xref: /netbsd-src/sys/kern/sys_futex.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: sys_futex.c,v 1.15 2021/11/01 08:35:17 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Taylor R. Campbell and Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.15 2021/11/01 08:35:17 chs Exp $");
34 
35 /*
36  * Futexes
37  *
38  *	The futex system call coordinates notifying threads waiting for
39  *	changes on a 32-bit word of memory.  The word can be managed by
40  *	CPU atomic operations in userland, without system calls, as long
41  *	as there is no contention.
42  *
43  *	The simplest use case demonstrating the utility is:
44  *
45  *		// 32-bit word of memory shared among threads or
46  *		// processes in userland.  lock & 1 means owned;
47  *		// lock & 2 means there are waiters waiting.
48  *		volatile int lock = 0;
49  *
50  *		int v;
51  *
52  *		// Acquire a lock.
53  *		do {
54  *			v = lock;
55  *			if (v & 1) {
56  *				// Lock is held.  Set a bit to say that
57  *				// there are waiters, and wait for lock
58  *				// to change to anything other than v;
59  *				// then retry.
60  *				if (atomic_cas_uint(&lock, v, v | 2) != v)
61  *					continue;
62  *				futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
63  *				continue;
64  *			}
65  *		} while (atomic_cas_uint(&lock, v, v & ~1) != v);
66  *		membar_enter();
67  *
68  *		...
69  *
70  *		// Release the lock.  Optimistically assume there are
71  *		// no waiters first until demonstrated otherwise.
72  *		membar_exit();
73  *		if (atomic_cas_uint(&lock, 1, 0) != 1) {
74  *			// There may be waiters.
75  *			v = atomic_swap_uint(&lock, 0);
76  *			// If there are still waiters, wake one.
77  *			if (v & 2)
78  *				futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
79  *		}
80  *
81  *	The goal is to avoid the futex system call unless there is
82  *	contention; then if there is contention, to guarantee no missed
83  *	wakeups.
84  *
85  *	For a simple implementation, futex(FUTEX_WAIT) could queue
86  *	itself to be woken, double-check the lock word, and then sleep;
87  *	spurious wakeups are generally a fact of life, so any
88  *	FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
89  *
90  *	If this were all there is to it, we could then increase
91  *	parallelism by refining the approximation: partition the
92  *	waiters into buckets by hashing the lock addresses to reduce
93  *	the incidence of spurious wakeups.  But this is not all.
94  *
95  *	The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
96  *	operation not only wakes n waiters on lock if lock == val, but
97  *	also _transfers_ m additional waiters to lock2.  Unless wakeups
98  *	on lock2 also trigger wakeups on lock, we cannot move waiters
99  *	to lock2 if they merely share the same hash as waiters on lock.
100  *	Thus, we can't approximately distribute waiters into queues by
101  *	a hash function; we must distinguish futex queues exactly by
102  *	lock address.
103  *
104  *	For now, we use a global red/black tree to index futexes.  This
105  *	should be replaced by a lockless radix tree with a thread to
106  *	free entries no longer in use once all lookups on all CPUs have
107  *	completed.
108  *
109  *	Specifically, we maintain two maps:
110  *
111  *	futex_tab.va[vmspace, va] for private futexes
112  *	futex_tab.oa[uvm_voaddr] for shared futexes
113  *
114  *	This implementation does not support priority inheritance.
115  */
116 
117 #include <sys/param.h>
118 #include <sys/types.h>
119 #include <sys/atomic.h>
120 #include <sys/condvar.h>
121 #include <sys/futex.h>
122 #include <sys/mutex.h>
123 #include <sys/rbtree.h>
124 #include <sys/queue.h>
125 
126 #include <sys/syscall.h>
127 #include <sys/syscallargs.h>
128 #include <sys/syscallvar.h>
129 
130 #include <uvm/uvm_extern.h>
131 
132 /*
133  * Lock order:
134  *
135  *	futex_tab.lock
136  *	futex::fx_qlock			ordered by kva of struct futex
137  *	 -> futex_wait::fw_lock		only one at a time
138  *	futex_wait::fw_lock		only one at a time
139  *	 -> futex::fx_abortlock		only one at a time
140  */
141 
142 /*
143  * union futex_key
144  *
145  *	A futex is addressed either by a vmspace+va (private) or by
146  *	a uvm_voaddr (shared).
147  */
148 union futex_key {
149 	struct {
150 		struct vmspace			*vmspace;
151 		vaddr_t				va;
152 	}			fk_private;
153 	struct uvm_voaddr	fk_shared;
154 };
155 
156 /*
157  * struct futex
158  *
159  *	Kernel state for a futex located at a particular address in a
160  *	particular virtual address space.
161  *
162  *	N.B. fx_refcnt is an unsigned long because we need to be able
163  *	to operate on it atomically on all systems while at the same
164  *	time rendering practically impossible the chance of it reaching
165  *	its max value.  In practice, we're limited by the number of LWPs
166  *	that can be present on the system at any given time, and the
167  *	assumption is that limit will be good enough on a 32-bit platform.
168  *	See futex_wake() for why overflow needs to be avoided.
169  */
170 struct futex {
171 	union futex_key		fx_key;
172 	unsigned long		fx_refcnt;
173 	bool			fx_shared;
174 	bool			fx_on_tree;
175 	struct rb_node		fx_node;
176 
177 	kmutex_t			fx_qlock;
178 	TAILQ_HEAD(, futex_wait)	fx_queue;
179 
180 	kmutex_t			fx_abortlock;
181 	LIST_HEAD(, futex_wait)		fx_abortlist;
182 	kcondvar_t			fx_abortcv;
183 };
184 
185 /*
186  * struct futex_wait
187  *
188  *	State for a thread to wait on a futex.  Threads wait on fw_cv
189  *	for fw_bitset to be set to zero.  The thread may transition to
190  *	a different futex queue at any time under the futex's lock.
191  */
192 struct futex_wait {
193 	kmutex_t		fw_lock;
194 	kcondvar_t		fw_cv;
195 	struct futex		*fw_futex;
196 	TAILQ_ENTRY(futex_wait)	fw_entry;	/* queue lock */
197 	LIST_ENTRY(futex_wait)	fw_abort;	/* queue abortlock */
198 	int			fw_bitset;
199 	bool			fw_aborting;	/* fw_lock */
200 };
201 
202 /*
203  * futex_tab
204  *
205  *	Global trees of futexes by vmspace/va and VM object address.
206  *
207  *	XXX This obviously doesn't scale in parallel.  We could use a
208  *	pserialize-safe data structure, but there may be a high cost to
209  *	frequent deletion since we don't cache futexes after we're done
210  *	with them.  We could use hashed locks.  But for now, just make
211  *	sure userland can't DoS the serial performance, by using a
212  *	balanced binary tree for lookup.
213  *
214  *	XXX We could use a per-process tree for the table indexed by
215  *	virtual address to reduce contention between processes.
216  */
217 static struct {
218 	kmutex_t	lock;
219 	struct rb_tree	va;
220 	struct rb_tree	oa;
221 } futex_tab __cacheline_aligned;
222 
223 static int
224 compare_futex_key(void *cookie, const void *n, const void *k)
225 {
226 	const struct futex *fa = n;
227 	const union futex_key *fka = &fa->fx_key;
228 	const union futex_key *fkb = k;
229 
230 	if ((uintptr_t)fka->fk_private.vmspace <
231 	    (uintptr_t)fkb->fk_private.vmspace)
232 		return -1;
233 	if ((uintptr_t)fka->fk_private.vmspace >
234 	    (uintptr_t)fkb->fk_private.vmspace)
235 		return +1;
236 	if (fka->fk_private.va < fkb->fk_private.va)
237 		return -1;
238 	if (fka->fk_private.va > fkb->fk_private.va)
239 		return +1;
240 	return 0;
241 }
242 
243 static int
244 compare_futex(void *cookie, const void *na, const void *nb)
245 {
246 	const struct futex *fa = na;
247 	const struct futex *fb = nb;
248 
249 	return compare_futex_key(cookie, fa, &fb->fx_key);
250 }
251 
252 static const rb_tree_ops_t futex_rb_ops = {
253 	.rbto_compare_nodes = compare_futex,
254 	.rbto_compare_key = compare_futex_key,
255 	.rbto_node_offset = offsetof(struct futex, fx_node),
256 };
257 
258 static int
259 compare_futex_shared_key(void *cookie, const void *n, const void *k)
260 {
261 	const struct futex *fa = n;
262 	const union futex_key *fka = &fa->fx_key;
263 	const union futex_key *fkb = k;
264 
265 	return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
266 }
267 
268 static int
269 compare_futex_shared(void *cookie, const void *na, const void *nb)
270 {
271 	const struct futex *fa = na;
272 	const struct futex *fb = nb;
273 
274 	return compare_futex_shared_key(cookie, fa, &fb->fx_key);
275 }
276 
277 static const rb_tree_ops_t futex_shared_rb_ops = {
278 	.rbto_compare_nodes = compare_futex_shared,
279 	.rbto_compare_key = compare_futex_shared_key,
280 	.rbto_node_offset = offsetof(struct futex, fx_node),
281 };
282 
283 static void	futex_wait_dequeue(struct futex_wait *, struct futex *);
284 
285 /*
286  * futex_load(uaddr, kaddr)
287  *
288  *	Perform a single atomic load to read *uaddr, and return the
289  *	result in *kaddr.  Return 0 on success, EFAULT if uaddr is not
290  *	mapped.
291  */
292 static inline int
293 futex_load(int *uaddr, int *kaddr)
294 {
295 	return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
296 }
297 
298 /*
299  * futex_test(uaddr, expected)
300  *
301  *	True if *uaddr == expected.  False if *uaddr != expected, or if
302  *	uaddr is not mapped.
303  */
304 static bool
305 futex_test(int *uaddr, int expected)
306 {
307 	int val;
308 	int error;
309 
310 	error = futex_load(uaddr, &val);
311 	if (error)
312 		return false;
313 	return val == expected;
314 }
315 
316 /*
317  * futex_sys_init()
318  *
319  *	Initialize the futex subsystem.
320  */
321 void
322 futex_sys_init(void)
323 {
324 
325 	mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
326 	rb_tree_init(&futex_tab.va, &futex_rb_ops);
327 	rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
328 }
329 
330 /*
331  * futex_sys_fini()
332  *
333  *	Finalize the futex subsystem.
334  */
335 void
336 futex_sys_fini(void)
337 {
338 
339 	KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
340 	KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
341 	mutex_destroy(&futex_tab.lock);
342 }
343 
344 /*
345  * futex_queue_init(f)
346  *
347  *	Initialize the futex queue.  Caller must call futex_queue_fini
348  *	when done.
349  *
350  *	Never sleeps.
351  */
352 static void
353 futex_queue_init(struct futex *f)
354 {
355 
356 	mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
357 	mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
358 	cv_init(&f->fx_abortcv, "fqabort");
359 	LIST_INIT(&f->fx_abortlist);
360 	TAILQ_INIT(&f->fx_queue);
361 }
362 
363 /*
364  * futex_queue_drain(f)
365  *
366  *	Wait for any aborting waiters in f; then empty the queue of
367  *	any stragglers and wake them.  Caller must guarantee no new
368  *	references to f.
369  *
370  *	May sleep.
371  */
372 static void
373 futex_queue_drain(struct futex *f)
374 {
375 	struct futex_wait *fw, *fw_next;
376 
377 	mutex_enter(&f->fx_abortlock);
378 	while (!LIST_EMPTY(&f->fx_abortlist))
379 		cv_wait(&f->fx_abortcv, &f->fx_abortlock);
380 	mutex_exit(&f->fx_abortlock);
381 
382 	mutex_enter(&f->fx_qlock);
383 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
384 		mutex_enter(&fw->fw_lock);
385 		futex_wait_dequeue(fw, f);
386 		cv_broadcast(&fw->fw_cv);
387 		mutex_exit(&fw->fw_lock);
388 	}
389 	mutex_exit(&f->fx_qlock);
390 }
391 
392 /*
393  * futex_queue_fini(fq)
394  *
395  *	Finalize the futex queue initialized by futex_queue_init.  Queue
396  *	must be empty.  Caller must not use f again until a subsequent
397  *	futex_queue_init.
398  */
399 static void
400 futex_queue_fini(struct futex *f)
401 {
402 
403 	KASSERT(TAILQ_EMPTY(&f->fx_queue));
404 	KASSERT(LIST_EMPTY(&f->fx_abortlist));
405 	mutex_destroy(&f->fx_qlock);
406 	mutex_destroy(&f->fx_abortlock);
407 	cv_destroy(&f->fx_abortcv);
408 }
409 
410 /*
411  * futex_key_init(key, vm, va, shared)
412  *
413  *	Initialize a futex key for lookup, etc.
414  */
415 static int
416 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
417 {
418 	int error = 0;
419 
420 	if (__predict_false(shared)) {
421 		if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
422 			error = EFAULT;
423 	} else {
424 		fk->fk_private.vmspace = vm;
425 		fk->fk_private.va = va;
426 	}
427 
428 	return error;
429 }
430 
431 /*
432  * futex_key_fini(key, shared)
433  *
434  *	Release a futex key.
435  */
436 static void
437 futex_key_fini(union futex_key *fk, bool shared)
438 {
439 	if (__predict_false(shared))
440 		uvm_voaddr_release(&fk->fk_shared);
441 	memset(fk, 0, sizeof(*fk));
442 }
443 
444 /*
445  * futex_create(fk, shared)
446  *
447  *	Create a futex.  Initial reference count is 1, representing the
448  *	caller.  Returns NULL on failure.  Always takes ownership of the
449  *	key, either transferring it to the newly-created futex, or releasing
450  *	the key if creation fails.
451  *
452  *	Never sleeps for memory, but may sleep to acquire a lock.
453  */
454 static struct futex *
455 futex_create(union futex_key *fk, bool shared)
456 {
457 	struct futex *f;
458 
459 	f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
460 	if (f == NULL) {
461 		futex_key_fini(fk, shared);
462 		return NULL;
463 	}
464 	f->fx_key = *fk;
465 	f->fx_refcnt = 1;
466 	f->fx_shared = shared;
467 	f->fx_on_tree = false;
468 	futex_queue_init(f);
469 
470 	return f;
471 }
472 
473 /*
474  * futex_destroy(f)
475  *
476  *	Destroy a futex created with futex_create.  Reference count
477  *	must be zero.
478  *
479  *	May sleep.
480  */
481 static void
482 futex_destroy(struct futex *f)
483 {
484 
485 	ASSERT_SLEEPABLE();
486 
487 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
488 	KASSERT(!f->fx_on_tree);
489 
490 	/* Drain and destroy the private queue.  */
491 	futex_queue_drain(f);
492 	futex_queue_fini(f);
493 
494 	futex_key_fini(&f->fx_key, f->fx_shared);
495 
496 	kmem_free(f, sizeof(*f));
497 }
498 
499 /*
500  * futex_hold(f)
501  *
502  *	Attempt to acquire a reference to f.  Return 0 on success,
503  *	ENFILE on too many references.
504  *
505  *	Never sleeps.
506  */
507 static int
508 futex_hold(struct futex *f)
509 {
510 	unsigned long refcnt;
511 
512 	do {
513 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
514 		if (refcnt == ULONG_MAX)
515 			return ENFILE;
516 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
517 
518 	return 0;
519 }
520 
521 /*
522  * futex_rele(f)
523  *
524  *	Release a reference to f acquired with futex_create or
525  *	futex_hold.
526  *
527  *	May sleep to free f.
528  */
529 static void
530 futex_rele(struct futex *f)
531 {
532 	unsigned long refcnt;
533 
534 	ASSERT_SLEEPABLE();
535 
536 	do {
537 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
538 		if (refcnt == 1)
539 			goto trylast;
540 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
541 	return;
542 
543 trylast:
544 	mutex_enter(&futex_tab.lock);
545 	if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
546 		if (f->fx_on_tree) {
547 			if (__predict_false(f->fx_shared))
548 				rb_tree_remove_node(&futex_tab.oa, f);
549 			else
550 				rb_tree_remove_node(&futex_tab.va, f);
551 			f->fx_on_tree = false;
552 		}
553 	} else {
554 		/* References remain -- don't destroy it.  */
555 		f = NULL;
556 	}
557 	mutex_exit(&futex_tab.lock);
558 	if (f != NULL)
559 		futex_destroy(f);
560 }
561 
562 /*
563  * futex_rele_not_last(f)
564  *
565  *	Release a reference to f acquired with futex_create or
566  *	futex_hold.
567  *
568  *	This version asserts that we are not dropping the last
569  *	reference to f.
570  */
571 static void
572 futex_rele_not_last(struct futex *f)
573 {
574 	unsigned long refcnt;
575 
576 	do {
577 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
578 		KASSERT(refcnt > 1);
579 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
580 }
581 
582 /*
583  * futex_lookup_by_key(key, shared, &f)
584  *
585  *	Try to find an existing futex va reference in the specified key
586  *	On success, return 0, set f to found futex or to NULL if not found,
587  *	and increment f's reference count if found.
588  *
589  *	Return ENFILE if reference count too high.
590  *
591  *	Internal lookup routine shared by futex_lookup() and
592  *	futex_lookup_create().
593  */
594 static int
595 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
596 {
597 	struct futex *f;
598 	int error = 0;
599 
600 	mutex_enter(&futex_tab.lock);
601 	if (__predict_false(shared)) {
602 		f = rb_tree_find_node(&futex_tab.oa, fk);
603 	} else {
604 		f = rb_tree_find_node(&futex_tab.va, fk);
605 	}
606 	if (f) {
607 		error = futex_hold(f);
608 		if (error)
609 			f = NULL;
610 	}
611  	*fp = f;
612 	mutex_exit(&futex_tab.lock);
613 
614 	return error;
615 }
616 
617 /*
618  * futex_insert(f, fp)
619  *
620  *	Try to insert the futex f into the tree by va.  If there
621  *	already is a futex for its va, acquire a reference to it, and
622  *	store it in *fp; otherwise store f in *fp.
623  *
624  *	Return 0 on success, ENFILE if there already is a futex but its
625  *	reference count is too high.
626  */
627 static int
628 futex_insert(struct futex *f, struct futex **fp)
629 {
630 	struct futex *f0;
631 	int error;
632 
633 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
634 	KASSERT(!f->fx_on_tree);
635 
636 	mutex_enter(&futex_tab.lock);
637 	if (__predict_false(f->fx_shared))
638 		f0 = rb_tree_insert_node(&futex_tab.oa, f);
639 	else
640 		f0 = rb_tree_insert_node(&futex_tab.va, f);
641 	if (f0 == f) {
642 		f->fx_on_tree = true;
643 		error = 0;
644 	} else {
645 		KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
646 		KASSERT(f0->fx_on_tree);
647 		error = futex_hold(f0);
648 		if (error)
649 			goto out;
650 	}
651 	*fp = f0;
652 out:	mutex_exit(&futex_tab.lock);
653 
654 	return error;
655 }
656 
657 /*
658  * futex_lookup(uaddr, shared, &f)
659  *
660  *	Find a futex at the userland pointer uaddr in the current
661  *	process's VM space.  On success, return the futex in f and
662  *	increment its reference count.
663  *
664  *	Caller must call futex_rele when done.
665  */
666 static int
667 futex_lookup(int *uaddr, bool shared, struct futex **fp)
668 {
669 	union futex_key fk;
670 	struct vmspace *vm = curproc->p_vmspace;
671 	vaddr_t va = (vaddr_t)uaddr;
672 	int error;
673 
674 	/*
675 	 * Reject unaligned user pointers so we don't cross page
676 	 * boundaries and so atomics will work.
677 	 */
678 	if ((va & 3) != 0)
679 		return EINVAL;
680 
681 	/* Look it up. */
682 	error = futex_key_init(&fk, vm, va, shared);
683 	if (error)
684 		return error;
685 
686 	error = futex_lookup_by_key(&fk, shared, fp);
687 	futex_key_fini(&fk, shared);
688 	if (error)
689 		return error;
690 
691 	KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
692 	KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
693 
694 	/*
695 	 * Success!  (Caller must still check whether we found
696 	 * anything, but nothing went _wrong_ like trying to use
697 	 * unmapped memory.)
698 	 */
699 	KASSERT(error == 0);
700 
701 	return error;
702 }
703 
704 /*
705  * futex_lookup_create(uaddr, shared, &f)
706  *
707  *	Find or create a futex at the userland pointer uaddr in the
708  *	current process's VM space.  On success, return the futex in f
709  *	and increment its reference count.
710  *
711  *	Caller must call futex_rele when done.
712  */
713 static int
714 futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
715 {
716 	union futex_key fk;
717 	struct vmspace *vm = curproc->p_vmspace;
718 	struct futex *f = NULL;
719 	vaddr_t va = (vaddr_t)uaddr;
720 	int error;
721 
722 	/*
723 	 * Reject unaligned user pointers so we don't cross page
724 	 * boundaries and so atomics will work.
725 	 */
726 	if ((va & 3) != 0)
727 		return EINVAL;
728 
729 	error = futex_key_init(&fk, vm, va, shared);
730 	if (error)
731 		return error;
732 
733 	/*
734 	 * Optimistically assume there already is one, and try to find
735 	 * it.
736 	 */
737 	error = futex_lookup_by_key(&fk, shared, fp);
738 	if (error || *fp != NULL) {
739 		/*
740 		 * We either found one, or there was an error.
741 		 * In either case, we are done with the key.
742 		 */
743 		futex_key_fini(&fk, shared);
744 		goto out;
745 	}
746 
747 	/*
748 	 * Create a futex record.  This transfers ownership of the key
749 	 * in all cases.
750 	 */
751 	f = futex_create(&fk, shared);
752 	if (f == NULL) {
753 		error = ENOMEM;
754 		goto out;
755 	}
756 
757 	/*
758 	 * Insert our new futex, or use existing if someone else beat
759 	 * us to it.
760 	 */
761 	error = futex_insert(f, fp);
762 	if (error)
763 		goto out;
764 	if (*fp == f)
765 		f = NULL;	/* don't release on exit */
766 
767 	/* Success!  */
768 	KASSERT(error == 0);
769 
770 out:	if (f != NULL)
771 		futex_rele(f);
772 	KASSERT(error || *fp != NULL);
773 	KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
774 	return error;
775 }
776 
777 /*
778  * futex_wait_init(fw, bitset)
779  *
780  *	Initialize a record for a thread to wait on a futex matching
781  *	the specified bit set.  Should be passed to futex_wait_enqueue
782  *	before futex_wait, and should be passed to futex_wait_fini when
783  *	done.
784  */
785 static void
786 futex_wait_init(struct futex_wait *fw, int bitset)
787 {
788 
789 	KASSERT(bitset);
790 
791 	mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
792 	cv_init(&fw->fw_cv, "futex");
793 	fw->fw_futex = NULL;
794 	fw->fw_bitset = bitset;
795 	fw->fw_aborting = false;
796 }
797 
798 /*
799  * futex_wait_fini(fw)
800  *
801  *	Finalize a record for a futex waiter.  Must not be on any
802  *	futex's queue.
803  */
804 static void
805 futex_wait_fini(struct futex_wait *fw)
806 {
807 
808 	KASSERT(fw->fw_futex == NULL);
809 
810 	cv_destroy(&fw->fw_cv);
811 	mutex_destroy(&fw->fw_lock);
812 }
813 
814 /*
815  * futex_wait_enqueue(fw, f)
816  *
817  *	Put fw on the futex queue.  Must be done before futex_wait.
818  *	Caller must hold fw's lock and f's lock, and fw must not be on
819  *	any existing futex's waiter list.
820  */
821 static void
822 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
823 {
824 
825 	KASSERT(mutex_owned(&f->fx_qlock));
826 	KASSERT(mutex_owned(&fw->fw_lock));
827 	KASSERT(fw->fw_futex == NULL);
828 	KASSERT(!fw->fw_aborting);
829 
830 	fw->fw_futex = f;
831 	TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
832 }
833 
834 /*
835  * futex_wait_dequeue(fw, f)
836  *
837  *	Remove fw from the futex queue.  Precludes subsequent
838  *	futex_wait until a futex_wait_enqueue.  Caller must hold fw's
839  *	lock and f's lock, and fw must be on f.
840  */
841 static void
842 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
843 {
844 
845 	KASSERT(mutex_owned(&f->fx_qlock));
846 	KASSERT(mutex_owned(&fw->fw_lock));
847 	KASSERT(fw->fw_futex == f);
848 
849 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
850 	fw->fw_futex = NULL;
851 }
852 
853 /*
854  * futex_wait_abort(fw)
855  *
856  *	Caller is no longer waiting for fw.  Remove it from any queue
857  *	if it was on one.  Caller must hold fw->fw_lock.
858  */
859 static void
860 futex_wait_abort(struct futex_wait *fw)
861 {
862 	struct futex *f;
863 
864 	KASSERT(mutex_owned(&fw->fw_lock));
865 
866 	/*
867 	 * Grab the futex queue.  It can't go away as long as we hold
868 	 * fw_lock.  However, we can't take the queue lock because
869 	 * that's a lock order reversal.
870 	 */
871 	f = fw->fw_futex;
872 
873 	/* Put us on the abort list so that fq won't go away.  */
874 	mutex_enter(&f->fx_abortlock);
875 	LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
876 	mutex_exit(&f->fx_abortlock);
877 
878 	/*
879 	 * Mark fw as aborting so it won't lose wakeups and won't be
880 	 * transferred to any other queue.
881 	 */
882 	fw->fw_aborting = true;
883 
884 	/* f is now stable, so we can release fw_lock.  */
885 	mutex_exit(&fw->fw_lock);
886 
887 	/* Now we can remove fw under the queue lock.  */
888 	mutex_enter(&f->fx_qlock);
889 	mutex_enter(&fw->fw_lock);
890 	futex_wait_dequeue(fw, f);
891 	mutex_exit(&fw->fw_lock);
892 	mutex_exit(&f->fx_qlock);
893 
894 	/*
895 	 * Finally, remove us from the abort list and notify anyone
896 	 * waiting for the abort to complete if we were the last to go.
897 	 */
898 	mutex_enter(&f->fx_abortlock);
899 	LIST_REMOVE(fw, fw_abort);
900 	if (LIST_EMPTY(&f->fx_abortlist))
901 		cv_broadcast(&f->fx_abortcv);
902 	mutex_exit(&f->fx_abortlock);
903 
904 	/*
905 	 * Release our reference to the futex now that we are not
906 	 * waiting for it.
907 	 */
908 	futex_rele(f);
909 
910 	/*
911 	 * Reacquire the fw lock as caller expects.  Verify that we're
912 	 * aborting and no longer associated with a futex.
913 	 */
914 	mutex_enter(&fw->fw_lock);
915 	KASSERT(fw->fw_aborting);
916 	KASSERT(fw->fw_futex == NULL);
917 }
918 
919 /*
920  * futex_wait(fw, deadline, clkid)
921  *
922  *	fw must be a waiter on a futex's queue.  Wait until deadline on
923  *	the clock clkid, or forever if deadline is NULL, for a futex
924  *	wakeup.  Return 0 on explicit wakeup or destruction of futex,
925  *	ETIMEDOUT on timeout, EINTR/ERESTART on signal.  Either way, fw
926  *	will no longer be on a futex queue on return.
927  */
928 static int
929 futex_wait(struct futex_wait *fw, const struct timespec *deadline,
930     clockid_t clkid)
931 {
932 	int error = 0;
933 
934 	/* Test and wait under the wait lock.  */
935 	mutex_enter(&fw->fw_lock);
936 
937 	for (;;) {
938 		/* If we're done yet, stop and report success.  */
939 		if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
940 			error = 0;
941 			break;
942 		}
943 
944 		/* If anything went wrong in the last iteration, stop.  */
945 		if (error)
946 			break;
947 
948 		/* Not done yet.  Wait.  */
949 		if (deadline) {
950 			struct timespec ts;
951 
952 			/* Check our watch.  */
953 			error = clock_gettime1(clkid, &ts);
954 			if (error)
955 				break;
956 
957 			/* If we're past the deadline, ETIMEDOUT.  */
958 			if (timespeccmp(deadline, &ts, <=)) {
959 				error = ETIMEDOUT;
960 				break;
961 			}
962 
963 			/* Count how much time is left.  */
964 			timespecsub(deadline, &ts, &ts);
965 
966 			/* Wait for that much time, allowing signals.  */
967 			error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
968 			    tstohz(&ts));
969 		} else {
970 			/* Wait indefinitely, allowing signals. */
971 			error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
972 		}
973 	}
974 
975 	/*
976 	 * If we were woken up, the waker will have removed fw from the
977 	 * queue.  But if anything went wrong, we must remove fw from
978 	 * the queue ourselves.  While here, convert EWOULDBLOCK to
979 	 * ETIMEDOUT.
980 	 */
981 	if (error) {
982 		futex_wait_abort(fw);
983 		if (error == EWOULDBLOCK)
984 			error = ETIMEDOUT;
985 	}
986 
987 	mutex_exit(&fw->fw_lock);
988 
989 	return error;
990 }
991 
992 /*
993  * futex_wake(f, nwake, f2, nrequeue, bitset)
994  *
995  *	Wake up to nwake waiters on f matching bitset; then, if f2 is
996  *	provided, move up to nrequeue remaining waiters on f matching
997  *	bitset to f2.  Return the number of waiters actually woken.
998  *	Caller must hold the locks of f and f2, if provided.
999  */
1000 static unsigned
1001 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
1002     unsigned nrequeue, int bitset)
1003 {
1004 	struct futex_wait *fw, *fw_next;
1005 	unsigned nwoken = 0;
1006 	int hold_error __diagused;
1007 
1008 	KASSERT(mutex_owned(&f->fx_qlock));
1009 	KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
1010 
1011 	/* Wake up to nwake waiters, and count the number woken.  */
1012 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1013 		if ((fw->fw_bitset & bitset) == 0)
1014 			continue;
1015 		if (nwake > 0) {
1016 			mutex_enter(&fw->fw_lock);
1017 			if (__predict_false(fw->fw_aborting)) {
1018 				mutex_exit(&fw->fw_lock);
1019 				continue;
1020 			}
1021 			futex_wait_dequeue(fw, f);
1022 			fw->fw_bitset = 0;
1023 			cv_broadcast(&fw->fw_cv);
1024 			mutex_exit(&fw->fw_lock);
1025 			nwake--;
1026 			nwoken++;
1027 			/*
1028 			 * Drop the futex reference on behalf of the
1029 			 * waiter.  We assert this is not the last
1030 			 * reference on the futex (our caller should
1031 			 * also have one).
1032 			 */
1033 			futex_rele_not_last(f);
1034 		} else {
1035 			break;
1036 		}
1037 	}
1038 
1039 	if (f2) {
1040 		/* Move up to nrequeue waiters from f's queue to f2's queue. */
1041 		TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1042 			if ((fw->fw_bitset & bitset) == 0)
1043 				continue;
1044 			if (nrequeue > 0) {
1045 				mutex_enter(&fw->fw_lock);
1046 				if (__predict_false(fw->fw_aborting)) {
1047 					mutex_exit(&fw->fw_lock);
1048 					continue;
1049 				}
1050 				futex_wait_dequeue(fw, f);
1051 				futex_wait_enqueue(fw, f2);
1052 				mutex_exit(&fw->fw_lock);
1053 				nrequeue--;
1054 				/*
1055 				 * Transfer the reference from f to f2.
1056 				 * As above, we assert that we are not
1057 				 * dropping the last reference to f here.
1058 				 *
1059 				 * XXX futex_hold() could theoretically
1060 				 * XXX fail here.
1061 				 */
1062 				futex_rele_not_last(f);
1063 				hold_error = futex_hold(f2);
1064 				KASSERT(hold_error == 0);
1065 			} else {
1066 				break;
1067 			}
1068 		}
1069 	} else {
1070 		KASSERT(nrequeue == 0);
1071 	}
1072 
1073 	/* Return the number of waiters woken.  */
1074 	return nwoken;
1075 }
1076 
1077 /*
1078  * futex_queue_lock(f)
1079  *
1080  *	Acquire the queue lock of f.  Pair with futex_queue_unlock.  Do
1081  *	not use if caller needs to acquire two locks; use
1082  *	futex_queue_lock2 instead.
1083  */
1084 static void
1085 futex_queue_lock(struct futex *f)
1086 {
1087 	mutex_enter(&f->fx_qlock);
1088 }
1089 
1090 /*
1091  * futex_queue_unlock(f)
1092  *
1093  *	Release the queue lock of f.
1094  */
1095 static void
1096 futex_queue_unlock(struct futex *f)
1097 {
1098 	mutex_exit(&f->fx_qlock);
1099 }
1100 
1101 /*
1102  * futex_queue_lock2(f, f2)
1103  *
1104  *	Acquire the queue locks of both f and f2, which may be null, or
1105  *	which may have the same underlying queue.  If they are
1106  *	distinct, an arbitrary total order is chosen on the locks.
1107  *
1108  *	Callers should only ever acquire multiple queue locks
1109  *	simultaneously using futex_queue_lock2.
1110  */
1111 static void
1112 futex_queue_lock2(struct futex *f, struct futex *f2)
1113 {
1114 
1115 	/*
1116 	 * If both are null, do nothing; if one is null and the other
1117 	 * is not, lock the other and be done with it.
1118 	 */
1119 	if (f == NULL && f2 == NULL) {
1120 		return;
1121 	} else if (f == NULL) {
1122 		mutex_enter(&f2->fx_qlock);
1123 		return;
1124 	} else if (f2 == NULL) {
1125 		mutex_enter(&f->fx_qlock);
1126 		return;
1127 	}
1128 
1129 	/* If both futexes are the same, acquire only one. */
1130 	if (f == f2) {
1131 		mutex_enter(&f->fx_qlock);
1132 		return;
1133 	}
1134 
1135 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
1136 	if ((uintptr_t)f < (uintptr_t)f2) {
1137 		mutex_enter(&f->fx_qlock);
1138 		mutex_enter(&f2->fx_qlock);
1139 	} else {
1140 		mutex_enter(&f2->fx_qlock);
1141 		mutex_enter(&f->fx_qlock);
1142 	}
1143 }
1144 
1145 /*
1146  * futex_queue_unlock2(f, f2)
1147  *
1148  *	Release the queue locks of both f and f2, which may be null, or
1149  *	which may have the same underlying queue.
1150  */
1151 static void
1152 futex_queue_unlock2(struct futex *f, struct futex *f2)
1153 {
1154 
1155 	/*
1156 	 * If both are null, do nothing; if one is null and the other
1157 	 * is not, unlock the other and be done with it.
1158 	 */
1159 	if (f == NULL && f2 == NULL) {
1160 		return;
1161 	} else if (f == NULL) {
1162 		mutex_exit(&f2->fx_qlock);
1163 		return;
1164 	} else if (f2 == NULL) {
1165 		mutex_exit(&f->fx_qlock);
1166 		return;
1167 	}
1168 
1169 	/* If both futexes are the same, release only one. */
1170 	if (f == f2) {
1171 		mutex_exit(&f->fx_qlock);
1172 		return;
1173 	}
1174 
1175 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
1176 	if ((uintptr_t)f < (uintptr_t)f2) {
1177 		mutex_exit(&f2->fx_qlock);
1178 		mutex_exit(&f->fx_qlock);
1179 	} else {
1180 		mutex_exit(&f->fx_qlock);
1181 		mutex_exit(&f2->fx_qlock);
1182 	}
1183 }
1184 
1185 /*
1186  * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1187  *
1188  *	Implement futex(FUTEX_WAIT).
1189  */
1190 static int
1191 futex_func_wait(bool shared, int *uaddr, int val, int val3,
1192     const struct timespec *timeout, clockid_t clkid, int clkflags,
1193     register_t *retval)
1194 {
1195 	struct futex *f;
1196 	struct futex_wait wait, *fw = &wait;
1197 	struct timespec ts;
1198 	const struct timespec *deadline;
1199 	int error;
1200 
1201 	/*
1202 	 * If there's nothing to wait for, and nobody will ever wake
1203 	 * us, then don't set anything up to wait -- just stop here.
1204 	 */
1205 	if (val3 == 0)
1206 		return EINVAL;
1207 
1208 	/* Optimistically test before anything else.  */
1209 	if (!futex_test(uaddr, val))
1210 		return EAGAIN;
1211 
1212 	/* Determine a deadline on the specified clock.  */
1213 	if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1214 		deadline = timeout;
1215 	} else {
1216 		error = clock_gettime1(clkid, &ts);
1217 		if (error)
1218 			return error;
1219 		timespecadd(&ts, timeout, &ts);
1220 		deadline = &ts;
1221 	}
1222 
1223 	/* Get the futex, creating it if necessary.  */
1224 	error = futex_lookup_create(uaddr, shared, &f);
1225 	if (error)
1226 		return error;
1227 	KASSERT(f);
1228 
1229 	/* Get ready to wait.  */
1230 	futex_wait_init(fw, val3);
1231 
1232 	/*
1233 	 * Under the queue lock, check the value again: if it has
1234 	 * already changed, EAGAIN; otherwise enqueue the waiter.
1235 	 * Since FUTEX_WAKE will use the same lock and be done after
1236 	 * modifying the value, the order in which we check and enqueue
1237 	 * is immaterial.
1238 	 */
1239 	futex_queue_lock(f);
1240 	if (!futex_test(uaddr, val)) {
1241 		futex_queue_unlock(f);
1242 		error = EAGAIN;
1243 		goto out;
1244 	}
1245 	mutex_enter(&fw->fw_lock);
1246 	futex_wait_enqueue(fw, f);
1247 	mutex_exit(&fw->fw_lock);
1248 	futex_queue_unlock(f);
1249 
1250 	/*
1251 	 * We cannot drop our reference to the futex here, because
1252 	 * we might be enqueued on a different one when we are awakened.
1253 	 * The references will be managed on our behalf in the requeue
1254 	 * and wake cases.
1255 	 */
1256 	f = NULL;
1257 
1258 	/* Wait. */
1259 	error = futex_wait(fw, deadline, clkid);
1260 	if (error)
1261 		goto out;
1262 
1263 	/* Return 0 on success, error on failure. */
1264 	*retval = 0;
1265 
1266 out:	if (f != NULL)
1267 		futex_rele(f);
1268 	futex_wait_fini(fw);
1269 	return error;
1270 }
1271 
1272 /*
1273  * futex_func_wake(uaddr, val, val3, retval)
1274  *
1275  *	Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1276  */
1277 static int
1278 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1279 {
1280 	struct futex *f;
1281 	unsigned int nwoken = 0;
1282 	int error = 0;
1283 
1284 	/* Reject negative number of wakeups.  */
1285 	if (val < 0) {
1286 		error = EINVAL;
1287 		goto out;
1288 	}
1289 
1290 	/* Look up the futex, if any.  */
1291 	error = futex_lookup(uaddr, shared, &f);
1292 	if (error)
1293 		goto out;
1294 
1295 	/* If there's no futex, there are no waiters to wake.  */
1296 	if (f == NULL)
1297 		goto out;
1298 
1299 	/*
1300 	 * Under f's queue lock, wake the waiters and remember the
1301 	 * number woken.
1302 	 */
1303 	futex_queue_lock(f);
1304 	nwoken = futex_wake(f, val, NULL, 0, val3);
1305 	futex_queue_unlock(f);
1306 
1307 	/* Release the futex.  */
1308 	futex_rele(f);
1309 
1310 out:
1311 	/* Return the number of waiters woken.  */
1312 	*retval = nwoken;
1313 
1314 	/* Success!  */
1315 	return error;
1316 }
1317 
1318 /*
1319  * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1320  *
1321  *	Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1322  */
1323 static int
1324 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1325     int val2, int val3, register_t *retval)
1326 {
1327 	struct futex *f = NULL, *f2 = NULL;
1328 	unsigned nwoken = 0;	/* default to zero woken on early return */
1329 	int error;
1330 
1331 	/* Reject negative number of wakeups or requeues. */
1332 	if (val < 0 || val2 < 0) {
1333 		error = EINVAL;
1334 		goto out;
1335 	}
1336 
1337 	/* Look up the source futex, if any. */
1338 	error = futex_lookup(uaddr, shared, &f);
1339 	if (error)
1340 		goto out;
1341 
1342 	/* If there is none, nothing to do. */
1343 	if (f == NULL)
1344 		goto out;
1345 
1346 	/*
1347 	 * We may need to create the destination futex because it's
1348 	 * entirely possible it does not currently have any waiters.
1349 	 */
1350 	error = futex_lookup_create(uaddr2, shared, &f2);
1351 	if (error)
1352 		goto out;
1353 
1354 	/*
1355 	 * Under the futexes' queue locks, check the value; if
1356 	 * unchanged from val3, wake the waiters.
1357 	 */
1358 	futex_queue_lock2(f, f2);
1359 	if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1360 		error = EAGAIN;
1361 	} else {
1362 		error = 0;
1363 		nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
1364 	}
1365 	futex_queue_unlock2(f, f2);
1366 
1367 out:
1368 	/* Return the number of waiters woken.  */
1369 	*retval = nwoken;
1370 
1371 	/* Release the futexes if we got them.  */
1372 	if (f2)
1373 		futex_rele(f2);
1374 	if (f)
1375 		futex_rele(f);
1376 	return error;
1377 }
1378 
1379 /*
1380  * futex_validate_op_cmp(val3)
1381  *
1382  *	Validate an op/cmp argument for FUTEX_WAKE_OP.
1383  */
1384 static int
1385 futex_validate_op_cmp(int val3)
1386 {
1387 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1388 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1389 
1390 	if (op & FUTEX_OP_OPARG_SHIFT) {
1391 		int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1392 		if (oparg < 0)
1393 			return EINVAL;
1394 		if (oparg >= 32)
1395 			return EINVAL;
1396 		op &= ~FUTEX_OP_OPARG_SHIFT;
1397 	}
1398 
1399 	switch (op) {
1400 	case FUTEX_OP_SET:
1401 	case FUTEX_OP_ADD:
1402 	case FUTEX_OP_OR:
1403 	case FUTEX_OP_ANDN:
1404 	case FUTEX_OP_XOR:
1405 		break;
1406 	default:
1407 		return EINVAL;
1408 	}
1409 
1410 	switch (cmp) {
1411 	case FUTEX_OP_CMP_EQ:
1412 	case FUTEX_OP_CMP_NE:
1413 	case FUTEX_OP_CMP_LT:
1414 	case FUTEX_OP_CMP_LE:
1415 	case FUTEX_OP_CMP_GT:
1416 	case FUTEX_OP_CMP_GE:
1417 		break;
1418 	default:
1419 		return EINVAL;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * futex_compute_op(oldval, val3)
1427  *
1428  *	Apply a FUTEX_WAIT_OP operation to oldval.
1429  */
1430 static int
1431 futex_compute_op(int oldval, int val3)
1432 {
1433 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1434 	int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1435 
1436 	if (op & FUTEX_OP_OPARG_SHIFT) {
1437 		KASSERT(oparg >= 0);
1438 		KASSERT(oparg < 32);
1439 		oparg = 1u << oparg;
1440 		op &= ~FUTEX_OP_OPARG_SHIFT;
1441 	}
1442 
1443 	switch (op) {
1444 	case FUTEX_OP_SET:
1445 		return oparg;
1446 
1447 	case FUTEX_OP_ADD:
1448 		/*
1449 		 * Avoid signed arithmetic overflow by doing
1450 		 * arithmetic unsigned and converting back to signed
1451 		 * at the end.
1452 		 */
1453 		return (int)((unsigned)oldval + (unsigned)oparg);
1454 
1455 	case FUTEX_OP_OR:
1456 		return oldval | oparg;
1457 
1458 	case FUTEX_OP_ANDN:
1459 		return oldval & ~oparg;
1460 
1461 	case FUTEX_OP_XOR:
1462 		return oldval ^ oparg;
1463 
1464 	default:
1465 		panic("invalid futex op");
1466 	}
1467 }
1468 
1469 /*
1470  * futex_compute_cmp(oldval, val3)
1471  *
1472  *	Apply a FUTEX_WAIT_OP comparison to oldval.
1473  */
1474 static bool
1475 futex_compute_cmp(int oldval, int val3)
1476 {
1477 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1478 	int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
1479 
1480 	switch (cmp) {
1481 	case FUTEX_OP_CMP_EQ:
1482 		return (oldval == cmparg);
1483 
1484 	case FUTEX_OP_CMP_NE:
1485 		return (oldval != cmparg);
1486 
1487 	case FUTEX_OP_CMP_LT:
1488 		return (oldval < cmparg);
1489 
1490 	case FUTEX_OP_CMP_LE:
1491 		return (oldval <= cmparg);
1492 
1493 	case FUTEX_OP_CMP_GT:
1494 		return (oldval > cmparg);
1495 
1496 	case FUTEX_OP_CMP_GE:
1497 		return (oldval >= cmparg);
1498 
1499 	default:
1500 		panic("invalid futex cmp operation");
1501 	}
1502 }
1503 
1504 /*
1505  * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1506  *
1507  *	Implement futex(FUTEX_WAKE_OP).
1508  */
1509 static int
1510 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1511     int val3, register_t *retval)
1512 {
1513 	struct futex *f = NULL, *f2 = NULL;
1514 	int oldval, newval, actual;
1515 	unsigned nwoken = 0;
1516 	int error;
1517 
1518 	/* Reject negative number of wakeups.  */
1519 	if (val < 0 || val2 < 0) {
1520 		error = EINVAL;
1521 		goto out;
1522 	}
1523 
1524 	/* Reject invalid operations before we start doing things.  */
1525 	if ((error = futex_validate_op_cmp(val3)) != 0)
1526 		goto out;
1527 
1528 	/* Look up the first futex, if any.  */
1529 	error = futex_lookup(uaddr, shared, &f);
1530 	if (error)
1531 		goto out;
1532 
1533 	/* Look up the second futex, if any.  */
1534 	error = futex_lookup(uaddr2, shared, &f2);
1535 	if (error)
1536 		goto out;
1537 
1538 	/*
1539 	 * Under the queue locks:
1540 	 *
1541 	 * 1. Read/modify/write: *uaddr2 op= oparg.
1542 	 * 2. Unconditionally wake uaddr.
1543 	 * 3. Conditionally wake uaddr2, if it previously matched val2.
1544 	 */
1545 	futex_queue_lock2(f, f2);
1546 	do {
1547 		error = futex_load(uaddr2, &oldval);
1548 		if (error)
1549 			goto out_unlock;
1550 		newval = futex_compute_op(oldval, val3);
1551 		error = ucas_int(uaddr2, oldval, newval, &actual);
1552 		if (error)
1553 			goto out_unlock;
1554 	} while (actual != oldval);
1555 	nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
1556 	if (f2 && futex_compute_cmp(oldval, val3))
1557 		nwoken += futex_wake(f2, val2, NULL, 0,
1558 		    FUTEX_BITSET_MATCH_ANY);
1559 
1560 	/* Success! */
1561 	error = 0;
1562 out_unlock:
1563 	futex_queue_unlock2(f, f2);
1564 
1565 out:
1566 	/* Return the number of waiters woken. */
1567 	*retval = nwoken;
1568 
1569 	/* Release the futexes, if we got them. */
1570 	if (f2)
1571 		futex_rele(f2);
1572 	if (f)
1573 		futex_rele(f);
1574 	return error;
1575 }
1576 
1577 /*
1578  * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1579  *
1580  *	Implement the futex system call with all the parameters
1581  *	parsed out.
1582  */
1583 int
1584 do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
1585     int *uaddr2, int val2, int val3, register_t *retval)
1586 {
1587 	const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1588 	const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1589 							    : CLOCK_MONOTONIC;
1590 
1591 	op &= FUTEX_CMD_MASK;
1592 
1593 	switch (op) {
1594 	case FUTEX_WAIT:
1595 		return futex_func_wait(shared, uaddr, val,
1596 		    FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
1597 		    retval);
1598 
1599 	case FUTEX_WAKE:
1600 		val3 = FUTEX_BITSET_MATCH_ANY;
1601 		/* FALLTHROUGH */
1602 	case FUTEX_WAKE_BITSET:
1603 		return futex_func_wake(shared, uaddr, val, val3, retval);
1604 
1605 	case FUTEX_REQUEUE:
1606 	case FUTEX_CMP_REQUEUE:
1607 		return futex_func_requeue(shared, op, uaddr, val, uaddr2,
1608 		    val2, val3, retval);
1609 
1610 	case FUTEX_WAIT_BITSET:
1611 		return futex_func_wait(shared, uaddr, val, val3, timeout,
1612 		    clkid, TIMER_ABSTIME, retval);
1613 
1614 	case FUTEX_WAKE_OP:
1615 		return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
1616 		    val3, retval);
1617 
1618 	case FUTEX_FD:
1619 	default:
1620 		return ENOSYS;
1621 	}
1622 }
1623 
1624 /*
1625  * sys___futex(l, uap, retval)
1626  *
1627  *	__futex(2) system call: generic futex operations.
1628  */
1629 int
1630 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1631     register_t *retval)
1632 {
1633 	/* {
1634 		syscallarg(int *) uaddr;
1635 		syscallarg(int) op;
1636 		syscallarg(int) val;
1637 		syscallarg(const struct timespec *) timeout;
1638 		syscallarg(int *) uaddr2;
1639 		syscallarg(int) val2;
1640 		syscallarg(int) val3;
1641 	} */
1642 	struct timespec ts, *tsp;
1643 	int error;
1644 
1645 	/*
1646 	 * Copy in the timeout argument, if specified.
1647 	 */
1648 	if (SCARG(uap, timeout)) {
1649 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1650 		if (error)
1651 			return error;
1652 		tsp = &ts;
1653 	} else {
1654 		tsp = NULL;
1655 	}
1656 
1657 	return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1658 	    tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1659 	    retval);
1660 }
1661 
1662 /*
1663  * sys___futex_set_robust_list(l, uap, retval)
1664  *
1665  *	__futex_set_robust_list(2) system call for robust futexes.
1666  */
1667 int
1668 sys___futex_set_robust_list(struct lwp *l,
1669     const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1670 {
1671 	/* {
1672 		syscallarg(void *) head;
1673 		syscallarg(size_t) len;
1674 	} */
1675 	void *head = SCARG(uap, head);
1676 
1677 	if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1678 		return EINVAL;
1679 	if ((uintptr_t)head % sizeof(u_long))
1680 		return EINVAL;
1681 
1682 	l->l_robust_head = (uintptr_t)head;
1683 
1684 	return 0;
1685 }
1686 
1687 /*
1688  * sys___futex_get_robust_list(l, uap, retval)
1689  *
1690  *	__futex_get_robust_list(2) system call for robust futexes.
1691  */
1692 int
1693 sys___futex_get_robust_list(struct lwp *l,
1694     const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1695 {
1696 	/* {
1697 		syscallarg(lwpid_t) lwpid;
1698 		syscallarg(void **) headp;
1699 		syscallarg(size_t *) lenp;
1700 	} */
1701 	void *head;
1702 	const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1703 	int error;
1704 
1705 	error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1706 	if (error)
1707 		return error;
1708 
1709 	/* Copy out the head pointer and the head structure length. */
1710 	error = copyout(&head, SCARG(uap, headp), sizeof(head));
1711 	if (__predict_true(error == 0)) {
1712 		error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1713 	}
1714 
1715 	return error;
1716 }
1717 
1718 /*
1719  * release_futex(uva, tid)
1720  *
1721  *	Try to release the robust futex at uva in the current process
1722  *	on lwp exit.  If anything goes wrong, silently fail.  It is the
1723  *	userland program's obligation to arrange correct behaviour.
1724  */
1725 static void
1726 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1727     bool const is_pending)
1728 {
1729 	int *uaddr;
1730 	struct futex *f;
1731 	int oldval, newval, actual;
1732 	int error;
1733 
1734 	/* If it's misaligned, tough.  */
1735 	if (__predict_false(uptr & 3))
1736 		return;
1737 	uaddr = (int *)uptr;
1738 
1739 	error = futex_load(uaddr, &oldval);
1740 	if (__predict_false(error))
1741 		return;
1742 
1743 	/*
1744 	 * There are two race conditions we need to handle here:
1745 	 *
1746 	 * 1. User space cleared the futex word but died before
1747 	 *    being able to issue the wakeup.  No wakeups will
1748 	 *    ever be issued, oops!
1749 	 *
1750 	 * 2. Awakened waiter died before being able to acquire
1751 	 *    the futex in user space.  Any other waiters are
1752 	 *    now stuck, oops!
1753 	 *
1754 	 * In both of these cases, the futex word will be 0 (because
1755 	 * it's updated before the wake is issued).  The best we can
1756 	 * do is detect this situation if it's the pending futex and
1757 	 * issue a wake without modifying the futex word.
1758 	 *
1759 	 * XXX eventual PI handling?
1760 	 */
1761 	if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1762 		register_t retval;
1763 		(void) futex_func_wake(/*shared*/true, uaddr, 1,
1764 		    FUTEX_BITSET_MATCH_ANY, &retval);
1765 		return;
1766 	}
1767 
1768 	/* Optimistically test whether we need to do anything at all.  */
1769 	if ((oldval & FUTEX_TID_MASK) != tid)
1770 		return;
1771 
1772 	/*
1773 	 * We need to handle the case where this thread owned the futex,
1774 	 * but it was uncontended.  In this case, there won't be any
1775 	 * kernel state to look up.  All we can do is mark the futex
1776 	 * as a zombie to be mopped up the next time another thread
1777 	 * attempts to acquire it.
1778 	 *
1779 	 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1780 	 * this loop, even if waiters appear while we're are doing
1781 	 * so.  This is beause FUTEX_WAITERS is set by user space
1782 	 * before calling __futex() to wait, and the futex needs
1783 	 * to be marked as a zombie when the new waiter gets into
1784 	 * the kernel.
1785 	 */
1786 	if ((oldval & FUTEX_WAITERS) == 0) {
1787 		do {
1788 			error = futex_load(uaddr, &oldval);
1789 			if (error)
1790 				return;
1791 			if ((oldval & FUTEX_TID_MASK) != tid)
1792 				return;
1793 			newval = oldval | FUTEX_OWNER_DIED;
1794 			error = ucas_int(uaddr, oldval, newval, &actual);
1795 			if (error)
1796 				return;
1797 		} while (actual != oldval);
1798 
1799 		/*
1800 		 * If where is still no indication of waiters, then there is
1801 		 * no more work for us to do.
1802 		 */
1803 		if ((oldval & FUTEX_WAITERS) == 0)
1804 			return;
1805 	}
1806 
1807 	/*
1808 	 * Look for a shared futex since we have no positive indication
1809 	 * it is private.  If we can't, tough.
1810 	 */
1811 	error = futex_lookup(uaddr, /*shared*/true, &f);
1812 	if (error)
1813 		return;
1814 
1815 	/*
1816 	 * If there's no kernel state for this futex, there's nothing to
1817 	 * release.
1818 	 */
1819 	if (f == NULL)
1820 		return;
1821 
1822 	/* Work under the futex queue lock.  */
1823 	futex_queue_lock(f);
1824 
1825 	/*
1826 	 * Fetch the word: if the tid doesn't match ours, skip;
1827 	 * otherwise, set the owner-died bit, atomically.
1828 	 */
1829 	do {
1830 		error = futex_load(uaddr, &oldval);
1831 		if (error)
1832 			goto out;
1833 		if ((oldval & FUTEX_TID_MASK) != tid)
1834 			goto out;
1835 		newval = oldval | FUTEX_OWNER_DIED;
1836 		error = ucas_int(uaddr, oldval, newval, &actual);
1837 		if (error)
1838 			goto out;
1839 	} while (actual != oldval);
1840 
1841 	/*
1842 	 * If there may be waiters, try to wake one.  If anything goes
1843 	 * wrong, tough.
1844 	 *
1845 	 * XXX eventual PI handling?
1846 	 */
1847 	if (oldval & FUTEX_WAITERS)
1848 		(void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
1849 
1850 	/* Unlock the queue and release the futex.  */
1851 out:	futex_queue_unlock(f);
1852 	futex_rele(f);
1853 }
1854 
1855 /*
1856  * futex_robust_head_lookup(l, lwpid)
1857  *
1858  *	Helper function to look up a robust head by LWP ID.
1859  */
1860 int
1861 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
1862 {
1863 	struct proc *p = l->l_proc;
1864 
1865 	/* Find the other lwp, if requested; otherwise use our robust head.  */
1866 	if (lwpid) {
1867 		mutex_enter(p->p_lock);
1868 		l = lwp_find(p, lwpid);
1869 		if (l == NULL) {
1870 			mutex_exit(p->p_lock);
1871 			return ESRCH;
1872 		}
1873 		*headp = (void *)l->l_robust_head;
1874 		mutex_exit(p->p_lock);
1875 	} else {
1876 		*headp = (void *)l->l_robust_head;
1877 	}
1878 	return 0;
1879 }
1880 
1881 /*
1882  * futex_fetch_robust_head(uaddr)
1883  *
1884  *	Helper routine to fetch the futex robust list head that
1885  *	handles 32-bit binaries running on 64-bit kernels.
1886  */
1887 static int
1888 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
1889 {
1890 #ifdef _LP64
1891 	if (curproc->p_flag & PK_32) {
1892 		uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
1893 		int error;
1894 
1895 		error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
1896 		if (__predict_true(error == 0)) {
1897 			for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
1898 				if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
1899 					/*
1900 					 * Make sure the offset is sign-
1901 					 * extended.
1902 					 */
1903 					rhead[i] = (int32_t)rhead32[i];
1904 				} else {
1905 					rhead[i] = rhead32[i];
1906 				}
1907 			}
1908 		}
1909 		return error;
1910 	}
1911 #endif /* _L64 */
1912 
1913 	return copyin((void *)uaddr, rhead,
1914 	    sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
1915 }
1916 
1917 /*
1918  * futex_decode_robust_word(word)
1919  *
1920  *	Decode a robust futex list word into the entry and entry
1921  *	properties.
1922  */
1923 static inline void
1924 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
1925     bool * const is_pi)
1926 {
1927 	*is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
1928 	*entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
1929 }
1930 
1931 /*
1932  * futex_fetch_robust_entry(uaddr)
1933  *
1934  *	Helper routine to fetch and decode a robust futex entry
1935  *	that handles 32-bit binaries running on 64-bit kernels.
1936  */
1937 static int
1938 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
1939     bool * const is_pi)
1940 {
1941 	uintptr_t val = 0;
1942 	int error = 0;
1943 
1944 #ifdef _LP64
1945 	if (curproc->p_flag & PK_32) {
1946 		uint32_t val32;
1947 
1948 		error = ufetch_32((uint32_t *)uaddr, &val32);
1949 		if (__predict_true(error == 0))
1950 			val = val32;
1951 	} else
1952 #endif /* _LP64 */
1953 		error = ufetch_long((u_long *)uaddr, (u_long *)&val);
1954 	if (__predict_false(error))
1955 		return error;
1956 
1957 	futex_decode_robust_word(val, valp, is_pi);
1958 	return 0;
1959 }
1960 
1961 /*
1962  * futex_release_all_lwp(l, tid)
1963  *
1964  *	Release all l's robust futexes.  If anything looks funny in
1965  *	the process, give up -- it's userland's responsibility to dot
1966  *	the i's and cross the t's.
1967  */
1968 void
1969 futex_release_all_lwp(struct lwp * const l)
1970 {
1971 	u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
1972 	int limit = 1000000;
1973 	int error;
1974 
1975 	/* If there's no robust list there's nothing to do. */
1976 	if (l->l_robust_head == 0)
1977 		return;
1978 
1979 	KASSERT((l->l_lid & FUTEX_TID_MASK) == l->l_lid);
1980 
1981 	/* Read the final snapshot of the robust list head. */
1982 	error = futex_fetch_robust_head(l->l_robust_head, rhead);
1983 	if (error) {
1984 		printf("WARNING: pid %jd (%s) lwp %jd:"
1985 		    " unmapped robust futex list head\n",
1986 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
1987 		    (uintmax_t)l->l_lid);
1988 		return;
1989 	}
1990 
1991 	const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
1992 
1993 	uintptr_t next, pending;
1994 	bool is_pi, pending_is_pi;
1995 
1996 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
1997 	    &next, &is_pi);
1998 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
1999 	    &pending, &pending_is_pi);
2000 
2001 	/*
2002 	 * Walk down the list of locked futexes and release them, up
2003 	 * to one million of them before we give up.
2004 	 */
2005 
2006 	while (next != l->l_robust_head && limit-- > 0) {
2007 		/* pending handled below. */
2008 		if (next != pending)
2009 			release_futex(next + offset, l->l_lid, is_pi, false);
2010 		error = futex_fetch_robust_entry(next, &next, &is_pi);
2011 		if (error)
2012 			break;
2013 		preempt_point();
2014 	}
2015 	if (limit <= 0) {
2016 		printf("WARNING: pid %jd (%s) lwp %jd:"
2017 		    " exhausted robust futex limit\n",
2018 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2019 		    (uintmax_t)l->l_lid);
2020 	}
2021 
2022 	/* If there's a pending futex, it may need to be released too. */
2023 	if (pending != 0) {
2024 		release_futex(pending + offset, l->l_lid, pending_is_pi, true);
2025 	}
2026 }
2027