xref: /netbsd-src/sys/kern/sys_futex.c (revision 4724848cf0da353df257f730694b7882798e5daf)
1 /*	$NetBSD: sys_futex.c,v 1.19 2023/02/24 11:02:27 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Taylor R. Campbell and Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.19 2023/02/24 11:02:27 riastradh Exp $");
34 
35 /*
36  * Futexes
37  *
38  *	The futex system call coordinates notifying threads waiting for
39  *	changes on a 32-bit word of memory.  The word can be managed by
40  *	CPU atomic operations in userland, without system calls, as long
41  *	as there is no contention.
42  *
43  *	The simplest use case demonstrating the utility is:
44  *
45  *		// 32-bit word of memory shared among threads or
46  *		// processes in userland.  lock & 1 means owned;
47  *		// lock & 2 means there are waiters waiting.
48  *		volatile int lock = 0;
49  *
50  *		int v;
51  *
52  *		// Acquire a lock.
53  *		do {
54  *			v = lock;
55  *			if (v & 1) {
56  *				// Lock is held.  Set a bit to say that
57  *				// there are waiters, and wait for lock
58  *				// to change to anything other than v;
59  *				// then retry.
60  *				if (atomic_cas_uint(&lock, v, v | 2) != v)
61  *					continue;
62  *				futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
63  *				continue;
64  *			}
65  *		} while (atomic_cas_uint(&lock, v, v & ~1) != v);
66  *		membar_acquire();
67  *
68  *		...
69  *
70  *		// Release the lock.  Optimistically assume there are
71  *		// no waiters first until demonstrated otherwise.
72  *		membar_release();
73  *		if (atomic_cas_uint(&lock, 1, 0) != 1) {
74  *			// There may be waiters.
75  *			v = atomic_swap_uint(&lock, 0);
76  *			// If there are still waiters, wake one.
77  *			if (v & 2)
78  *				futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
79  *		}
80  *
81  *	The goal is to avoid the futex system call unless there is
82  *	contention; then if there is contention, to guarantee no missed
83  *	wakeups.
84  *
85  *	For a simple implementation, futex(FUTEX_WAIT) could queue
86  *	itself to be woken, double-check the lock word, and then sleep;
87  *	spurious wakeups are generally a fact of life, so any
88  *	FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
89  *
90  *	If this were all there is to it, we could then increase
91  *	parallelism by refining the approximation: partition the
92  *	waiters into buckets by hashing the lock addresses to reduce
93  *	the incidence of spurious wakeups.  But this is not all.
94  *
95  *	The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
96  *	operation not only wakes n waiters on lock if lock == val, but
97  *	also _transfers_ m additional waiters to lock2.  Unless wakeups
98  *	on lock2 also trigger wakeups on lock, we cannot move waiters
99  *	to lock2 if they merely share the same hash as waiters on lock.
100  *	Thus, we can't approximately distribute waiters into queues by
101  *	a hash function; we must distinguish futex queues exactly by
102  *	lock address.
103  *
104  *	For now, we use a global red/black tree to index futexes.  This
105  *	should be replaced by a lockless radix tree with a thread to
106  *	free entries no longer in use once all lookups on all CPUs have
107  *	completed.
108  *
109  *	Specifically, we maintain two maps:
110  *
111  *	futex_tab.va[vmspace, va] for private futexes
112  *	futex_tab.oa[uvm_voaddr] for shared futexes
113  *
114  *	This implementation does not support priority inheritance.
115  */
116 
117 #include <sys/param.h>
118 #include <sys/types.h>
119 #include <sys/atomic.h>
120 #include <sys/condvar.h>
121 #include <sys/futex.h>
122 #include <sys/mutex.h>
123 #include <sys/rbtree.h>
124 #include <sys/queue.h>
125 
126 #include <sys/syscall.h>
127 #include <sys/syscallargs.h>
128 #include <sys/syscallvar.h>
129 
130 #include <uvm/uvm_extern.h>
131 
132 /*
133  * Lock order:
134  *
135  *	futex_tab.lock
136  *	futex::fx_qlock			ordered by kva of struct futex
137  *	 -> futex_wait::fw_lock		only one at a time
138  *	futex_wait::fw_lock		only one at a time
139  *	 -> futex::fx_abortlock		only one at a time
140  */
141 
142 /*
143  * union futex_key
144  *
145  *	A futex is addressed either by a vmspace+va (private) or by
146  *	a uvm_voaddr (shared).
147  */
148 union futex_key {
149 	struct {
150 		struct vmspace			*vmspace;
151 		vaddr_t				va;
152 	}			fk_private;
153 	struct uvm_voaddr	fk_shared;
154 };
155 
156 /*
157  * struct futex
158  *
159  *	Kernel state for a futex located at a particular address in a
160  *	particular virtual address space.
161  *
162  *	N.B. fx_refcnt is an unsigned long because we need to be able
163  *	to operate on it atomically on all systems while at the same
164  *	time rendering practically impossible the chance of it reaching
165  *	its max value.  In practice, we're limited by the number of LWPs
166  *	that can be present on the system at any given time, and the
167  *	assumption is that limit will be good enough on a 32-bit platform.
168  *	See futex_wake() for why overflow needs to be avoided.
169  */
170 struct futex {
171 	union futex_key		fx_key;
172 	unsigned long		fx_refcnt;
173 	bool			fx_shared;
174 	bool			fx_on_tree;
175 	struct rb_node		fx_node;
176 
177 	kmutex_t			fx_qlock;
178 	TAILQ_HEAD(, futex_wait)	fx_queue;
179 
180 	kmutex_t			fx_abortlock;
181 	LIST_HEAD(, futex_wait)		fx_abortlist;
182 	kcondvar_t			fx_abortcv;
183 };
184 
185 /*
186  * struct futex_wait
187  *
188  *	State for a thread to wait on a futex.  Threads wait on fw_cv
189  *	for fw_bitset to be set to zero.  The thread may transition to
190  *	a different futex queue at any time under the futex's lock.
191  */
192 struct futex_wait {
193 	kmutex_t		fw_lock;
194 	kcondvar_t		fw_cv;
195 	struct futex		*fw_futex;
196 	TAILQ_ENTRY(futex_wait)	fw_entry;	/* queue lock */
197 	LIST_ENTRY(futex_wait)	fw_abort;	/* queue abortlock */
198 	int			fw_bitset;
199 	bool			fw_aborting;	/* fw_lock */
200 };
201 
202 /*
203  * futex_tab
204  *
205  *	Global trees of futexes by vmspace/va and VM object address.
206  *
207  *	XXX This obviously doesn't scale in parallel.  We could use a
208  *	pserialize-safe data structure, but there may be a high cost to
209  *	frequent deletion since we don't cache futexes after we're done
210  *	with them.  We could use hashed locks.  But for now, just make
211  *	sure userland can't DoS the serial performance, by using a
212  *	balanced binary tree for lookup.
213  *
214  *	XXX We could use a per-process tree for the table indexed by
215  *	virtual address to reduce contention between processes.
216  */
217 static struct {
218 	kmutex_t	lock;
219 	struct rb_tree	va;
220 	struct rb_tree	oa;
221 } futex_tab __cacheline_aligned;
222 
223 static int
224 compare_futex_key(void *cookie, const void *n, const void *k)
225 {
226 	const struct futex *fa = n;
227 	const union futex_key *fka = &fa->fx_key;
228 	const union futex_key *fkb = k;
229 
230 	if ((uintptr_t)fka->fk_private.vmspace <
231 	    (uintptr_t)fkb->fk_private.vmspace)
232 		return -1;
233 	if ((uintptr_t)fka->fk_private.vmspace >
234 	    (uintptr_t)fkb->fk_private.vmspace)
235 		return +1;
236 	if (fka->fk_private.va < fkb->fk_private.va)
237 		return -1;
238 	if (fka->fk_private.va > fkb->fk_private.va)
239 		return +1;
240 	return 0;
241 }
242 
243 static int
244 compare_futex(void *cookie, const void *na, const void *nb)
245 {
246 	const struct futex *fa = na;
247 	const struct futex *fb = nb;
248 
249 	return compare_futex_key(cookie, fa, &fb->fx_key);
250 }
251 
252 static const rb_tree_ops_t futex_rb_ops = {
253 	.rbto_compare_nodes = compare_futex,
254 	.rbto_compare_key = compare_futex_key,
255 	.rbto_node_offset = offsetof(struct futex, fx_node),
256 };
257 
258 static int
259 compare_futex_shared_key(void *cookie, const void *n, const void *k)
260 {
261 	const struct futex *fa = n;
262 	const union futex_key *fka = &fa->fx_key;
263 	const union futex_key *fkb = k;
264 
265 	return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
266 }
267 
268 static int
269 compare_futex_shared(void *cookie, const void *na, const void *nb)
270 {
271 	const struct futex *fa = na;
272 	const struct futex *fb = nb;
273 
274 	return compare_futex_shared_key(cookie, fa, &fb->fx_key);
275 }
276 
277 static const rb_tree_ops_t futex_shared_rb_ops = {
278 	.rbto_compare_nodes = compare_futex_shared,
279 	.rbto_compare_key = compare_futex_shared_key,
280 	.rbto_node_offset = offsetof(struct futex, fx_node),
281 };
282 
283 static void	futex_wait_dequeue(struct futex_wait *, struct futex *);
284 
285 /*
286  * futex_load(uaddr, kaddr)
287  *
288  *	Perform a single atomic load to read *uaddr, and return the
289  *	result in *kaddr.  Return 0 on success, EFAULT if uaddr is not
290  *	mapped.
291  */
292 static inline int
293 futex_load(int *uaddr, int *kaddr)
294 {
295 	return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
296 }
297 
298 /*
299  * futex_test(uaddr, expected)
300  *
301  *	True if *uaddr == expected.  False if *uaddr != expected, or if
302  *	uaddr is not mapped.
303  */
304 static bool
305 futex_test(int *uaddr, int expected)
306 {
307 	int val;
308 	int error;
309 
310 	error = futex_load(uaddr, &val);
311 	if (error)
312 		return false;
313 	return val == expected;
314 }
315 
316 /*
317  * futex_sys_init()
318  *
319  *	Initialize the futex subsystem.
320  */
321 void
322 futex_sys_init(void)
323 {
324 
325 	mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
326 	rb_tree_init(&futex_tab.va, &futex_rb_ops);
327 	rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
328 }
329 
330 /*
331  * futex_sys_fini()
332  *
333  *	Finalize the futex subsystem.
334  */
335 void
336 futex_sys_fini(void)
337 {
338 
339 	KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
340 	KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
341 	mutex_destroy(&futex_tab.lock);
342 }
343 
344 /*
345  * futex_queue_init(f)
346  *
347  *	Initialize the futex queue.  Caller must call futex_queue_fini
348  *	when done.
349  *
350  *	Never sleeps.
351  */
352 static void
353 futex_queue_init(struct futex *f)
354 {
355 
356 	mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
357 	mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
358 	cv_init(&f->fx_abortcv, "fqabort");
359 	LIST_INIT(&f->fx_abortlist);
360 	TAILQ_INIT(&f->fx_queue);
361 }
362 
363 /*
364  * futex_queue_drain(f)
365  *
366  *	Wait for any aborting waiters in f; then empty the queue of
367  *	any stragglers and wake them.  Caller must guarantee no new
368  *	references to f.
369  *
370  *	May sleep.
371  */
372 static void
373 futex_queue_drain(struct futex *f)
374 {
375 	struct futex_wait *fw, *fw_next;
376 
377 	mutex_enter(&f->fx_abortlock);
378 	while (!LIST_EMPTY(&f->fx_abortlist))
379 		cv_wait(&f->fx_abortcv, &f->fx_abortlock);
380 	mutex_exit(&f->fx_abortlock);
381 
382 	mutex_enter(&f->fx_qlock);
383 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
384 		mutex_enter(&fw->fw_lock);
385 		futex_wait_dequeue(fw, f);
386 		cv_broadcast(&fw->fw_cv);
387 		mutex_exit(&fw->fw_lock);
388 	}
389 	mutex_exit(&f->fx_qlock);
390 }
391 
392 /*
393  * futex_queue_fini(fq)
394  *
395  *	Finalize the futex queue initialized by futex_queue_init.  Queue
396  *	must be empty.  Caller must not use f again until a subsequent
397  *	futex_queue_init.
398  */
399 static void
400 futex_queue_fini(struct futex *f)
401 {
402 
403 	KASSERT(TAILQ_EMPTY(&f->fx_queue));
404 	KASSERT(LIST_EMPTY(&f->fx_abortlist));
405 	mutex_destroy(&f->fx_qlock);
406 	mutex_destroy(&f->fx_abortlock);
407 	cv_destroy(&f->fx_abortcv);
408 }
409 
410 /*
411  * futex_key_init(key, vm, va, shared)
412  *
413  *	Initialize a futex key for lookup, etc.
414  */
415 static int
416 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
417 {
418 	int error = 0;
419 
420 	if (__predict_false(shared)) {
421 		if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
422 			error = EFAULT;
423 	} else {
424 		fk->fk_private.vmspace = vm;
425 		fk->fk_private.va = va;
426 	}
427 
428 	return error;
429 }
430 
431 /*
432  * futex_key_fini(key, shared)
433  *
434  *	Release a futex key.
435  */
436 static void
437 futex_key_fini(union futex_key *fk, bool shared)
438 {
439 	if (__predict_false(shared))
440 		uvm_voaddr_release(&fk->fk_shared);
441 	memset(fk, 0, sizeof(*fk));
442 }
443 
444 /*
445  * futex_create(fk, shared)
446  *
447  *	Create a futex.  Initial reference count is 1, representing the
448  *	caller.  Returns NULL on failure.  Always takes ownership of the
449  *	key, either transferring it to the newly-created futex, or releasing
450  *	the key if creation fails.
451  *
452  *	Never sleeps for memory, but may sleep to acquire a lock.
453  */
454 static struct futex *
455 futex_create(union futex_key *fk, bool shared)
456 {
457 	struct futex *f;
458 
459 	f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
460 	if (f == NULL) {
461 		futex_key_fini(fk, shared);
462 		return NULL;
463 	}
464 	f->fx_key = *fk;
465 	f->fx_refcnt = 1;
466 	f->fx_shared = shared;
467 	f->fx_on_tree = false;
468 	futex_queue_init(f);
469 
470 	return f;
471 }
472 
473 /*
474  * futex_destroy(f)
475  *
476  *	Destroy a futex created with futex_create.  Reference count
477  *	must be zero.
478  *
479  *	May sleep.
480  */
481 static void
482 futex_destroy(struct futex *f)
483 {
484 
485 	ASSERT_SLEEPABLE();
486 
487 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
488 	KASSERT(!f->fx_on_tree);
489 
490 	/* Drain and destroy the private queue.  */
491 	futex_queue_drain(f);
492 	futex_queue_fini(f);
493 
494 	futex_key_fini(&f->fx_key, f->fx_shared);
495 
496 	kmem_free(f, sizeof(*f));
497 }
498 
499 /*
500  * futex_hold(f)
501  *
502  *	Attempt to acquire a reference to f.  Return 0 on success,
503  *	ENFILE on too many references.
504  *
505  *	Never sleeps.
506  */
507 static int
508 futex_hold(struct futex *f)
509 {
510 	unsigned long refcnt;
511 
512 	do {
513 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
514 		if (refcnt == ULONG_MAX)
515 			return ENFILE;
516 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
517 
518 	return 0;
519 }
520 
521 /*
522  * futex_rele(f)
523  *
524  *	Release a reference to f acquired with futex_create or
525  *	futex_hold.
526  *
527  *	May sleep to free f.
528  */
529 static void
530 futex_rele(struct futex *f)
531 {
532 	unsigned long refcnt;
533 
534 	ASSERT_SLEEPABLE();
535 
536 	do {
537 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
538 		if (refcnt == 1)
539 			goto trylast;
540 		membar_release();
541 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
542 	return;
543 
544 trylast:
545 	mutex_enter(&futex_tab.lock);
546 	if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
547 		membar_acquire();
548 		if (f->fx_on_tree) {
549 			if (__predict_false(f->fx_shared))
550 				rb_tree_remove_node(&futex_tab.oa, f);
551 			else
552 				rb_tree_remove_node(&futex_tab.va, f);
553 			f->fx_on_tree = false;
554 		}
555 	} else {
556 		/* References remain -- don't destroy it.  */
557 		f = NULL;
558 	}
559 	mutex_exit(&futex_tab.lock);
560 	if (f != NULL)
561 		futex_destroy(f);
562 }
563 
564 /*
565  * futex_rele_not_last(f)
566  *
567  *	Release a reference to f acquired with futex_create or
568  *	futex_hold.
569  *
570  *	This version asserts that we are not dropping the last
571  *	reference to f.
572  */
573 static void
574 futex_rele_not_last(struct futex *f)
575 {
576 	unsigned long refcnt;
577 
578 	do {
579 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
580 		KASSERT(refcnt > 1);
581 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
582 }
583 
584 /*
585  * futex_lookup_by_key(key, shared, &f)
586  *
587  *	Try to find an existing futex va reference in the specified key
588  *	On success, return 0, set f to found futex or to NULL if not found,
589  *	and increment f's reference count if found.
590  *
591  *	Return ENFILE if reference count too high.
592  *
593  *	Internal lookup routine shared by futex_lookup() and
594  *	futex_lookup_create().
595  */
596 static int
597 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
598 {
599 	struct futex *f;
600 	int error = 0;
601 
602 	mutex_enter(&futex_tab.lock);
603 	if (__predict_false(shared)) {
604 		f = rb_tree_find_node(&futex_tab.oa, fk);
605 	} else {
606 		f = rb_tree_find_node(&futex_tab.va, fk);
607 	}
608 	if (f) {
609 		error = futex_hold(f);
610 		if (error)
611 			f = NULL;
612 	}
613  	*fp = f;
614 	mutex_exit(&futex_tab.lock);
615 
616 	return error;
617 }
618 
619 /*
620  * futex_insert(f, fp)
621  *
622  *	Try to insert the futex f into the tree by va.  If there
623  *	already is a futex for its va, acquire a reference to it, and
624  *	store it in *fp; otherwise store f in *fp.
625  *
626  *	Return 0 on success, ENFILE if there already is a futex but its
627  *	reference count is too high.
628  */
629 static int
630 futex_insert(struct futex *f, struct futex **fp)
631 {
632 	struct futex *f0;
633 	int error;
634 
635 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
636 	KASSERT(!f->fx_on_tree);
637 
638 	mutex_enter(&futex_tab.lock);
639 	if (__predict_false(f->fx_shared))
640 		f0 = rb_tree_insert_node(&futex_tab.oa, f);
641 	else
642 		f0 = rb_tree_insert_node(&futex_tab.va, f);
643 	if (f0 == f) {
644 		f->fx_on_tree = true;
645 		error = 0;
646 	} else {
647 		KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
648 		KASSERT(f0->fx_on_tree);
649 		error = futex_hold(f0);
650 		if (error)
651 			goto out;
652 	}
653 	*fp = f0;
654 out:	mutex_exit(&futex_tab.lock);
655 
656 	return error;
657 }
658 
659 /*
660  * futex_lookup(uaddr, shared, &f)
661  *
662  *	Find a futex at the userland pointer uaddr in the current
663  *	process's VM space.  On success, return the futex in f and
664  *	increment its reference count.
665  *
666  *	Caller must call futex_rele when done.
667  */
668 static int
669 futex_lookup(int *uaddr, bool shared, struct futex **fp)
670 {
671 	union futex_key fk;
672 	struct vmspace *vm = curproc->p_vmspace;
673 	vaddr_t va = (vaddr_t)uaddr;
674 	int error;
675 
676 	/*
677 	 * Reject unaligned user pointers so we don't cross page
678 	 * boundaries and so atomics will work.
679 	 */
680 	if ((va & 3) != 0)
681 		return EINVAL;
682 
683 	/* Look it up. */
684 	error = futex_key_init(&fk, vm, va, shared);
685 	if (error)
686 		return error;
687 
688 	error = futex_lookup_by_key(&fk, shared, fp);
689 	futex_key_fini(&fk, shared);
690 	if (error)
691 		return error;
692 
693 	KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
694 	KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
695 
696 	/*
697 	 * Success!  (Caller must still check whether we found
698 	 * anything, but nothing went _wrong_ like trying to use
699 	 * unmapped memory.)
700 	 */
701 	KASSERT(error == 0);
702 
703 	return error;
704 }
705 
706 /*
707  * futex_lookup_create(uaddr, shared, &f)
708  *
709  *	Find or create a futex at the userland pointer uaddr in the
710  *	current process's VM space.  On success, return the futex in f
711  *	and increment its reference count.
712  *
713  *	Caller must call futex_rele when done.
714  */
715 static int
716 futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
717 {
718 	union futex_key fk;
719 	struct vmspace *vm = curproc->p_vmspace;
720 	struct futex *f = NULL;
721 	vaddr_t va = (vaddr_t)uaddr;
722 	int error;
723 
724 	/*
725 	 * Reject unaligned user pointers so we don't cross page
726 	 * boundaries and so atomics will work.
727 	 */
728 	if ((va & 3) != 0)
729 		return EINVAL;
730 
731 	error = futex_key_init(&fk, vm, va, shared);
732 	if (error)
733 		return error;
734 
735 	/*
736 	 * Optimistically assume there already is one, and try to find
737 	 * it.
738 	 */
739 	error = futex_lookup_by_key(&fk, shared, fp);
740 	if (error || *fp != NULL) {
741 		/*
742 		 * We either found one, or there was an error.
743 		 * In either case, we are done with the key.
744 		 */
745 		futex_key_fini(&fk, shared);
746 		goto out;
747 	}
748 
749 	/*
750 	 * Create a futex record.  This transfers ownership of the key
751 	 * in all cases.
752 	 */
753 	f = futex_create(&fk, shared);
754 	if (f == NULL) {
755 		error = ENOMEM;
756 		goto out;
757 	}
758 
759 	/*
760 	 * Insert our new futex, or use existing if someone else beat
761 	 * us to it.
762 	 */
763 	error = futex_insert(f, fp);
764 	if (error)
765 		goto out;
766 	if (*fp == f)
767 		f = NULL;	/* don't release on exit */
768 
769 	/* Success!  */
770 	KASSERT(error == 0);
771 
772 out:	if (f != NULL)
773 		futex_rele(f);
774 	KASSERT(error || *fp != NULL);
775 	KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
776 	return error;
777 }
778 
779 /*
780  * futex_wait_init(fw, bitset)
781  *
782  *	Initialize a record for a thread to wait on a futex matching
783  *	the specified bit set.  Should be passed to futex_wait_enqueue
784  *	before futex_wait, and should be passed to futex_wait_fini when
785  *	done.
786  */
787 static void
788 futex_wait_init(struct futex_wait *fw, int bitset)
789 {
790 
791 	KASSERT(bitset);
792 
793 	mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
794 	cv_init(&fw->fw_cv, "futex");
795 	fw->fw_futex = NULL;
796 	fw->fw_bitset = bitset;
797 	fw->fw_aborting = false;
798 }
799 
800 /*
801  * futex_wait_fini(fw)
802  *
803  *	Finalize a record for a futex waiter.  Must not be on any
804  *	futex's queue.
805  */
806 static void
807 futex_wait_fini(struct futex_wait *fw)
808 {
809 
810 	KASSERT(fw->fw_futex == NULL);
811 
812 	cv_destroy(&fw->fw_cv);
813 	mutex_destroy(&fw->fw_lock);
814 }
815 
816 /*
817  * futex_wait_enqueue(fw, f)
818  *
819  *	Put fw on the futex queue.  Must be done before futex_wait.
820  *	Caller must hold fw's lock and f's lock, and fw must not be on
821  *	any existing futex's waiter list.
822  */
823 static void
824 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
825 {
826 
827 	KASSERT(mutex_owned(&f->fx_qlock));
828 	KASSERT(mutex_owned(&fw->fw_lock));
829 	KASSERT(fw->fw_futex == NULL);
830 	KASSERT(!fw->fw_aborting);
831 
832 	fw->fw_futex = f;
833 	TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
834 }
835 
836 /*
837  * futex_wait_dequeue(fw, f)
838  *
839  *	Remove fw from the futex queue.  Precludes subsequent
840  *	futex_wait until a futex_wait_enqueue.  Caller must hold fw's
841  *	lock and f's lock, and fw must be on f.
842  */
843 static void
844 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
845 {
846 
847 	KASSERT(mutex_owned(&f->fx_qlock));
848 	KASSERT(mutex_owned(&fw->fw_lock));
849 	KASSERT(fw->fw_futex == f);
850 
851 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
852 	fw->fw_futex = NULL;
853 }
854 
855 /*
856  * futex_wait_abort(fw)
857  *
858  *	Caller is no longer waiting for fw.  Remove it from any queue
859  *	if it was on one.  Caller must hold fw->fw_lock.
860  */
861 static void
862 futex_wait_abort(struct futex_wait *fw)
863 {
864 	struct futex *f;
865 
866 	KASSERT(mutex_owned(&fw->fw_lock));
867 
868 	/*
869 	 * Grab the futex queue.  It can't go away as long as we hold
870 	 * fw_lock.  However, we can't take the queue lock because
871 	 * that's a lock order reversal.
872 	 */
873 	f = fw->fw_futex;
874 
875 	/* Put us on the abort list so that fq won't go away.  */
876 	mutex_enter(&f->fx_abortlock);
877 	LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
878 	mutex_exit(&f->fx_abortlock);
879 
880 	/*
881 	 * Mark fw as aborting so it won't lose wakeups and won't be
882 	 * transferred to any other queue.
883 	 */
884 	fw->fw_aborting = true;
885 
886 	/* f is now stable, so we can release fw_lock.  */
887 	mutex_exit(&fw->fw_lock);
888 
889 	/* Now we can remove fw under the queue lock.  */
890 	mutex_enter(&f->fx_qlock);
891 	mutex_enter(&fw->fw_lock);
892 	futex_wait_dequeue(fw, f);
893 	mutex_exit(&fw->fw_lock);
894 	mutex_exit(&f->fx_qlock);
895 
896 	/*
897 	 * Finally, remove us from the abort list and notify anyone
898 	 * waiting for the abort to complete if we were the last to go.
899 	 */
900 	mutex_enter(&f->fx_abortlock);
901 	LIST_REMOVE(fw, fw_abort);
902 	if (LIST_EMPTY(&f->fx_abortlist))
903 		cv_broadcast(&f->fx_abortcv);
904 	mutex_exit(&f->fx_abortlock);
905 
906 	/*
907 	 * Release our reference to the futex now that we are not
908 	 * waiting for it.
909 	 */
910 	futex_rele(f);
911 
912 	/*
913 	 * Reacquire the fw lock as caller expects.  Verify that we're
914 	 * aborting and no longer associated with a futex.
915 	 */
916 	mutex_enter(&fw->fw_lock);
917 	KASSERT(fw->fw_aborting);
918 	KASSERT(fw->fw_futex == NULL);
919 }
920 
921 /*
922  * futex_wait(fw, deadline, clkid)
923  *
924  *	fw must be a waiter on a futex's queue.  Wait until deadline on
925  *	the clock clkid, or forever if deadline is NULL, for a futex
926  *	wakeup.  Return 0 on explicit wakeup or destruction of futex,
927  *	ETIMEDOUT on timeout, EINTR/ERESTART on signal.  Either way, fw
928  *	will no longer be on a futex queue on return.
929  */
930 static int
931 futex_wait(struct futex_wait *fw, const struct timespec *deadline,
932     clockid_t clkid)
933 {
934 	int error = 0;
935 
936 	/* Test and wait under the wait lock.  */
937 	mutex_enter(&fw->fw_lock);
938 
939 	for (;;) {
940 		/* If we're done yet, stop and report success.  */
941 		if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
942 			error = 0;
943 			break;
944 		}
945 
946 		/* If anything went wrong in the last iteration, stop.  */
947 		if (error)
948 			break;
949 
950 		/* Not done yet.  Wait.  */
951 		if (deadline) {
952 			struct timespec ts;
953 
954 			/* Check our watch.  */
955 			error = clock_gettime1(clkid, &ts);
956 			if (error)
957 				break;
958 
959 			/* If we're past the deadline, ETIMEDOUT.  */
960 			if (timespeccmp(deadline, &ts, <=)) {
961 				error = ETIMEDOUT;
962 				break;
963 			}
964 
965 			/* Count how much time is left.  */
966 			timespecsub(deadline, &ts, &ts);
967 
968 			/* Wait for that much time, allowing signals.  */
969 			error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
970 			    tstohz(&ts));
971 		} else {
972 			/* Wait indefinitely, allowing signals. */
973 			error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
974 		}
975 	}
976 
977 	/*
978 	 * If we were woken up, the waker will have removed fw from the
979 	 * queue.  But if anything went wrong, we must remove fw from
980 	 * the queue ourselves.  While here, convert EWOULDBLOCK to
981 	 * ETIMEDOUT.
982 	 */
983 	if (error) {
984 		futex_wait_abort(fw);
985 		if (error == EWOULDBLOCK)
986 			error = ETIMEDOUT;
987 	}
988 
989 	mutex_exit(&fw->fw_lock);
990 
991 	return error;
992 }
993 
994 /*
995  * futex_wake(f, nwake, f2, nrequeue, bitset)
996  *
997  *	Wake up to nwake waiters on f matching bitset; then, if f2 is
998  *	provided, move up to nrequeue remaining waiters on f matching
999  *	bitset to f2.  Return the number of waiters actually woken.
1000  *	Caller must hold the locks of f and f2, if provided.
1001  */
1002 static unsigned
1003 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
1004     unsigned nrequeue, int bitset)
1005 {
1006 	struct futex_wait *fw, *fw_next;
1007 	unsigned nwoken = 0;
1008 	int hold_error __diagused;
1009 
1010 	KASSERT(mutex_owned(&f->fx_qlock));
1011 	KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
1012 
1013 	/* Wake up to nwake waiters, and count the number woken.  */
1014 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1015 		if ((fw->fw_bitset & bitset) == 0)
1016 			continue;
1017 		if (nwake > 0) {
1018 			mutex_enter(&fw->fw_lock);
1019 			if (__predict_false(fw->fw_aborting)) {
1020 				mutex_exit(&fw->fw_lock);
1021 				continue;
1022 			}
1023 			futex_wait_dequeue(fw, f);
1024 			fw->fw_bitset = 0;
1025 			cv_broadcast(&fw->fw_cv);
1026 			mutex_exit(&fw->fw_lock);
1027 			nwake--;
1028 			nwoken++;
1029 			/*
1030 			 * Drop the futex reference on behalf of the
1031 			 * waiter.  We assert this is not the last
1032 			 * reference on the futex (our caller should
1033 			 * also have one).
1034 			 */
1035 			futex_rele_not_last(f);
1036 		} else {
1037 			break;
1038 		}
1039 	}
1040 
1041 	if (f2) {
1042 		/* Move up to nrequeue waiters from f's queue to f2's queue. */
1043 		TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1044 			if ((fw->fw_bitset & bitset) == 0)
1045 				continue;
1046 			if (nrequeue > 0) {
1047 				mutex_enter(&fw->fw_lock);
1048 				if (__predict_false(fw->fw_aborting)) {
1049 					mutex_exit(&fw->fw_lock);
1050 					continue;
1051 				}
1052 				futex_wait_dequeue(fw, f);
1053 				futex_wait_enqueue(fw, f2);
1054 				mutex_exit(&fw->fw_lock);
1055 				nrequeue--;
1056 				/*
1057 				 * Transfer the reference from f to f2.
1058 				 * As above, we assert that we are not
1059 				 * dropping the last reference to f here.
1060 				 *
1061 				 * XXX futex_hold() could theoretically
1062 				 * XXX fail here.
1063 				 */
1064 				futex_rele_not_last(f);
1065 				hold_error = futex_hold(f2);
1066 				KASSERT(hold_error == 0);
1067 			} else {
1068 				break;
1069 			}
1070 		}
1071 	} else {
1072 		KASSERT(nrequeue == 0);
1073 	}
1074 
1075 	/* Return the number of waiters woken.  */
1076 	return nwoken;
1077 }
1078 
1079 /*
1080  * futex_queue_lock(f)
1081  *
1082  *	Acquire the queue lock of f.  Pair with futex_queue_unlock.  Do
1083  *	not use if caller needs to acquire two locks; use
1084  *	futex_queue_lock2 instead.
1085  */
1086 static void
1087 futex_queue_lock(struct futex *f)
1088 {
1089 	mutex_enter(&f->fx_qlock);
1090 }
1091 
1092 /*
1093  * futex_queue_unlock(f)
1094  *
1095  *	Release the queue lock of f.
1096  */
1097 static void
1098 futex_queue_unlock(struct futex *f)
1099 {
1100 	mutex_exit(&f->fx_qlock);
1101 }
1102 
1103 /*
1104  * futex_queue_lock2(f, f2)
1105  *
1106  *	Acquire the queue locks of both f and f2, which may be null, or
1107  *	which may have the same underlying queue.  If they are
1108  *	distinct, an arbitrary total order is chosen on the locks.
1109  *
1110  *	Callers should only ever acquire multiple queue locks
1111  *	simultaneously using futex_queue_lock2.
1112  */
1113 static void
1114 futex_queue_lock2(struct futex *f, struct futex *f2)
1115 {
1116 
1117 	/*
1118 	 * If both are null, do nothing; if one is null and the other
1119 	 * is not, lock the other and be done with it.
1120 	 */
1121 	if (f == NULL && f2 == NULL) {
1122 		return;
1123 	} else if (f == NULL) {
1124 		mutex_enter(&f2->fx_qlock);
1125 		return;
1126 	} else if (f2 == NULL) {
1127 		mutex_enter(&f->fx_qlock);
1128 		return;
1129 	}
1130 
1131 	/* If both futexes are the same, acquire only one. */
1132 	if (f == f2) {
1133 		mutex_enter(&f->fx_qlock);
1134 		return;
1135 	}
1136 
1137 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
1138 	if ((uintptr_t)f < (uintptr_t)f2) {
1139 		mutex_enter(&f->fx_qlock);
1140 		mutex_enter(&f2->fx_qlock);
1141 	} else {
1142 		mutex_enter(&f2->fx_qlock);
1143 		mutex_enter(&f->fx_qlock);
1144 	}
1145 }
1146 
1147 /*
1148  * futex_queue_unlock2(f, f2)
1149  *
1150  *	Release the queue locks of both f and f2, which may be null, or
1151  *	which may have the same underlying queue.
1152  */
1153 static void
1154 futex_queue_unlock2(struct futex *f, struct futex *f2)
1155 {
1156 
1157 	/*
1158 	 * If both are null, do nothing; if one is null and the other
1159 	 * is not, unlock the other and be done with it.
1160 	 */
1161 	if (f == NULL && f2 == NULL) {
1162 		return;
1163 	} else if (f == NULL) {
1164 		mutex_exit(&f2->fx_qlock);
1165 		return;
1166 	} else if (f2 == NULL) {
1167 		mutex_exit(&f->fx_qlock);
1168 		return;
1169 	}
1170 
1171 	/* If both futexes are the same, release only one. */
1172 	if (f == f2) {
1173 		mutex_exit(&f->fx_qlock);
1174 		return;
1175 	}
1176 
1177 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
1178 	if ((uintptr_t)f < (uintptr_t)f2) {
1179 		mutex_exit(&f2->fx_qlock);
1180 		mutex_exit(&f->fx_qlock);
1181 	} else {
1182 		mutex_exit(&f->fx_qlock);
1183 		mutex_exit(&f2->fx_qlock);
1184 	}
1185 }
1186 
1187 /*
1188  * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1189  *
1190  *	Implement futex(FUTEX_WAIT).
1191  */
1192 static int
1193 futex_func_wait(bool shared, int *uaddr, int val, int val3,
1194     const struct timespec *timeout, clockid_t clkid, int clkflags,
1195     register_t *retval)
1196 {
1197 	struct futex *f;
1198 	struct futex_wait wait, *fw = &wait;
1199 	struct timespec ts;
1200 	const struct timespec *deadline;
1201 	int error;
1202 
1203 	/*
1204 	 * If there's nothing to wait for, and nobody will ever wake
1205 	 * us, then don't set anything up to wait -- just stop here.
1206 	 */
1207 	if (val3 == 0)
1208 		return EINVAL;
1209 
1210 	/* Optimistically test before anything else.  */
1211 	if (!futex_test(uaddr, val))
1212 		return EAGAIN;
1213 
1214 	/* Determine a deadline on the specified clock.  */
1215 	if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1216 		deadline = timeout;
1217 	} else {
1218 		error = clock_gettime1(clkid, &ts);
1219 		if (error)
1220 			return error;
1221 		timespecadd(&ts, timeout, &ts);
1222 		deadline = &ts;
1223 	}
1224 
1225 	/* Get the futex, creating it if necessary.  */
1226 	error = futex_lookup_create(uaddr, shared, &f);
1227 	if (error)
1228 		return error;
1229 	KASSERT(f);
1230 
1231 	/* Get ready to wait.  */
1232 	futex_wait_init(fw, val3);
1233 
1234 	/*
1235 	 * Under the queue lock, check the value again: if it has
1236 	 * already changed, EAGAIN; otherwise enqueue the waiter.
1237 	 * Since FUTEX_WAKE will use the same lock and be done after
1238 	 * modifying the value, the order in which we check and enqueue
1239 	 * is immaterial.
1240 	 */
1241 	futex_queue_lock(f);
1242 	if (!futex_test(uaddr, val)) {
1243 		futex_queue_unlock(f);
1244 		error = EAGAIN;
1245 		goto out;
1246 	}
1247 	mutex_enter(&fw->fw_lock);
1248 	futex_wait_enqueue(fw, f);
1249 	mutex_exit(&fw->fw_lock);
1250 	futex_queue_unlock(f);
1251 
1252 	/*
1253 	 * We cannot drop our reference to the futex here, because
1254 	 * we might be enqueued on a different one when we are awakened.
1255 	 * The references will be managed on our behalf in the requeue
1256 	 * and wake cases.
1257 	 */
1258 	f = NULL;
1259 
1260 	/* Wait. */
1261 	error = futex_wait(fw, deadline, clkid);
1262 	if (error)
1263 		goto out;
1264 
1265 	/* Return 0 on success, error on failure. */
1266 	*retval = 0;
1267 
1268 out:	if (f != NULL)
1269 		futex_rele(f);
1270 	futex_wait_fini(fw);
1271 	return error;
1272 }
1273 
1274 /*
1275  * futex_func_wake(uaddr, val, val3, retval)
1276  *
1277  *	Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1278  */
1279 static int
1280 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1281 {
1282 	struct futex *f;
1283 	unsigned int nwoken = 0;
1284 	int error = 0;
1285 
1286 	/* Reject negative number of wakeups.  */
1287 	if (val < 0) {
1288 		error = EINVAL;
1289 		goto out;
1290 	}
1291 
1292 	/* Look up the futex, if any.  */
1293 	error = futex_lookup(uaddr, shared, &f);
1294 	if (error)
1295 		goto out;
1296 
1297 	/* If there's no futex, there are no waiters to wake.  */
1298 	if (f == NULL)
1299 		goto out;
1300 
1301 	/*
1302 	 * Under f's queue lock, wake the waiters and remember the
1303 	 * number woken.
1304 	 */
1305 	futex_queue_lock(f);
1306 	nwoken = futex_wake(f, val, NULL, 0, val3);
1307 	futex_queue_unlock(f);
1308 
1309 	/* Release the futex.  */
1310 	futex_rele(f);
1311 
1312 out:
1313 	/* Return the number of waiters woken.  */
1314 	*retval = nwoken;
1315 
1316 	/* Success!  */
1317 	return error;
1318 }
1319 
1320 /*
1321  * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1322  *
1323  *	Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1324  */
1325 static int
1326 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1327     int val2, int val3, register_t *retval)
1328 {
1329 	struct futex *f = NULL, *f2 = NULL;
1330 	unsigned nwoken = 0;	/* default to zero woken on early return */
1331 	int error;
1332 
1333 	/* Reject negative number of wakeups or requeues. */
1334 	if (val < 0 || val2 < 0) {
1335 		error = EINVAL;
1336 		goto out;
1337 	}
1338 
1339 	/* Look up the source futex, if any. */
1340 	error = futex_lookup(uaddr, shared, &f);
1341 	if (error)
1342 		goto out;
1343 
1344 	/* If there is none, nothing to do. */
1345 	if (f == NULL)
1346 		goto out;
1347 
1348 	/*
1349 	 * We may need to create the destination futex because it's
1350 	 * entirely possible it does not currently have any waiters.
1351 	 */
1352 	error = futex_lookup_create(uaddr2, shared, &f2);
1353 	if (error)
1354 		goto out;
1355 
1356 	/*
1357 	 * Under the futexes' queue locks, check the value; if
1358 	 * unchanged from val3, wake the waiters.
1359 	 */
1360 	futex_queue_lock2(f, f2);
1361 	if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1362 		error = EAGAIN;
1363 	} else {
1364 		error = 0;
1365 		nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
1366 	}
1367 	futex_queue_unlock2(f, f2);
1368 
1369 out:
1370 	/* Return the number of waiters woken.  */
1371 	*retval = nwoken;
1372 
1373 	/* Release the futexes if we got them.  */
1374 	if (f2)
1375 		futex_rele(f2);
1376 	if (f)
1377 		futex_rele(f);
1378 	return error;
1379 }
1380 
1381 /*
1382  * futex_validate_op_cmp(val3)
1383  *
1384  *	Validate an op/cmp argument for FUTEX_WAKE_OP.
1385  */
1386 static int
1387 futex_validate_op_cmp(int val3)
1388 {
1389 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1390 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1391 
1392 	if (op & FUTEX_OP_OPARG_SHIFT) {
1393 		int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1394 		if (oparg < 0)
1395 			return EINVAL;
1396 		if (oparg >= 32)
1397 			return EINVAL;
1398 		op &= ~FUTEX_OP_OPARG_SHIFT;
1399 	}
1400 
1401 	switch (op) {
1402 	case FUTEX_OP_SET:
1403 	case FUTEX_OP_ADD:
1404 	case FUTEX_OP_OR:
1405 	case FUTEX_OP_ANDN:
1406 	case FUTEX_OP_XOR:
1407 		break;
1408 	default:
1409 		return EINVAL;
1410 	}
1411 
1412 	switch (cmp) {
1413 	case FUTEX_OP_CMP_EQ:
1414 	case FUTEX_OP_CMP_NE:
1415 	case FUTEX_OP_CMP_LT:
1416 	case FUTEX_OP_CMP_LE:
1417 	case FUTEX_OP_CMP_GT:
1418 	case FUTEX_OP_CMP_GE:
1419 		break;
1420 	default:
1421 		return EINVAL;
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 /*
1428  * futex_compute_op(oldval, val3)
1429  *
1430  *	Apply a FUTEX_WAIT_OP operation to oldval.
1431  */
1432 static int
1433 futex_compute_op(int oldval, int val3)
1434 {
1435 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1436 	int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1437 
1438 	if (op & FUTEX_OP_OPARG_SHIFT) {
1439 		KASSERT(oparg >= 0);
1440 		KASSERT(oparg < 32);
1441 		oparg = 1u << oparg;
1442 		op &= ~FUTEX_OP_OPARG_SHIFT;
1443 	}
1444 
1445 	switch (op) {
1446 	case FUTEX_OP_SET:
1447 		return oparg;
1448 
1449 	case FUTEX_OP_ADD:
1450 		/*
1451 		 * Avoid signed arithmetic overflow by doing
1452 		 * arithmetic unsigned and converting back to signed
1453 		 * at the end.
1454 		 */
1455 		return (int)((unsigned)oldval + (unsigned)oparg);
1456 
1457 	case FUTEX_OP_OR:
1458 		return oldval | oparg;
1459 
1460 	case FUTEX_OP_ANDN:
1461 		return oldval & ~oparg;
1462 
1463 	case FUTEX_OP_XOR:
1464 		return oldval ^ oparg;
1465 
1466 	default:
1467 		panic("invalid futex op");
1468 	}
1469 }
1470 
1471 /*
1472  * futex_compute_cmp(oldval, val3)
1473  *
1474  *	Apply a FUTEX_WAIT_OP comparison to oldval.
1475  */
1476 static bool
1477 futex_compute_cmp(int oldval, int val3)
1478 {
1479 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1480 	int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
1481 
1482 	switch (cmp) {
1483 	case FUTEX_OP_CMP_EQ:
1484 		return (oldval == cmparg);
1485 
1486 	case FUTEX_OP_CMP_NE:
1487 		return (oldval != cmparg);
1488 
1489 	case FUTEX_OP_CMP_LT:
1490 		return (oldval < cmparg);
1491 
1492 	case FUTEX_OP_CMP_LE:
1493 		return (oldval <= cmparg);
1494 
1495 	case FUTEX_OP_CMP_GT:
1496 		return (oldval > cmparg);
1497 
1498 	case FUTEX_OP_CMP_GE:
1499 		return (oldval >= cmparg);
1500 
1501 	default:
1502 		panic("invalid futex cmp operation");
1503 	}
1504 }
1505 
1506 /*
1507  * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1508  *
1509  *	Implement futex(FUTEX_WAKE_OP).
1510  */
1511 static int
1512 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1513     int val3, register_t *retval)
1514 {
1515 	struct futex *f = NULL, *f2 = NULL;
1516 	int oldval, newval, actual;
1517 	unsigned nwoken = 0;
1518 	int error;
1519 
1520 	/* Reject negative number of wakeups.  */
1521 	if (val < 0 || val2 < 0) {
1522 		error = EINVAL;
1523 		goto out;
1524 	}
1525 
1526 	/* Reject invalid operations before we start doing things.  */
1527 	if ((error = futex_validate_op_cmp(val3)) != 0)
1528 		goto out;
1529 
1530 	/* Look up the first futex, if any.  */
1531 	error = futex_lookup(uaddr, shared, &f);
1532 	if (error)
1533 		goto out;
1534 
1535 	/* Look up the second futex, if any.  */
1536 	error = futex_lookup(uaddr2, shared, &f2);
1537 	if (error)
1538 		goto out;
1539 
1540 	/*
1541 	 * Under the queue locks:
1542 	 *
1543 	 * 1. Read/modify/write: *uaddr2 op= oparg.
1544 	 * 2. Unconditionally wake uaddr.
1545 	 * 3. Conditionally wake uaddr2, if it previously matched val2.
1546 	 */
1547 	futex_queue_lock2(f, f2);
1548 	do {
1549 		error = futex_load(uaddr2, &oldval);
1550 		if (error)
1551 			goto out_unlock;
1552 		newval = futex_compute_op(oldval, val3);
1553 		error = ucas_int(uaddr2, oldval, newval, &actual);
1554 		if (error)
1555 			goto out_unlock;
1556 	} while (actual != oldval);
1557 	nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
1558 	if (f2 && futex_compute_cmp(oldval, val3))
1559 		nwoken += futex_wake(f2, val2, NULL, 0,
1560 		    FUTEX_BITSET_MATCH_ANY);
1561 
1562 	/* Success! */
1563 	error = 0;
1564 out_unlock:
1565 	futex_queue_unlock2(f, f2);
1566 
1567 out:
1568 	/* Return the number of waiters woken. */
1569 	*retval = nwoken;
1570 
1571 	/* Release the futexes, if we got them. */
1572 	if (f2)
1573 		futex_rele(f2);
1574 	if (f)
1575 		futex_rele(f);
1576 	return error;
1577 }
1578 
1579 /*
1580  * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1581  *
1582  *	Implement the futex system call with all the parameters
1583  *	parsed out.
1584  */
1585 int
1586 do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
1587     int *uaddr2, int val2, int val3, register_t *retval)
1588 {
1589 	const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1590 	const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1591 							    : CLOCK_MONOTONIC;
1592 
1593 	op &= FUTEX_CMD_MASK;
1594 
1595 	switch (op) {
1596 	case FUTEX_WAIT:
1597 		return futex_func_wait(shared, uaddr, val,
1598 		    FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
1599 		    retval);
1600 
1601 	case FUTEX_WAKE:
1602 		val3 = FUTEX_BITSET_MATCH_ANY;
1603 		/* FALLTHROUGH */
1604 	case FUTEX_WAKE_BITSET:
1605 		return futex_func_wake(shared, uaddr, val, val3, retval);
1606 
1607 	case FUTEX_REQUEUE:
1608 	case FUTEX_CMP_REQUEUE:
1609 		return futex_func_requeue(shared, op, uaddr, val, uaddr2,
1610 		    val2, val3, retval);
1611 
1612 	case FUTEX_WAIT_BITSET:
1613 		return futex_func_wait(shared, uaddr, val, val3, timeout,
1614 		    clkid, TIMER_ABSTIME, retval);
1615 
1616 	case FUTEX_WAKE_OP:
1617 		return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
1618 		    val3, retval);
1619 
1620 	case FUTEX_FD:
1621 	default:
1622 		return ENOSYS;
1623 	}
1624 }
1625 
1626 /*
1627  * sys___futex(l, uap, retval)
1628  *
1629  *	__futex(2) system call: generic futex operations.
1630  */
1631 int
1632 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1633     register_t *retval)
1634 {
1635 	/* {
1636 		syscallarg(int *) uaddr;
1637 		syscallarg(int) op;
1638 		syscallarg(int) val;
1639 		syscallarg(const struct timespec *) timeout;
1640 		syscallarg(int *) uaddr2;
1641 		syscallarg(int) val2;
1642 		syscallarg(int) val3;
1643 	} */
1644 	struct timespec ts, *tsp;
1645 	int error;
1646 
1647 	/*
1648 	 * Copy in the timeout argument, if specified.
1649 	 */
1650 	if (SCARG(uap, timeout)) {
1651 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1652 		if (error)
1653 			return error;
1654 		tsp = &ts;
1655 	} else {
1656 		tsp = NULL;
1657 	}
1658 
1659 	return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1660 	    tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1661 	    retval);
1662 }
1663 
1664 /*
1665  * sys___futex_set_robust_list(l, uap, retval)
1666  *
1667  *	__futex_set_robust_list(2) system call for robust futexes.
1668  */
1669 int
1670 sys___futex_set_robust_list(struct lwp *l,
1671     const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1672 {
1673 	/* {
1674 		syscallarg(void *) head;
1675 		syscallarg(size_t) len;
1676 	} */
1677 	void *head = SCARG(uap, head);
1678 
1679 	if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1680 		return EINVAL;
1681 	if ((uintptr_t)head % sizeof(u_long))
1682 		return EINVAL;
1683 
1684 	l->l_robust_head = (uintptr_t)head;
1685 
1686 	return 0;
1687 }
1688 
1689 /*
1690  * sys___futex_get_robust_list(l, uap, retval)
1691  *
1692  *	__futex_get_robust_list(2) system call for robust futexes.
1693  */
1694 int
1695 sys___futex_get_robust_list(struct lwp *l,
1696     const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1697 {
1698 	/* {
1699 		syscallarg(lwpid_t) lwpid;
1700 		syscallarg(void **) headp;
1701 		syscallarg(size_t *) lenp;
1702 	} */
1703 	void *head;
1704 	const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1705 	int error;
1706 
1707 	error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1708 	if (error)
1709 		return error;
1710 
1711 	/* Copy out the head pointer and the head structure length. */
1712 	error = copyout(&head, SCARG(uap, headp), sizeof(head));
1713 	if (__predict_true(error == 0)) {
1714 		error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1715 	}
1716 
1717 	return error;
1718 }
1719 
1720 /*
1721  * release_futex(uva, tid)
1722  *
1723  *	Try to release the robust futex at uva in the current process
1724  *	on lwp exit.  If anything goes wrong, silently fail.  It is the
1725  *	userland program's obligation to arrange correct behaviour.
1726  */
1727 static void
1728 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1729     bool const is_pending)
1730 {
1731 	int *uaddr;
1732 	struct futex *f;
1733 	int oldval, newval, actual;
1734 	int error;
1735 
1736 	/* If it's misaligned, tough.  */
1737 	if (__predict_false(uptr & 3))
1738 		return;
1739 	uaddr = (int *)uptr;
1740 
1741 	error = futex_load(uaddr, &oldval);
1742 	if (__predict_false(error))
1743 		return;
1744 
1745 	/*
1746 	 * There are two race conditions we need to handle here:
1747 	 *
1748 	 * 1. User space cleared the futex word but died before
1749 	 *    being able to issue the wakeup.  No wakeups will
1750 	 *    ever be issued, oops!
1751 	 *
1752 	 * 2. Awakened waiter died before being able to acquire
1753 	 *    the futex in user space.  Any other waiters are
1754 	 *    now stuck, oops!
1755 	 *
1756 	 * In both of these cases, the futex word will be 0 (because
1757 	 * it's updated before the wake is issued).  The best we can
1758 	 * do is detect this situation if it's the pending futex and
1759 	 * issue a wake without modifying the futex word.
1760 	 *
1761 	 * XXX eventual PI handling?
1762 	 */
1763 	if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1764 		register_t retval;
1765 		(void) futex_func_wake(/*shared*/true, uaddr, 1,
1766 		    FUTEX_BITSET_MATCH_ANY, &retval);
1767 		return;
1768 	}
1769 
1770 	/* Optimistically test whether we need to do anything at all.  */
1771 	if ((oldval & FUTEX_TID_MASK) != tid)
1772 		return;
1773 
1774 	/*
1775 	 * We need to handle the case where this thread owned the futex,
1776 	 * but it was uncontended.  In this case, there won't be any
1777 	 * kernel state to look up.  All we can do is mark the futex
1778 	 * as a zombie to be mopped up the next time another thread
1779 	 * attempts to acquire it.
1780 	 *
1781 	 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1782 	 * this loop, even if waiters appear while we're are doing
1783 	 * so.  This is beause FUTEX_WAITERS is set by user space
1784 	 * before calling __futex() to wait, and the futex needs
1785 	 * to be marked as a zombie when the new waiter gets into
1786 	 * the kernel.
1787 	 */
1788 	if ((oldval & FUTEX_WAITERS) == 0) {
1789 		do {
1790 			error = futex_load(uaddr, &oldval);
1791 			if (error)
1792 				return;
1793 			if ((oldval & FUTEX_TID_MASK) != tid)
1794 				return;
1795 			newval = oldval | FUTEX_OWNER_DIED;
1796 			error = ucas_int(uaddr, oldval, newval, &actual);
1797 			if (error)
1798 				return;
1799 		} while (actual != oldval);
1800 
1801 		/*
1802 		 * If where is still no indication of waiters, then there is
1803 		 * no more work for us to do.
1804 		 */
1805 		if ((oldval & FUTEX_WAITERS) == 0)
1806 			return;
1807 	}
1808 
1809 	/*
1810 	 * Look for a shared futex since we have no positive indication
1811 	 * it is private.  If we can't, tough.
1812 	 */
1813 	error = futex_lookup(uaddr, /*shared*/true, &f);
1814 	if (error)
1815 		return;
1816 
1817 	/*
1818 	 * If there's no kernel state for this futex, there's nothing to
1819 	 * release.
1820 	 */
1821 	if (f == NULL)
1822 		return;
1823 
1824 	/* Work under the futex queue lock.  */
1825 	futex_queue_lock(f);
1826 
1827 	/*
1828 	 * Fetch the word: if the tid doesn't match ours, skip;
1829 	 * otherwise, set the owner-died bit, atomically.
1830 	 */
1831 	do {
1832 		error = futex_load(uaddr, &oldval);
1833 		if (error)
1834 			goto out;
1835 		if ((oldval & FUTEX_TID_MASK) != tid)
1836 			goto out;
1837 		newval = oldval | FUTEX_OWNER_DIED;
1838 		error = ucas_int(uaddr, oldval, newval, &actual);
1839 		if (error)
1840 			goto out;
1841 	} while (actual != oldval);
1842 
1843 	/*
1844 	 * If there may be waiters, try to wake one.  If anything goes
1845 	 * wrong, tough.
1846 	 *
1847 	 * XXX eventual PI handling?
1848 	 */
1849 	if (oldval & FUTEX_WAITERS)
1850 		(void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
1851 
1852 	/* Unlock the queue and release the futex.  */
1853 out:	futex_queue_unlock(f);
1854 	futex_rele(f);
1855 }
1856 
1857 /*
1858  * futex_robust_head_lookup(l, lwpid)
1859  *
1860  *	Helper function to look up a robust head by LWP ID.
1861  */
1862 int
1863 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
1864 {
1865 	struct proc *p = l->l_proc;
1866 
1867 	/* Find the other lwp, if requested; otherwise use our robust head.  */
1868 	if (lwpid) {
1869 		mutex_enter(p->p_lock);
1870 		l = lwp_find(p, lwpid);
1871 		if (l == NULL) {
1872 			mutex_exit(p->p_lock);
1873 			return ESRCH;
1874 		}
1875 		*headp = (void *)l->l_robust_head;
1876 		mutex_exit(p->p_lock);
1877 	} else {
1878 		*headp = (void *)l->l_robust_head;
1879 	}
1880 	return 0;
1881 }
1882 
1883 /*
1884  * futex_fetch_robust_head(uaddr)
1885  *
1886  *	Helper routine to fetch the futex robust list head that
1887  *	handles 32-bit binaries running on 64-bit kernels.
1888  */
1889 static int
1890 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
1891 {
1892 #ifdef _LP64
1893 	if (curproc->p_flag & PK_32) {
1894 		uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
1895 		int error;
1896 
1897 		error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
1898 		if (__predict_true(error == 0)) {
1899 			for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
1900 				if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
1901 					/*
1902 					 * Make sure the offset is sign-
1903 					 * extended.
1904 					 */
1905 					rhead[i] = (int32_t)rhead32[i];
1906 				} else {
1907 					rhead[i] = rhead32[i];
1908 				}
1909 			}
1910 		}
1911 		return error;
1912 	}
1913 #endif /* _L64 */
1914 
1915 	return copyin((void *)uaddr, rhead,
1916 	    sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
1917 }
1918 
1919 /*
1920  * futex_decode_robust_word(word)
1921  *
1922  *	Decode a robust futex list word into the entry and entry
1923  *	properties.
1924  */
1925 static inline void
1926 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
1927     bool * const is_pi)
1928 {
1929 	*is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
1930 	*entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
1931 }
1932 
1933 /*
1934  * futex_fetch_robust_entry(uaddr)
1935  *
1936  *	Helper routine to fetch and decode a robust futex entry
1937  *	that handles 32-bit binaries running on 64-bit kernels.
1938  */
1939 static int
1940 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
1941     bool * const is_pi)
1942 {
1943 	uintptr_t val = 0;
1944 	int error = 0;
1945 
1946 #ifdef _LP64
1947 	if (curproc->p_flag & PK_32) {
1948 		uint32_t val32;
1949 
1950 		error = ufetch_32((uint32_t *)uaddr, &val32);
1951 		if (__predict_true(error == 0))
1952 			val = val32;
1953 	} else
1954 #endif /* _LP64 */
1955 		error = ufetch_long((u_long *)uaddr, (u_long *)&val);
1956 	if (__predict_false(error))
1957 		return error;
1958 
1959 	futex_decode_robust_word(val, valp, is_pi);
1960 	return 0;
1961 }
1962 
1963 /*
1964  * futex_release_all_lwp(l, tid)
1965  *
1966  *	Release all l's robust futexes.  If anything looks funny in
1967  *	the process, give up -- it's userland's responsibility to dot
1968  *	the i's and cross the t's.
1969  */
1970 void
1971 futex_release_all_lwp(struct lwp * const l)
1972 {
1973 	u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
1974 	int limit = 1000000;
1975 	int error;
1976 
1977 	/* If there's no robust list there's nothing to do. */
1978 	if (l->l_robust_head == 0)
1979 		return;
1980 
1981 	KASSERT((l->l_lid & FUTEX_TID_MASK) == l->l_lid);
1982 
1983 	/* Read the final snapshot of the robust list head. */
1984 	error = futex_fetch_robust_head(l->l_robust_head, rhead);
1985 	if (error) {
1986 		printf("WARNING: pid %jd (%s) lwp %jd:"
1987 		    " unmapped robust futex list head\n",
1988 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
1989 		    (uintmax_t)l->l_lid);
1990 		return;
1991 	}
1992 
1993 	const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
1994 
1995 	uintptr_t next, pending;
1996 	bool is_pi, pending_is_pi;
1997 
1998 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
1999 	    &next, &is_pi);
2000 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
2001 	    &pending, &pending_is_pi);
2002 
2003 	/*
2004 	 * Walk down the list of locked futexes and release them, up
2005 	 * to one million of them before we give up.
2006 	 */
2007 
2008 	while (next != l->l_robust_head && limit-- > 0) {
2009 		/* pending handled below. */
2010 		if (next != pending)
2011 			release_futex(next + offset, l->l_lid, is_pi, false);
2012 		error = futex_fetch_robust_entry(next, &next, &is_pi);
2013 		if (error)
2014 			break;
2015 		preempt_point();
2016 	}
2017 	if (limit <= 0) {
2018 		printf("WARNING: pid %jd (%s) lwp %jd:"
2019 		    " exhausted robust futex limit\n",
2020 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2021 		    (uintmax_t)l->l_lid);
2022 	}
2023 
2024 	/* If there's a pending futex, it may need to be released too. */
2025 	if (pending != 0) {
2026 		release_futex(pending + offset, l->l_lid, pending_is_pi, true);
2027 	}
2028 }
2029