1 /* $NetBSD: sys_aio.c,v 1.22 2009/01/11 02:45:52 christos Exp $ */ 2 3 /* 4 * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * Implementation of POSIX asynchronous I/O. 31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.22 2009/01/11 02:45:52 christos Exp $"); 36 37 #ifdef _KERNEL_OPT 38 #include "opt_ddb.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/condvar.h> 43 #include <sys/file.h> 44 #include <sys/filedesc.h> 45 #include <sys/kernel.h> 46 #include <sys/kmem.h> 47 #include <sys/lwp.h> 48 #include <sys/mutex.h> 49 #include <sys/pool.h> 50 #include <sys/proc.h> 51 #include <sys/queue.h> 52 #include <sys/signal.h> 53 #include <sys/signalvar.h> 54 #include <sys/syscall.h> 55 #include <sys/syscallargs.h> 56 #include <sys/syscallvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/systm.h> 59 #include <sys/types.h> 60 #include <sys/vnode.h> 61 #include <sys/atomic.h> 62 #include <sys/module.h> 63 #include <sys/buf.h> 64 65 #include <uvm/uvm_extern.h> 66 67 MODULE(MODULE_CLASS_MISC, aio, NULL); 68 69 /* 70 * System-wide limits and counter of AIO operations. 71 */ 72 u_int aio_listio_max = AIO_LISTIO_MAX; 73 static u_int aio_max = AIO_MAX; 74 static u_int aio_jobs_count; 75 76 static struct pool aio_job_pool; 77 static struct pool aio_lio_pool; 78 static void *aio_ehook; 79 80 /* Prototypes */ 81 void aio_worker(void *); 82 static void aio_process(struct aio_job *); 83 static void aio_sendsig(struct proc *, struct sigevent *); 84 static int aio_enqueue_job(int, void *, struct lio_req *); 85 static void aio_exit(proc_t *, void *); 86 87 static const struct syscall_package aio_syscalls[] = { 88 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel }, 89 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error }, 90 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync }, 91 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read }, 92 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return }, 93 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 }, 94 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write }, 95 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio }, 96 { 0, 0, NULL }, 97 }; 98 99 /* 100 * Tear down all AIO state. 101 */ 102 static int 103 aio_fini(bool interface) 104 { 105 int error; 106 proc_t *p; 107 108 if (interface) { 109 /* Stop syscall activity. */ 110 error = syscall_disestablish(NULL, aio_syscalls); 111 if (error != 0) 112 return error; 113 /* Abort if any processes are using AIO. */ 114 mutex_enter(proc_lock); 115 PROCLIST_FOREACH(p, &allproc) { 116 if (p->p_aio != NULL) 117 break; 118 } 119 mutex_exit(proc_lock); 120 if (p != NULL) { 121 error = syscall_establish(NULL, aio_syscalls); 122 KASSERT(error == 0); 123 return EBUSY; 124 } 125 } 126 KASSERT(aio_jobs_count == 0); 127 exithook_disestablish(aio_ehook); 128 pool_destroy(&aio_job_pool); 129 pool_destroy(&aio_lio_pool); 130 return 0; 131 } 132 133 /* 134 * Initialize global AIO state. 135 */ 136 static int 137 aio_init(void) 138 { 139 int error; 140 141 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0, 142 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE); 143 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0, 144 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE); 145 aio_ehook = exithook_establish(aio_exit, NULL); 146 error = syscall_establish(NULL, aio_syscalls); 147 if (error != 0) 148 aio_fini(false); 149 return error; 150 } 151 152 /* 153 * Module interface. 154 */ 155 static int 156 aio_modcmd(modcmd_t cmd, void *arg) 157 { 158 159 switch (cmd) { 160 case MODULE_CMD_INIT: 161 return aio_init(); 162 case MODULE_CMD_FINI: 163 return aio_fini(true); 164 default: 165 return ENOTTY; 166 } 167 } 168 169 /* 170 * Initialize Asynchronous I/O data structures for the process. 171 */ 172 static int 173 aio_procinit(struct proc *p) 174 { 175 struct aioproc *aio; 176 struct lwp *l; 177 int error; 178 bool inmem; 179 vaddr_t uaddr; 180 181 /* Allocate and initialize AIO structure */ 182 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP); 183 if (aio == NULL) 184 return EAGAIN; 185 186 /* Initialize queue and their synchronization structures */ 187 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE); 188 cv_init(&aio->aio_worker_cv, "aiowork"); 189 cv_init(&aio->done_cv, "aiodone"); 190 TAILQ_INIT(&aio->jobs_queue); 191 192 /* 193 * Create an AIO worker thread. 194 * XXX: Currently, AIO thread is not protected against user's actions. 195 */ 196 inmem = uvm_uarea_alloc(&uaddr); 197 if (uaddr == 0) { 198 aio_exit(p, aio); 199 return EAGAIN; 200 } 201 error = lwp_create(curlwp, p, uaddr, inmem, 0, NULL, 0, aio_worker, 202 NULL, &l, curlwp->l_class); 203 if (error != 0) { 204 uvm_uarea_free(uaddr, curcpu()); 205 aio_exit(p, aio); 206 return error; 207 } 208 209 /* Recheck if we are really first */ 210 mutex_enter(p->p_lock); 211 if (p->p_aio) { 212 mutex_exit(p->p_lock); 213 aio_exit(p, aio); 214 lwp_exit(l); 215 return 0; 216 } 217 p->p_aio = aio; 218 219 /* Complete the initialization of thread, and run it */ 220 aio->aio_worker = l; 221 p->p_nrlwps++; 222 lwp_lock(l); 223 l->l_stat = LSRUN; 224 l->l_priority = MAXPRI_USER; 225 sched_enqueue(l, false); 226 lwp_unlock(l); 227 mutex_exit(p->p_lock); 228 229 return 0; 230 } 231 232 /* 233 * Exit of Asynchronous I/O subsystem of process. 234 */ 235 static void 236 aio_exit(struct proc *p, void *cookie) 237 { 238 struct aio_job *a_job; 239 struct aioproc *aio; 240 241 if (cookie != NULL) 242 aio = cookie; 243 else if ((aio = p->p_aio) == NULL) 244 return; 245 246 /* Free AIO queue */ 247 while (!TAILQ_EMPTY(&aio->jobs_queue)) { 248 a_job = TAILQ_FIRST(&aio->jobs_queue); 249 TAILQ_REMOVE(&aio->jobs_queue, a_job, list); 250 pool_put(&aio_job_pool, a_job); 251 atomic_dec_uint(&aio_jobs_count); 252 } 253 254 /* Destroy and free the entire AIO data structure */ 255 cv_destroy(&aio->aio_worker_cv); 256 cv_destroy(&aio->done_cv); 257 mutex_destroy(&aio->aio_mtx); 258 kmem_free(aio, sizeof(struct aioproc)); 259 } 260 261 /* 262 * AIO worker thread and processor. 263 */ 264 void 265 aio_worker(void *arg) 266 { 267 struct proc *p = curlwp->l_proc; 268 struct aioproc *aio = p->p_aio; 269 struct aio_job *a_job; 270 struct lio_req *lio; 271 sigset_t oss, nss; 272 int error, refcnt; 273 274 /* 275 * Make an empty signal mask, so it 276 * handles only SIGKILL and SIGSTOP. 277 */ 278 sigfillset(&nss); 279 mutex_enter(p->p_lock); 280 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss); 281 mutex_exit(p->p_lock); 282 KASSERT(error == 0); 283 284 for (;;) { 285 /* 286 * Loop for each job in the queue. If there 287 * are no jobs then sleep. 288 */ 289 mutex_enter(&aio->aio_mtx); 290 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) { 291 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) { 292 /* 293 * Thread was interrupted - check for 294 * pending exit or suspend. 295 */ 296 mutex_exit(&aio->aio_mtx); 297 lwp_userret(curlwp); 298 mutex_enter(&aio->aio_mtx); 299 } 300 } 301 302 /* Take the job from the queue */ 303 aio->curjob = a_job; 304 TAILQ_REMOVE(&aio->jobs_queue, a_job, list); 305 306 atomic_dec_uint(&aio_jobs_count); 307 aio->jobs_count--; 308 309 mutex_exit(&aio->aio_mtx); 310 311 /* Process an AIO operation */ 312 aio_process(a_job); 313 314 /* Copy data structure back to the user-space */ 315 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr, 316 sizeof(struct aiocb)); 317 318 mutex_enter(&aio->aio_mtx); 319 aio->curjob = NULL; 320 321 /* Decrease a reference counter, if there is a LIO structure */ 322 lio = a_job->lio; 323 refcnt = (lio != NULL ? --lio->refcnt : -1); 324 325 /* Notify all suspenders */ 326 cv_broadcast(&aio->done_cv); 327 mutex_exit(&aio->aio_mtx); 328 329 /* Send a signal, if any */ 330 aio_sendsig(p, &a_job->aiocbp.aio_sigevent); 331 332 /* Destroy the LIO structure */ 333 if (refcnt == 0) { 334 aio_sendsig(p, &lio->sig); 335 pool_put(&aio_lio_pool, lio); 336 } 337 338 /* Destroy the the job */ 339 pool_put(&aio_job_pool, a_job); 340 } 341 342 /* NOTREACHED */ 343 } 344 345 static void 346 aio_process(struct aio_job *a_job) 347 { 348 struct proc *p = curlwp->l_proc; 349 struct aiocb *aiocbp = &a_job->aiocbp; 350 struct file *fp; 351 int fd = aiocbp->aio_fildes; 352 int error = 0; 353 354 KASSERT(a_job->aio_op != 0); 355 356 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) { 357 struct iovec aiov; 358 struct uio auio; 359 360 if (aiocbp->aio_nbytes > SSIZE_MAX) { 361 error = EINVAL; 362 goto done; 363 } 364 365 fp = fd_getfile(fd); 366 if (fp == NULL) { 367 error = EBADF; 368 goto done; 369 } 370 371 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf; 372 aiov.iov_len = aiocbp->aio_nbytes; 373 auio.uio_iov = &aiov; 374 auio.uio_iovcnt = 1; 375 auio.uio_resid = aiocbp->aio_nbytes; 376 auio.uio_vmspace = p->p_vmspace; 377 378 if (a_job->aio_op & AIO_READ) { 379 /* 380 * Perform a Read operation 381 */ 382 KASSERT((a_job->aio_op & AIO_WRITE) == 0); 383 384 if ((fp->f_flag & FREAD) == 0) { 385 fd_putfile(fd); 386 error = EBADF; 387 goto done; 388 } 389 auio.uio_rw = UIO_READ; 390 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset, 391 &auio, fp->f_cred, FOF_UPDATE_OFFSET); 392 } else { 393 /* 394 * Perform a Write operation 395 */ 396 KASSERT(a_job->aio_op & AIO_WRITE); 397 398 if ((fp->f_flag & FWRITE) == 0) { 399 fd_putfile(fd); 400 error = EBADF; 401 goto done; 402 } 403 auio.uio_rw = UIO_WRITE; 404 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset, 405 &auio, fp->f_cred, FOF_UPDATE_OFFSET); 406 } 407 fd_putfile(fd); 408 409 /* Store the result value */ 410 a_job->aiocbp.aio_nbytes -= auio.uio_resid; 411 a_job->aiocbp._retval = (error == 0) ? 412 a_job->aiocbp.aio_nbytes : -1; 413 414 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) { 415 /* 416 * Perform a file Sync operation 417 */ 418 struct vnode *vp; 419 420 if ((error = fd_getvnode(fd, &fp)) != 0) 421 goto done; 422 423 if ((fp->f_flag & FWRITE) == 0) { 424 fd_putfile(fd); 425 error = EBADF; 426 goto done; 427 } 428 429 vp = (struct vnode *)fp->f_data; 430 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 431 if (a_job->aio_op & AIO_DSYNC) { 432 error = VOP_FSYNC(vp, fp->f_cred, 433 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0); 434 } else if (a_job->aio_op & AIO_SYNC) { 435 error = VOP_FSYNC(vp, fp->f_cred, 436 FSYNC_WAIT, 0, 0); 437 if (error == 0 && bioopsp != NULL && 438 vp->v_mount && 439 (vp->v_mount->mnt_flag & MNT_SOFTDEP)) 440 bioopsp->io_fsync(vp, 0); 441 } 442 VOP_UNLOCK(vp, 0); 443 fd_putfile(fd); 444 445 /* Store the result value */ 446 a_job->aiocbp._retval = (error == 0) ? 0 : -1; 447 448 } else 449 panic("aio_process: invalid operation code\n"); 450 451 done: 452 /* Job is done, set the error, if any */ 453 a_job->aiocbp._errno = error; 454 a_job->aiocbp._state = JOB_DONE; 455 } 456 457 /* 458 * Send AIO signal. 459 */ 460 static void 461 aio_sendsig(struct proc *p, struct sigevent *sig) 462 { 463 ksiginfo_t ksi; 464 465 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE) 466 return; 467 468 KSI_INIT(&ksi); 469 ksi.ksi_signo = sig->sigev_signo; 470 ksi.ksi_code = SI_ASYNCIO; 471 ksi.ksi_value = sig->sigev_value; 472 mutex_enter(proc_lock); 473 kpsignal(p, &ksi, NULL); 474 mutex_exit(proc_lock); 475 } 476 477 /* 478 * Enqueue the job. 479 */ 480 static int 481 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio) 482 { 483 struct proc *p = curlwp->l_proc; 484 struct aioproc *aio; 485 struct aio_job *a_job; 486 struct aiocb aiocbp; 487 struct sigevent *sig; 488 int error; 489 490 /* Non-accurate check for the limit */ 491 if (aio_jobs_count + 1 > aio_max) 492 return EAGAIN; 493 494 /* Get the data structure from user-space */ 495 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb)); 496 if (error) 497 return error; 498 499 /* Check if signal is set, and validate it */ 500 sig = &aiocbp.aio_sigevent; 501 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG || 502 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA) 503 return EINVAL; 504 505 /* Buffer and byte count */ 506 if (((AIO_SYNC | AIO_DSYNC) & op) == 0) 507 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX) 508 return EINVAL; 509 510 /* Check the opcode, if LIO_NOP - simply ignore */ 511 if (op == AIO_LIO) { 512 KASSERT(lio != NULL); 513 if (aiocbp.aio_lio_opcode == LIO_WRITE) 514 op = AIO_WRITE; 515 else if (aiocbp.aio_lio_opcode == LIO_READ) 516 op = AIO_READ; 517 else 518 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL; 519 } else { 520 KASSERT(lio == NULL); 521 } 522 523 /* 524 * Look for already existing job. If found - the job is in-progress. 525 * According to POSIX this is invalid, so return the error. 526 */ 527 aio = p->p_aio; 528 if (aio) { 529 mutex_enter(&aio->aio_mtx); 530 if (aio->curjob) { 531 a_job = aio->curjob; 532 if (a_job->aiocb_uptr == aiocb_uptr) { 533 mutex_exit(&aio->aio_mtx); 534 return EINVAL; 535 } 536 } 537 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) { 538 if (a_job->aiocb_uptr != aiocb_uptr) 539 continue; 540 mutex_exit(&aio->aio_mtx); 541 return EINVAL; 542 } 543 mutex_exit(&aio->aio_mtx); 544 } 545 546 /* 547 * Check if AIO structure is initialized, if not - initialize it. 548 * In LIO case, we did that already. We will recheck this with 549 * the lock in aio_procinit(). 550 */ 551 if (lio == NULL && p->p_aio == NULL) 552 if (aio_procinit(p)) 553 return EAGAIN; 554 aio = p->p_aio; 555 556 /* 557 * Set the state with errno, and copy data 558 * structure back to the user-space. 559 */ 560 aiocbp._state = JOB_WIP; 561 aiocbp._errno = EINPROGRESS; 562 aiocbp._retval = -1; 563 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb)); 564 if (error) 565 return error; 566 567 /* Allocate and initialize a new AIO job */ 568 a_job = pool_get(&aio_job_pool, PR_WAITOK); 569 memset(a_job, 0, sizeof(struct aio_job)); 570 571 /* 572 * Set the data. 573 * Store the user-space pointer for searching. Since we 574 * are storing only per proc pointers - it is safe. 575 */ 576 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb)); 577 a_job->aiocb_uptr = aiocb_uptr; 578 a_job->aio_op |= op; 579 a_job->lio = lio; 580 581 /* 582 * Add the job to the queue, update the counters, and 583 * notify the AIO worker thread to handle the job. 584 */ 585 mutex_enter(&aio->aio_mtx); 586 587 /* Fail, if the limit was reached */ 588 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max || 589 aio->jobs_count >= aio_listio_max) { 590 atomic_dec_uint(&aio_jobs_count); 591 mutex_exit(&aio->aio_mtx); 592 pool_put(&aio_job_pool, a_job); 593 return EAGAIN; 594 } 595 596 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list); 597 aio->jobs_count++; 598 if (lio) 599 lio->refcnt++; 600 cv_signal(&aio->aio_worker_cv); 601 602 mutex_exit(&aio->aio_mtx); 603 604 /* 605 * One would handle the errors only with aio_error() function. 606 * This way is appropriate according to POSIX. 607 */ 608 return 0; 609 } 610 611 /* 612 * Syscall functions. 613 */ 614 615 int 616 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap, register_t *retval) 617 { 618 /* { 619 syscallarg(int) fildes; 620 syscallarg(struct aiocb *) aiocbp; 621 } */ 622 struct proc *p = l->l_proc; 623 struct aioproc *aio; 624 struct aio_job *a_job; 625 struct aiocb *aiocbp_ptr; 626 struct lio_req *lio; 627 struct filedesc *fdp = p->p_fd; 628 unsigned int cn, errcnt, fildes; 629 630 TAILQ_HEAD(, aio_job) tmp_jobs_list; 631 632 /* Check for invalid file descriptor */ 633 fildes = (unsigned int)SCARG(uap, fildes); 634 if (fildes >= fdp->fd_nfiles) 635 return EBADF; 636 membar_consumer(); 637 if (fdp->fd_ofiles[fildes] == NULL || fdp->fd_ofiles[fildes]->ff_file == NULL) 638 return EBADF; 639 640 /* Check if AIO structure is initialized */ 641 if (p->p_aio == NULL) { 642 *retval = AIO_NOTCANCELED; 643 return 0; 644 } 645 646 aio = p->p_aio; 647 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp); 648 649 mutex_enter(&aio->aio_mtx); 650 651 /* Cancel the jobs, and remove them from the queue */ 652 cn = 0; 653 TAILQ_INIT(&tmp_jobs_list); 654 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) { 655 if (aiocbp_ptr) { 656 if (aiocbp_ptr != a_job->aiocb_uptr) 657 continue; 658 if (fildes != a_job->aiocbp.aio_fildes) { 659 mutex_exit(&aio->aio_mtx); 660 return EBADF; 661 } 662 } else if (a_job->aiocbp.aio_fildes != fildes) 663 continue; 664 665 TAILQ_REMOVE(&aio->jobs_queue, a_job, list); 666 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list); 667 668 /* Decrease the counters */ 669 atomic_dec_uint(&aio_jobs_count); 670 aio->jobs_count--; 671 lio = a_job->lio; 672 if (lio != NULL && --lio->refcnt != 0) 673 a_job->lio = NULL; 674 675 cn++; 676 if (aiocbp_ptr) 677 break; 678 } 679 680 /* There are canceled jobs */ 681 if (cn) 682 *retval = AIO_CANCELED; 683 684 /* We cannot cancel current job */ 685 a_job = aio->curjob; 686 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) || 687 (a_job->aiocb_uptr == aiocbp_ptr))) 688 *retval = AIO_NOTCANCELED; 689 690 mutex_exit(&aio->aio_mtx); 691 692 /* Free the jobs after the lock */ 693 errcnt = 0; 694 while (!TAILQ_EMPTY(&tmp_jobs_list)) { 695 a_job = TAILQ_FIRST(&tmp_jobs_list); 696 TAILQ_REMOVE(&tmp_jobs_list, a_job, list); 697 /* Set the errno and copy structures back to the user-space */ 698 a_job->aiocbp._errno = ECANCELED; 699 a_job->aiocbp._state = JOB_DONE; 700 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr, 701 sizeof(struct aiocb))) 702 errcnt++; 703 /* Send a signal if any */ 704 aio_sendsig(p, &a_job->aiocbp.aio_sigevent); 705 if (a_job->lio) { 706 lio = a_job->lio; 707 aio_sendsig(p, &lio->sig); 708 pool_put(&aio_lio_pool, lio); 709 } 710 pool_put(&aio_job_pool, a_job); 711 } 712 713 if (errcnt) 714 return EFAULT; 715 716 /* Set a correct return value */ 717 if (*retval == 0) 718 *retval = AIO_ALLDONE; 719 720 return 0; 721 } 722 723 int 724 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap, register_t *retval) 725 { 726 /* { 727 syscallarg(const struct aiocb *) aiocbp; 728 } */ 729 struct proc *p = l->l_proc; 730 struct aioproc *aio = p->p_aio; 731 struct aiocb aiocbp; 732 int error; 733 734 if (aio == NULL) 735 return EINVAL; 736 737 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb)); 738 if (error) 739 return error; 740 741 if (aiocbp._state == JOB_NONE) 742 return EINVAL; 743 744 *retval = aiocbp._errno; 745 746 return 0; 747 } 748 749 int 750 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap, register_t *retval) 751 { 752 /* { 753 syscallarg(int) op; 754 syscallarg(struct aiocb *) aiocbp; 755 } */ 756 int op = SCARG(uap, op); 757 758 if ((op != O_DSYNC) && (op != O_SYNC)) 759 return EINVAL; 760 761 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC; 762 763 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL); 764 } 765 766 int 767 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap, register_t *retval) 768 { 769 /* { 770 syscallarg(struct aiocb *) aiocbp; 771 } */ 772 773 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL); 774 } 775 776 int 777 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap, register_t *retval) 778 { 779 /* { 780 syscallarg(struct aiocb *) aiocbp; 781 } */ 782 struct proc *p = l->l_proc; 783 struct aioproc *aio = p->p_aio; 784 struct aiocb aiocbp; 785 int error; 786 787 if (aio == NULL) 788 return EINVAL; 789 790 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb)); 791 if (error) 792 return error; 793 794 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE) 795 return EINVAL; 796 797 *retval = aiocbp._retval; 798 799 /* Reset the internal variables */ 800 aiocbp._errno = 0; 801 aiocbp._retval = -1; 802 aiocbp._state = JOB_NONE; 803 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb)); 804 805 return error; 806 } 807 808 int 809 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap, 810 register_t *retval) 811 { 812 /* { 813 syscallarg(const struct aiocb *const[]) list; 814 syscallarg(int) nent; 815 syscallarg(const struct timespec *) timeout; 816 } */ 817 struct aiocb **list; 818 struct timespec ts; 819 int error, nent; 820 821 nent = SCARG(uap, nent); 822 if (nent <= 0 || nent > aio_listio_max) 823 return EAGAIN; 824 825 if (SCARG(uap, timeout)) { 826 /* Convert timespec to ticks */ 827 error = copyin(SCARG(uap, timeout), &ts, 828 sizeof(struct timespec)); 829 if (error) 830 return error; 831 } 832 list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP); 833 error = copyin(SCARG(uap, list), list, nent * sizeof(struct aiocb)); 834 if (error) 835 goto out; 836 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL); 837 out: 838 kmem_free(list, nent * sizeof(struct aio_job)); 839 return error; 840 } 841 842 int 843 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent, 844 struct timespec *ts) 845 { 846 struct proc *p = l->l_proc; 847 struct aioproc *aio; 848 struct aio_job *a_job; 849 int i, error, timo; 850 851 if (p->p_aio == NULL) 852 return EAGAIN; 853 aio = p->p_aio; 854 855 if (ts) { 856 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000)); 857 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0) 858 timo = 1; 859 if (timo <= 0) 860 return EAGAIN; 861 } else 862 timo = 0; 863 864 /* Get the list from user-space */ 865 866 mutex_enter(&aio->aio_mtx); 867 for (;;) { 868 869 for (i = 0; i < nent; i++) { 870 871 /* Skip NULL entries */ 872 if (aiocbp_list[i] == NULL) 873 continue; 874 875 /* Skip current job */ 876 if (aio->curjob) { 877 a_job = aio->curjob; 878 if (a_job->aiocb_uptr == aiocbp_list[i]) 879 continue; 880 } 881 882 /* Look for a job in the queue */ 883 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) 884 if (a_job->aiocb_uptr == aiocbp_list[i]) 885 break; 886 887 if (a_job == NULL) { 888 struct aiocb aiocbp; 889 890 mutex_exit(&aio->aio_mtx); 891 892 error = copyin(aiocbp_list[i], &aiocbp, 893 sizeof(struct aiocb)); 894 if (error == 0 && aiocbp._state != JOB_DONE) { 895 mutex_enter(&aio->aio_mtx); 896 continue; 897 } 898 899 kmem_free(aiocbp_list, 900 nent * sizeof(struct aio_job)); 901 return error; 902 } 903 } 904 905 /* Wait for a signal or when timeout occurs */ 906 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo); 907 if (error) { 908 if (error == EWOULDBLOCK) 909 error = EAGAIN; 910 break; 911 } 912 } 913 mutex_exit(&aio->aio_mtx); 914 return error; 915 } 916 917 int 918 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap, register_t *retval) 919 { 920 /* { 921 syscallarg(struct aiocb *) aiocbp; 922 } */ 923 924 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL); 925 } 926 927 int 928 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap, register_t *retval) 929 { 930 /* { 931 syscallarg(int) mode; 932 syscallarg(struct aiocb *const[]) list; 933 syscallarg(int) nent; 934 syscallarg(struct sigevent *) sig; 935 } */ 936 struct proc *p = l->l_proc; 937 struct aioproc *aio; 938 struct aiocb **aiocbp_list; 939 struct lio_req *lio; 940 int i, error, errcnt, mode, nent; 941 942 mode = SCARG(uap, mode); 943 nent = SCARG(uap, nent); 944 945 /* Non-accurate checks for the limit and invalid values */ 946 if (nent < 1 || nent > aio_listio_max) 947 return EINVAL; 948 if (aio_jobs_count + nent > aio_max) 949 return EAGAIN; 950 951 /* Check if AIO structure is initialized, if not - initialize it */ 952 if (p->p_aio == NULL) 953 if (aio_procinit(p)) 954 return EAGAIN; 955 aio = p->p_aio; 956 957 /* Create a LIO structure */ 958 lio = pool_get(&aio_lio_pool, PR_WAITOK); 959 lio->refcnt = 1; 960 error = 0; 961 962 switch (mode) { 963 case LIO_WAIT: 964 memset(&lio->sig, 0, sizeof(struct sigevent)); 965 break; 966 case LIO_NOWAIT: 967 /* Check for signal, validate it */ 968 if (SCARG(uap, sig)) { 969 struct sigevent *sig = &lio->sig; 970 971 error = copyin(SCARG(uap, sig), &lio->sig, 972 sizeof(struct sigevent)); 973 if (error == 0 && 974 (sig->sigev_signo < 0 || 975 sig->sigev_signo >= NSIG || 976 sig->sigev_notify < SIGEV_NONE || 977 sig->sigev_notify > SIGEV_SA)) 978 error = EINVAL; 979 } else 980 memset(&lio->sig, 0, sizeof(struct sigevent)); 981 break; 982 default: 983 error = EINVAL; 984 break; 985 } 986 987 if (error != 0) { 988 pool_put(&aio_lio_pool, lio); 989 return error; 990 } 991 992 /* Get the list from user-space */ 993 aiocbp_list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP); 994 error = copyin(SCARG(uap, list), aiocbp_list, 995 nent * sizeof(struct aiocb)); 996 if (error) { 997 mutex_enter(&aio->aio_mtx); 998 goto err; 999 } 1000 1001 /* Enqueue all jobs */ 1002 errcnt = 0; 1003 for (i = 0; i < nent; i++) { 1004 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio); 1005 /* 1006 * According to POSIX, in such error case it may 1007 * fail with other I/O operations initiated. 1008 */ 1009 if (error) 1010 errcnt++; 1011 } 1012 1013 mutex_enter(&aio->aio_mtx); 1014 1015 /* Return an error, if any */ 1016 if (errcnt) { 1017 error = EIO; 1018 goto err; 1019 } 1020 1021 if (mode == LIO_WAIT) { 1022 /* 1023 * Wait for AIO completion. In such case, 1024 * the LIO structure will be freed here. 1025 */ 1026 while (lio->refcnt > 1 && error == 0) 1027 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx); 1028 if (error) 1029 error = EINTR; 1030 } 1031 1032 err: 1033 if (--lio->refcnt != 0) 1034 lio = NULL; 1035 mutex_exit(&aio->aio_mtx); 1036 if (lio != NULL) { 1037 aio_sendsig(p, &lio->sig); 1038 pool_put(&aio_lio_pool, lio); 1039 } 1040 kmem_free(aiocbp_list, nent * sizeof(struct aio_job)); 1041 return error; 1042 } 1043 1044 /* 1045 * SysCtl 1046 */ 1047 1048 static int 1049 sysctl_aio_listio_max(SYSCTLFN_ARGS) 1050 { 1051 struct sysctlnode node; 1052 int error, newsize; 1053 1054 node = *rnode; 1055 node.sysctl_data = &newsize; 1056 1057 newsize = aio_listio_max; 1058 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1059 if (error || newp == NULL) 1060 return error; 1061 1062 if (newsize < 1 || newsize > aio_max) 1063 return EINVAL; 1064 aio_listio_max = newsize; 1065 1066 return 0; 1067 } 1068 1069 static int 1070 sysctl_aio_max(SYSCTLFN_ARGS) 1071 { 1072 struct sysctlnode node; 1073 int error, newsize; 1074 1075 node = *rnode; 1076 node.sysctl_data = &newsize; 1077 1078 newsize = aio_max; 1079 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1080 if (error || newp == NULL) 1081 return error; 1082 1083 if (newsize < 1 || newsize < aio_listio_max) 1084 return EINVAL; 1085 aio_max = newsize; 1086 1087 return 0; 1088 } 1089 1090 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup") 1091 { 1092 1093 sysctl_createv(clog, 0, NULL, NULL, 1094 CTLFLAG_PERMANENT, 1095 CTLTYPE_NODE, "kern", NULL, 1096 NULL, 0, NULL, 0, 1097 CTL_KERN, CTL_EOL); 1098 sysctl_createv(clog, 0, NULL, NULL, 1099 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE, 1100 CTLTYPE_INT, "posix_aio", 1101 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " 1102 "Asynchronous I/O option to which the " 1103 "system attempts to conform"), 1104 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0, 1105 CTL_KERN, CTL_CREATE, CTL_EOL); 1106 sysctl_createv(clog, 0, NULL, NULL, 1107 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1108 CTLTYPE_INT, "aio_listio_max", 1109 SYSCTL_DESCR("Maximum number of asynchronous I/O " 1110 "operations in a single list I/O call"), 1111 sysctl_aio_listio_max, 0, &aio_listio_max, 0, 1112 CTL_KERN, CTL_CREATE, CTL_EOL); 1113 sysctl_createv(clog, 0, NULL, NULL, 1114 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1115 CTLTYPE_INT, "aio_max", 1116 SYSCTL_DESCR("Maximum number of asynchronous I/O " 1117 "operations"), 1118 sysctl_aio_max, 0, &aio_max, 0, 1119 CTL_KERN, CTL_CREATE, CTL_EOL); 1120 } 1121 1122 /* 1123 * Debugging 1124 */ 1125 #if defined(DDB) 1126 void 1127 aio_print_jobs(void (*pr)(const char *, ...)) 1128 { 1129 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc); 1130 struct aioproc *aio; 1131 struct aio_job *a_job; 1132 struct aiocb *aiocbp; 1133 1134 if (p == NULL) { 1135 (*pr)("AIO: We are not in the processes right now.\n"); 1136 return; 1137 } 1138 1139 aio = p->p_aio; 1140 if (aio == NULL) { 1141 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid); 1142 return; 1143 } 1144 1145 (*pr)("AIO: PID = %d\n", p->p_pid); 1146 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count); 1147 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count); 1148 1149 if (aio->curjob) { 1150 a_job = aio->curjob; 1151 (*pr)("\nAIO current job:\n"); 1152 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n", 1153 a_job->aio_op, a_job->aiocbp._errno, 1154 a_job->aiocbp._state, a_job->aiocb_uptr); 1155 aiocbp = &a_job->aiocbp; 1156 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n", 1157 aiocbp->aio_fildes, aiocbp->aio_offset, 1158 aiocbp->aio_buf, aiocbp->aio_nbytes); 1159 } 1160 1161 (*pr)("\nAIO queue:\n"); 1162 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) { 1163 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n", 1164 a_job->aio_op, a_job->aiocbp._errno, 1165 a_job->aiocbp._state, a_job->aiocb_uptr); 1166 aiocbp = &a_job->aiocbp; 1167 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n", 1168 aiocbp->aio_fildes, aiocbp->aio_offset, 1169 aiocbp->aio_buf, aiocbp->aio_nbytes); 1170 } 1171 } 1172 #endif /* defined(DDB) */ 1173