xref: /netbsd-src/sys/kern/sys_lwp.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: sys_lwp.c,v 1.54 2012/05/21 14:15:19 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Lightweight process (LWP) system calls.  See kern_lwp.c for a description
34  * of LWPs.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.54 2012/05/21 14:15:19 martin Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
51 
52 #include <uvm/uvm_extern.h>
53 
54 #define	LWP_UNPARK_MAX		1024
55 
56 static syncobj_t lwp_park_sobj = {
57 	SOBJ_SLEEPQ_LIFO,
58 	sleepq_unsleep,
59 	sleepq_changepri,
60 	sleepq_lendpri,
61 	syncobj_noowner,
62 };
63 
64 static sleeptab_t	lwp_park_tab;
65 
66 void
67 lwp_sys_init(void)
68 {
69 	sleeptab_init(&lwp_park_tab);
70 }
71 
72 int
73 do_lwp_create(lwp_t *l, void *arg, u_long flags, lwpid_t *new_lwp)
74 {
75 	struct proc *p = l->l_proc;
76 	struct lwp *l2;
77 	struct schedstate_percpu *spc;
78 	vaddr_t uaddr;
79 	int error;
80 
81 	/* XXX check against resource limits */
82 
83 	uaddr = uvm_uarea_alloc();
84 	if (__predict_false(uaddr == 0))
85 		return ENOMEM;
86 
87 	error = lwp_create(l, p, uaddr, flags & LWP_DETACHED,
88 	    NULL, 0, p->p_emul->e_startlwp, arg, &l2, l->l_class);
89 	if (__predict_false(error)) {
90 		uvm_uarea_free(uaddr);
91 		return error;
92 	}
93 
94 	*new_lwp = l2->l_lid;
95 
96 	/*
97 	 * Set the new LWP running, unless the caller has requested that
98 	 * it be created in suspended state.  If the process is stopping,
99 	 * then the LWP is created stopped.
100 	 */
101 	mutex_enter(p->p_lock);
102 	lwp_lock(l2);
103 	spc = &l2->l_cpu->ci_schedstate;
104 	if ((flags & LWP_SUSPENDED) == 0 &&
105 	    (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
106 	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
107 			KASSERT(l2->l_wchan == NULL);
108 	    		l2->l_stat = LSSTOP;
109 			p->p_nrlwps--;
110 			lwp_unlock_to(l2, spc->spc_lwplock);
111 		} else {
112 			KASSERT(lwp_locked(l2, spc->spc_mutex));
113 			l2->l_stat = LSRUN;
114 			sched_enqueue(l2, false);
115 			lwp_unlock(l2);
116 		}
117 	} else {
118 		l2->l_stat = LSSUSPENDED;
119 		p->p_nrlwps--;
120 		lwp_unlock_to(l2, spc->spc_lwplock);
121 	}
122 	mutex_exit(p->p_lock);
123 
124 	return 0;
125 }
126 
127 int
128 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
129     register_t *retval)
130 {
131 	/* {
132 		syscallarg(const ucontext_t *) ucp;
133 		syscallarg(u_long) flags;
134 		syscallarg(lwpid_t *) new_lwp;
135 	} */
136 	struct proc *p = l->l_proc;
137 	ucontext_t *newuc = NULL;
138 	lwpid_t lid;
139 	int error;
140 
141 	newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
142 	error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
143 	if (error)
144 		goto fail;
145 
146 	/* validate the ucontext */
147 	if ((newuc->uc_flags & _UC_CPU) == 0) {
148 		error = EINVAL;
149 		goto fail;
150 	}
151 	error = cpu_mcontext_validate(l, &newuc->uc_mcontext);
152 	if (error)
153 		goto fail;
154 
155 	error = do_lwp_create(l, newuc, SCARG(uap, flags), &lid);
156 	if (error)
157 		goto fail;
158 
159 	/*
160 	 * do not free ucontext in case of an error here,
161 	 * the lwp will actually run and access it
162 	 */
163 	return copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
164 
165 fail:
166 	kmem_free(newuc, sizeof(ucontext_t));
167 	return error;
168 }
169 
170 int
171 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
172 {
173 
174 	lwp_exit(l);
175 	return 0;
176 }
177 
178 int
179 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
180 {
181 
182 	*retval = l->l_lid;
183 	return 0;
184 }
185 
186 int
187 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
188 {
189 
190 	*retval = (uintptr_t)l->l_private;
191 	return 0;
192 }
193 
194 int
195 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
196     register_t *retval)
197 {
198 	/* {
199 		syscallarg(void *) ptr;
200 	} */
201 
202 	return lwp_setprivate(l, SCARG(uap, ptr));
203 }
204 
205 int
206 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
207     register_t *retval)
208 {
209 	/* {
210 		syscallarg(lwpid_t) target;
211 	} */
212 	struct proc *p = l->l_proc;
213 	struct lwp *t;
214 	int error;
215 
216 	mutex_enter(p->p_lock);
217 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
218 		mutex_exit(p->p_lock);
219 		return ESRCH;
220 	}
221 
222 	/*
223 	 * Check for deadlock, which is only possible when we're suspending
224 	 * ourself.  XXX There is a short race here, as p_nrlwps is only
225 	 * incremented when an LWP suspends itself on the kernel/user
226 	 * boundary.  It's still possible to kill -9 the process so we
227 	 * don't bother checking further.
228 	 */
229 	lwp_lock(t);
230 	if ((t == l && p->p_nrlwps == 1) ||
231 	    (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
232 		lwp_unlock(t);
233 		mutex_exit(p->p_lock);
234 		return EDEADLK;
235 	}
236 
237 	/*
238 	 * Suspend the LWP.  XXX If it's on a different CPU, we should wait
239 	 * for it to be preempted, where it will put itself to sleep.
240 	 *
241 	 * Suspension of the current LWP will happen on return to userspace.
242 	 */
243 	error = lwp_suspend(l, t);
244 	if (error) {
245 		mutex_exit(p->p_lock);
246 		return error;
247 	}
248 
249 	/*
250 	 * Wait for:
251 	 *  o process exiting
252 	 *  o target LWP suspended
253 	 *  o target LWP not suspended and L_WSUSPEND clear
254 	 *  o target LWP exited
255 	 */
256 	for (;;) {
257 		error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
258 		if (error) {
259 			error = ERESTART;
260 			break;
261 		}
262 		if (lwp_find(p, SCARG(uap, target)) == NULL) {
263 			error = ESRCH;
264 			break;
265 		}
266 		if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
267 			error = ERESTART;
268 			break;
269 		}
270 		if (t->l_stat == LSSUSPENDED ||
271 		    (t->l_flag & LW_WSUSPEND) == 0)
272 			break;
273 	}
274 	mutex_exit(p->p_lock);
275 
276 	return error;
277 }
278 
279 int
280 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
281     register_t *retval)
282 {
283 	/* {
284 		syscallarg(lwpid_t) target;
285 	} */
286 	int error;
287 	struct proc *p = l->l_proc;
288 	struct lwp *t;
289 
290 	error = 0;
291 
292 	mutex_enter(p->p_lock);
293 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
294 		mutex_exit(p->p_lock);
295 		return ESRCH;
296 	}
297 
298 	lwp_lock(t);
299 	lwp_continue(t);
300 	mutex_exit(p->p_lock);
301 
302 	return error;
303 }
304 
305 int
306 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
307     register_t *retval)
308 {
309 	/* {
310 		syscallarg(lwpid_t) target;
311 	} */
312 	struct lwp *t;
313 	struct proc *p;
314 	int error;
315 
316 	p = l->l_proc;
317 	mutex_enter(p->p_lock);
318 
319 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
320 		mutex_exit(p->p_lock);
321 		return ESRCH;
322 	}
323 
324 	lwp_lock(t);
325 	t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
326 
327 	if (t->l_stat != LSSLEEP) {
328 		lwp_unlock(t);
329 		error = ENODEV;
330 	} else if ((t->l_flag & LW_SINTR) == 0) {
331 		lwp_unlock(t);
332 		error = EBUSY;
333 	} else {
334 		/* Wake it up.  lwp_unsleep() will release the LWP lock. */
335 		lwp_unsleep(t, true);
336 		error = 0;
337 	}
338 
339 	mutex_exit(p->p_lock);
340 
341 	return error;
342 }
343 
344 int
345 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
346     register_t *retval)
347 {
348 	/* {
349 		syscallarg(lwpid_t) wait_for;
350 		syscallarg(lwpid_t *) departed;
351 	} */
352 	struct proc *p = l->l_proc;
353 	int error;
354 	lwpid_t dep;
355 
356 	mutex_enter(p->p_lock);
357 	error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
358 	mutex_exit(p->p_lock);
359 
360 	if (error)
361 		return error;
362 
363 	if (SCARG(uap, departed)) {
364 		error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
365 		if (error)
366 			return error;
367 	}
368 
369 	return 0;
370 }
371 
372 int
373 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
374     register_t *retval)
375 {
376 	/* {
377 		syscallarg(lwpid_t)	target;
378 		syscallarg(int)		signo;
379 	} */
380 	struct proc *p = l->l_proc;
381 	struct lwp *t;
382 	ksiginfo_t ksi;
383 	int signo = SCARG(uap, signo);
384 	int error = 0;
385 
386 	if ((u_int)signo >= NSIG)
387 		return EINVAL;
388 
389 	KSI_INIT(&ksi);
390 	ksi.ksi_signo = signo;
391 	ksi.ksi_code = SI_LWP;
392 	ksi.ksi_pid = p->p_pid;
393 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
394 	ksi.ksi_lid = SCARG(uap, target);
395 
396 	mutex_enter(proc_lock);
397 	mutex_enter(p->p_lock);
398 	if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
399 		error = ESRCH;
400 	else if (signo != 0)
401 		kpsignal2(p, &ksi);
402 	mutex_exit(p->p_lock);
403 	mutex_exit(proc_lock);
404 
405 	return error;
406 }
407 
408 int
409 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
410     register_t *retval)
411 {
412 	/* {
413 		syscallarg(lwpid_t)	target;
414 	} */
415 	struct proc *p;
416 	struct lwp *t;
417 	lwpid_t target;
418 	int error;
419 
420 	target = SCARG(uap, target);
421 	p = l->l_proc;
422 
423 	mutex_enter(p->p_lock);
424 
425 	if (l->l_lid == target)
426 		t = l;
427 	else {
428 		/*
429 		 * We can't use lwp_find() here because the target might
430 		 * be a zombie.
431 		 */
432 		LIST_FOREACH(t, &p->p_lwps, l_sibling)
433 			if (t->l_lid == target)
434 				break;
435 	}
436 
437 	/*
438 	 * If the LWP is already detached, there's nothing to do.
439 	 * If it's a zombie, we need to clean up after it.  LSZOMB
440 	 * is visible with the proc mutex held.
441 	 *
442 	 * After we have detached or released the LWP, kick any
443 	 * other LWPs that may be sitting in _lwp_wait(), waiting
444 	 * for the target LWP to exit.
445 	 */
446 	if (t != NULL && t->l_stat != LSIDL) {
447 		if ((t->l_prflag & LPR_DETACHED) == 0) {
448 			p->p_ndlwps++;
449 			t->l_prflag |= LPR_DETACHED;
450 			if (t->l_stat == LSZOMB) {
451 				/* Releases proc mutex. */
452 				lwp_free(t, false, false);
453 				return 0;
454 			}
455 			error = 0;
456 
457 			/*
458 			 * Have any LWPs sleeping in lwp_wait() recheck
459 			 * for deadlock.
460 			 */
461 			cv_broadcast(&p->p_lwpcv);
462 		} else
463 			error = EINVAL;
464 	} else
465 		error = ESRCH;
466 
467 	mutex_exit(p->p_lock);
468 
469 	return error;
470 }
471 
472 static inline wchan_t
473 lwp_park_wchan(struct proc *p, const void *hint)
474 {
475 
476 	return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
477 }
478 
479 int
480 lwp_unpark(lwpid_t target, const void *hint)
481 {
482 	sleepq_t *sq;
483 	wchan_t wchan;
484 	kmutex_t *mp;
485 	proc_t *p;
486 	lwp_t *t;
487 
488 	/*
489 	 * Easy case: search for the LWP on the sleep queue.  If
490 	 * it's parked, remove it from the queue and set running.
491 	 */
492 	p = curproc;
493 	wchan = lwp_park_wchan(p, hint);
494 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
495 
496 	TAILQ_FOREACH(t, sq, l_sleepchain)
497 		if (t->l_proc == p && t->l_lid == target)
498 			break;
499 
500 	if (__predict_true(t != NULL)) {
501 		sleepq_remove(sq, t);
502 		mutex_spin_exit(mp);
503 		return 0;
504 	}
505 
506 	/*
507 	 * The LWP hasn't parked yet.  Take the hit and mark the
508 	 * operation as pending.
509 	 */
510 	mutex_spin_exit(mp);
511 
512 	mutex_enter(p->p_lock);
513 	if ((t = lwp_find(p, target)) == NULL) {
514 		mutex_exit(p->p_lock);
515 		return ESRCH;
516 	}
517 
518 	/*
519 	 * It may not have parked yet, we may have raced, or it
520 	 * is parked on a different user sync object.
521 	 */
522 	lwp_lock(t);
523 	if (t->l_syncobj == &lwp_park_sobj) {
524 		/* Releases the LWP lock. */
525 		lwp_unsleep(t, true);
526 	} else {
527 		/*
528 		 * Set the operation pending.  The next call to _lwp_park
529 		 * will return early.
530 		 */
531 		t->l_flag |= LW_UNPARKED;
532 		lwp_unlock(t);
533 	}
534 
535 	mutex_exit(p->p_lock);
536 	return 0;
537 }
538 
539 int
540 lwp_park(struct timespec *ts, const void *hint)
541 {
542 	sleepq_t *sq;
543 	kmutex_t *mp;
544 	wchan_t wchan;
545 	int timo, error;
546 	lwp_t *l;
547 
548 	/* Fix up the given timeout value. */
549 	if (ts != NULL) {
550 		error = abstimeout2timo(ts, &timo);
551 		if (error) {
552 			return error;
553 		}
554 		KASSERT(timo != 0);
555 	} else {
556 		timo = 0;
557 	}
558 
559 	/* Find and lock the sleep queue. */
560 	l = curlwp;
561 	wchan = lwp_park_wchan(l->l_proc, hint);
562 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
563 
564 	/*
565 	 * Before going the full route and blocking, check to see if an
566 	 * unpark op is pending.
567 	 */
568 	lwp_lock(l);
569 	if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
570 		l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
571 		lwp_unlock(l);
572 		mutex_spin_exit(mp);
573 		return EALREADY;
574 	}
575 	lwp_unlock_to(l, mp);
576 	l->l_biglocks = 0;
577 	sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
578 	error = sleepq_block(timo, true);
579 	switch (error) {
580 	case EWOULDBLOCK:
581 		error = ETIMEDOUT;
582 		break;
583 	case ERESTART:
584 		error = EINTR;
585 		break;
586 	default:
587 		/* nothing */
588 		break;
589 	}
590 	return error;
591 }
592 
593 /*
594  * 'park' an LWP waiting on a user-level synchronisation object.  The LWP
595  * will remain parked until another LWP in the same process calls in and
596  * requests that it be unparked.
597  */
598 int
599 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
600     register_t *retval)
601 {
602 	/* {
603 		syscallarg(const struct timespec *)	ts;
604 		syscallarg(lwpid_t)			unpark;
605 		syscallarg(const void *)		hint;
606 		syscallarg(const void *)		unparkhint;
607 	} */
608 	struct timespec ts, *tsp;
609 	int error;
610 
611 	if (SCARG(uap, ts) == NULL)
612 		tsp = NULL;
613 	else {
614 		error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
615 		if (error != 0)
616 			return error;
617 		tsp = &ts;
618 	}
619 
620 	if (SCARG(uap, unpark) != 0) {
621 		error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
622 		if (error != 0)
623 			return error;
624 	}
625 
626 	return lwp_park(tsp, SCARG(uap, hint));
627 }
628 
629 int
630 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
631     register_t *retval)
632 {
633 	/* {
634 		syscallarg(lwpid_t)		target;
635 		syscallarg(const void *)	hint;
636 	} */
637 
638 	return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
639 }
640 
641 int
642 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
643     register_t *retval)
644 {
645 	/* {
646 		syscallarg(const lwpid_t *)	targets;
647 		syscallarg(size_t)		ntargets;
648 		syscallarg(const void *)	hint;
649 	} */
650 	struct proc *p;
651 	struct lwp *t;
652 	sleepq_t *sq;
653 	wchan_t wchan;
654 	lwpid_t targets[32], *tp, *tpp, *tmax, target;
655 	int error;
656 	kmutex_t *mp;
657 	u_int ntargets;
658 	size_t sz;
659 
660 	p = l->l_proc;
661 	ntargets = SCARG(uap, ntargets);
662 
663 	if (SCARG(uap, targets) == NULL) {
664 		/*
665 		 * Let the caller know how much we are willing to do, and
666 		 * let it unpark the LWPs in blocks.
667 		 */
668 		*retval = LWP_UNPARK_MAX;
669 		return 0;
670 	}
671 	if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
672 		return EINVAL;
673 
674 	/*
675 	 * Copy in the target array.  If it's a small number of LWPs, then
676 	 * place the numbers on the stack.
677 	 */
678 	sz = sizeof(target) * ntargets;
679 	if (sz <= sizeof(targets))
680 		tp = targets;
681 	else {
682 		tp = kmem_alloc(sz, KM_SLEEP);
683 		if (tp == NULL)
684 			return ENOMEM;
685 	}
686 	error = copyin(SCARG(uap, targets), tp, sz);
687 	if (error != 0) {
688 		if (tp != targets) {
689 			kmem_free(tp, sz);
690 		}
691 		return error;
692 	}
693 
694 	wchan = lwp_park_wchan(p, SCARG(uap, hint));
695 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
696 
697 	for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
698 		target = *tpp;
699 
700 		/*
701 		 * Easy case: search for the LWP on the sleep queue.  If
702 		 * it's parked, remove it from the queue and set running.
703 		 */
704 		TAILQ_FOREACH(t, sq, l_sleepchain)
705 			if (t->l_proc == p && t->l_lid == target)
706 				break;
707 
708 		if (t != NULL) {
709 			sleepq_remove(sq, t);
710 			continue;
711 		}
712 
713 		/*
714 		 * The LWP hasn't parked yet.  Take the hit and
715 		 * mark the operation as pending.
716 		 */
717 		mutex_spin_exit(mp);
718 		mutex_enter(p->p_lock);
719 		if ((t = lwp_find(p, target)) == NULL) {
720 			mutex_exit(p->p_lock);
721 			mutex_spin_enter(mp);
722 			continue;
723 		}
724 		lwp_lock(t);
725 
726 		/*
727 		 * It may not have parked yet, we may have raced, or
728 		 * it is parked on a different user sync object.
729 		 */
730 		if (t->l_syncobj == &lwp_park_sobj) {
731 			/* Releases the LWP lock. */
732 			lwp_unsleep(t, true);
733 		} else {
734 			/*
735 			 * Set the operation pending.  The next call to
736 			 * _lwp_park will return early.
737 			 */
738 			t->l_flag |= LW_UNPARKED;
739 			lwp_unlock(t);
740 		}
741 
742 		mutex_exit(p->p_lock);
743 		mutex_spin_enter(mp);
744 	}
745 
746 	mutex_spin_exit(mp);
747 	if (tp != targets)
748 		kmem_free(tp, sz);
749 
750 	return 0;
751 }
752 
753 int
754 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
755     register_t *retval)
756 {
757 	/* {
758 		syscallarg(lwpid_t)		target;
759 		syscallarg(const char *)	name;
760 	} */
761 	char *name, *oname;
762 	lwpid_t target;
763 	proc_t *p;
764 	lwp_t *t;
765 	int error;
766 
767 	if ((target = SCARG(uap, target)) == 0)
768 		target = l->l_lid;
769 
770 	name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
771 	if (name == NULL)
772 		return ENOMEM;
773 	error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
774 	switch (error) {
775 	case ENAMETOOLONG:
776 	case 0:
777 		name[MAXCOMLEN - 1] = '\0';
778 		break;
779 	default:
780 		kmem_free(name, MAXCOMLEN);
781 		return error;
782 	}
783 
784 	p = curproc;
785 	mutex_enter(p->p_lock);
786 	if ((t = lwp_find(p, target)) == NULL) {
787 		mutex_exit(p->p_lock);
788 		kmem_free(name, MAXCOMLEN);
789 		return ESRCH;
790 	}
791 	lwp_lock(t);
792 	oname = t->l_name;
793 	t->l_name = name;
794 	lwp_unlock(t);
795 	mutex_exit(p->p_lock);
796 
797 	if (oname != NULL)
798 		kmem_free(oname, MAXCOMLEN);
799 
800 	return 0;
801 }
802 
803 int
804 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
805     register_t *retval)
806 {
807 	/* {
808 		syscallarg(lwpid_t)		target;
809 		syscallarg(char *)		name;
810 		syscallarg(size_t)		len;
811 	} */
812 	char name[MAXCOMLEN];
813 	lwpid_t target;
814 	proc_t *p;
815 	lwp_t *t;
816 
817 	if ((target = SCARG(uap, target)) == 0)
818 		target = l->l_lid;
819 
820 	p = curproc;
821 	mutex_enter(p->p_lock);
822 	if ((t = lwp_find(p, target)) == NULL) {
823 		mutex_exit(p->p_lock);
824 		return ESRCH;
825 	}
826 	lwp_lock(t);
827 	if (t->l_name == NULL)
828 		name[0] = '\0';
829 	else
830 		strcpy(name, t->l_name);
831 	lwp_unlock(t);
832 	mutex_exit(p->p_lock);
833 
834 	return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
835 }
836 
837 int
838 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
839     register_t *retval)
840 {
841 	/* {
842 		syscallarg(int)			features;
843 		syscallarg(struct lwpctl **)	address;
844 	} */
845 	int error, features;
846 	vaddr_t vaddr;
847 
848 	features = SCARG(uap, features);
849 	features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
850 	if (features != 0)
851 		return ENODEV;
852 	if ((error = lwp_ctl_alloc(&vaddr)) != 0)
853 		return error;
854 	return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
855 }
856