xref: /netbsd-src/sys/kern/sys_lwp.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /*	$NetBSD: sys_lwp.c,v 1.43 2008/10/16 08:47:07 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Lightweight process (LWP) system calls.  See kern_lwp.c for a description
34  * of LWPs.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.43 2008/10/16 08:47:07 ad Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 
51 #include <uvm/uvm_extern.h>
52 
53 #include "opt_sa.h"
54 
55 #define	LWP_UNPARK_MAX		1024
56 
57 syncobj_t lwp_park_sobj = {
58 	SOBJ_SLEEPQ_LIFO,
59 	sleepq_unsleep,
60 	sleepq_changepri,
61 	sleepq_lendpri,
62 	syncobj_noowner,
63 };
64 
65 sleeptab_t	lwp_park_tab;
66 
67 void
68 lwp_sys_init(void)
69 {
70 	sleeptab_init(&lwp_park_tab);
71 }
72 
73 /* ARGSUSED */
74 int
75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap, register_t *retval)
76 {
77 	/* {
78 		syscallarg(const ucontext_t *) ucp;
79 		syscallarg(u_long) flags;
80 		syscallarg(lwpid_t *) new_lwp;
81 	} */
82 	struct proc *p = l->l_proc;
83 	struct lwp *l2;
84 	vaddr_t uaddr;
85 	bool inmem;
86 	ucontext_t *newuc;
87 	int error, lid;
88 
89 #ifdef KERN_SA
90 	mutex_enter(p->p_lock);
91 	if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
92 		mutex_exit(p->p_lock);
93 		return EINVAL;
94 	}
95 	mutex_exit(p->p_lock);
96 #endif
97 
98 	newuc = pool_get(&lwp_uc_pool, PR_WAITOK);
99 
100 	error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
101 	if (error) {
102 		pool_put(&lwp_uc_pool, newuc);
103 		return error;
104 	}
105 
106 	/* XXX check against resource limits */
107 
108 	inmem = uvm_uarea_alloc(&uaddr);
109 	if (__predict_false(uaddr == 0)) {
110 		pool_put(&lwp_uc_pool, newuc);
111 		return ENOMEM;
112 	}
113 
114 	error = lwp_create(l, p, uaddr, inmem, SCARG(uap, flags) & LWP_DETACHED,
115 	    NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
116 	if (error) {
117 		uvm_uarea_free(uaddr, curcpu());
118 		pool_put(&lwp_uc_pool, newuc);
119 		return error;
120 	}
121 
122 	lid = l2->l_lid;
123 	error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
124 	if (error) {
125 		lwp_exit(l2);
126 		pool_put(&lwp_uc_pool, newuc);
127 		return error;
128 	}
129 
130 	/*
131 	 * Set the new LWP running, unless the caller has requested that
132 	 * it be created in suspended state.  If the process is stopping,
133 	 * then the LWP is created stopped.
134 	 */
135 	mutex_enter(p->p_lock);
136 	lwp_lock(l2);
137 	if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
138 	    (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
139 	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0)
140 	    		l2->l_stat = LSSTOP;
141 		else {
142 			KASSERT(lwp_locked(l2, l2->l_cpu->ci_schedstate.spc_mutex));
143 			p->p_nrlwps++;
144 			l2->l_stat = LSRUN;
145 			sched_enqueue(l2, false);
146 		}
147 		lwp_unlock(l2);
148 	} else {
149 		l2->l_stat = LSSUSPENDED;
150 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_lwplock);
151 	}
152 	mutex_exit(p->p_lock);
153 
154 	return 0;
155 }
156 
157 int
158 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
159 {
160 
161 	lwp_exit(l);
162 	return 0;
163 }
164 
165 int
166 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
167 {
168 
169 	*retval = l->l_lid;
170 	return 0;
171 }
172 
173 int
174 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
175 {
176 
177 	*retval = (uintptr_t)l->l_private;
178 	return 0;
179 }
180 
181 int
182 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap, register_t *retval)
183 {
184 	/* {
185 		syscallarg(void *) ptr;
186 	} */
187 
188 	l->l_private = SCARG(uap, ptr);
189 	return 0;
190 }
191 
192 int
193 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap, register_t *retval)
194 {
195 	/* {
196 		syscallarg(lwpid_t) target;
197 	} */
198 	struct proc *p = l->l_proc;
199 	struct lwp *t;
200 	int error;
201 
202 	mutex_enter(p->p_lock);
203 
204 #ifdef KERN_SA
205 	if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
206 		mutex_exit(p->p_lock);
207 		return EINVAL;
208 	}
209 #endif
210 
211 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
212 		mutex_exit(p->p_lock);
213 		return ESRCH;
214 	}
215 
216 	/*
217 	 * Check for deadlock, which is only possible when we're suspending
218 	 * ourself.  XXX There is a short race here, as p_nrlwps is only
219 	 * incremented when an LWP suspends itself on the kernel/user
220 	 * boundary.  It's still possible to kill -9 the process so we
221 	 * don't bother checking further.
222 	 */
223 	lwp_lock(t);
224 	if ((t == l && p->p_nrlwps == 1) ||
225 	    (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
226 		lwp_unlock(t);
227 		mutex_exit(p->p_lock);
228 		return EDEADLK;
229 	}
230 
231 	/*
232 	 * Suspend the LWP.  XXX If it's on a different CPU, we should wait
233 	 * for it to be preempted, where it will put itself to sleep.
234 	 *
235 	 * Suspension of the current LWP will happen on return to userspace.
236 	 */
237 	error = lwp_suspend(l, t);
238 	if (error) {
239 		mutex_exit(p->p_lock);
240 		return error;
241 	}
242 
243 	/*
244 	 * Wait for:
245 	 *  o process exiting
246 	 *  o target LWP suspended
247 	 *  o target LWP not suspended and L_WSUSPEND clear
248 	 *  o target LWP exited
249 	 */
250 	for (;;) {
251 		error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
252 		if (error) {
253 			error = ERESTART;
254 			break;
255 		}
256 		if (lwp_find(p, SCARG(uap, target)) == NULL) {
257 			error = ESRCH;
258 			break;
259 		}
260 		if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
261 			error = ERESTART;
262 			break;
263 		}
264 		if (t->l_stat == LSSUSPENDED ||
265 		    (t->l_flag & LW_WSUSPEND) == 0)
266 			break;
267 	}
268 	mutex_exit(p->p_lock);
269 
270 	return error;
271 }
272 
273 int
274 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap, register_t *retval)
275 {
276 	/* {
277 		syscallarg(lwpid_t) target;
278 	} */
279 	int error;
280 	struct proc *p = l->l_proc;
281 	struct lwp *t;
282 
283 	error = 0;
284 
285 	mutex_enter(p->p_lock);
286 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
287 		mutex_exit(p->p_lock);
288 		return ESRCH;
289 	}
290 
291 	lwp_lock(t);
292 	lwp_continue(t);
293 	mutex_exit(p->p_lock);
294 
295 	return error;
296 }
297 
298 int
299 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap, register_t *retval)
300 {
301 	/* {
302 		syscallarg(lwpid_t) target;
303 	} */
304 	struct lwp *t;
305 	struct proc *p;
306 	int error;
307 
308 	p = l->l_proc;
309 	mutex_enter(p->p_lock);
310 
311 	if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
312 		mutex_exit(p->p_lock);
313 		return ESRCH;
314 	}
315 
316 	lwp_lock(t);
317 	t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
318 
319 	if (t->l_stat != LSSLEEP) {
320 		lwp_unlock(t);
321 		error = ENODEV;
322 	} else if ((t->l_flag & LW_SINTR) == 0) {
323 		lwp_unlock(t);
324 		error = EBUSY;
325 	} else {
326 		/* Wake it up.  lwp_unsleep() will release the LWP lock. */
327 		(void)lwp_unsleep(t, true);
328 		error = 0;
329 	}
330 
331 	mutex_exit(p->p_lock);
332 
333 	return error;
334 }
335 
336 int
337 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap, register_t *retval)
338 {
339 	/* {
340 		syscallarg(lwpid_t) wait_for;
341 		syscallarg(lwpid_t *) departed;
342 	} */
343 	struct proc *p = l->l_proc;
344 	int error;
345 	lwpid_t dep;
346 
347 	mutex_enter(p->p_lock);
348 	error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
349 	mutex_exit(p->p_lock);
350 
351 	if (error)
352 		return error;
353 
354 	if (SCARG(uap, departed)) {
355 		error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
356 		if (error)
357 			return error;
358 	}
359 
360 	return 0;
361 }
362 
363 /* ARGSUSED */
364 int
365 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap, register_t *retval)
366 {
367 	/* {
368 		syscallarg(lwpid_t)	target;
369 		syscallarg(int)		signo;
370 	} */
371 	struct proc *p = l->l_proc;
372 	struct lwp *t;
373 	ksiginfo_t ksi;
374 	int signo = SCARG(uap, signo);
375 	int error = 0;
376 
377 	if ((u_int)signo >= NSIG)
378 		return EINVAL;
379 
380 	KSI_INIT(&ksi);
381 	ksi.ksi_signo = signo;
382 	ksi.ksi_code = SI_LWP;
383 	ksi.ksi_pid = p->p_pid;
384 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
385 	ksi.ksi_lid = SCARG(uap, target);
386 
387 	mutex_enter(proc_lock);
388 	mutex_enter(p->p_lock);
389 	if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
390 		error = ESRCH;
391 	else if (signo != 0)
392 		kpsignal2(p, &ksi);
393 	mutex_exit(p->p_lock);
394 	mutex_exit(proc_lock);
395 
396 	return error;
397 }
398 
399 int
400 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap, register_t *retval)
401 {
402 	/* {
403 		syscallarg(lwpid_t)	target;
404 	} */
405 	struct proc *p;
406 	struct lwp *t;
407 	lwpid_t target;
408 	int error;
409 
410 	target = SCARG(uap, target);
411 	p = l->l_proc;
412 
413 	mutex_enter(p->p_lock);
414 
415 	if (l->l_lid == target)
416 		t = l;
417 	else {
418 		/*
419 		 * We can't use lwp_find() here because the target might
420 		 * be a zombie.
421 		 */
422 		LIST_FOREACH(t, &p->p_lwps, l_sibling)
423 			if (t->l_lid == target)
424 				break;
425 	}
426 
427 	/*
428 	 * If the LWP is already detached, there's nothing to do.
429 	 * If it's a zombie, we need to clean up after it.  LSZOMB
430 	 * is visible with the proc mutex held.
431 	 *
432 	 * After we have detached or released the LWP, kick any
433 	 * other LWPs that may be sitting in _lwp_wait(), waiting
434 	 * for the target LWP to exit.
435 	 */
436 	if (t != NULL && t->l_stat != LSIDL) {
437 		if ((t->l_prflag & LPR_DETACHED) == 0) {
438 			p->p_ndlwps++;
439 			t->l_prflag |= LPR_DETACHED;
440 			if (t->l_stat == LSZOMB) {
441 				/* Releases proc mutex. */
442 				lwp_free(t, false, false);
443 				return 0;
444 			}
445 			error = 0;
446 
447 			/*
448 			 * Have any LWPs sleeping in lwp_wait() recheck
449 			 * for deadlock.
450 			 */
451 			cv_broadcast(&p->p_lwpcv);
452 		} else
453 			error = EINVAL;
454 	} else
455 		error = ESRCH;
456 
457 	mutex_exit(p->p_lock);
458 
459 	return error;
460 }
461 
462 static inline wchan_t
463 lwp_park_wchan(struct proc *p, const void *hint)
464 {
465 
466 	return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
467 }
468 
469 int
470 lwp_unpark(lwpid_t target, const void *hint)
471 {
472 	sleepq_t *sq;
473 	wchan_t wchan;
474 	int swapin;
475 	kmutex_t *mp;
476 	proc_t *p;
477 	lwp_t *t;
478 
479 	/*
480 	 * Easy case: search for the LWP on the sleep queue.  If
481 	 * it's parked, remove it from the queue and set running.
482 	 */
483 	p = curproc;
484 	wchan = lwp_park_wchan(p, hint);
485 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
486 
487 	TAILQ_FOREACH(t, sq, l_sleepchain)
488 		if (t->l_proc == p && t->l_lid == target)
489 			break;
490 
491 	if (__predict_true(t != NULL)) {
492 		swapin = sleepq_remove(sq, t);
493 		mutex_spin_exit(mp);
494 		if (swapin)
495 			uvm_kick_scheduler();
496 		return 0;
497 	}
498 
499 	/*
500 	 * The LWP hasn't parked yet.  Take the hit and mark the
501 	 * operation as pending.
502 	 */
503 	mutex_spin_exit(mp);
504 
505 	mutex_enter(p->p_lock);
506 	if ((t = lwp_find(p, target)) == NULL) {
507 		mutex_exit(p->p_lock);
508 		return ESRCH;
509 	}
510 
511 	/*
512 	 * It may not have parked yet, we may have raced, or it
513 	 * is parked on a different user sync object.
514 	 */
515 	lwp_lock(t);
516 	if (t->l_syncobj == &lwp_park_sobj) {
517 		/* Releases the LWP lock. */
518 		(void)lwp_unsleep(t, true);
519 	} else {
520 		/*
521 		 * Set the operation pending.  The next call to _lwp_park
522 		 * will return early.
523 		 */
524 		t->l_flag |= LW_UNPARKED;
525 		lwp_unlock(t);
526 	}
527 
528 	mutex_exit(p->p_lock);
529 	return 0;
530 }
531 
532 int
533 lwp_park(struct timespec *ts, const void *hint)
534 {
535 	struct timespec tsx;
536 	sleepq_t *sq;
537 	kmutex_t *mp;
538 	wchan_t wchan;
539 	int timo, error;
540 	lwp_t *l;
541 
542 	/* Fix up the given timeout value. */
543 	if (ts != NULL) {
544 		getnanotime(&tsx);
545 		timespecsub(ts, &tsx, &tsx);
546 		if (tsx.tv_sec < 0 || (tsx.tv_sec == 0 && tsx.tv_nsec <= 0))
547 			return ETIMEDOUT;
548 		if ((error = itimespecfix(&tsx)) != 0)
549 			return error;
550 		timo = tstohz(&tsx);
551 		KASSERT(timo != 0);
552 	} else
553 		timo = 0;
554 
555 	/* Find and lock the sleep queue. */
556 	l = curlwp;
557 	wchan = lwp_park_wchan(l->l_proc, hint);
558 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
559 
560 	/*
561 	 * Before going the full route and blocking, check to see if an
562 	 * unpark op is pending.
563 	 */
564 	lwp_lock(l);
565 	if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
566 		l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
567 		lwp_unlock(l);
568 		mutex_spin_exit(mp);
569 		return EALREADY;
570 	}
571 	lwp_unlock_to(l, mp);
572 	l->l_biglocks = 0;
573 	sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
574 	error = sleepq_block(timo, true);
575 	switch (error) {
576 	case EWOULDBLOCK:
577 		error = ETIMEDOUT;
578 		break;
579 	case ERESTART:
580 		error = EINTR;
581 		break;
582 	default:
583 		/* nothing */
584 		break;
585 	}
586 	return error;
587 }
588 
589 /*
590  * 'park' an LWP waiting on a user-level synchronisation object.  The LWP
591  * will remain parked until another LWP in the same process calls in and
592  * requests that it be unparked.
593  */
594 int
595 sys__lwp_park(struct lwp *l, const struct sys__lwp_park_args *uap, register_t *retval)
596 {
597 	/* {
598 		syscallarg(const struct timespec *)	ts;
599 		syscallarg(lwpid_t)			unpark;
600 		syscallarg(const void *)		hint;
601 		syscallarg(const void *)		unparkhint;
602 	} */
603 	struct timespec ts, *tsp;
604 	int error;
605 
606 	if (SCARG(uap, ts) == NULL)
607 		tsp = NULL;
608 	else {
609 		error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
610 		if (error != 0)
611 			return error;
612 		tsp = &ts;
613 	}
614 
615 	if (SCARG(uap, unpark) != 0) {
616 		error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
617 		if (error != 0)
618 			return error;
619 	}
620 
621 	return lwp_park(tsp, SCARG(uap, hint));
622 }
623 
624 int
625 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap, register_t *retval)
626 {
627 	/* {
628 		syscallarg(lwpid_t)		target;
629 		syscallarg(const void *)	hint;
630 	} */
631 
632 	return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
633 }
634 
635 int
636 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap, register_t *retval)
637 {
638 	/* {
639 		syscallarg(const lwpid_t *)	targets;
640 		syscallarg(size_t)		ntargets;
641 		syscallarg(const void *)	hint;
642 	} */
643 	struct proc *p;
644 	struct lwp *t;
645 	sleepq_t *sq;
646 	wchan_t wchan;
647 	lwpid_t targets[32], *tp, *tpp, *tmax, target;
648 	int swapin, error;
649 	kmutex_t *mp;
650 	u_int ntargets;
651 	size_t sz;
652 
653 	p = l->l_proc;
654 	ntargets = SCARG(uap, ntargets);
655 
656 	if (SCARG(uap, targets) == NULL) {
657 		/*
658 		 * Let the caller know how much we are willing to do, and
659 		 * let it unpark the LWPs in blocks.
660 		 */
661 		*retval = LWP_UNPARK_MAX;
662 		return 0;
663 	}
664 	if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
665 		return EINVAL;
666 
667 	/*
668 	 * Copy in the target array.  If it's a small number of LWPs, then
669 	 * place the numbers on the stack.
670 	 */
671 	sz = sizeof(target) * ntargets;
672 	if (sz <= sizeof(targets))
673 		tp = targets;
674 	else {
675 		tp = kmem_alloc(sz, KM_SLEEP);
676 		if (tp == NULL)
677 			return ENOMEM;
678 	}
679 	error = copyin(SCARG(uap, targets), tp, sz);
680 	if (error != 0) {
681 		if (tp != targets) {
682 			kmem_free(tp, sz);
683 		}
684 		return error;
685 	}
686 
687 	swapin = 0;
688 	wchan = lwp_park_wchan(p, SCARG(uap, hint));
689 	sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
690 
691 	for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
692 		target = *tpp;
693 
694 		/*
695 		 * Easy case: search for the LWP on the sleep queue.  If
696 		 * it's parked, remove it from the queue and set running.
697 		 */
698 		TAILQ_FOREACH(t, sq, l_sleepchain)
699 			if (t->l_proc == p && t->l_lid == target)
700 				break;
701 
702 		if (t != NULL) {
703 			swapin |= sleepq_remove(sq, t);
704 			continue;
705 		}
706 
707 		/*
708 		 * The LWP hasn't parked yet.  Take the hit and
709 		 * mark the operation as pending.
710 		 */
711 		mutex_spin_exit(mp);
712 		mutex_enter(p->p_lock);
713 		if ((t = lwp_find(p, target)) == NULL) {
714 			mutex_exit(p->p_lock);
715 			mutex_spin_enter(mp);
716 			continue;
717 		}
718 		lwp_lock(t);
719 
720 		/*
721 		 * It may not have parked yet, we may have raced, or
722 		 * it is parked on a different user sync object.
723 		 */
724 		if (t->l_syncobj == &lwp_park_sobj) {
725 			/* Releases the LWP lock. */
726 			(void)lwp_unsleep(t, true);
727 		} else {
728 			/*
729 			 * Set the operation pending.  The next call to
730 			 * _lwp_park will return early.
731 			 */
732 			t->l_flag |= LW_UNPARKED;
733 			lwp_unlock(t);
734 		}
735 
736 		mutex_exit(p->p_lock);
737 		mutex_spin_enter(mp);
738 	}
739 
740 	mutex_spin_exit(mp);
741 	if (tp != targets)
742 		kmem_free(tp, sz);
743 	if (swapin)
744 		uvm_kick_scheduler();
745 
746 	return 0;
747 }
748 
749 int
750 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap, register_t *retval)
751 {
752 	/* {
753 		syscallarg(lwpid_t)		target;
754 		syscallarg(const char *)	name;
755 	} */
756 	char *name, *oname;
757 	lwpid_t target;
758 	proc_t *p;
759 	lwp_t *t;
760 	int error;
761 
762 	if ((target = SCARG(uap, target)) == 0)
763 		target = l->l_lid;
764 
765 	name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
766 	if (name == NULL)
767 		return ENOMEM;
768 	error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
769 	switch (error) {
770 	case ENAMETOOLONG:
771 	case 0:
772 		name[MAXCOMLEN - 1] = '\0';
773 		break;
774 	default:
775 		kmem_free(name, MAXCOMLEN);
776 		return error;
777 	}
778 
779 	p = curproc;
780 	mutex_enter(p->p_lock);
781 	if ((t = lwp_find(p, target)) == NULL) {
782 		mutex_exit(p->p_lock);
783 		kmem_free(name, MAXCOMLEN);
784 		return ESRCH;
785 	}
786 	lwp_lock(t);
787 	oname = t->l_name;
788 	t->l_name = name;
789 	lwp_unlock(t);
790 	mutex_exit(p->p_lock);
791 
792 	if (oname != NULL)
793 		kmem_free(oname, MAXCOMLEN);
794 
795 	return 0;
796 }
797 
798 int
799 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap, register_t *retval)
800 {
801 	/* {
802 		syscallarg(lwpid_t)		target;
803 		syscallarg(char *)		name;
804 		syscallarg(size_t)		len;
805 	} */
806 	char name[MAXCOMLEN];
807 	lwpid_t target;
808 	proc_t *p;
809 	lwp_t *t;
810 
811 	if ((target = SCARG(uap, target)) == 0)
812 		target = l->l_lid;
813 
814 	p = curproc;
815 	mutex_enter(p->p_lock);
816 	if ((t = lwp_find(p, target)) == NULL) {
817 		mutex_exit(p->p_lock);
818 		return ESRCH;
819 	}
820 	lwp_lock(t);
821 	if (t->l_name == NULL)
822 		name[0] = '\0';
823 	else
824 		strcpy(name, t->l_name);
825 	lwp_unlock(t);
826 	mutex_exit(p->p_lock);
827 
828 	return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
829 }
830 
831 int
832 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap, register_t *retval)
833 {
834 	/* {
835 		syscallarg(int)			features;
836 		syscallarg(struct lwpctl **)	address;
837 	} */
838 	int error, features;
839 	vaddr_t vaddr;
840 
841 	features = SCARG(uap, features);
842 	features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
843 	if (features != 0)
844 		return ENODEV;
845 	if ((error = lwp_ctl_alloc(&vaddr)) != 0)
846 		return error;
847 	return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
848 }
849