1 /* $NetBSD: sys_aio.c,v 1.24 2009/05/24 21:41:26 ad Exp $ */ 2 3 /* 4 * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * Implementation of POSIX asynchronous I/O. 31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.24 2009/05/24 21:41:26 ad Exp $"); 36 37 #ifdef _KERNEL_OPT 38 #include "opt_ddb.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/condvar.h> 43 #include <sys/file.h> 44 #include <sys/filedesc.h> 45 #include <sys/kernel.h> 46 #include <sys/kmem.h> 47 #include <sys/lwp.h> 48 #include <sys/mutex.h> 49 #include <sys/pool.h> 50 #include <sys/proc.h> 51 #include <sys/queue.h> 52 #include <sys/signal.h> 53 #include <sys/signalvar.h> 54 #include <sys/syscall.h> 55 #include <sys/syscallargs.h> 56 #include <sys/syscallvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/systm.h> 59 #include <sys/types.h> 60 #include <sys/vnode.h> 61 #include <sys/atomic.h> 62 #include <sys/module.h> 63 #include <sys/buf.h> 64 65 #include <uvm/uvm_extern.h> 66 67 MODULE(MODULE_CLASS_MISC, aio, NULL); 68 69 /* 70 * System-wide limits and counter of AIO operations. 71 */ 72 u_int aio_listio_max = AIO_LISTIO_MAX; 73 static u_int aio_max = AIO_MAX; 74 static u_int aio_jobs_count; 75 76 static struct pool aio_job_pool; 77 static struct pool aio_lio_pool; 78 static void *aio_ehook; 79 80 /* Prototypes */ 81 void aio_worker(void *); 82 static void aio_process(struct aio_job *); 83 static void aio_sendsig(struct proc *, struct sigevent *); 84 static int aio_enqueue_job(int, void *, struct lio_req *); 85 static void aio_exit(proc_t *, void *); 86 87 static const struct syscall_package aio_syscalls[] = { 88 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel }, 89 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error }, 90 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync }, 91 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read }, 92 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return }, 93 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 }, 94 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write }, 95 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio }, 96 { 0, 0, NULL }, 97 }; 98 99 /* 100 * Tear down all AIO state. 101 */ 102 static int 103 aio_fini(bool interface) 104 { 105 int error; 106 proc_t *p; 107 108 if (interface) { 109 /* Stop syscall activity. */ 110 error = syscall_disestablish(NULL, aio_syscalls); 111 if (error != 0) 112 return error; 113 /* Abort if any processes are using AIO. */ 114 mutex_enter(proc_lock); 115 PROCLIST_FOREACH(p, &allproc) { 116 if (p->p_aio != NULL) 117 break; 118 } 119 mutex_exit(proc_lock); 120 if (p != NULL) { 121 error = syscall_establish(NULL, aio_syscalls); 122 KASSERT(error == 0); 123 return EBUSY; 124 } 125 } 126 KASSERT(aio_jobs_count == 0); 127 exithook_disestablish(aio_ehook); 128 pool_destroy(&aio_job_pool); 129 pool_destroy(&aio_lio_pool); 130 return 0; 131 } 132 133 /* 134 * Initialize global AIO state. 135 */ 136 static int 137 aio_init(void) 138 { 139 int error; 140 141 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0, 142 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE); 143 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0, 144 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE); 145 aio_ehook = exithook_establish(aio_exit, NULL); 146 error = syscall_establish(NULL, aio_syscalls); 147 if (error != 0) 148 aio_fini(false); 149 return error; 150 } 151 152 /* 153 * Module interface. 154 */ 155 static int 156 aio_modcmd(modcmd_t cmd, void *arg) 157 { 158 159 switch (cmd) { 160 case MODULE_CMD_INIT: 161 return aio_init(); 162 case MODULE_CMD_FINI: 163 return aio_fini(true); 164 default: 165 return ENOTTY; 166 } 167 } 168 169 /* 170 * Initialize Asynchronous I/O data structures for the process. 171 */ 172 static int 173 aio_procinit(struct proc *p) 174 { 175 struct aioproc *aio; 176 struct lwp *l; 177 int error; 178 bool inmem; 179 vaddr_t uaddr; 180 181 /* Allocate and initialize AIO structure */ 182 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP); 183 if (aio == NULL) 184 return EAGAIN; 185 186 /* Initialize queue and their synchronization structures */ 187 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE); 188 cv_init(&aio->aio_worker_cv, "aiowork"); 189 cv_init(&aio->done_cv, "aiodone"); 190 TAILQ_INIT(&aio->jobs_queue); 191 192 /* 193 * Create an AIO worker thread. 194 * XXX: Currently, AIO thread is not protected against user's actions. 195 */ 196 inmem = uvm_uarea_alloc(&uaddr); 197 if (uaddr == 0) { 198 aio_exit(p, aio); 199 return EAGAIN; 200 } 201 error = lwp_create(curlwp, p, uaddr, inmem, 0, NULL, 0, aio_worker, 202 NULL, &l, curlwp->l_class); 203 if (error != 0) { 204 uvm_uarea_free(uaddr, curcpu()); 205 aio_exit(p, aio); 206 return error; 207 } 208 209 /* Recheck if we are really first */ 210 mutex_enter(p->p_lock); 211 if (p->p_aio) { 212 mutex_exit(p->p_lock); 213 aio_exit(p, aio); 214 lwp_exit(l); 215 return 0; 216 } 217 p->p_aio = aio; 218 219 /* Complete the initialization of thread, and run it */ 220 aio->aio_worker = l; 221 p->p_nrlwps++; 222 lwp_lock(l); 223 l->l_stat = LSRUN; 224 l->l_priority = MAXPRI_USER; 225 sched_enqueue(l, false); 226 lwp_unlock(l); 227 mutex_exit(p->p_lock); 228 229 return 0; 230 } 231 232 /* 233 * Exit of Asynchronous I/O subsystem of process. 234 */ 235 static void 236 aio_exit(struct proc *p, void *cookie) 237 { 238 struct aio_job *a_job; 239 struct aioproc *aio; 240 241 if (cookie != NULL) 242 aio = cookie; 243 else if ((aio = p->p_aio) == NULL) 244 return; 245 246 /* Free AIO queue */ 247 while (!TAILQ_EMPTY(&aio->jobs_queue)) { 248 a_job = TAILQ_FIRST(&aio->jobs_queue); 249 TAILQ_REMOVE(&aio->jobs_queue, a_job, list); 250 pool_put(&aio_job_pool, a_job); 251 atomic_dec_uint(&aio_jobs_count); 252 } 253 254 /* Destroy and free the entire AIO data structure */ 255 cv_destroy(&aio->aio_worker_cv); 256 cv_destroy(&aio->done_cv); 257 mutex_destroy(&aio->aio_mtx); 258 kmem_free(aio, sizeof(struct aioproc)); 259 } 260 261 /* 262 * AIO worker thread and processor. 263 */ 264 void 265 aio_worker(void *arg) 266 { 267 struct proc *p = curlwp->l_proc; 268 struct aioproc *aio = p->p_aio; 269 struct aio_job *a_job; 270 struct lio_req *lio; 271 sigset_t oss, nss; 272 int error, refcnt; 273 274 /* 275 * Make an empty signal mask, so it 276 * handles only SIGKILL and SIGSTOP. 277 */ 278 sigfillset(&nss); 279 mutex_enter(p->p_lock); 280 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss); 281 mutex_exit(p->p_lock); 282 KASSERT(error == 0); 283 284 for (;;) { 285 /* 286 * Loop for each job in the queue. If there 287 * are no jobs then sleep. 288 */ 289 mutex_enter(&aio->aio_mtx); 290 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) { 291 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) { 292 /* 293 * Thread was interrupted - check for 294 * pending exit or suspend. 295 */ 296 mutex_exit(&aio->aio_mtx); 297 lwp_userret(curlwp); 298 mutex_enter(&aio->aio_mtx); 299 } 300 } 301 302 /* Take the job from the queue */ 303 aio->curjob = a_job; 304 TAILQ_REMOVE(&aio->jobs_queue, a_job, list); 305 306 atomic_dec_uint(&aio_jobs_count); 307 aio->jobs_count--; 308 309 mutex_exit(&aio->aio_mtx); 310 311 /* Process an AIO operation */ 312 aio_process(a_job); 313 314 /* Copy data structure back to the user-space */ 315 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr, 316 sizeof(struct aiocb)); 317 318 mutex_enter(&aio->aio_mtx); 319 aio->curjob = NULL; 320 321 /* Decrease a reference counter, if there is a LIO structure */ 322 lio = a_job->lio; 323 refcnt = (lio != NULL ? --lio->refcnt : -1); 324 325 /* Notify all suspenders */ 326 cv_broadcast(&aio->done_cv); 327 mutex_exit(&aio->aio_mtx); 328 329 /* Send a signal, if any */ 330 aio_sendsig(p, &a_job->aiocbp.aio_sigevent); 331 332 /* Destroy the LIO structure */ 333 if (refcnt == 0) { 334 aio_sendsig(p, &lio->sig); 335 pool_put(&aio_lio_pool, lio); 336 } 337 338 /* Destroy the the job */ 339 pool_put(&aio_job_pool, a_job); 340 } 341 342 /* NOTREACHED */ 343 } 344 345 static void 346 aio_process(struct aio_job *a_job) 347 { 348 struct proc *p = curlwp->l_proc; 349 struct aiocb *aiocbp = &a_job->aiocbp; 350 struct file *fp; 351 int fd = aiocbp->aio_fildes; 352 int error = 0; 353 354 KASSERT(a_job->aio_op != 0); 355 356 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) { 357 struct iovec aiov; 358 struct uio auio; 359 360 if (aiocbp->aio_nbytes > SSIZE_MAX) { 361 error = EINVAL; 362 goto done; 363 } 364 365 fp = fd_getfile(fd); 366 if (fp == NULL) { 367 error = EBADF; 368 goto done; 369 } 370 371 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf; 372 aiov.iov_len = aiocbp->aio_nbytes; 373 auio.uio_iov = &aiov; 374 auio.uio_iovcnt = 1; 375 auio.uio_resid = aiocbp->aio_nbytes; 376 auio.uio_vmspace = p->p_vmspace; 377 378 if (a_job->aio_op & AIO_READ) { 379 /* 380 * Perform a Read operation 381 */ 382 KASSERT((a_job->aio_op & AIO_WRITE) == 0); 383 384 if ((fp->f_flag & FREAD) == 0) { 385 fd_putfile(fd); 386 error = EBADF; 387 goto done; 388 } 389 auio.uio_rw = UIO_READ; 390 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset, 391 &auio, fp->f_cred, FOF_UPDATE_OFFSET); 392 } else { 393 /* 394 * Perform a Write operation 395 */ 396 KASSERT(a_job->aio_op & AIO_WRITE); 397 398 if ((fp->f_flag & FWRITE) == 0) { 399 fd_putfile(fd); 400 error = EBADF; 401 goto done; 402 } 403 auio.uio_rw = UIO_WRITE; 404 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset, 405 &auio, fp->f_cred, FOF_UPDATE_OFFSET); 406 } 407 fd_putfile(fd); 408 409 /* Store the result value */ 410 a_job->aiocbp.aio_nbytes -= auio.uio_resid; 411 a_job->aiocbp._retval = (error == 0) ? 412 a_job->aiocbp.aio_nbytes : -1; 413 414 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) { 415 /* 416 * Perform a file Sync operation 417 */ 418 struct vnode *vp; 419 420 if ((error = fd_getvnode(fd, &fp)) != 0) 421 goto done; 422 423 if ((fp->f_flag & FWRITE) == 0) { 424 fd_putfile(fd); 425 error = EBADF; 426 goto done; 427 } 428 429 vp = (struct vnode *)fp->f_data; 430 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 431 if (a_job->aio_op & AIO_DSYNC) { 432 error = VOP_FSYNC(vp, fp->f_cred, 433 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0); 434 } else if (a_job->aio_op & AIO_SYNC) { 435 error = VOP_FSYNC(vp, fp->f_cred, 436 FSYNC_WAIT, 0, 0); 437 } 438 VOP_UNLOCK(vp, 0); 439 fd_putfile(fd); 440 441 /* Store the result value */ 442 a_job->aiocbp._retval = (error == 0) ? 0 : -1; 443 444 } else 445 panic("aio_process: invalid operation code\n"); 446 447 done: 448 /* Job is done, set the error, if any */ 449 a_job->aiocbp._errno = error; 450 a_job->aiocbp._state = JOB_DONE; 451 } 452 453 /* 454 * Send AIO signal. 455 */ 456 static void 457 aio_sendsig(struct proc *p, struct sigevent *sig) 458 { 459 ksiginfo_t ksi; 460 461 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE) 462 return; 463 464 KSI_INIT(&ksi); 465 ksi.ksi_signo = sig->sigev_signo; 466 ksi.ksi_code = SI_ASYNCIO; 467 ksi.ksi_value = sig->sigev_value; 468 mutex_enter(proc_lock); 469 kpsignal(p, &ksi, NULL); 470 mutex_exit(proc_lock); 471 } 472 473 /* 474 * Enqueue the job. 475 */ 476 static int 477 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio) 478 { 479 struct proc *p = curlwp->l_proc; 480 struct aioproc *aio; 481 struct aio_job *a_job; 482 struct aiocb aiocbp; 483 struct sigevent *sig; 484 int error; 485 486 /* Non-accurate check for the limit */ 487 if (aio_jobs_count + 1 > aio_max) 488 return EAGAIN; 489 490 /* Get the data structure from user-space */ 491 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb)); 492 if (error) 493 return error; 494 495 /* Check if signal is set, and validate it */ 496 sig = &aiocbp.aio_sigevent; 497 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG || 498 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA) 499 return EINVAL; 500 501 /* Buffer and byte count */ 502 if (((AIO_SYNC | AIO_DSYNC) & op) == 0) 503 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX) 504 return EINVAL; 505 506 /* Check the opcode, if LIO_NOP - simply ignore */ 507 if (op == AIO_LIO) { 508 KASSERT(lio != NULL); 509 if (aiocbp.aio_lio_opcode == LIO_WRITE) 510 op = AIO_WRITE; 511 else if (aiocbp.aio_lio_opcode == LIO_READ) 512 op = AIO_READ; 513 else 514 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL; 515 } else { 516 KASSERT(lio == NULL); 517 } 518 519 /* 520 * Look for already existing job. If found - the job is in-progress. 521 * According to POSIX this is invalid, so return the error. 522 */ 523 aio = p->p_aio; 524 if (aio) { 525 mutex_enter(&aio->aio_mtx); 526 if (aio->curjob) { 527 a_job = aio->curjob; 528 if (a_job->aiocb_uptr == aiocb_uptr) { 529 mutex_exit(&aio->aio_mtx); 530 return EINVAL; 531 } 532 } 533 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) { 534 if (a_job->aiocb_uptr != aiocb_uptr) 535 continue; 536 mutex_exit(&aio->aio_mtx); 537 return EINVAL; 538 } 539 mutex_exit(&aio->aio_mtx); 540 } 541 542 /* 543 * Check if AIO structure is initialized, if not - initialize it. 544 * In LIO case, we did that already. We will recheck this with 545 * the lock in aio_procinit(). 546 */ 547 if (lio == NULL && p->p_aio == NULL) 548 if (aio_procinit(p)) 549 return EAGAIN; 550 aio = p->p_aio; 551 552 /* 553 * Set the state with errno, and copy data 554 * structure back to the user-space. 555 */ 556 aiocbp._state = JOB_WIP; 557 aiocbp._errno = EINPROGRESS; 558 aiocbp._retval = -1; 559 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb)); 560 if (error) 561 return error; 562 563 /* Allocate and initialize a new AIO job */ 564 a_job = pool_get(&aio_job_pool, PR_WAITOK); 565 memset(a_job, 0, sizeof(struct aio_job)); 566 567 /* 568 * Set the data. 569 * Store the user-space pointer for searching. Since we 570 * are storing only per proc pointers - it is safe. 571 */ 572 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb)); 573 a_job->aiocb_uptr = aiocb_uptr; 574 a_job->aio_op |= op; 575 a_job->lio = lio; 576 577 /* 578 * Add the job to the queue, update the counters, and 579 * notify the AIO worker thread to handle the job. 580 */ 581 mutex_enter(&aio->aio_mtx); 582 583 /* Fail, if the limit was reached */ 584 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max || 585 aio->jobs_count >= aio_listio_max) { 586 atomic_dec_uint(&aio_jobs_count); 587 mutex_exit(&aio->aio_mtx); 588 pool_put(&aio_job_pool, a_job); 589 return EAGAIN; 590 } 591 592 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list); 593 aio->jobs_count++; 594 if (lio) 595 lio->refcnt++; 596 cv_signal(&aio->aio_worker_cv); 597 598 mutex_exit(&aio->aio_mtx); 599 600 /* 601 * One would handle the errors only with aio_error() function. 602 * This way is appropriate according to POSIX. 603 */ 604 return 0; 605 } 606 607 /* 608 * Syscall functions. 609 */ 610 611 int 612 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap, register_t *retval) 613 { 614 /* { 615 syscallarg(int) fildes; 616 syscallarg(struct aiocb *) aiocbp; 617 } */ 618 struct proc *p = l->l_proc; 619 struct aioproc *aio; 620 struct aio_job *a_job; 621 struct aiocb *aiocbp_ptr; 622 struct lio_req *lio; 623 struct filedesc *fdp = p->p_fd; 624 unsigned int cn, errcnt, fildes; 625 fdtab_t *dt; 626 627 TAILQ_HEAD(, aio_job) tmp_jobs_list; 628 629 /* Check for invalid file descriptor */ 630 fildes = (unsigned int)SCARG(uap, fildes); 631 dt = fdp->fd_dt; 632 if (fildes >= dt->dt_nfiles) 633 return EBADF; 634 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL) 635 return EBADF; 636 637 /* Check if AIO structure is initialized */ 638 if (p->p_aio == NULL) { 639 *retval = AIO_NOTCANCELED; 640 return 0; 641 } 642 643 aio = p->p_aio; 644 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp); 645 646 mutex_enter(&aio->aio_mtx); 647 648 /* Cancel the jobs, and remove them from the queue */ 649 cn = 0; 650 TAILQ_INIT(&tmp_jobs_list); 651 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) { 652 if (aiocbp_ptr) { 653 if (aiocbp_ptr != a_job->aiocb_uptr) 654 continue; 655 if (fildes != a_job->aiocbp.aio_fildes) { 656 mutex_exit(&aio->aio_mtx); 657 return EBADF; 658 } 659 } else if (a_job->aiocbp.aio_fildes != fildes) 660 continue; 661 662 TAILQ_REMOVE(&aio->jobs_queue, a_job, list); 663 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list); 664 665 /* Decrease the counters */ 666 atomic_dec_uint(&aio_jobs_count); 667 aio->jobs_count--; 668 lio = a_job->lio; 669 if (lio != NULL && --lio->refcnt != 0) 670 a_job->lio = NULL; 671 672 cn++; 673 if (aiocbp_ptr) 674 break; 675 } 676 677 /* There are canceled jobs */ 678 if (cn) 679 *retval = AIO_CANCELED; 680 681 /* We cannot cancel current job */ 682 a_job = aio->curjob; 683 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) || 684 (a_job->aiocb_uptr == aiocbp_ptr))) 685 *retval = AIO_NOTCANCELED; 686 687 mutex_exit(&aio->aio_mtx); 688 689 /* Free the jobs after the lock */ 690 errcnt = 0; 691 while (!TAILQ_EMPTY(&tmp_jobs_list)) { 692 a_job = TAILQ_FIRST(&tmp_jobs_list); 693 TAILQ_REMOVE(&tmp_jobs_list, a_job, list); 694 /* Set the errno and copy structures back to the user-space */ 695 a_job->aiocbp._errno = ECANCELED; 696 a_job->aiocbp._state = JOB_DONE; 697 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr, 698 sizeof(struct aiocb))) 699 errcnt++; 700 /* Send a signal if any */ 701 aio_sendsig(p, &a_job->aiocbp.aio_sigevent); 702 if (a_job->lio) { 703 lio = a_job->lio; 704 aio_sendsig(p, &lio->sig); 705 pool_put(&aio_lio_pool, lio); 706 } 707 pool_put(&aio_job_pool, a_job); 708 } 709 710 if (errcnt) 711 return EFAULT; 712 713 /* Set a correct return value */ 714 if (*retval == 0) 715 *retval = AIO_ALLDONE; 716 717 return 0; 718 } 719 720 int 721 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap, register_t *retval) 722 { 723 /* { 724 syscallarg(const struct aiocb *) aiocbp; 725 } */ 726 struct proc *p = l->l_proc; 727 struct aioproc *aio = p->p_aio; 728 struct aiocb aiocbp; 729 int error; 730 731 if (aio == NULL) 732 return EINVAL; 733 734 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb)); 735 if (error) 736 return error; 737 738 if (aiocbp._state == JOB_NONE) 739 return EINVAL; 740 741 *retval = aiocbp._errno; 742 743 return 0; 744 } 745 746 int 747 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap, register_t *retval) 748 { 749 /* { 750 syscallarg(int) op; 751 syscallarg(struct aiocb *) aiocbp; 752 } */ 753 int op = SCARG(uap, op); 754 755 if ((op != O_DSYNC) && (op != O_SYNC)) 756 return EINVAL; 757 758 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC; 759 760 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL); 761 } 762 763 int 764 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap, register_t *retval) 765 { 766 /* { 767 syscallarg(struct aiocb *) aiocbp; 768 } */ 769 770 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL); 771 } 772 773 int 774 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap, register_t *retval) 775 { 776 /* { 777 syscallarg(struct aiocb *) aiocbp; 778 } */ 779 struct proc *p = l->l_proc; 780 struct aioproc *aio = p->p_aio; 781 struct aiocb aiocbp; 782 int error; 783 784 if (aio == NULL) 785 return EINVAL; 786 787 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb)); 788 if (error) 789 return error; 790 791 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE) 792 return EINVAL; 793 794 *retval = aiocbp._retval; 795 796 /* Reset the internal variables */ 797 aiocbp._errno = 0; 798 aiocbp._retval = -1; 799 aiocbp._state = JOB_NONE; 800 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb)); 801 802 return error; 803 } 804 805 int 806 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap, 807 register_t *retval) 808 { 809 /* { 810 syscallarg(const struct aiocb *const[]) list; 811 syscallarg(int) nent; 812 syscallarg(const struct timespec *) timeout; 813 } */ 814 struct aiocb **list; 815 struct timespec ts; 816 int error, nent; 817 818 nent = SCARG(uap, nent); 819 if (nent <= 0 || nent > aio_listio_max) 820 return EAGAIN; 821 822 if (SCARG(uap, timeout)) { 823 /* Convert timespec to ticks */ 824 error = copyin(SCARG(uap, timeout), &ts, 825 sizeof(struct timespec)); 826 if (error) 827 return error; 828 } 829 list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP); 830 error = copyin(SCARG(uap, list), list, nent * sizeof(struct aiocb)); 831 if (error) 832 goto out; 833 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL); 834 out: 835 kmem_free(list, nent * sizeof(struct aio_job)); 836 return error; 837 } 838 839 int 840 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent, 841 struct timespec *ts) 842 { 843 struct proc *p = l->l_proc; 844 struct aioproc *aio; 845 struct aio_job *a_job; 846 int i, error, timo; 847 848 if (p->p_aio == NULL) 849 return EAGAIN; 850 aio = p->p_aio; 851 852 if (ts) { 853 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000)); 854 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0) 855 timo = 1; 856 if (timo <= 0) 857 return EAGAIN; 858 } else 859 timo = 0; 860 861 /* Get the list from user-space */ 862 863 mutex_enter(&aio->aio_mtx); 864 for (;;) { 865 866 for (i = 0; i < nent; i++) { 867 868 /* Skip NULL entries */ 869 if (aiocbp_list[i] == NULL) 870 continue; 871 872 /* Skip current job */ 873 if (aio->curjob) { 874 a_job = aio->curjob; 875 if (a_job->aiocb_uptr == aiocbp_list[i]) 876 continue; 877 } 878 879 /* Look for a job in the queue */ 880 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) 881 if (a_job->aiocb_uptr == aiocbp_list[i]) 882 break; 883 884 if (a_job == NULL) { 885 struct aiocb aiocbp; 886 887 mutex_exit(&aio->aio_mtx); 888 889 error = copyin(aiocbp_list[i], &aiocbp, 890 sizeof(struct aiocb)); 891 if (error == 0 && aiocbp._state != JOB_DONE) { 892 mutex_enter(&aio->aio_mtx); 893 continue; 894 } 895 896 kmem_free(aiocbp_list, 897 nent * sizeof(struct aio_job)); 898 return error; 899 } 900 } 901 902 /* Wait for a signal or when timeout occurs */ 903 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo); 904 if (error) { 905 if (error == EWOULDBLOCK) 906 error = EAGAIN; 907 break; 908 } 909 } 910 mutex_exit(&aio->aio_mtx); 911 return error; 912 } 913 914 int 915 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap, register_t *retval) 916 { 917 /* { 918 syscallarg(struct aiocb *) aiocbp; 919 } */ 920 921 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL); 922 } 923 924 int 925 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap, register_t *retval) 926 { 927 /* { 928 syscallarg(int) mode; 929 syscallarg(struct aiocb *const[]) list; 930 syscallarg(int) nent; 931 syscallarg(struct sigevent *) sig; 932 } */ 933 struct proc *p = l->l_proc; 934 struct aioproc *aio; 935 struct aiocb **aiocbp_list; 936 struct lio_req *lio; 937 int i, error, errcnt, mode, nent; 938 939 mode = SCARG(uap, mode); 940 nent = SCARG(uap, nent); 941 942 /* Non-accurate checks for the limit and invalid values */ 943 if (nent < 1 || nent > aio_listio_max) 944 return EINVAL; 945 if (aio_jobs_count + nent > aio_max) 946 return EAGAIN; 947 948 /* Check if AIO structure is initialized, if not - initialize it */ 949 if (p->p_aio == NULL) 950 if (aio_procinit(p)) 951 return EAGAIN; 952 aio = p->p_aio; 953 954 /* Create a LIO structure */ 955 lio = pool_get(&aio_lio_pool, PR_WAITOK); 956 lio->refcnt = 1; 957 error = 0; 958 959 switch (mode) { 960 case LIO_WAIT: 961 memset(&lio->sig, 0, sizeof(struct sigevent)); 962 break; 963 case LIO_NOWAIT: 964 /* Check for signal, validate it */ 965 if (SCARG(uap, sig)) { 966 struct sigevent *sig = &lio->sig; 967 968 error = copyin(SCARG(uap, sig), &lio->sig, 969 sizeof(struct sigevent)); 970 if (error == 0 && 971 (sig->sigev_signo < 0 || 972 sig->sigev_signo >= NSIG || 973 sig->sigev_notify < SIGEV_NONE || 974 sig->sigev_notify > SIGEV_SA)) 975 error = EINVAL; 976 } else 977 memset(&lio->sig, 0, sizeof(struct sigevent)); 978 break; 979 default: 980 error = EINVAL; 981 break; 982 } 983 984 if (error != 0) { 985 pool_put(&aio_lio_pool, lio); 986 return error; 987 } 988 989 /* Get the list from user-space */ 990 aiocbp_list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP); 991 error = copyin(SCARG(uap, list), aiocbp_list, 992 nent * sizeof(struct aiocb)); 993 if (error) { 994 mutex_enter(&aio->aio_mtx); 995 goto err; 996 } 997 998 /* Enqueue all jobs */ 999 errcnt = 0; 1000 for (i = 0; i < nent; i++) { 1001 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio); 1002 /* 1003 * According to POSIX, in such error case it may 1004 * fail with other I/O operations initiated. 1005 */ 1006 if (error) 1007 errcnt++; 1008 } 1009 1010 mutex_enter(&aio->aio_mtx); 1011 1012 /* Return an error, if any */ 1013 if (errcnt) { 1014 error = EIO; 1015 goto err; 1016 } 1017 1018 if (mode == LIO_WAIT) { 1019 /* 1020 * Wait for AIO completion. In such case, 1021 * the LIO structure will be freed here. 1022 */ 1023 while (lio->refcnt > 1 && error == 0) 1024 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx); 1025 if (error) 1026 error = EINTR; 1027 } 1028 1029 err: 1030 if (--lio->refcnt != 0) 1031 lio = NULL; 1032 mutex_exit(&aio->aio_mtx); 1033 if (lio != NULL) { 1034 aio_sendsig(p, &lio->sig); 1035 pool_put(&aio_lio_pool, lio); 1036 } 1037 kmem_free(aiocbp_list, nent * sizeof(struct aio_job)); 1038 return error; 1039 } 1040 1041 /* 1042 * SysCtl 1043 */ 1044 1045 static int 1046 sysctl_aio_listio_max(SYSCTLFN_ARGS) 1047 { 1048 struct sysctlnode node; 1049 int error, newsize; 1050 1051 node = *rnode; 1052 node.sysctl_data = &newsize; 1053 1054 newsize = aio_listio_max; 1055 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1056 if (error || newp == NULL) 1057 return error; 1058 1059 if (newsize < 1 || newsize > aio_max) 1060 return EINVAL; 1061 aio_listio_max = newsize; 1062 1063 return 0; 1064 } 1065 1066 static int 1067 sysctl_aio_max(SYSCTLFN_ARGS) 1068 { 1069 struct sysctlnode node; 1070 int error, newsize; 1071 1072 node = *rnode; 1073 node.sysctl_data = &newsize; 1074 1075 newsize = aio_max; 1076 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1077 if (error || newp == NULL) 1078 return error; 1079 1080 if (newsize < 1 || newsize < aio_listio_max) 1081 return EINVAL; 1082 aio_max = newsize; 1083 1084 return 0; 1085 } 1086 1087 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup") 1088 { 1089 1090 sysctl_createv(clog, 0, NULL, NULL, 1091 CTLFLAG_PERMANENT, 1092 CTLTYPE_NODE, "kern", NULL, 1093 NULL, 0, NULL, 0, 1094 CTL_KERN, CTL_EOL); 1095 sysctl_createv(clog, 0, NULL, NULL, 1096 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE, 1097 CTLTYPE_INT, "posix_aio", 1098 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " 1099 "Asynchronous I/O option to which the " 1100 "system attempts to conform"), 1101 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0, 1102 CTL_KERN, CTL_CREATE, CTL_EOL); 1103 sysctl_createv(clog, 0, NULL, NULL, 1104 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1105 CTLTYPE_INT, "aio_listio_max", 1106 SYSCTL_DESCR("Maximum number of asynchronous I/O " 1107 "operations in a single list I/O call"), 1108 sysctl_aio_listio_max, 0, &aio_listio_max, 0, 1109 CTL_KERN, CTL_CREATE, CTL_EOL); 1110 sysctl_createv(clog, 0, NULL, NULL, 1111 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1112 CTLTYPE_INT, "aio_max", 1113 SYSCTL_DESCR("Maximum number of asynchronous I/O " 1114 "operations"), 1115 sysctl_aio_max, 0, &aio_max, 0, 1116 CTL_KERN, CTL_CREATE, CTL_EOL); 1117 } 1118 1119 /* 1120 * Debugging 1121 */ 1122 #if defined(DDB) 1123 void 1124 aio_print_jobs(void (*pr)(const char *, ...)) 1125 { 1126 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc); 1127 struct aioproc *aio; 1128 struct aio_job *a_job; 1129 struct aiocb *aiocbp; 1130 1131 if (p == NULL) { 1132 (*pr)("AIO: We are not in the processes right now.\n"); 1133 return; 1134 } 1135 1136 aio = p->p_aio; 1137 if (aio == NULL) { 1138 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid); 1139 return; 1140 } 1141 1142 (*pr)("AIO: PID = %d\n", p->p_pid); 1143 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count); 1144 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count); 1145 1146 if (aio->curjob) { 1147 a_job = aio->curjob; 1148 (*pr)("\nAIO current job:\n"); 1149 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n", 1150 a_job->aio_op, a_job->aiocbp._errno, 1151 a_job->aiocbp._state, a_job->aiocb_uptr); 1152 aiocbp = &a_job->aiocbp; 1153 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n", 1154 aiocbp->aio_fildes, aiocbp->aio_offset, 1155 aiocbp->aio_buf, aiocbp->aio_nbytes); 1156 } 1157 1158 (*pr)("\nAIO queue:\n"); 1159 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) { 1160 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n", 1161 a_job->aio_op, a_job->aiocbp._errno, 1162 a_job->aiocbp._state, a_job->aiocb_uptr); 1163 aiocbp = &a_job->aiocbp; 1164 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n", 1165 aiocbp->aio_fildes, aiocbp->aio_offset, 1166 aiocbp->aio_buf, aiocbp->aio_nbytes); 1167 } 1168 } 1169 #endif /* defined(DDB) */ 1170