_lock(t);
831 	if (t->l_name == NULL)
832 		name[0] = '\0';
833 	else
834 		strcpy(name, t->l_name);
835 	lwp_unlock(t);
836 	mutex_exit(p->p_lock);
837 
838 	return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
839 }
840 
841 int
842 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
843     register_t *retval)
844 {
845 	/* {
846 		syscallarg(int)			features;
847 		syscallarg(struct lwpctl **)	address;
848 	} */
849 	int error, features;
850 	vaddr_t vaddr;
851 
852 	features = SCARG(uap, features);
853 	features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
854 	if (features != 0)
855 		return ENODEV;
856 	if ((error = lwp_ctl_alloc(&vaddr)) != 0)
857 		return error;
858 	return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
859 }
860