xref: /netbsd-src/sys/kern/sys_lwp.c (revision 53d1339bf7f9c7367b35a9e1ebe693f9b047a47b)
1 /*	$NetBSD: sys_lwp.c,v 1.82 2020/05/23 23:42:43 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Lightweight process (LWP) system calls.  See kern_lwp.c for a description
34  * of LWPs.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.82 2020/05/23 23:42:43 ad Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/ptrace.h>
49 #include <sys/sleepq.h>
50 #include <sys/lwpctl.h>
51 #include <sys/cpu.h>
52 #include <sys/pserialize.h>
53 
54 #include <uvm/uvm_extern.h>
55 
56 #define	LWP_UNPARK_MAX		1024
57 
58 static const stack_t lwp_ss_init = SS_INIT;
59 
60 syncobj_t lwp_park_syncobj = {
61 	.sobj_flag	= SOBJ_SLEEPQ_NULL,
62 	.sobj_unsleep	= sleepq_unsleep,
63 	.sobj_changepri	= sleepq_changepri,
64 	.sobj_lendpri	= sleepq_lendpri,
65 	.sobj_owner	= syncobj_noowner,
66 };
67 
68 static void
69 mi_startlwp(void *arg)
70 {
71 	struct lwp *l = curlwp;
72 	struct proc *p = l->l_proc;
73 
74 	(p->p_emul->e_startlwp)(arg);
75 
76 	/* If the process is traced, report lwp creation to a debugger */
77 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE)) ==
78 	    (PSL_TRACED|PSL_TRACELWP_CREATE)) {
79 		/* Paranoid check */
80 		mutex_enter(&proc_lock);
81 		if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE)) !=
82 		    (PSL_TRACED|PSL_TRACELWP_CREATE)) {
83 			mutex_exit(&proc_lock);
84 			return;
85 		}
86 
87 		mutex_enter(p->p_lock);
88 		eventswitch(TRAP_LWP, PTRACE_LWP_CREATE, l->l_lid);
89 	}
90 }
91 
92 int
93 do_lwp_create(lwp_t *l, void *arg, u_long flags, lwp_t **l2,
94     const sigset_t *sigmask, const stack_t *sigstk)
95 {
96 	struct proc *p = l->l_proc;
97 	vaddr_t uaddr;
98 	int error;
99 
100 	/* XXX check against resource limits */
101 
102 	uaddr = uvm_uarea_alloc();
103 	if (__predict_false(uaddr == 0))
104 		return ENOMEM;
105 
106 	error = lwp_create(l, p, uaddr, flags & LWP_DETACHED, NULL, 0,
107 	    mi_startlwp, arg, l2, l->l_class, sigmask, &lwp_ss_init);
108 	if (__predict_false(error)) {
109 		uvm_uarea_free(uaddr);
110 		return error;
111 	}
112 
113 	return 0;
114 }
115 
116 int
117 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
118     register_t *retval)
119 {
120 	/* {
121 		syscallarg(const ucontext_t *) ucp;
122 		syscallarg(u_long) flags;
123 		syscallarg(lwpid_t *) new_lwp;
124 	} */
125 	struct proc *p = l->l_proc;
126 	ucontext_t *newuc;
127 	lwp_t *l2;
128 	int error;
129 
130 	newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
131 	error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
132 	if (error)
133 		goto fail;
134 
135 	/* validate the ucontext */
136 	if ((newuc->uc_flags & _UC_CPU) == 0) {
137 		error = EINVAL;
138 		goto fail;
139 	}
140 	error = cpu_mcontext_validate(l, &newuc->uc_mcontext);
141 	if (error)
142 		goto fail;
143 
144 	const sigset_t *sigmask = newuc->uc_flags & _UC_SIGMASK ?
145 	    &newuc->uc_sigmask : &l->l_sigmask;
146 	error = do_lwp_create(l, newuc, SCARG(uap, flags), &l2, sigmask,
147 	    &SS_INIT);
148 	if (error)
149 		goto fail;
150 
151 	error = copyout(&l2->l_lid, SCARG(uap, new_lwp), sizeof(l2->l_lid));
152 	if (error == 0) {
153 		lwp_start(l2, SCARG(uap, flags));
154 		return 0;
155 	}
156 	lwp_exit(l2);
157  fail:
158 	kmem_free(newuc, sizeof(ucontext_t));
159 	return error;
160 }
161 
162 int
163 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
164 {
165 
166 	lwp_exit(l);
167 	return 0;
168 }
169 
170 int
171 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
172 {
173 
174 	*retval = l->l_lid;
175 	return 0;
176 }
177 
178 int
179 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
180 {
181 
182 	*retval = (uintptr_t)l->l_private;
183 	return 0;
184 }
185 
186 int
187 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
188     register_t *retval)
189 {
190 	/* {
191 		syscallarg(void *) ptr;
192 	} */
193 
194 	return lwp_setprivate(l, SCARG(uap, ptr));
195 }
196 
197 int
198 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
199     register_t *retval)
200 {
201 	/* {
202 		syscallarg(lwpid_t) target;
203 	} */
204 	struct proc *p = l->l_proc;
205 	struct lwp *t;
206 	int error;
207 
208 	mutex_enter(p->p_lock);
209 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
210 		mutex_exit(p->p_lock);
211 		return ESRCH;
212 	}
213 
214 	/*
215 	 * Check for deadlock, which is only possible when we're suspending
216 	 * ourself.  XXX There is a short race here, as p_nrlwps is only
217 	 * incremented when an LWP suspends itself on the kernel/user
218 	 * boundary.  It's still possible to kill -9 the process so we
219 	 * don't bother checking further.
220 	 */
221 	lwp_lock(t);
222 	if ((t == l && p->p_nrlwps == 1) ||
223 	    (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
224 		lwp_unlock(t);
225 		mutex_exit(p->p_lock);
226 		return EDEADLK;
227 	}
228 
229 	/*
230 	 * Suspend the LWP.  XXX If it's on a different CPU, we should wait
231 	 * for it to be preempted, where it will put itself to sleep.
232 	 *
233 	 * Suspension of the current LWP will happen on return to userspace.
234 	 */
235 	error = lwp_suspend(l, t);
236 	if (error) {
237 		mutex_exit(p->p_lock);
238 		return error;
239 	}
240 
241 	/*
242 	 * Wait for:
243 	 *  o process exiting
244 	 *  o target LWP suspended
245 	 *  o target LWP not suspended and L_WSUSPEND clear
246 	 *  o target LWP exited
247 	 */
248 	for (;;) {
249 		error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
250 		if (error) {
251 			error = ERESTART;
252 			break;
253 		}
254 		if (lwp_find(p, SCARG(uap, target)) == NULL) {
255 			error = ESRCH;
256 			break;
257 		}
258 		if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
259 			error = ERESTART;
260 			break;
261 		}
262 		if (t->l_stat == LSSUSPENDED ||
263 		    (t->l_flag & LW_WSUSPEND) == 0)
264 			break;
265 	}
266 	mutex_exit(p->p_lock);
267 
268 	return error;
269 }
270 
271 int
272 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
273     register_t *retval)
274 {
275 	/* {
276 		syscallarg(lwpid_t) target;
277 	} */
278 	int error;
279 	struct proc *p = l->l_proc;
280 	struct lwp *t;
281 
282 	error = 0;
283 
284 	mutex_enter(p->p_lock);
285 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
286 		mutex_exit(p->p_lock);
287 		return ESRCH;
288 	}
289 
290 	lwp_lock(t);
291 	lwp_continue(t);
292 	mutex_exit(p->p_lock);
293 
294 	return error;
295 }
296 
297 int
298 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
299     register_t *retval)
300 {
301 	/* {
302 		syscallarg(lwpid_t) target;
303 	} */
304 	struct lwp *t;
305 	struct proc *p;
306 	int error;
307 
308 	p = l->l_proc;
309 	mutex_enter(p->p_lock);
310 
311 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
312 		mutex_exit(p->p_lock);
313 		return ESRCH;
314 	}
315 
316 	lwp_lock(t);
317 	t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
318 
319 	if (t->l_stat != LSSLEEP) {
320 		lwp_unlock(t);
321 		error = ENODEV;
322 	} else if ((t->l_flag & LW_SINTR) == 0) {
323 		lwp_unlock(t);
324 		error = EBUSY;
325 	} else {
326 		/* Wake it up.  lwp_unsleep() will release the LWP lock. */
327 		lwp_unsleep(t, true);
328 		error = 0;
329 	}
330 
331 	mutex_exit(p->p_lock);
332 
333 	return error;
334 }
335 
336 int
337 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
338     register_t *retval)
339 {
340 	/* {
341 		syscallarg(lwpid_t) wait_for;
342 		syscallarg(lwpid_t *) departed;
343 	} */
344 	struct proc *p = l->l_proc;
345 	int error;
346 	lwpid_t dep;
347 
348 	mutex_enter(p->p_lock);
349 	error = lwp_wait(l, SCARG(uap, wait_for), &dep, false);
350 	mutex_exit(p->p_lock);
351 
352 	if (!error && SCARG(uap, departed)) {
353 		error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
354 	}
355 
356 	return error;
357 }
358 
359 int
360 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
361     register_t *retval)
362 {
363 	/* {
364 		syscallarg(lwpid_t)	target;
365 		syscallarg(int)		signo;
366 	} */
367 	struct proc *p = l->l_proc;
368 	struct lwp *t;
369 	ksiginfo_t ksi;
370 	int signo = SCARG(uap, signo);
371 	int error = 0;
372 
373 	if ((u_int)signo >= NSIG)
374 		return EINVAL;
375 
376 	KSI_INIT(&ksi);
377 	ksi.ksi_signo = signo;
378 	ksi.ksi_code = SI_LWP;
379 	ksi.ksi_pid = p->p_pid;
380 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
381 	ksi.ksi_lid = SCARG(uap, target);
382 
383 	mutex_enter(&proc_lock);
384 	mutex_enter(p->p_lock);
385 	if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
386 		error = ESRCH;
387 	else if (signo != 0)
388 		kpsignal2(p, &ksi);
389 	mutex_exit(p->p_lock);
390 	mutex_exit(&proc_lock);
391 
392 	return error;
393 }
394 
395 int
396 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
397     register_t *retval)
398 {
399 	/* {
400 		syscallarg(lwpid_t)	target;
401 	} */
402 	struct proc *p;
403 	struct lwp *t;
404 	lwpid_t target;
405 	int error;
406 
407 	target = SCARG(uap, target);
408 	p = l->l_proc;
409 
410 	mutex_enter(p->p_lock);
411 
412 	if (l->l_lid == target)
413 		t = l;
414 	else {
415 		/*
416 		 * We can't use lwp_find() here because the target might
417 		 * be a zombie.
418 		 */
419 		t = proc_find_lwp(p, target);
420 		KASSERT(t == NULL || t->l_lid == target);
421 	}
422 
423 	/*
424 	 * If the LWP is already detached, there's nothing to do.
425 	 * If it's a zombie, we need to clean up after it.  LSZOMB
426 	 * is visible with the proc mutex held.
427 	 *
428 	 * After we have detached or released the LWP, kick any
429 	 * other LWPs that may be sitting in _lwp_wait(), waiting
430 	 * for the target LWP to exit.
431 	 */
432 	if (t != NULL && t->l_stat != LSIDL) {
433 		if ((t->l_prflag & LPR_DETACHED) == 0) {
434 			p->p_ndlwps++;
435 			t->l_prflag |= LPR_DETACHED;
436 			if (t->l_stat == LSZOMB) {
437 				/* Releases proc mutex. */
438 				lwp_free(t, false, false);
439 				return 0;
440 			}
441 			error = 0;
442 
443 			/*
444 			 * Have any LWPs sleeping in lwp_wait() recheck
445 			 * for deadlock.
446 			 */
447 			cv_broadcast(&p->p_lwpcv);
448 		} else
449 			error = EINVAL;
450 	} else
451 		error = ESRCH;
452 
453 	mutex_exit(p->p_lock);
454 
455 	return error;
456 }
457 
458 int
459 lwp_unpark(const lwpid_t *tp, const u_int ntargets)
460 {
461 	u_int target;
462 	int error, s;
463 	proc_t *p;
464 	lwp_t *t;
465 
466 	p = curproc;
467 	error = 0;
468 
469 	s = pserialize_read_enter();
470 	for (target = 0; target < ntargets; target++) {
471 		t = proc_find_lwp_unlocked(p, tp[target]);
472 		if (__predict_false(t == NULL)) {
473 			error = ESRCH;
474 			continue;
475 		}
476 
477 		KASSERT(lwp_locked(t, NULL));
478 
479 		if (__predict_true(t->l_syncobj == &lwp_park_syncobj)) {
480 			/*
481 			 * As expected it's parked, so wake it up.
482 			 * lwp_unsleep() will release the LWP lock.
483 			 */
484 			lwp_unsleep(t, true);
485 		} else if (__predict_false(t->l_stat == LSZOMB)) {
486 			lwp_unlock(t);
487 			error = ESRCH;
488 		} else {
489 			/*
490 			 * It hasn't parked yet because the wakeup side won
491 			 * the race, or something else has happened to make
492 			 * the thread not park.  Why doesn't really matter.
493 			 * Set the operation pending, so that the next call
494 			 * to _lwp_park() in the LWP returns early.  If it
495 			 * turns out to be a spurious wakeup, no harm done.
496 			 */
497 			t->l_flag |= LW_UNPARKED;
498 			lwp_unlock(t);
499 		}
500 	}
501 	pserialize_read_exit(s);
502 
503 	return error;
504 }
505 
506 int
507 lwp_park(clockid_t clock_id, int flags, struct timespec *ts)
508 {
509 	int timo, error;
510 	struct timespec start;
511 	lwp_t *l;
512 	bool timeremain = !(flags & TIMER_ABSTIME) && ts;
513 
514 	if (ts != NULL) {
515 		if ((error = ts2timo(clock_id, flags, ts, &timo,
516 		    timeremain ? &start : NULL)) != 0)
517 			return error;
518 		KASSERT(timo != 0);
519 	} else {
520 		timo = 0;
521 	}
522 
523 	/*
524 	 * Before going the full route and blocking, check to see if an
525 	 * unpark op is pending.
526 	 */
527 	l = curlwp;
528 	lwp_lock(l);
529 	if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
530 		l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
531 		lwp_unlock(l);
532 		return EALREADY;
533 	}
534 	l->l_biglocks = 0;
535 	sleepq_enqueue(NULL, l, "parked", &lwp_park_syncobj, true);
536 	error = sleepq_block(timo, true);
537 	switch (error) {
538 	case EWOULDBLOCK:
539 		error = ETIMEDOUT;
540 		if (timeremain)
541 			memset(ts, 0, sizeof(*ts));
542 		break;
543 	case ERESTART:
544 		error = EINTR;
545 		/*FALLTHROUGH*/
546 	default:
547 		if (timeremain)
548 			clock_timeleft(clock_id, ts, &start);
549 		break;
550 	}
551 	return error;
552 }
553 
554 /*
555  * 'park' an LWP waiting on a user-level synchronisation object.  The LWP
556  * will remain parked until another LWP in the same process calls in and
557  * requests that it be unparked.
558  */
559 int
560 sys____lwp_park60(struct lwp *l, const struct sys____lwp_park60_args *uap,
561     register_t *retval)
562 {
563 	/* {
564 		syscallarg(clockid_t)			clock_id;
565 		syscallarg(int)				flags;
566 		syscallarg(struct timespec *)		ts;
567 		syscallarg(lwpid_t)			unpark;
568 		syscallarg(const void *)		hint;
569 		syscallarg(const void *)		unparkhint;
570 	} */
571 	struct timespec ts, *tsp;
572 	int error;
573 
574 	if (SCARG(uap, ts) == NULL)
575 		tsp = NULL;
576 	else {
577 		error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
578 		if (error != 0)
579 			return error;
580 		tsp = &ts;
581 	}
582 
583 	if (SCARG(uap, unpark) != 0) {
584 		error = lwp_unpark(&SCARG(uap, unpark), 1);
585 		if (error != 0)
586 			return error;
587 	}
588 
589 	error = lwp_park(SCARG(uap, clock_id), SCARG(uap, flags), tsp);
590 	if (SCARG(uap, ts) != NULL && (SCARG(uap, flags) & TIMER_ABSTIME) == 0)
591 		(void)copyout(tsp, SCARG(uap, ts), sizeof(*tsp));
592 	return error;
593 }
594 
595 int
596 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
597     register_t *retval)
598 {
599 	/* {
600 		syscallarg(lwpid_t)		target;
601 		syscallarg(const void *)	hint;
602 	} */
603 
604 	return lwp_unpark(&SCARG(uap, target), 1);
605 }
606 
607 int
608 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
609     register_t *retval)
610 {
611 	/* {
612 		syscallarg(const lwpid_t *)	targets;
613 		syscallarg(size_t)		ntargets;
614 		syscallarg(const void *)	hint;
615 	} */
616 	lwpid_t targets[32], *tp;
617 	int error;
618 	u_int ntargets;
619 	size_t sz;
620 
621 	ntargets = SCARG(uap, ntargets);
622 	if (SCARG(uap, targets) == NULL) {
623 		/*
624 		 * Let the caller know how much we are willing to do, and
625 		 * let it unpark the LWPs in blocks.
626 		 */
627 		*retval = LWP_UNPARK_MAX;
628 		return 0;
629 	}
630 	if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
631 		return EINVAL;
632 
633 	/*
634 	 * Copy in the target array.  If it's a small number of LWPs, then
635 	 * place the numbers on the stack.
636 	 */
637 	sz = sizeof(lwpid_t) * ntargets;
638 	if (sz <= sizeof(targets))
639 		tp = targets;
640 	else
641 		tp = kmem_alloc(sz, KM_SLEEP);
642 	error = copyin(SCARG(uap, targets), tp, sz);
643 	if (error != 0) {
644 		if (tp != targets) {
645 			kmem_free(tp, sz);
646 		}
647 		return error;
648 	}
649 	error = lwp_unpark(tp, ntargets);
650 	if (tp != targets)
651 		kmem_free(tp, sz);
652 	return error;
653 }
654 
655 int
656 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
657     register_t *retval)
658 {
659 	/* {
660 		syscallarg(lwpid_t)		target;
661 		syscallarg(const char *)	name;
662 	} */
663 	char *name, *oname;
664 	lwpid_t target;
665 	proc_t *p;
666 	lwp_t *t;
667 	int error;
668 
669 	if ((target = SCARG(uap, target)) == 0)
670 		target = l->l_lid;
671 
672 	name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
673 	error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
674 	switch (error) {
675 	case ENAMETOOLONG:
676 	case 0:
677 		name[MAXCOMLEN - 1] = '\0';
678 		break;
679 	default:
680 		kmem_free(name, MAXCOMLEN);
681 		return error;
682 	}
683 
684 	p = curproc;
685 	mutex_enter(p->p_lock);
686 	if ((t = lwp_find(p, target)) == NULL) {
687 		mutex_exit(p->p_lock);
688 		kmem_free(name, MAXCOMLEN);
689 		return ESRCH;
690 	}
691 	lwp_lock(t);
692 	oname = t->l_name;
693 	t->l_name = name;
694 	lwp_unlock(t);
695 	mutex_exit(p->p_lock);
696 
697 	if (oname != NULL)
698 		kmem_free(oname, MAXCOMLEN);
699 
700 	return 0;
701 }
702 
703 int
704 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
705     register_t *retval)
706 {
707 	/* {
708 		syscallarg(lwpid_t)		target;
709 		syscallarg(char *)		name;
710 		syscallarg(size_t)		len;
711 	} */
712 	char name[MAXCOMLEN];
713 	lwpid_t target;
714 	size_t len;
715 	proc_t *p;
716 	lwp_t *t;
717 
718 	if ((target = SCARG(uap, target)) == 0)
719 		target = l->l_lid;
720 
721 	p = curproc;
722 	mutex_enter(p->p_lock);
723 	if ((t = lwp_find(p, target)) == NULL) {
724 		mutex_exit(p->p_lock);
725 		return ESRCH;
726 	}
727 	lwp_lock(t);
728 	if (t->l_name == NULL)
729 		name[0] = '\0';
730 	else
731 		strlcpy(name, t->l_name, sizeof(name));
732 	lwp_unlock(t);
733 	mutex_exit(p->p_lock);
734 
735 	len = uimin(SCARG(uap, len), sizeof(name));
736 
737 	return copyoutstr(name, SCARG(uap, name), len, NULL);
738 }
739 
740 int
741 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
742     register_t *retval)
743 {
744 	/* {
745 		syscallarg(int)			features;
746 		syscallarg(struct lwpctl **)	address;
747 	} */
748 	int error, features;
749 	vaddr_t vaddr;
750 
751 	features = SCARG(uap, features);
752 	features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
753 	if (features != 0)
754 		return ENODEV;
755 	if ((error = lwp_ctl_alloc(&vaddr)) != 0)
756 		return error;
757 	return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
758 }
759