xref: /netbsd-src/sys/kern/sys_futex.c (revision 4c3eb207d36f67d31994830c0a694161fc1ca39b)
1 /*	$NetBSD: sys_futex.c,v 1.18 2022/04/21 12:05:13 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Taylor R. Campbell and Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.18 2022/04/21 12:05:13 riastradh Exp $");
34 
35 /*
36  * Futexes
37  *
38  *	The futex system call coordinates notifying threads waiting for
39  *	changes on a 32-bit word of memory.  The word can be managed by
40  *	CPU atomic operations in userland, without system calls, as long
41  *	as there is no contention.
42  *
43  *	The simplest use case demonstrating the utility is:
44  *
45  *		// 32-bit word of memory shared among threads or
46  *		// processes in userland.  lock & 1 means owned;
47  *		// lock & 2 means there are waiters waiting.
48  *		volatile int lock = 0;
49  *
50  *		int v;
51  *
52  *		// Acquire a lock.
53  *		do {
54  *			v = lock;
55  *			if (v & 1) {
56  *				// Lock is held.  Set a bit to say that
57  *				// there are waiters, and wait for lock
58  *				// to change to anything other than v;
59  *				// then retry.
60  *				if (atomic_cas_uint(&lock, v, v | 2) != v)
61  *					continue;
62  *				futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
63  *				continue;
64  *			}
65  *		} while (atomic_cas_uint(&lock, v, v & ~1) != v);
66  *		membar_acquire();
67  *
68  *		...
69  *
70  *		// Release the lock.  Optimistically assume there are
71  *		// no waiters first until demonstrated otherwise.
72  *		membar_release();
73  *		if (atomic_cas_uint(&lock, 1, 0) != 1) {
74  *			// There may be waiters.
75  *			v = atomic_swap_uint(&lock, 0);
76  *			// If there are still waiters, wake one.
77  *			if (v & 2)
78  *				futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
79  *		}
80  *
81  *	The goal is to avoid the futex system call unless there is
82  *	contention; then if there is contention, to guarantee no missed
83  *	wakeups.
84  *
85  *	For a simple implementation, futex(FUTEX_WAIT) could queue
86  *	itself to be woken, double-check the lock word, and then sleep;
87  *	spurious wakeups are generally a fact of life, so any
88  *	FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
89  *
90  *	If this were all there is to it, we could then increase
91  *	parallelism by refining the approximation: partition the
92  *	waiters into buckets by hashing the lock addresses to reduce
93  *	the incidence of spurious wakeups.  But this is not all.
94  *
95  *	The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
96  *	operation not only wakes n waiters on lock if lock == val, but
97  *	also _transfers_ m additional waiters to lock2.  Unless wakeups
98  *	on lock2 also trigger wakeups on lock, we cannot move waiters
99  *	to lock2 if they merely share the same hash as waiters on lock.
100  *	Thus, we can't approximately distribute waiters into queues by
101  *	a hash function; we must distinguish futex queues exactly by
102  *	lock address.
103  *
104  *	For now, we use a global red/black tree to index futexes.  This
105  *	should be replaced by a lockless radix tree with a thread to
106  *	free entries no longer in use once all lookups on all CPUs have
107  *	completed.
108  *
109  *	Specifically, we maintain two maps:
110  *
111  *	futex_tab.va[vmspace, va] for private futexes
112  *	futex_tab.oa[uvm_voaddr] for shared futexes
113  *
114  *	This implementation does not support priority inheritance.
115  */
116 
117 #include <sys/param.h>
118 #include <sys/types.h>
119 #include <sys/atomic.h>
120 #include <sys/condvar.h>
121 #include <sys/futex.h>
122 #include <sys/mutex.h>
123 #include <sys/rbtree.h>
124 #include <sys/queue.h>
125 
126 #include <sys/syscall.h>
127 #include <sys/syscallargs.h>
128 #include <sys/syscallvar.h>
129 
130 #include <uvm/uvm_extern.h>
131 
132 /*
133  * Lock order:
134  *
135  *	futex_tab.lock
136  *	futex::fx_qlock			ordered by kva of struct futex
137  *	 -> futex_wait::fw_lock		only one at a time
138  *	futex_wait::fw_lock		only one at a time
139  *	 -> futex::fx_abortlock		only one at a time
140  */
141 
142 /*
143  * union futex_key
144  *
145  *	A futex is addressed either by a vmspace+va (private) or by
146  *	a uvm_voaddr (shared).
147  */
148 union futex_key {
149 	struct {
150 		struct vmspace			*vmspace;
151 		vaddr_t				va;
152 	}			fk_private;
153 	struct uvm_voaddr	fk_shared;
154 };
155 
156 /*
157  * struct futex
158  *
159  *	Kernel state for a futex located at a particular address in a
160  *	particular virtual address space.
161  *
162  *	N.B. fx_refcnt is an unsigned long because we need to be able
163  *	to operate on it atomically on all systems while at the same
164  *	time rendering practically impossible the chance of it reaching
165  *	its max value.  In practice, we're limited by the number of LWPs
166  *	that can be present on the system at any given time, and the
167  *	assumption is that limit will be good enough on a 32-bit platform.
168  *	See futex_wake() for why overflow needs to be avoided.
169  */
170 struct futex {
171 	union futex_key		fx_key;
172 	unsigned long		fx_refcnt;
173 	bool			fx_shared;
174 	bool			fx_on_tree;
175 	struct rb_node		fx_node;
176 
177 	kmutex_t			fx_qlock;
178 	TAILQ_HEAD(, futex_wait)	fx_queue;
179 
180 	kmutex_t			fx_abortlock;
181 	LIST_HEAD(, futex_wait)		fx_abortlist;
182 	kcondvar_t			fx_abortcv;
183 };
184 
185 /*
186  * struct futex_wait
187  *
188  *	State for a thread to wait on a futex.  Threads wait on fw_cv
189  *	for fw_bitset to be set to zero.  The thread may transition to
190  *	a different futex queue at any time under the futex's lock.
191  */
192 struct futex_wait {
193 	kmutex_t		fw_lock;
194 	kcondvar_t		fw_cv;
195 	struct futex		*fw_futex;
196 	TAILQ_ENTRY(futex_wait)	fw_entry;	/* queue lock */
197 	LIST_ENTRY(futex_wait)	fw_abort;	/* queue abortlock */
198 	int			fw_bitset;
199 	bool			fw_aborting;	/* fw_lock */
200 };
201 
202 /*
203  * futex_tab
204  *
205  *	Global trees of futexes by vmspace/va and VM object address.
206  *
207  *	XXX This obviously doesn't scale in parallel.  We could use a
208  *	pserialize-safe data structure, but there may be a high cost to
209  *	frequent deletion since we don't cache futexes after we're done
210  *	with them.  We could use hashed locks.  But for now, just make
211  *	sure userland can't DoS the serial performance, by using a
212  *	balanced binary tree for lookup.
213  *
214  *	XXX We could use a per-process tree for the table indexed by
215  *	virtual address to reduce contention between processes.
216  */
217 static struct {
218 	kmutex_t	lock;
219 	struct rb_tree	va;
220 	struct rb_tree	oa;
221 } futex_tab __cacheline_aligned;
222 
223 static int
224 compare_futex_key(void *cookie, const void *n, const void *k)
225 {
226 	const struct futex *fa = n;
227 	const union futex_key *fka = &fa->fx_key;
228 	const union futex_key *fkb = k;
229 
230 	if ((uintptr_t)fka->fk_private.vmspace <
231 	    (uintptr_t)fkb->fk_private.vmspace)
232 		return -1;
233 	if ((uintptr_t)fka->fk_private.vmspace >
234 	    (uintptr_t)fkb->fk_private.vmspace)
235 		return +1;
236 	if (fka->fk_private.va < fkb->fk_private.va)
237 		return -1;
238 	if (fka->fk_private.va > fkb->fk_private.va)
239 		return +1;
240 	return 0;
241 }
242 
243 static int
244 compare_futex(void *cookie, const void *na, const void *nb)
245 {
246 	const struct futex *fa = na;
247 	const struct futex *fb = nb;
248 
249 	return compare_futex_key(cookie, fa, &fb->fx_key);
250 }
251 
252 static const rb_tree_ops_t futex_rb_ops = {
253 	.rbto_compare_nodes = compare_futex,
254 	.rbto_compare_key = compare_futex_key,
255 	.rbto_node_offset = offsetof(struct futex, fx_node),
256 };
257 
258 static int
259 compare_futex_shared_key(void *cookie, const void *n, const void *k)
260 {
261 	const struct futex *fa = n;
262 	const union futex_key *fka = &fa->fx_key;
263 	const union futex_key *fkb = k;
264 
265 	return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
266 }
267 
268 static int
269 compare_futex_shared(void *cookie, const void *na, const void *nb)
270 {
271 	const struct futex *fa = na;
272 	const struct futex *fb = nb;
273 
274 	return compare_futex_shared_key(cookie, fa, &fb->fx_key);
275 }
276 
277 static const rb_tree_ops_t futex_shared_rb_ops = {
278 	.rbto_compare_nodes = compare_futex_shared,
279 	.rbto_compare_key = compare_futex_shared_key,
280 	.rbto_node_offset = offsetof(struct futex, fx_node),
281 };
282 
283 static void	futex_wait_dequeue(struct futex_wait *, struct futex *);
284 
285 /*
286  * futex_load(uaddr, kaddr)
287  *
288  *	Perform a single atomic load to read *uaddr, and return the
289  *	result in *kaddr.  Return 0 on success, EFAULT if uaddr is not
290  *	mapped.
291  */
292 static inline int
293 futex_load(int *uaddr, int *kaddr)
294 {
295 	return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
296 }
297 
298 /*
299  * futex_test(uaddr, expected)
300  *
301  *	True if *uaddr == expected.  False if *uaddr != expected, or if
302  *	uaddr is not mapped.
303  */
304 static bool
305 futex_test(int *uaddr, int expected)
306 {
307 	int val;
308 	int error;
309 
310 	error = futex_load(uaddr, &val);
311 	if (error)
312 		return false;
313 	return val == expected;
314 }
315 
316 /*
317  * futex_sys_init()
318  *
319  *	Initialize the futex subsystem.
320  */
321 void
322 futex_sys_init(void)
323 {
324 
325 	mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
326 	rb_tree_init(&futex_tab.va, &futex_rb_ops);
327 	rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
328 }
329 
330 /*
331  * futex_sys_fini()
332  *
333  *	Finalize the futex subsystem.
334  */
335 void
336 futex_sys_fini(void)
337 {
338 
339 	KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
340 	KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
341 	mutex_destroy(&futex_tab.lock);
342 }
343 
344 /*
345  * futex_queue_init(f)
346  *
347  *	Initialize the futex queue.  Caller must call futex_queue_fini
348  *	when done.
349  *
350  *	Never sleeps.
351  */
352 static void
353 futex_queue_init(struct futex *f)
354 {
355 
356 	mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
357 	mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
358 	cv_init(&f->fx_abortcv, "fqabort");
359 	LIST_INIT(&f->fx_abortlist);
360 	TAILQ_INIT(&f->fx_queue);
361 }
362 
363 /*
364  * futex_queue_drain(f)
365  *
366  *	Wait for any aborting waiters in f; then empty the queue of
367  *	any stragglers and wake them.  Caller must guarantee no new
368  *	references to f.
369  *
370  *	May sleep.
371  */
372 static void
373 futex_queue_drain(struct futex *f)
374 {
375 	struct futex_wait *fw, *fw_next;
376 
377 	mutex_enter(&f->fx_abortlock);
378 	while (!LIST_EMPTY(&f->fx_abortlist))
379 		cv_wait(&f->fx_abortcv, &f->fx_abortlock);
380 	mutex_exit(&f->fx_abortlock);
381 
382 	mutex_enter(&f->fx_qlock);
383 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
384 		mutex_enter(&fw->fw_lock);
385 		futex_wait_dequeue(fw, f);
386 		cv_broadcast(&fw->fw_cv);
387 		mutex_exit(&fw->fw_lock);
388 	}
389 	mutex_exit(&f->fx_qlock);
390 }
391 
392 /*
393  * futex_queue_fini(fq)
394  *
395  *	Finalize the futex queue initialized by futex_queue_init.  Queue
396  *	must be empty.  Caller must not use f again until a subsequent
397  *	futex_queue_init.
398  */
399 static void
400 futex_queue_fini(struct futex *f)
401 {
402 
403 	KASSERT(TAILQ_EMPTY(&f->fx_queue));
404 	KASSERT(LIST_EMPTY(&f->fx_abortlist));
405 	mutex_destroy(&f->fx_qlock);
406 	mutex_destroy(&f->fx_abortlock);
407 	cv_destroy(&f->fx_abortcv);
408 }
409 
410 /*
411  * futex_key_init(key, vm, va, shared)
412  *
413  *	Initialize a futex key for lookup, etc.
414  */
415 static int
416 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
417 {
418 	int error = 0;
419 
420 	if (__predict_false(shared)) {
421 		if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
422 			error = EFAULT;
423 	} else {
424 		fk->fk_private.vmspace = vm;
425 		fk->fk_private.va = va;
426 	}
427 
428 	return error;
429 }
430 
431 /*
432  * futex_key_fini(key, shared)
433  *
434  *	Release a futex key.
435  */
436 static void
437 futex_key_fini(union futex_key *fk, bool shared)
438 {
439 	if (__predict_false(shared))
440 		uvm_voaddr_release(&fk->fk_shared);
441 	memset(fk, 0, sizeof(*fk));
442 }
443 
444 /*
445  * futex_create(fk, shared)
446  *
447  *	Create a futex.  Initial reference count is 1, representing the
448  *	caller.  Returns NULL on failure.  Always takes ownership of the
449  *	key, either transferring it to the newly-created futex, or releasing
450  *	the key if creation fails.
451  *
452  *	Never sleeps for memory, but may sleep to acquire a lock.
453  */
454 static struct futex *
455 futex_create(union futex_key *fk, bool shared)
456 {
457 	struct futex *f;
458 
459 	f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
460 	if (f == NULL) {
461 		futex_key_fini(fk, shared);
462 		return NULL;
463 	}
464 	f->fx_key = *fk;
465 	f->fx_refcnt = 1;
466 	f->fx_shared = shared;
467 	f->fx_on_tree = false;
468 	futex_queue_init(f);
469 
470 	return f;
471 }
472 
473 /*
474  * futex_destroy(f)
475  *
476  *	Destroy a futex created with futex_create.  Reference count
477  *	must be zero.
478  *
479  *	May sleep.
480  */
481 static void
482 futex_destroy(struct futex *f)
483 {
484 
485 	ASSERT_SLEEPABLE();
486 
487 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
488 	KASSERT(!f->fx_on_tree);
489 
490 	/* Drain and destroy the private queue.  */
491 	futex_queue_drain(f);
492 	futex_queue_fini(f);
493 
494 	futex_key_fini(&f->fx_key, f->fx_shared);
495 
496 	kmem_free(f, sizeof(*f));
497 }
498 
499 /*
500  * futex_hold(f)
501  *
502  *	Attempt to acquire a reference to f.  Return 0 on success,
503  *	ENFILE on too many references.
504  *
505  *	Never sleeps.
506  */
507 static int
508 futex_hold(struct futex *f)
509 {
510 	unsigned long refcnt;
511 
512 	do {
513 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
514 		if (refcnt == ULONG_MAX)
515 			return ENFILE;
516 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
517 
518 	return 0;
519 }
520 
521 /*
522  * futex_rele(f)
523  *
524  *	Release a reference to f acquired with futex_create or
525  *	futex_hold.
526  *
527  *	May sleep to free f.
528  */
529 static void
530 futex_rele(struct futex *f)
531 {
532 	unsigned long refcnt;
533 
534 	ASSERT_SLEEPABLE();
535 
536 	do {
537 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
538 		if (refcnt == 1)
539 			goto trylast;
540 #ifndef __HAVE_ATOMIC_AS_MEMBAR
541 		membar_release();
542 #endif
543 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
544 	return;
545 
546 trylast:
547 	mutex_enter(&futex_tab.lock);
548 	if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
549 #ifndef __HAVE_ATOMIC_AS_MEMBAR
550 		membar_acquire();
551 #endif
552 		if (f->fx_on_tree) {
553 			if (__predict_false(f->fx_shared))
554 				rb_tree_remove_node(&futex_tab.oa, f);
555 			else
556 				rb_tree_remove_node(&futex_tab.va, f);
557 			f->fx_on_tree = false;
558 		}
559 	} else {
560 		/* References remain -- don't destroy it.  */
561 		f = NULL;
562 	}
563 	mutex_exit(&futex_tab.lock);
564 	if (f != NULL)
565 		futex_destroy(f);
566 }
567 
568 /*
569  * futex_rele_not_last(f)
570  *
571  *	Release a reference to f acquired with futex_create or
572  *	futex_hold.
573  *
574  *	This version asserts that we are not dropping the last
575  *	reference to f.
576  */
577 static void
578 futex_rele_not_last(struct futex *f)
579 {
580 	unsigned long refcnt;
581 
582 	do {
583 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
584 		KASSERT(refcnt > 1);
585 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
586 }
587 
588 /*
589  * futex_lookup_by_key(key, shared, &f)
590  *
591  *	Try to find an existing futex va reference in the specified key
592  *	On success, return 0, set f to found futex or to NULL if not found,
593  *	and increment f's reference count if found.
594  *
595  *	Return ENFILE if reference count too high.
596  *
597  *	Internal lookup routine shared by futex_lookup() and
598  *	futex_lookup_create().
599  */
600 static int
601 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
602 {
603 	struct futex *f;
604 	int error = 0;
605 
606 	mutex_enter(&futex_tab.lock);
607 	if (__predict_false(shared)) {
608 		f = rb_tree_find_node(&futex_tab.oa, fk);
609 	} else {
610 		f = rb_tree_find_node(&futex_tab.va, fk);
611 	}
612 	if (f) {
613 		error = futex_hold(f);
614 		if (error)
615 			f = NULL;
616 	}
617  	*fp = f;
618 	mutex_exit(&futex_tab.lock);
619 
620 	return error;
621 }
622 
623 /*
624  * futex_insert(f, fp)
625  *
626  *	Try to insert the futex f into the tree by va.  If there
627  *	already is a futex for its va, acquire a reference to it, and
628  *	store it in *fp; otherwise store f in *fp.
629  *
630  *	Return 0 on success, ENFILE if there already is a futex but its
631  *	reference count is too high.
632  */
633 static int
634 futex_insert(struct futex *f, struct futex **fp)
635 {
636 	struct futex *f0;
637 	int error;
638 
639 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
640 	KASSERT(!f->fx_on_tree);
641 
642 	mutex_enter(&futex_tab.lock);
643 	if (__predict_false(f->fx_shared))
644 		f0 = rb_tree_insert_node(&futex_tab.oa, f);
645 	else
646 		f0 = rb_tree_insert_node(&futex_tab.va, f);
647 	if (f0 == f) {
648 		f->fx_on_tree = true;
649 		error = 0;
650 	} else {
651 		KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
652 		KASSERT(f0->fx_on_tree);
653 		error = futex_hold(f0);
654 		if (error)
655 			goto out;
656 	}
657 	*fp = f0;
658 out:	mutex_exit(&futex_tab.lock);
659 
660 	return error;
661 }
662 
663 /*
664  * futex_lookup(uaddr, shared, &f)
665  *
666  *	Find a futex at the userland pointer uaddr in the current
667  *	process's VM space.  On success, return the futex in f and
668  *	increment its reference count.
669  *
670  *	Caller must call futex_rele when done.
671  */
672 static int
673 futex_lookup(int *uaddr, bool shared, struct futex **fp)
674 {
675 	union futex_key fk;
676 	struct vmspace *vm = curproc->p_vmspace;
677 	vaddr_t va = (vaddr_t)uaddr;
678 	int error;
679 
680 	/*
681 	 * Reject unaligned user pointers so we don't cross page
682 	 * boundaries and so atomics will work.
683 	 */
684 	if ((va & 3) != 0)
685 		return EINVAL;
686 
687 	/* Look it up. */
688 	error = futex_key_init(&fk, vm, va, shared);
689 	if (error)
690 		return error;
691 
692 	error = futex_lookup_by_key(&fk, shared, fp);
693 	futex_key_fini(&fk, shared);
694 	if (error)
695 		return error;
696 
697 	KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
698 	KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
699 
700 	/*
701 	 * Success!  (Caller must still check whether we found
702 	 * anything, but nothing went _wrong_ like trying to use
703 	 * unmapped memory.)
704 	 */
705 	KASSERT(error == 0);
706 
707 	return error;
708 }
709 
710 /*
711  * futex_lookup_create(uaddr, shared, &f)
712  *
713  *	Find or create a futex at the userland pointer uaddr in the
714  *	current process's VM space.  On success, return the futex in f
715  *	and increment its reference count.
716  *
717  *	Caller must call futex_rele when done.
718  */
719 static int
720 futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
721 {
722 	union futex_key fk;
723 	struct vmspace *vm = curproc->p_vmspace;
724 	struct futex *f = NULL;
725 	vaddr_t va = (vaddr_t)uaddr;
726 	int error;
727 
728 	/*
729 	 * Reject unaligned user pointers so we don't cross page
730 	 * boundaries and so atomics will work.
731 	 */
732 	if ((va & 3) != 0)
733 		return EINVAL;
734 
735 	error = futex_key_init(&fk, vm, va, shared);
736 	if (error)
737 		return error;
738 
739 	/*
740 	 * Optimistically assume there already is one, and try to find
741 	 * it.
742 	 */
743 	error = futex_lookup_by_key(&fk, shared, fp);
744 	if (error || *fp != NULL) {
745 		/*
746 		 * We either found one, or there was an error.
747 		 * In either case, we are done with the key.
748 		 */
749 		futex_key_fini(&fk, shared);
750 		goto out;
751 	}
752 
753 	/*
754 	 * Create a futex record.  This transfers ownership of the key
755 	 * in all cases.
756 	 */
757 	f = futex_create(&fk, shared);
758 	if (f == NULL) {
759 		error = ENOMEM;
760 		goto out;
761 	}
762 
763 	/*
764 	 * Insert our new futex, or use existing if someone else beat
765 	 * us to it.
766 	 */
767 	error = futex_insert(f, fp);
768 	if (error)
769 		goto out;
770 	if (*fp == f)
771 		f = NULL;	/* don't release on exit */
772 
773 	/* Success!  */
774 	KASSERT(error == 0);
775 
776 out:	if (f != NULL)
777 		futex_rele(f);
778 	KASSERT(error || *fp != NULL);
779 	KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
780 	return error;
781 }
782 
783 /*
784  * futex_wait_init(fw, bitset)
785  *
786  *	Initialize a record for a thread to wait on a futex matching
787  *	the specified bit set.  Should be passed to futex_wait_enqueue
788  *	before futex_wait, and should be passed to futex_wait_fini when
789  *	done.
790  */
791 static void
792 futex_wait_init(struct futex_wait *fw, int bitset)
793 {
794 
795 	KASSERT(bitset);
796 
797 	mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
798 	cv_init(&fw->fw_cv, "futex");
799 	fw->fw_futex = NULL;
800 	fw->fw_bitset = bitset;
801 	fw->fw_aborting = false;
802 }
803 
804 /*
805  * futex_wait_fini(fw)
806  *
807  *	Finalize a record for a futex waiter.  Must not be on any
808  *	futex's queue.
809  */
810 static void
811 futex_wait_fini(struct futex_wait *fw)
812 {
813 
814 	KASSERT(fw->fw_futex == NULL);
815 
816 	cv_destroy(&fw->fw_cv);
817 	mutex_destroy(&fw->fw_lock);
818 }
819 
820 /*
821  * futex_wait_enqueue(fw, f)
822  *
823  *	Put fw on the futex queue.  Must be done before futex_wait.
824  *	Caller must hold fw's lock and f's lock, and fw must not be on
825  *	any existing futex's waiter list.
826  */
827 static void
828 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
829 {
830 
831 	KASSERT(mutex_owned(&f->fx_qlock));
832 	KASSERT(mutex_owned(&fw->fw_lock));
833 	KASSERT(fw->fw_futex == NULL);
834 	KASSERT(!fw->fw_aborting);
835 
836 	fw->fw_futex = f;
837 	TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
838 }
839 
840 /*
841  * futex_wait_dequeue(fw, f)
842  *
843  *	Remove fw from the futex queue.  Precludes subsequent
844  *	futex_wait until a futex_wait_enqueue.  Caller must hold fw's
845  *	lock and f's lock, and fw must be on f.
846  */
847 static void
848 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
849 {
850 
851 	KASSERT(mutex_owned(&f->fx_qlock));
852 	KASSERT(mutex_owned(&fw->fw_lock));
853 	KASSERT(fw->fw_futex == f);
854 
855 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
856 	fw->fw_futex = NULL;
857 }
858 
859 /*
860  * futex_wait_abort(fw)
861  *
862  *	Caller is no longer waiting for fw.  Remove it from any queue
863  *	if it was on one.  Caller must hold fw->fw_lock.
864  */
865 static void
866 futex_wait_abort(struct futex_wait *fw)
867 {
868 	struct futex *f;
869 
870 	KASSERT(mutex_owned(&fw->fw_lock));
871 
872 	/*
873 	 * Grab the futex queue.  It can't go away as long as we hold
874 	 * fw_lock.  However, we can't take the queue lock because
875 	 * that's a lock order reversal.
876 	 */
877 	f = fw->fw_futex;
878 
879 	/* Put us on the abort list so that fq won't go away.  */
880 	mutex_enter(&f->fx_abortlock);
881 	LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
882 	mutex_exit(&f->fx_abortlock);
883 
884 	/*
885 	 * Mark fw as aborting so it won't lose wakeups and won't be
886 	 * transferred to any other queue.
887 	 */
888 	fw->fw_aborting = true;
889 
890 	/* f is now stable, so we can release fw_lock.  */
891 	mutex_exit(&fw->fw_lock);
892 
893 	/* Now we can remove fw under the queue lock.  */
894 	mutex_enter(&f->fx_qlock);
895 	mutex_enter(&fw->fw_lock);
896 	futex_wait_dequeue(fw, f);
897 	mutex_exit(&fw->fw_lock);
898 	mutex_exit(&f->fx_qlock);
899 
900 	/*
901 	 * Finally, remove us from the abort list and notify anyone
902 	 * waiting for the abort to complete if we were the last to go.
903 	 */
904 	mutex_enter(&f->fx_abortlock);
905 	LIST_REMOVE(fw, fw_abort);
906 	if (LIST_EMPTY(&f->fx_abortlist))
907 		cv_broadcast(&f->fx_abortcv);
908 	mutex_exit(&f->fx_abortlock);
909 
910 	/*
911 	 * Release our reference to the futex now that we are not
912 	 * waiting for it.
913 	 */
914 	futex_rele(f);
915 
916 	/*
917 	 * Reacquire the fw lock as caller expects.  Verify that we're
918 	 * aborting and no longer associated with a futex.
919 	 */
920 	mutex_enter(&fw->fw_lock);
921 	KASSERT(fw->fw_aborting);
922 	KASSERT(fw->fw_futex == NULL);
923 }
924 
925 /*
926  * futex_wait(fw, deadline, clkid)
927  *
928  *	fw must be a waiter on a futex's queue.  Wait until deadline on
929  *	the clock clkid, or forever if deadline is NULL, for a futex
930  *	wakeup.  Return 0 on explicit wakeup or destruction of futex,
931  *	ETIMEDOUT on timeout, EINTR/ERESTART on signal.  Either way, fw
932  *	will no longer be on a futex queue on return.
933  */
934 static int
935 futex_wait(struct futex_wait *fw, const struct timespec *deadline,
936     clockid_t clkid)
937 {
938 	int error = 0;
939 
940 	/* Test and wait under the wait lock.  */
941 	mutex_enter(&fw->fw_lock);
942 
943 	for (;;) {
944 		/* If we're done yet, stop and report success.  */
945 		if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
946 			error = 0;
947 			break;
948 		}
949 
950 		/* If anything went wrong in the last iteration, stop.  */
951 		if (error)
952 			break;
953 
954 		/* Not done yet.  Wait.  */
955 		if (deadline) {
956 			struct timespec ts;
957 
958 			/* Check our watch.  */
959 			error = clock_gettime1(clkid, &ts);
960 			if (error)
961 				break;
962 
963 			/* If we're past the deadline, ETIMEDOUT.  */
964 			if (timespeccmp(deadline, &ts, <=)) {
965 				error = ETIMEDOUT;
966 				break;
967 			}
968 
969 			/* Count how much time is left.  */
970 			timespecsub(deadline, &ts, &ts);
971 
972 			/* Wait for that much time, allowing signals.  */
973 			error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
974 			    tstohz(&ts));
975 		} else {
976 			/* Wait indefinitely, allowing signals. */
977 			error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
978 		}
979 	}
980 
981 	/*
982 	 * If we were woken up, the waker will have removed fw from the
983 	 * queue.  But if anything went wrong, we must remove fw from
984 	 * the queue ourselves.  While here, convert EWOULDBLOCK to
985 	 * ETIMEDOUT.
986 	 */
987 	if (error) {
988 		futex_wait_abort(fw);
989 		if (error == EWOULDBLOCK)
990 			error = ETIMEDOUT;
991 	}
992 
993 	mutex_exit(&fw->fw_lock);
994 
995 	return error;
996 }
997 
998 /*
999  * futex_wake(f, nwake, f2, nrequeue, bitset)
1000  *
1001  *	Wake up to nwake waiters on f matching bitset; then, if f2 is
1002  *	provided, move up to nrequeue remaining waiters on f matching
1003  *	bitset to f2.  Return the number of waiters actually woken.
1004  *	Caller must hold the locks of f and f2, if provided.
1005  */
1006 static unsigned
1007 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
1008     unsigned nrequeue, int bitset)
1009 {
1010 	struct futex_wait *fw, *fw_next;
1011 	unsigned nwoken = 0;
1012 	int hold_error __diagused;
1013 
1014 	KASSERT(mutex_owned(&f->fx_qlock));
1015 	KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
1016 
1017 	/* Wake up to nwake waiters, and count the number woken.  */
1018 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1019 		if ((fw->fw_bitset & bitset) == 0)
1020 			continue;
1021 		if (nwake > 0) {
1022 			mutex_enter(&fw->fw_lock);
1023 			if (__predict_false(fw->fw_aborting)) {
1024 				mutex_exit(&fw->fw_lock);
1025 				continue;
1026 			}
1027 			futex_wait_dequeue(fw, f);
1028 			fw->fw_bitset = 0;
1029 			cv_broadcast(&fw->fw_cv);
1030 			mutex_exit(&fw->fw_lock);
1031 			nwake--;
1032 			nwoken++;
1033 			/*
1034 			 * Drop the futex reference on behalf of the
1035 			 * waiter.  We assert this is not the last
1036 			 * reference on the futex (our caller should
1037 			 * also have one).
1038 			 */
1039 			futex_rele_not_last(f);
1040 		} else {
1041 			break;
1042 		}
1043 	}
1044 
1045 	if (f2) {
1046 		/* Move up to nrequeue waiters from f's queue to f2's queue. */
1047 		TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1048 			if ((fw->fw_bitset & bitset) == 0)
1049 				continue;
1050 			if (nrequeue > 0) {
1051 				mutex_enter(&fw->fw_lock);
1052 				if (__predict_false(fw->fw_aborting)) {
1053 					mutex_exit(&fw->fw_lock);
1054 					continue;
1055 				}
1056 				futex_wait_dequeue(fw, f);
1057 				futex_wait_enqueue(fw, f2);
1058 				mutex_exit(&fw->fw_lock);
1059 				nrequeue--;
1060 				/*
1061 				 * Transfer the reference from f to f2.
1062 				 * As above, we assert that we are not
1063 				 * dropping the last reference to f here.
1064 				 *
1065 				 * XXX futex_hold() could theoretically
1066 				 * XXX fail here.
1067 				 */
1068 				futex_rele_not_last(f);
1069 				hold_error = futex_hold(f2);
1070 				KASSERT(hold_error == 0);
1071 			} else {
1072 				break;
1073 			}
1074 		}
1075 	} else {
1076 		KASSERT(nrequeue == 0);
1077 	}
1078 
1079 	/* Return the number of waiters woken.  */
1080 	return nwoken;
1081 }
1082 
1083 /*
1084  * futex_queue_lock(f)
1085  *
1086  *	Acquire the queue lock of f.  Pair with futex_queue_unlock.  Do
1087  *	not use if caller needs to acquire two locks; use
1088  *	futex_queue_lock2 instead.
1089  */
1090 static void
1091 futex_queue_lock(struct futex *f)
1092 {
1093 	mutex_enter(&f->fx_qlock);
1094 }
1095 
1096 /*
1097  * futex_queue_unlock(f)
1098  *
1099  *	Release the queue lock of f.
1100  */
1101 static void
1102 futex_queue_unlock(struct futex *f)
1103 {
1104 	mutex_exit(&f->fx_qlock);
1105 }
1106 
1107 /*
1108  * futex_queue_lock2(f, f2)
1109  *
1110  *	Acquire the queue locks of both f and f2, which may be null, or
1111  *	which may have the same underlying queue.  If they are
1112  *	distinct, an arbitrary total order is chosen on the locks.
1113  *
1114  *	Callers should only ever acquire multiple queue locks
1115  *	simultaneously using futex_queue_lock2.
1116  */
1117 static void
1118 futex_queue_lock2(struct futex *f, struct futex *f2)
1119 {
1120 
1121 	/*
1122 	 * If both are null, do nothing; if one is null and the other
1123 	 * is not, lock the other and be done with it.
1124 	 */
1125 	if (f == NULL && f2 == NULL) {
1126 		return;
1127 	} else if (f == NULL) {
1128 		mutex_enter(&f2->fx_qlock);
1129 		return;
1130 	} else if (f2 == NULL) {
1131 		mutex_enter(&f->fx_qlock);
1132 		return;
1133 	}
1134 
1135 	/* If both futexes are the same, acquire only one. */
1136 	if (f == f2) {
1137 		mutex_enter(&f->fx_qlock);
1138 		return;
1139 	}
1140 
1141 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
1142 	if ((uintptr_t)f < (uintptr_t)f2) {
1143 		mutex_enter(&f->fx_qlock);
1144 		mutex_enter(&f2->fx_qlock);
1145 	} else {
1146 		mutex_enter(&f2->fx_qlock);
1147 		mutex_enter(&f->fx_qlock);
1148 	}
1149 }
1150 
1151 /*
1152  * futex_queue_unlock2(f, f2)
1153  *
1154  *	Release the queue locks of both f and f2, which may be null, or
1155  *	which may have the same underlying queue.
1156  */
1157 static void
1158 futex_queue_unlock2(struct futex *f, struct futex *f2)
1159 {
1160 
1161 	/*
1162 	 * If both are null, do nothing; if one is null and the other
1163 	 * is not, unlock the other and be done with it.
1164 	 */
1165 	if (f == NULL && f2 == NULL) {
1166 		return;
1167 	} else if (f == NULL) {
1168 		mutex_exit(&f2->fx_qlock);
1169 		return;
1170 	} else if (f2 == NULL) {
1171 		mutex_exit(&f->fx_qlock);
1172 		return;
1173 	}
1174 
1175 	/* If both futexes are the same, release only one. */
1176 	if (f == f2) {
1177 		mutex_exit(&f->fx_qlock);
1178 		return;
1179 	}
1180 
1181 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
1182 	if ((uintptr_t)f < (uintptr_t)f2) {
1183 		mutex_exit(&f2->fx_qlock);
1184 		mutex_exit(&f->fx_qlock);
1185 	} else {
1186 		mutex_exit(&f->fx_qlock);
1187 		mutex_exit(&f2->fx_qlock);
1188 	}
1189 }
1190 
1191 /*
1192  * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1193  *
1194  *	Implement futex(FUTEX_WAIT).
1195  */
1196 static int
1197 futex_func_wait(bool shared, int *uaddr, int val, int val3,
1198     const struct timespec *timeout, clockid_t clkid, int clkflags,
1199     register_t *retval)
1200 {
1201 	struct futex *f;
1202 	struct futex_wait wait, *fw = &wait;
1203 	struct timespec ts;
1204 	const struct timespec *deadline;
1205 	int error;
1206 
1207 	/*
1208 	 * If there's nothing to wait for, and nobody will ever wake
1209 	 * us, then don't set anything up to wait -- just stop here.
1210 	 */
1211 	if (val3 == 0)
1212 		return EINVAL;
1213 
1214 	/* Optimistically test before anything else.  */
1215 	if (!futex_test(uaddr, val))
1216 		return EAGAIN;
1217 
1218 	/* Determine a deadline on the specified clock.  */
1219 	if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1220 		deadline = timeout;
1221 	} else {
1222 		error = clock_gettime1(clkid, &ts);
1223 		if (error)
1224 			return error;
1225 		timespecadd(&ts, timeout, &ts);
1226 		deadline = &ts;
1227 	}
1228 
1229 	/* Get the futex, creating it if necessary.  */
1230 	error = futex_lookup_create(uaddr, shared, &f);
1231 	if (error)
1232 		return error;
1233 	KASSERT(f);
1234 
1235 	/* Get ready to wait.  */
1236 	futex_wait_init(fw, val3);
1237 
1238 	/*
1239 	 * Under the queue lock, check the value again: if it has
1240 	 * already changed, EAGAIN; otherwise enqueue the waiter.
1241 	 * Since FUTEX_WAKE will use the same lock and be done after
1242 	 * modifying the value, the order in which we check and enqueue
1243 	 * is immaterial.
1244 	 */
1245 	futex_queue_lock(f);
1246 	if (!futex_test(uaddr, val)) {
1247 		futex_queue_unlock(f);
1248 		error = EAGAIN;
1249 		goto out;
1250 	}
1251 	mutex_enter(&fw->fw_lock);
1252 	futex_wait_enqueue(fw, f);
1253 	mutex_exit(&fw->fw_lock);
1254 	futex_queue_unlock(f);
1255 
1256 	/*
1257 	 * We cannot drop our reference to the futex here, because
1258 	 * we might be enqueued on a different one when we are awakened.
1259 	 * The references will be managed on our behalf in the requeue
1260 	 * and wake cases.
1261 	 */
1262 	f = NULL;
1263 
1264 	/* Wait. */
1265 	error = futex_wait(fw, deadline, clkid);
1266 	if (error)
1267 		goto out;
1268 
1269 	/* Return 0 on success, error on failure. */
1270 	*retval = 0;
1271 
1272 out:	if (f != NULL)
1273 		futex_rele(f);
1274 	futex_wait_fini(fw);
1275 	return error;
1276 }
1277 
1278 /*
1279  * futex_func_wake(uaddr, val, val3, retval)
1280  *
1281  *	Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1282  */
1283 static int
1284 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1285 {
1286 	struct futex *f;
1287 	unsigned int nwoken = 0;
1288 	int error = 0;
1289 
1290 	/* Reject negative number of wakeups.  */
1291 	if (val < 0) {
1292 		error = EINVAL;
1293 		goto out;
1294 	}
1295 
1296 	/* Look up the futex, if any.  */
1297 	error = futex_lookup(uaddr, shared, &f);
1298 	if (error)
1299 		goto out;
1300 
1301 	/* If there's no futex, there are no waiters to wake.  */
1302 	if (f == NULL)
1303 		goto out;
1304 
1305 	/*
1306 	 * Under f's queue lock, wake the waiters and remember the
1307 	 * number woken.
1308 	 */
1309 	futex_queue_lock(f);
1310 	nwoken = futex_wake(f, val, NULL, 0, val3);
1311 	futex_queue_unlock(f);
1312 
1313 	/* Release the futex.  */
1314 	futex_rele(f);
1315 
1316 out:
1317 	/* Return the number of waiters woken.  */
1318 	*retval = nwoken;
1319 
1320 	/* Success!  */
1321 	return error;
1322 }
1323 
1324 /*
1325  * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1326  *
1327  *	Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1328  */
1329 static int
1330 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1331     int val2, int val3, register_t *retval)
1332 {
1333 	struct futex *f = NULL, *f2 = NULL;
1334 	unsigned nwoken = 0;	/* default to zero woken on early return */
1335 	int error;
1336 
1337 	/* Reject negative number of wakeups or requeues. */
1338 	if (val < 0 || val2 < 0) {
1339 		error = EINVAL;
1340 		goto out;
1341 	}
1342 
1343 	/* Look up the source futex, if any. */
1344 	error = futex_lookup(uaddr, shared, &f);
1345 	if (error)
1346 		goto out;
1347 
1348 	/* If there is none, nothing to do. */
1349 	if (f == NULL)
1350 		goto out;
1351 
1352 	/*
1353 	 * We may need to create the destination futex because it's
1354 	 * entirely possible it does not currently have any waiters.
1355 	 */
1356 	error = futex_lookup_create(uaddr2, shared, &f2);
1357 	if (error)
1358 		goto out;
1359 
1360 	/*
1361 	 * Under the futexes' queue locks, check the value; if
1362 	 * unchanged from val3, wake the waiters.
1363 	 */
1364 	futex_queue_lock2(f, f2);
1365 	if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1366 		error = EAGAIN;
1367 	} else {
1368 		error = 0;
1369 		nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
1370 	}
1371 	futex_queue_unlock2(f, f2);
1372 
1373 out:
1374 	/* Return the number of waiters woken.  */
1375 	*retval = nwoken;
1376 
1377 	/* Release the futexes if we got them.  */
1378 	if (f2)
1379 		futex_rele(f2);
1380 	if (f)
1381 		futex_rele(f);
1382 	return error;
1383 }
1384 
1385 /*
1386  * futex_validate_op_cmp(val3)
1387  *
1388  *	Validate an op/cmp argument for FUTEX_WAKE_OP.
1389  */
1390 static int
1391 futex_validate_op_cmp(int val3)
1392 {
1393 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1394 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1395 
1396 	if (op & FUTEX_OP_OPARG_SHIFT) {
1397 		int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1398 		if (oparg < 0)
1399 			return EINVAL;
1400 		if (oparg >= 32)
1401 			return EINVAL;
1402 		op &= ~FUTEX_OP_OPARG_SHIFT;
1403 	}
1404 
1405 	switch (op) {
1406 	case FUTEX_OP_SET:
1407 	case FUTEX_OP_ADD:
1408 	case FUTEX_OP_OR:
1409 	case FUTEX_OP_ANDN:
1410 	case FUTEX_OP_XOR:
1411 		break;
1412 	default:
1413 		return EINVAL;
1414 	}
1415 
1416 	switch (cmp) {
1417 	case FUTEX_OP_CMP_EQ:
1418 	case FUTEX_OP_CMP_NE:
1419 	case FUTEX_OP_CMP_LT:
1420 	case FUTEX_OP_CMP_LE:
1421 	case FUTEX_OP_CMP_GT:
1422 	case FUTEX_OP_CMP_GE:
1423 		break;
1424 	default:
1425 		return EINVAL;
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 /*
1432  * futex_compute_op(oldval, val3)
1433  *
1434  *	Apply a FUTEX_WAIT_OP operation to oldval.
1435  */
1436 static int
1437 futex_compute_op(int oldval, int val3)
1438 {
1439 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1440 	int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1441 
1442 	if (op & FUTEX_OP_OPARG_SHIFT) {
1443 		KASSERT(oparg >= 0);
1444 		KASSERT(oparg < 32);
1445 		oparg = 1u << oparg;
1446 		op &= ~FUTEX_OP_OPARG_SHIFT;
1447 	}
1448 
1449 	switch (op) {
1450 	case FUTEX_OP_SET:
1451 		return oparg;
1452 
1453 	case FUTEX_OP_ADD:
1454 		/*
1455 		 * Avoid signed arithmetic overflow by doing
1456 		 * arithmetic unsigned and converting back to signed
1457 		 * at the end.
1458 		 */
1459 		return (int)((unsigned)oldval + (unsigned)oparg);
1460 
1461 	case FUTEX_OP_OR:
1462 		return oldval | oparg;
1463 
1464 	case FUTEX_OP_ANDN:
1465 		return oldval & ~oparg;
1466 
1467 	case FUTEX_OP_XOR:
1468 		return oldval ^ oparg;
1469 
1470 	default:
1471 		panic("invalid futex op");
1472 	}
1473 }
1474 
1475 /*
1476  * futex_compute_cmp(oldval, val3)
1477  *
1478  *	Apply a FUTEX_WAIT_OP comparison to oldval.
1479  */
1480 static bool
1481 futex_compute_cmp(int oldval, int val3)
1482 {
1483 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1484 	int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
1485 
1486 	switch (cmp) {
1487 	case FUTEX_OP_CMP_EQ:
1488 		return (oldval == cmparg);
1489 
1490 	case FUTEX_OP_CMP_NE:
1491 		return (oldval != cmparg);
1492 
1493 	case FUTEX_OP_CMP_LT:
1494 		return (oldval < cmparg);
1495 
1496 	case FUTEX_OP_CMP_LE:
1497 		return (oldval <= cmparg);
1498 
1499 	case FUTEX_OP_CMP_GT:
1500 		return (oldval > cmparg);
1501 
1502 	case FUTEX_OP_CMP_GE:
1503 		return (oldval >= cmparg);
1504 
1505 	default:
1506 		panic("invalid futex cmp operation");
1507 	}
1508 }
1509 
1510 /*
1511  * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1512  *
1513  *	Implement futex(FUTEX_WAKE_OP).
1514  */
1515 static int
1516 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1517     int val3, register_t *retval)
1518 {
1519 	struct futex *f = NULL, *f2 = NULL;
1520 	int oldval, newval, actual;
1521 	unsigned nwoken = 0;
1522 	int error;
1523 
1524 	/* Reject negative number of wakeups.  */
1525 	if (val < 0 || val2 < 0) {
1526 		error = EINVAL;
1527 		goto out;
1528 	}
1529 
1530 	/* Reject invalid operations before we start doing things.  */
1531 	if ((error = futex_validate_op_cmp(val3)) != 0)
1532 		goto out;
1533 
1534 	/* Look up the first futex, if any.  */
1535 	error = futex_lookup(uaddr, shared, &f);
1536 	if (error)
1537 		goto out;
1538 
1539 	/* Look up the second futex, if any.  */
1540 	error = futex_lookup(uaddr2, shared, &f2);
1541 	if (error)
1542 		goto out;
1543 
1544 	/*
1545 	 * Under the queue locks:
1546 	 *
1547 	 * 1. Read/modify/write: *uaddr2 op= oparg.
1548 	 * 2. Unconditionally wake uaddr.
1549 	 * 3. Conditionally wake uaddr2, if it previously matched val2.
1550 	 */
1551 	futex_queue_lock2(f, f2);
1552 	do {
1553 		error = futex_load(uaddr2, &oldval);
1554 		if (error)
1555 			goto out_unlock;
1556 		newval = futex_compute_op(oldval, val3);
1557 		error = ucas_int(uaddr2, oldval, newval, &actual);
1558 		if (error)
1559 			goto out_unlock;
1560 	} while (actual != oldval);
1561 	nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
1562 	if (f2 && futex_compute_cmp(oldval, val3))
1563 		nwoken += futex_wake(f2, val2, NULL, 0,
1564 		    FUTEX_BITSET_MATCH_ANY);
1565 
1566 	/* Success! */
1567 	error = 0;
1568 out_unlock:
1569 	futex_queue_unlock2(f, f2);
1570 
1571 out:
1572 	/* Return the number of waiters woken. */
1573 	*retval = nwoken;
1574 
1575 	/* Release the futexes, if we got them. */
1576 	if (f2)
1577 		futex_rele(f2);
1578 	if (f)
1579 		futex_rele(f);
1580 	return error;
1581 }
1582 
1583 /*
1584  * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1585  *
1586  *	Implement the futex system call with all the parameters
1587  *	parsed out.
1588  */
1589 int
1590 do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
1591     int *uaddr2, int val2, int val3, register_t *retval)
1592 {
1593 	const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1594 	const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1595 							    : CLOCK_MONOTONIC;
1596 
1597 	op &= FUTEX_CMD_MASK;
1598 
1599 	switch (op) {
1600 	case FUTEX_WAIT:
1601 		return futex_func_wait(shared, uaddr, val,
1602 		    FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
1603 		    retval);
1604 
1605 	case FUTEX_WAKE:
1606 		val3 = FUTEX_BITSET_MATCH_ANY;
1607 		/* FALLTHROUGH */
1608 	case FUTEX_WAKE_BITSET:
1609 		return futex_func_wake(shared, uaddr, val, val3, retval);
1610 
1611 	case FUTEX_REQUEUE:
1612 	case FUTEX_CMP_REQUEUE:
1613 		return futex_func_requeue(shared, op, uaddr, val, uaddr2,
1614 		    val2, val3, retval);
1615 
1616 	case FUTEX_WAIT_BITSET:
1617 		return futex_func_wait(shared, uaddr, val, val3, timeout,
1618 		    clkid, TIMER_ABSTIME, retval);
1619 
1620 	case FUTEX_WAKE_OP:
1621 		return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
1622 		    val3, retval);
1623 
1624 	case FUTEX_FD:
1625 	default:
1626 		return ENOSYS;
1627 	}
1628 }
1629 
1630 /*
1631  * sys___futex(l, uap, retval)
1632  *
1633  *	__futex(2) system call: generic futex operations.
1634  */
1635 int
1636 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1637     register_t *retval)
1638 {
1639 	/* {
1640 		syscallarg(int *) uaddr;
1641 		syscallarg(int) op;
1642 		syscallarg(int) val;
1643 		syscallarg(const struct timespec *) timeout;
1644 		syscallarg(int *) uaddr2;
1645 		syscallarg(int) val2;
1646 		syscallarg(int) val3;
1647 	} */
1648 	struct timespec ts, *tsp;
1649 	int error;
1650 
1651 	/*
1652 	 * Copy in the timeout argument, if specified.
1653 	 */
1654 	if (SCARG(uap, timeout)) {
1655 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1656 		if (error)
1657 			return error;
1658 		tsp = &ts;
1659 	} else {
1660 		tsp = NULL;
1661 	}
1662 
1663 	return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1664 	    tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1665 	    retval);
1666 }
1667 
1668 /*
1669  * sys___futex_set_robust_list(l, uap, retval)
1670  *
1671  *	__futex_set_robust_list(2) system call for robust futexes.
1672  */
1673 int
1674 sys___futex_set_robust_list(struct lwp *l,
1675     const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1676 {
1677 	/* {
1678 		syscallarg(void *) head;
1679 		syscallarg(size_t) len;
1680 	} */
1681 	void *head = SCARG(uap, head);
1682 
1683 	if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1684 		return EINVAL;
1685 	if ((uintptr_t)head % sizeof(u_long))
1686 		return EINVAL;
1687 
1688 	l->l_robust_head = (uintptr_t)head;
1689 
1690 	return 0;
1691 }
1692 
1693 /*
1694  * sys___futex_get_robust_list(l, uap, retval)
1695  *
1696  *	__futex_get_robust_list(2) system call for robust futexes.
1697  */
1698 int
1699 sys___futex_get_robust_list(struct lwp *l,
1700     const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1701 {
1702 	/* {
1703 		syscallarg(lwpid_t) lwpid;
1704 		syscallarg(void **) headp;
1705 		syscallarg(size_t *) lenp;
1706 	} */
1707 	void *head;
1708 	const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1709 	int error;
1710 
1711 	error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1712 	if (error)
1713 		return error;
1714 
1715 	/* Copy out the head pointer and the head structure length. */
1716 	error = copyout(&head, SCARG(uap, headp), sizeof(head));
1717 	if (__predict_true(error == 0)) {
1718 		error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1719 	}
1720 
1721 	return error;
1722 }
1723 
1724 /*
1725  * release_futex(uva, tid)
1726  *
1727  *	Try to release the robust futex at uva in the current process
1728  *	on lwp exit.  If anything goes wrong, silently fail.  It is the
1729  *	userland program's obligation to arrange correct behaviour.
1730  */
1731 static void
1732 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1733     bool const is_pending)
1734 {
1735 	int *uaddr;
1736 	struct futex *f;
1737 	int oldval, newval, actual;
1738 	int error;
1739 
1740 	/* If it's misaligned, tough.  */
1741 	if (__predict_false(uptr & 3))
1742 		return;
1743 	uaddr = (int *)uptr;
1744 
1745 	error = futex_load(uaddr, &oldval);
1746 	if (__predict_false(error))
1747 		return;
1748 
1749 	/*
1750 	 * There are two race conditions we need to handle here:
1751 	 *
1752 	 * 1. User space cleared the futex word but died before
1753 	 *    being able to issue the wakeup.  No wakeups will
1754 	 *    ever be issued, oops!
1755 	 *
1756 	 * 2. Awakened waiter died before being able to acquire
1757 	 *    the futex in user space.  Any other waiters are
1758 	 *    now stuck, oops!
1759 	 *
1760 	 * In both of these cases, the futex word will be 0 (because
1761 	 * it's updated before the wake is issued).  The best we can
1762 	 * do is detect this situation if it's the pending futex and
1763 	 * issue a wake without modifying the futex word.
1764 	 *
1765 	 * XXX eventual PI handling?
1766 	 */
1767 	if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1768 		register_t retval;
1769 		(void) futex_func_wake(/*shared*/true, uaddr, 1,
1770 		    FUTEX_BITSET_MATCH_ANY, &retval);
1771 		return;
1772 	}
1773 
1774 	/* Optimistically test whether we need to do anything at all.  */
1775 	if ((oldval & FUTEX_TID_MASK) != tid)
1776 		return;
1777 
1778 	/*
1779 	 * We need to handle the case where this thread owned the futex,
1780 	 * but it was uncontended.  In this case, there won't be any
1781 	 * kernel state to look up.  All we can do is mark the futex
1782 	 * as a zombie to be mopped up the next time another thread
1783 	 * attempts to acquire it.
1784 	 *
1785 	 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1786 	 * this loop, even if waiters appear while we're are doing
1787 	 * so.  This is beause FUTEX_WAITERS is set by user space
1788 	 * before calling __futex() to wait, and the futex needs
1789 	 * to be marked as a zombie when the new waiter gets into
1790 	 * the kernel.
1791 	 */
1792 	if ((oldval & FUTEX_WAITERS) == 0) {
1793 		do {
1794 			error = futex_load(uaddr, &oldval);
1795 			if (error)
1796 				return;
1797 			if ((oldval & FUTEX_TID_MASK) != tid)
1798 				return;
1799 			newval = oldval | FUTEX_OWNER_DIED;
1800 			error = ucas_int(uaddr, oldval, newval, &actual);
1801 			if (error)
1802 				return;
1803 		} while (actual != oldval);
1804 
1805 		/*
1806 		 * If where is still no indication of waiters, then there is
1807 		 * no more work for us to do.
1808 		 */
1809 		if ((oldval & FUTEX_WAITERS) == 0)
1810 			return;
1811 	}
1812 
1813 	/*
1814 	 * Look for a shared futex since we have no positive indication
1815 	 * it is private.  If we can't, tough.
1816 	 */
1817 	error = futex_lookup(uaddr, /*shared*/true, &f);
1818 	if (error)
1819 		return;
1820 
1821 	/*
1822 	 * If there's no kernel state for this futex, there's nothing to
1823 	 * release.
1824 	 */
1825 	if (f == NULL)
1826 		return;
1827 
1828 	/* Work under the futex queue lock.  */
1829 	futex_queue_lock(f);
1830 
1831 	/*
1832 	 * Fetch the word: if the tid doesn't match ours, skip;
1833 	 * otherwise, set the owner-died bit, atomically.
1834 	 */
1835 	do {
1836 		error = futex_load(uaddr, &oldval);
1837 		if (error)
1838 			goto out;
1839 		if ((oldval & FUTEX_TID_MASK) != tid)
1840 			goto out;
1841 		newval = oldval | FUTEX_OWNER_DIED;
1842 		error = ucas_int(uaddr, oldval, newval, &actual);
1843 		if (error)
1844 			goto out;
1845 	} while (actual != oldval);
1846 
1847 	/*
1848 	 * If there may be waiters, try to wake one.  If anything goes
1849 	 * wrong, tough.
1850 	 *
1851 	 * XXX eventual PI handling?
1852 	 */
1853 	if (oldval & FUTEX_WAITERS)
1854 		(void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
1855 
1856 	/* Unlock the queue and release the futex.  */
1857 out:	futex_queue_unlock(f);
1858 	futex_rele(f);
1859 }
1860 
1861 /*
1862  * futex_robust_head_lookup(l, lwpid)
1863  *
1864  *	Helper function to look up a robust head by LWP ID.
1865  */
1866 int
1867 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
1868 {
1869 	struct proc *p = l->l_proc;
1870 
1871 	/* Find the other lwp, if requested; otherwise use our robust head.  */
1872 	if (lwpid) {
1873 		mutex_enter(p->p_lock);
1874 		l = lwp_find(p, lwpid);
1875 		if (l == NULL) {
1876 			mutex_exit(p->p_lock);
1877 			return ESRCH;
1878 		}
1879 		*headp = (void *)l->l_robust_head;
1880 		mutex_exit(p->p_lock);
1881 	} else {
1882 		*headp = (void *)l->l_robust_head;
1883 	}
1884 	return 0;
1885 }
1886 
1887 /*
1888  * futex_fetch_robust_head(uaddr)
1889  *
1890  *	Helper routine to fetch the futex robust list head that
1891  *	handles 32-bit binaries running on 64-bit kernels.
1892  */
1893 static int
1894 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
1895 {
1896 #ifdef _LP64
1897 	if (curproc->p_flag & PK_32) {
1898 		uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
1899 		int error;
1900 
1901 		error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
1902 		if (__predict_true(error == 0)) {
1903 			for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
1904 				if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
1905 					/*
1906 					 * Make sure the offset is sign-
1907 					 * extended.
1908 					 */
1909 					rhead[i] = (int32_t)rhead32[i];
1910 				} else {
1911 					rhead[i] = rhead32[i];
1912 				}
1913 			}
1914 		}
1915 		return error;
1916 	}
1917 #endif /* _L64 */
1918 
1919 	return copyin((void *)uaddr, rhead,
1920 	    sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
1921 }
1922 
1923 /*
1924  * futex_decode_robust_word(word)
1925  *
1926  *	Decode a robust futex list word into the entry and entry
1927  *	properties.
1928  */
1929 static inline void
1930 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
1931     bool * const is_pi)
1932 {
1933 	*is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
1934 	*entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
1935 }
1936 
1937 /*
1938  * futex_fetch_robust_entry(uaddr)
1939  *
1940  *	Helper routine to fetch and decode a robust futex entry
1941  *	that handles 32-bit binaries running on 64-bit kernels.
1942  */
1943 static int
1944 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
1945     bool * const is_pi)
1946 {
1947 	uintptr_t val = 0;
1948 	int error = 0;
1949 
1950 #ifdef _LP64
1951 	if (curproc->p_flag & PK_32) {
1952 		uint32_t val32;
1953 
1954 		error = ufetch_32((uint32_t *)uaddr, &val32);
1955 		if (__predict_true(error == 0))
1956 			val = val32;
1957 	} else
1958 #endif /* _LP64 */
1959 		error = ufetch_long((u_long *)uaddr, (u_long *)&val);
1960 	if (__predict_false(error))
1961 		return error;
1962 
1963 	futex_decode_robust_word(val, valp, is_pi);
1964 	return 0;
1965 }
1966 
1967 /*
1968  * futex_release_all_lwp(l, tid)
1969  *
1970  *	Release all l's robust futexes.  If anything looks funny in
1971  *	the process, give up -- it's userland's responsibility to dot
1972  *	the i's and cross the t's.
1973  */
1974 void
1975 futex_release_all_lwp(struct lwp * const l)
1976 {
1977 	u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
1978 	int limit = 1000000;
1979 	int error;
1980 
1981 	/* If there's no robust list there's nothing to do. */
1982 	if (l->l_robust_head == 0)
1983 		return;
1984 
1985 	KASSERT((l->l_lid & FUTEX_TID_MASK) == l->l_lid);
1986 
1987 	/* Read the final snapshot of the robust list head. */
1988 	error = futex_fetch_robust_head(l->l_robust_head, rhead);
1989 	if (error) {
1990 		printf("WARNING: pid %jd (%s) lwp %jd:"
1991 		    " unmapped robust futex list head\n",
1992 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
1993 		    (uintmax_t)l->l_lid);
1994 		return;
1995 	}
1996 
1997 	const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
1998 
1999 	uintptr_t next, pending;
2000 	bool is_pi, pending_is_pi;
2001 
2002 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
2003 	    &next, &is_pi);
2004 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
2005 	    &pending, &pending_is_pi);
2006 
2007 	/*
2008 	 * Walk down the list of locked futexes and release them, up
2009 	 * to one million of them before we give up.
2010 	 */
2011 
2012 	while (next != l->l_robust_head && limit-- > 0) {
2013 		/* pending handled below. */
2014 		if (next != pending)
2015 			release_futex(next + offset, l->l_lid, is_pi, false);
2016 		error = futex_fetch_robust_entry(next, &next, &is_pi);
2017 		if (error)
2018 			break;
2019 		preempt_point();
2020 	}
2021 	if (limit <= 0) {
2022 		printf("WARNING: pid %jd (%s) lwp %jd:"
2023 		    " exhausted robust futex limit\n",
2024 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2025 		    (uintmax_t)l->l_lid);
2026 	}
2027 
2028 	/* If there's a pending futex, it may need to be released too. */
2029 	if (pending != 0) {
2030 		release_futex(pending + offset, l->l_lid, pending_is_pi, true);
2031 	}
2032 }
2033