xref: /netbsd-src/sys/kern/sys_eventfd.c (revision 122b5006ee1bd67145794b4cde92f4fe4781a5ec)
1 /*	$NetBSD: sys_eventfd.c,v 1.7 2021/09/27 00:40:49 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_eventfd.c,v 1.7 2021/09/27 00:40:49 thorpej Exp $");
34 
35 /*
36  * eventfd
37  *
38  * Eventfd objects present a simple counting object associated with a
39  * file descriptor.  Writes and reads to this file descriptor increment
40  * and decrement the count, respectively.  When the count is non-zero,
41  * the descriptor is considered "readable", and when less than the max
42  * value (EVENTFD_MAXVAL), is considered "writable".
43  *
44  * This implementation is API compatible with the Linux eventfd(2)
45  * interface.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/types.h>
50 #include <sys/condvar.h>
51 #include <sys/eventfd.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/kauth.h>
55 #include <sys/mutex.h>
56 #include <sys/poll.h>
57 #include <sys/proc.h>
58 #include <sys/select.h>
59 #include <sys/stat.h>
60 #include <sys/syscallargs.h>
61 #include <sys/uio.h>
62 
63 struct eventfd {
64 	kmutex_t	efd_lock;
65 	kcondvar_t	efd_read_wait;
66 	kcondvar_t	efd_write_wait;
67 	kcondvar_t	efd_restart_wait;
68 	struct selinfo	efd_read_sel;
69 	struct selinfo	efd_write_sel;
70 	eventfd_t	efd_val;
71 	int64_t		efd_nwaiters;
72 	bool		efd_restarting;
73 	bool		efd_has_read_waiters;
74 	bool		efd_has_write_waiters;
75 	bool		efd_is_semaphore;
76 
77 	/*
78 	 * Information kept for stat(2).
79 	 */
80 	struct timespec efd_btime;	/* time created */
81 	struct timespec	efd_mtime;	/* last write */
82 	struct timespec	efd_atime;	/* last read */
83 };
84 
85 #define	EVENTFD_MAXVAL	(UINT64_MAX - 1)
86 
87 /*
88  * eventfd_create:
89  *
90  *	Create an eventfd object.
91  */
92 static struct eventfd *
93 eventfd_create(unsigned int const val, int const flags)
94 {
95 	struct eventfd * const efd = kmem_zalloc(sizeof(*efd), KM_SLEEP);
96 
97 	mutex_init(&efd->efd_lock, MUTEX_DEFAULT, IPL_NONE);
98 	cv_init(&efd->efd_read_wait, "efdread");
99 	cv_init(&efd->efd_write_wait, "efdwrite");
100 	cv_init(&efd->efd_restart_wait, "efdrstrt");
101 	selinit(&efd->efd_read_sel);
102 	selinit(&efd->efd_write_sel);
103 	efd->efd_val = val;
104 	efd->efd_is_semaphore = !!(flags & EFD_SEMAPHORE);
105 	getnanotime(&efd->efd_btime);
106 
107 	/* Caller deals with EFD_CLOEXEC and EFD_NONBLOCK. */
108 
109 	return efd;
110 }
111 
112 /*
113  * eventfd_destroy:
114  *
115  *	Destroy an eventfd object.
116  */
117 static void
118 eventfd_destroy(struct eventfd * const efd)
119 {
120 
121 	KASSERT(efd->efd_nwaiters == 0);
122 	KASSERT(efd->efd_restarting == false);
123 	KASSERT(efd->efd_has_read_waiters == false);
124 	KASSERT(efd->efd_has_write_waiters == false);
125 
126 	cv_destroy(&efd->efd_read_wait);
127 	cv_destroy(&efd->efd_write_wait);
128 	cv_destroy(&efd->efd_restart_wait);
129 
130 	seldestroy(&efd->efd_read_sel);
131 	seldestroy(&efd->efd_write_sel);
132 
133 	mutex_destroy(&efd->efd_lock);
134 
135 	kmem_free(efd, sizeof(*efd));
136 }
137 
138 /*
139  * eventfd_wait:
140  *
141  *	Block on an eventfd.  Handles non-blocking, as well as
142  *	the restart cases.
143  */
144 static int
145 eventfd_wait(struct eventfd * const efd, int const fflag, bool const is_write)
146 {
147 	kcondvar_t *waitcv;
148 	int error;
149 
150 	if (fflag & FNONBLOCK) {
151 		return EAGAIN;
152 	}
153 
154 	/*
155 	 * We're going to block.  If there is a restart in-progress,
156 	 * wait for that to complete first.
157 	 */
158 	while (efd->efd_restarting) {
159 		cv_wait(&efd->efd_restart_wait, &efd->efd_lock);
160 	}
161 
162 	if (is_write) {
163 		efd->efd_has_write_waiters = true;
164 		waitcv = &efd->efd_write_wait;
165 	} else {
166 		efd->efd_has_read_waiters = true;
167 		waitcv = &efd->efd_read_wait;
168 	}
169 
170 	efd->efd_nwaiters++;
171 	KASSERT(efd->efd_nwaiters > 0);
172 	error = cv_wait_sig(waitcv, &efd->efd_lock);
173 	efd->efd_nwaiters--;
174 	KASSERT(efd->efd_nwaiters >= 0);
175 
176 	/*
177 	 * If a restart was triggered while we were asleep, we need
178 	 * to return ERESTART if no other error was returned.  If we
179 	 * are the last waiter coming out of the restart drain, clear
180 	 * the condition.
181 	 */
182 	if (efd->efd_restarting) {
183 		if (error == 0) {
184 			error = ERESTART;
185 		}
186 		if (efd->efd_nwaiters == 0) {
187 			efd->efd_restarting = false;
188 			cv_broadcast(&efd->efd_restart_wait);
189 		}
190 	}
191 
192 	return error;
193 }
194 
195 /*
196  * eventfd_wake:
197  *
198  *	Wake LWPs block on an eventfd.
199  */
200 static void
201 eventfd_wake(struct eventfd * const efd, bool const is_write)
202 {
203 	kcondvar_t *waitcv = NULL;
204 	struct selinfo *sel;
205 	int pollev;
206 
207 	if (is_write) {
208 		if (efd->efd_has_read_waiters) {
209 			waitcv = &efd->efd_read_wait;
210 			efd->efd_has_read_waiters = false;
211 		}
212 		sel = &efd->efd_read_sel;
213 		pollev = POLLIN | POLLRDNORM;
214 	} else {
215 		if (efd->efd_has_write_waiters) {
216 			waitcv = &efd->efd_write_wait;
217 			efd->efd_has_write_waiters = false;
218 		}
219 		sel = &efd->efd_write_sel;
220 		pollev = POLLOUT | POLLWRNORM;
221 	}
222 	if (waitcv != NULL) {
223 		cv_broadcast(waitcv);
224 	}
225 	selnotify(sel, pollev, NOTE_SUBMIT);
226 }
227 
228 /*
229  * eventfd file operations
230  */
231 
232 static int
233 eventfd_fop_read(file_t * const fp, off_t * const offset,
234     struct uio * const uio, kauth_cred_t const cred, int const flags)
235 {
236 	struct eventfd * const efd = fp->f_eventfd;
237 	int const fflag = fp->f_flag;
238 	eventfd_t return_value;
239 	int error;
240 
241 	if (uio->uio_resid < sizeof(eventfd_t)) {
242 		return EINVAL;
243 	}
244 
245 	mutex_enter(&efd->efd_lock);
246 
247 	while (efd->efd_val == 0) {
248 		if ((error = eventfd_wait(efd, fflag, false)) != 0) {
249 			mutex_exit(&efd->efd_lock);
250 			return error;
251 		}
252 	}
253 
254 	if (efd->efd_is_semaphore) {
255 		return_value = 1;
256 		efd->efd_val--;
257 	} else {
258 		return_value = efd->efd_val;
259 		efd->efd_val = 0;
260 	}
261 
262 	getnanotime(&efd->efd_atime);
263 	eventfd_wake(efd, false);
264 
265 	mutex_exit(&efd->efd_lock);
266 
267 	error = uiomove(&return_value, sizeof(return_value), uio);
268 
269 	return error;
270 }
271 
272 static int
273 eventfd_fop_write(file_t * const fp, off_t * const offset,
274     struct uio * const uio, kauth_cred_t const cred, int const flags)
275 {
276 	struct eventfd * const efd = fp->f_eventfd;
277 	int const fflag = fp->f_flag;
278 	eventfd_t write_value;
279 	int error;
280 
281 	if (uio->uio_resid < sizeof(eventfd_t)) {
282 		return EINVAL;
283 	}
284 
285 	if ((error = uiomove(&write_value, sizeof(write_value), uio)) != 0) {
286 		return error;
287 	}
288 
289 	if (write_value > EVENTFD_MAXVAL) {
290 		error = EINVAL;
291 		goto out;
292 	}
293 
294 	mutex_enter(&efd->efd_lock);
295 
296 	KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
297 	while ((EVENTFD_MAXVAL - efd->efd_val) < write_value) {
298 		if ((error = eventfd_wait(efd, fflag, true)) != 0) {
299 			mutex_exit(&efd->efd_lock);
300 			goto out;
301 		}
302 	}
303 
304 	efd->efd_val += write_value;
305 	KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
306 
307 	getnanotime(&efd->efd_mtime);
308 	eventfd_wake(efd, true);
309 
310 	mutex_exit(&efd->efd_lock);
311 
312  out:
313 	if (error) {
314 		/*
315 		 * Undo the effect of uiomove() so that the error
316 		 * gets reported correctly; see dofilewrite().
317 		 */
318 		uio->uio_resid += sizeof(write_value);
319 	}
320 	return error;
321 }
322 
323 static int
324 eventfd_fop_poll(file_t * const fp, int const events)
325 {
326 	struct eventfd * const efd = fp->f_eventfd;
327 	int revents = 0;
328 
329 	/*
330 	 * Note that Linux will return POLLERR if the eventfd count
331 	 * overflows, but that is not possible in the normal read/write
332 	 * API, only with Linux kernel-internal interfaces.  So, this
333 	 * implementation never returns POLLERR.
334 	 *
335 	 * Also note that the Linux eventfd(2) man page does not
336 	 * specifically discuss returning POLLRDNORM, but we check
337 	 * for that event in addition to POLLIN.
338 	 */
339 
340 	mutex_enter(&efd->efd_lock);
341 
342 	if (events & (POLLIN | POLLRDNORM)) {
343 		if (efd->efd_val != 0) {
344 			revents |= events & (POLLIN | POLLRDNORM);
345 		} else {
346 			selrecord(curlwp, &efd->efd_read_sel);
347 		}
348 	}
349 
350 	if (events & (POLLOUT | POLLWRNORM)) {
351 		if (efd->efd_val < EVENTFD_MAXVAL) {
352 			revents |= events & (POLLOUT | POLLWRNORM);
353 		} else {
354 			selrecord(curlwp, &efd->efd_write_sel);
355 		}
356 	}
357 
358 	mutex_exit(&efd->efd_lock);
359 
360 	return revents;
361 }
362 
363 static int
364 eventfd_fop_stat(file_t * const fp, struct stat * const st)
365 {
366 	struct eventfd * const efd = fp->f_eventfd;
367 
368 	memset(st, 0, sizeof(*st));
369 
370 	mutex_enter(&efd->efd_lock);
371 	st->st_size = (off_t)efd->efd_val;
372 	st->st_blksize = sizeof(eventfd_t);
373 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
374 	st->st_blocks = 1;
375 	st->st_birthtimespec = st->st_ctimespec = efd->efd_btime;
376 	st->st_atimespec = efd->efd_atime;
377 	st->st_mtimespec = efd->efd_mtime;
378 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
379 	st->st_gid = kauth_cred_getegid(fp->f_cred);
380 	mutex_exit(&efd->efd_lock);
381 
382 	return 0;
383 }
384 
385 static int
386 eventfd_fop_close(file_t * const fp)
387 {
388 	struct eventfd * const efd = fp->f_eventfd;
389 
390 	fp->f_eventfd = NULL;
391 	eventfd_destroy(efd);
392 
393 	return 0;
394 }
395 
396 static void
397 eventfd_filt_read_detach(struct knote * const kn)
398 {
399 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
400 
401 	mutex_enter(&efd->efd_lock);
402 	KASSERT(kn->kn_hook == efd);
403 	selremove_knote(&efd->efd_read_sel, kn);
404 	mutex_exit(&efd->efd_lock);
405 }
406 
407 static int
408 eventfd_filt_read(struct knote * const kn, long const hint)
409 {
410 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
411 	int rv;
412 
413 	if (hint & NOTE_SUBMIT) {
414 		KASSERT(mutex_owned(&efd->efd_lock));
415 	} else {
416 		mutex_enter(&efd->efd_lock);
417 	}
418 
419 	kn->kn_data = (int64_t)efd->efd_val;
420 	rv = (eventfd_t)kn->kn_data > 0;
421 
422 	if ((hint & NOTE_SUBMIT) == 0) {
423 		mutex_exit(&efd->efd_lock);
424 	}
425 
426 	return rv;
427 }
428 
429 static const struct filterops eventfd_read_filterops = {
430 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
431 	.f_detach = eventfd_filt_read_detach,
432 	.f_event = eventfd_filt_read,
433 };
434 
435 static void
436 eventfd_filt_write_detach(struct knote * const kn)
437 {
438 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
439 
440 	mutex_enter(&efd->efd_lock);
441 	KASSERT(kn->kn_hook == efd);
442 	selremove_knote(&efd->efd_write_sel, kn);
443 	mutex_exit(&efd->efd_lock);
444 }
445 
446 static int
447 eventfd_filt_write(struct knote * const kn, long const hint)
448 {
449 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
450 	int rv;
451 
452 	if (hint & NOTE_SUBMIT) {
453 		KASSERT(mutex_owned(&efd->efd_lock));
454 	} else {
455 		mutex_enter(&efd->efd_lock);
456 	}
457 
458 	kn->kn_data = (int64_t)efd->efd_val;
459 	rv = (eventfd_t)kn->kn_data < EVENTFD_MAXVAL;
460 
461 	if ((hint & NOTE_SUBMIT) == 0) {
462 		mutex_exit(&efd->efd_lock);
463 	}
464 
465 	return rv;
466 }
467 
468 static const struct filterops eventfd_write_filterops = {
469 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
470 	.f_detach = eventfd_filt_write_detach,
471 	.f_event = eventfd_filt_write,
472 };
473 
474 static int
475 eventfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
476 {
477 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
478 	struct selinfo *sel;
479 
480 	switch (kn->kn_filter) {
481 	case EVFILT_READ:
482 		sel = &efd->efd_read_sel;
483 		kn->kn_fop = &eventfd_read_filterops;
484 		break;
485 
486 	case EVFILT_WRITE:
487 		sel = &efd->efd_write_sel;
488 		kn->kn_fop = &eventfd_write_filterops;
489 		break;
490 
491 	default:
492 		return EINVAL;
493 	}
494 
495 	kn->kn_hook = efd;
496 
497 	mutex_enter(&efd->efd_lock);
498 	selrecord_knote(sel, kn);
499 	mutex_exit(&efd->efd_lock);
500 
501 	return 0;
502 }
503 
504 static void
505 eventfd_fop_restart(file_t * const fp)
506 {
507 	struct eventfd * const efd = fp->f_eventfd;
508 
509 	/*
510 	 * Unblock blocked reads/writes in order to allow close() to complete.
511 	 * System calls return ERESTART so that the fd is revalidated.
512 	 */
513 
514 	mutex_enter(&efd->efd_lock);
515 
516 	if (efd->efd_nwaiters != 0) {
517 		efd->efd_restarting = true;
518 		if (efd->efd_has_read_waiters) {
519 			cv_broadcast(&efd->efd_read_wait);
520 			efd->efd_has_read_waiters = false;
521 		}
522 		if (efd->efd_has_write_waiters) {
523 			cv_broadcast(&efd->efd_write_wait);
524 			efd->efd_has_write_waiters = false;
525 		}
526 	}
527 
528 	mutex_exit(&efd->efd_lock);
529 }
530 
531 static const struct fileops eventfd_fileops = {
532 	.fo_name = "eventfd",
533 	.fo_read = eventfd_fop_read,
534 	.fo_write = eventfd_fop_write,
535 	.fo_ioctl = fbadop_ioctl,
536 	.fo_fcntl = fnullop_fcntl,
537 	.fo_poll = eventfd_fop_poll,
538 	.fo_stat = eventfd_fop_stat,
539 	.fo_close = eventfd_fop_close,
540 	.fo_kqfilter = eventfd_fop_kqfilter,
541 	.fo_restart = eventfd_fop_restart,
542 };
543 
544 /*
545  * eventfd(2) system call
546  */
547 int
548 do_eventfd(struct lwp * const l, unsigned int const val, int const flags,
549     register_t *retval)
550 {
551 	file_t *fp;
552 	int fd, error;
553 
554 	if (flags & ~(EFD_CLOEXEC | EFD_NONBLOCK | EFD_SEMAPHORE)) {
555 		return EINVAL;
556 	}
557 
558 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
559 		return error;
560 	}
561 
562 	fp->f_flag = FREAD | FWRITE;
563 	if (flags & EFD_NONBLOCK) {
564 		fp->f_flag |= FNONBLOCK;
565 	}
566 	fp->f_type = DTYPE_EVENTFD;
567 	fp->f_ops = &eventfd_fileops;
568 	fp->f_eventfd = eventfd_create(val, flags);
569 	fd_set_exclose(l, fd, !!(flags & EFD_CLOEXEC));
570 	fd_affix(curproc, fp, fd);
571 
572 	*retval = fd;
573 	return 0;
574 }
575 
576 int
577 sys_eventfd(struct lwp *l, const struct sys_eventfd_args *uap,
578     register_t *retval)
579 {
580 	/* {
581 		syscallarg(unsigned int) val;
582 		syscallarg(int) flags;
583 	} */
584 
585 	return do_eventfd(l, SCARG(uap, val), SCARG(uap, flags), retval);
586 }
587