1 /* $NetBSD: subr_xcall.c,v 1.35 2023/04/09 09:18:09 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2007-2010, 2019 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran and Mindaugas Rasiukevicius. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Cross call support 34 * 35 * Background 36 * 37 * Sometimes it is necessary to modify hardware state that is tied 38 * directly to individual CPUs (such as a CPU's local timer), and 39 * these updates can not be done remotely by another CPU. The LWP 40 * requesting the update may be unable to guarantee that it will be 41 * running on the CPU where the update must occur, when the update 42 * occurs. 43 * 44 * Additionally, it's sometimes necessary to modify per-CPU software 45 * state from a remote CPU. Where these update operations are so 46 * rare or the access to the per-CPU data so frequent that the cost 47 * of using locking or atomic operations to provide coherency is 48 * prohibitive, another way must be found. 49 * 50 * Cross calls help to solve these types of problem by allowing 51 * any LWP in the system to request that an arbitrary function be 52 * executed on a specific CPU. 53 * 54 * Implementation 55 * 56 * A slow mechanism for making low priority cross calls is 57 * provided. The function to be executed runs on the remote CPU 58 * within a bound kthread. No queueing is provided, and the 59 * implementation uses global state. The function being called may 60 * block briefly on locks, but in doing so must be careful to not 61 * interfere with other cross calls in the system. The function is 62 * called with thread context and not from a soft interrupt, so it 63 * can ensure that it is not interrupting other code running on the 64 * CPU, and so has exclusive access to the CPU. Since this facility 65 * is heavyweight, it's expected that it will not be used often. 66 * 67 * Cross calls must not allocate memory, as the pagedaemon uses cross 68 * calls (and memory allocation may need to wait on the pagedaemon). 69 * 70 * A low-overhead mechanism for high priority calls (XC_HIGHPRI) is 71 * also provided. The function to be executed runs in software 72 * interrupt context at IPL_SOFTSERIAL level, and is expected to 73 * be very lightweight, e.g. avoid blocking. 74 */ 75 76 #include <sys/cdefs.h> 77 __KERNEL_RCSID(0, "$NetBSD: subr_xcall.c,v 1.35 2023/04/09 09:18:09 riastradh Exp $"); 78 79 #include <sys/types.h> 80 #include <sys/param.h> 81 #include <sys/xcall.h> 82 #include <sys/mutex.h> 83 #include <sys/condvar.h> 84 #include <sys/evcnt.h> 85 #include <sys/kthread.h> 86 #include <sys/cpu.h> 87 #include <sys/atomic.h> 88 89 #ifdef _RUMPKERNEL 90 #include "rump_private.h" 91 #endif 92 93 /* Cross-call state box. */ 94 typedef struct { 95 kmutex_t xc_lock; 96 kcondvar_t xc_busy; 97 xcfunc_t xc_func; 98 void * xc_arg1; 99 void * xc_arg2; 100 uint64_t xc_headp; 101 uint64_t xc_donep; 102 unsigned int xc_ipl; 103 } xc_state_t; 104 105 /* Bit indicating high (1) or low (0) priority. */ 106 #define XC_PRI_BIT (1ULL << 63) 107 108 /* Low priority xcall structures. */ 109 static xc_state_t xc_low_pri __cacheline_aligned; 110 111 /* High priority xcall structures. */ 112 static xc_state_t xc_high_pri __cacheline_aligned; 113 static void * xc_sihs[4] __cacheline_aligned; 114 115 /* Event counters. */ 116 static struct evcnt xc_unicast_ev __cacheline_aligned; 117 static struct evcnt xc_broadcast_ev __cacheline_aligned; 118 119 static void xc_init(void); 120 static void xc_thread(void *); 121 122 static inline uint64_t xc_highpri(xcfunc_t, void *, void *, struct cpu_info *, 123 unsigned int); 124 static inline uint64_t xc_lowpri(xcfunc_t, void *, void *, struct cpu_info *); 125 126 /* The internal form of IPL */ 127 #define XC_IPL_MASK 0xff00 128 /* 129 * Assign 0 to XC_IPL_SOFTSERIAL to treat IPL_SOFTSERIAL as the default value 130 * (just XC_HIGHPRI). 131 */ 132 #define XC_IPL_SOFTSERIAL 0 133 #define XC_IPL_SOFTNET 1 134 #define XC_IPL_SOFTBIO 2 135 #define XC_IPL_SOFTCLOCK 3 136 #define XC_IPL_MAX XC_IPL_SOFTCLOCK 137 138 CTASSERT(XC_IPL_MAX <= __arraycount(xc_sihs)); 139 140 /* 141 * xc_init: 142 * 143 * Initialize low and high priority cross-call structures. 144 */ 145 static void 146 xc_init(void) 147 { 148 xc_state_t *xclo = &xc_low_pri, *xchi = &xc_high_pri; 149 150 memset(xclo, 0, sizeof(xc_state_t)); 151 mutex_init(&xclo->xc_lock, MUTEX_DEFAULT, IPL_NONE); 152 cv_init(&xclo->xc_busy, "xclocv"); 153 154 memset(xchi, 0, sizeof(xc_state_t)); 155 mutex_init(&xchi->xc_lock, MUTEX_DEFAULT, IPL_SOFTSERIAL); 156 cv_init(&xchi->xc_busy, "xchicv"); 157 158 /* Set up a softint for each IPL_SOFT*. */ 159 #define SETUP_SOFTINT(xipl, sipl) do { \ 160 xc_sihs[(xipl)] = softint_establish( (sipl) | SOFTINT_MPSAFE,\ 161 xc__highpri_intr, NULL); \ 162 KASSERT(xc_sihs[(xipl)] != NULL); \ 163 } while (0) 164 165 SETUP_SOFTINT(XC_IPL_SOFTSERIAL, SOFTINT_SERIAL); 166 /* 167 * If a IPL_SOFTXXX have the same value of the previous, we don't use 168 * the IPL (see xc_encode_ipl). So we don't need to allocate a softint 169 * for it. 170 */ 171 #if IPL_SOFTNET != IPL_SOFTSERIAL 172 SETUP_SOFTINT(XC_IPL_SOFTNET, SOFTINT_NET); 173 #endif 174 #if IPL_SOFTBIO != IPL_SOFTNET 175 SETUP_SOFTINT(XC_IPL_SOFTBIO, SOFTINT_BIO); 176 #endif 177 #if IPL_SOFTCLOCK != IPL_SOFTBIO 178 SETUP_SOFTINT(XC_IPL_SOFTCLOCK, SOFTINT_CLOCK); 179 #endif 180 181 #undef SETUP_SOFTINT 182 183 evcnt_attach_dynamic(&xc_unicast_ev, EVCNT_TYPE_MISC, NULL, 184 "crosscall", "unicast"); 185 evcnt_attach_dynamic(&xc_broadcast_ev, EVCNT_TYPE_MISC, NULL, 186 "crosscall", "broadcast"); 187 } 188 189 /* 190 * Encode an IPL to a form that can be embedded into flags of xc_broadcast 191 * or xc_unicast. 192 */ 193 unsigned int 194 xc_encode_ipl(int ipl) 195 { 196 197 switch (ipl) { 198 case IPL_SOFTSERIAL: 199 return __SHIFTIN(XC_IPL_SOFTSERIAL, XC_IPL_MASK); 200 /* IPL_SOFT* can be the same value (e.g., on sparc or mips). */ 201 #if IPL_SOFTNET != IPL_SOFTSERIAL 202 case IPL_SOFTNET: 203 return __SHIFTIN(XC_IPL_SOFTNET, XC_IPL_MASK); 204 #endif 205 #if IPL_SOFTBIO != IPL_SOFTNET 206 case IPL_SOFTBIO: 207 return __SHIFTIN(XC_IPL_SOFTBIO, XC_IPL_MASK); 208 #endif 209 #if IPL_SOFTCLOCK != IPL_SOFTBIO 210 case IPL_SOFTCLOCK: 211 return __SHIFTIN(XC_IPL_SOFTCLOCK, XC_IPL_MASK); 212 #endif 213 } 214 215 panic("Invalid IPL: %d", ipl); 216 } 217 218 /* 219 * Extract an XC_IPL from flags of xc_broadcast or xc_unicast. 220 */ 221 static inline unsigned int 222 xc_extract_ipl(unsigned int flags) 223 { 224 225 return __SHIFTOUT(flags, XC_IPL_MASK); 226 } 227 228 /* 229 * xc_init_cpu: 230 * 231 * Initialize the cross-call subsystem. Called once for each CPU 232 * in the system as they are attached. 233 */ 234 void 235 xc_init_cpu(struct cpu_info *ci) 236 { 237 static bool again = false; 238 int error __diagused; 239 240 if (!again) { 241 /* Autoconfiguration will prevent re-entry. */ 242 xc_init(); 243 again = true; 244 } 245 cv_init(&ci->ci_data.cpu_xcall, "xcall"); 246 error = kthread_create(PRI_XCALL, KTHREAD_MPSAFE, ci, xc_thread, 247 NULL, NULL, "xcall/%u", ci->ci_index); 248 KASSERT(error == 0); 249 } 250 251 /* 252 * xc_broadcast: 253 * 254 * Trigger a call on all CPUs in the system. 255 */ 256 uint64_t 257 xc_broadcast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2) 258 { 259 260 KASSERT(!cpu_intr_p()); 261 KASSERT(!cpu_softintr_p()); 262 ASSERT_SLEEPABLE(); 263 264 if (__predict_false(!mp_online)) { 265 (*func)(arg1, arg2); 266 return 0; 267 } 268 269 if ((flags & XC_HIGHPRI) != 0) { 270 int ipl = xc_extract_ipl(flags); 271 return xc_highpri(func, arg1, arg2, NULL, ipl); 272 } else { 273 return xc_lowpri(func, arg1, arg2, NULL); 274 } 275 } 276 277 static void 278 xc_nop(void *arg1, void *arg2) 279 { 280 281 return; 282 } 283 284 /* 285 * xc_barrier: 286 * 287 * Broadcast a nop to all CPUs in the system. 288 */ 289 void 290 xc_barrier(unsigned int flags) 291 { 292 uint64_t where; 293 294 where = xc_broadcast(flags, xc_nop, NULL, NULL); 295 xc_wait(where); 296 } 297 298 /* 299 * xc_unicast: 300 * 301 * Trigger a call on one CPU. 302 */ 303 uint64_t 304 xc_unicast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2, 305 struct cpu_info *ci) 306 { 307 int s; 308 309 KASSERT(ci != NULL); 310 KASSERT(!cpu_intr_p()); 311 KASSERT(!cpu_softintr_p()); 312 ASSERT_SLEEPABLE(); 313 314 if (__predict_false(!mp_online)) { 315 KASSERT(ci == curcpu()); 316 s = splsoftserial(); 317 (*func)(arg1, arg2); 318 splx(s); 319 return 0; 320 } 321 322 if ((flags & XC_HIGHPRI) != 0) { 323 int ipl = xc_extract_ipl(flags); 324 return xc_highpri(func, arg1, arg2, ci, ipl); 325 } else { 326 return xc_lowpri(func, arg1, arg2, ci); 327 } 328 } 329 330 /* 331 * xc_wait: 332 * 333 * Wait for a cross call to complete. 334 */ 335 void 336 xc_wait(uint64_t where) 337 { 338 xc_state_t *xc; 339 340 KASSERT(!cpu_intr_p()); 341 KASSERT(!cpu_softintr_p()); 342 ASSERT_SLEEPABLE(); 343 344 if (__predict_false(!mp_online)) { 345 return; 346 } 347 348 /* Determine whether it is high or low priority cross-call. */ 349 if ((where & XC_PRI_BIT) != 0) { 350 xc = &xc_high_pri; 351 where &= ~XC_PRI_BIT; 352 } else { 353 xc = &xc_low_pri; 354 } 355 356 #ifdef __HAVE_ATOMIC64_LOADSTORE 357 /* Fast path, if already done. */ 358 if (atomic_load_acquire(&xc->xc_donep) >= where) { 359 return; 360 } 361 #endif 362 363 /* Slow path: block until awoken. */ 364 mutex_enter(&xc->xc_lock); 365 while (xc->xc_donep < where) { 366 cv_wait(&xc->xc_busy, &xc->xc_lock); 367 } 368 mutex_exit(&xc->xc_lock); 369 } 370 371 /* 372 * xc_lowpri: 373 * 374 * Trigger a low priority call on one or more CPUs. 375 */ 376 static inline uint64_t 377 xc_lowpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci) 378 { 379 xc_state_t *xc = &xc_low_pri; 380 CPU_INFO_ITERATOR cii; 381 uint64_t where; 382 383 mutex_enter(&xc->xc_lock); 384 while (xc->xc_headp != xc->xc_donep) { 385 cv_wait(&xc->xc_busy, &xc->xc_lock); 386 } 387 xc->xc_arg1 = arg1; 388 xc->xc_arg2 = arg2; 389 xc->xc_func = func; 390 if (ci == NULL) { 391 xc_broadcast_ev.ev_count++; 392 for (CPU_INFO_FOREACH(cii, ci)) { 393 if ((ci->ci_schedstate.spc_flags & SPCF_RUNNING) == 0) 394 continue; 395 xc->xc_headp += 1; 396 ci->ci_data.cpu_xcall_pending = true; 397 cv_signal(&ci->ci_data.cpu_xcall); 398 } 399 } else { 400 xc_unicast_ev.ev_count++; 401 xc->xc_headp += 1; 402 ci->ci_data.cpu_xcall_pending = true; 403 cv_signal(&ci->ci_data.cpu_xcall); 404 } 405 KASSERT(xc->xc_donep < xc->xc_headp); 406 where = xc->xc_headp; 407 mutex_exit(&xc->xc_lock); 408 409 /* Return a low priority ticket. */ 410 KASSERT((where & XC_PRI_BIT) == 0); 411 return where; 412 } 413 414 /* 415 * xc_thread: 416 * 417 * One thread per-CPU to dispatch low priority calls. 418 */ 419 static void 420 xc_thread(void *cookie) 421 { 422 struct cpu_info *ci = curcpu(); 423 xc_state_t *xc = &xc_low_pri; 424 void *arg1, *arg2; 425 xcfunc_t func; 426 427 mutex_enter(&xc->xc_lock); 428 for (;;) { 429 while (!ci->ci_data.cpu_xcall_pending) { 430 if (xc->xc_headp == xc->xc_donep) { 431 cv_broadcast(&xc->xc_busy); 432 } 433 cv_wait(&ci->ci_data.cpu_xcall, &xc->xc_lock); 434 KASSERT(ci == curcpu()); 435 } 436 ci->ci_data.cpu_xcall_pending = false; 437 func = xc->xc_func; 438 arg1 = xc->xc_arg1; 439 arg2 = xc->xc_arg2; 440 mutex_exit(&xc->xc_lock); 441 442 KASSERT(func != NULL); 443 (*func)(arg1, arg2); 444 445 mutex_enter(&xc->xc_lock); 446 #ifdef __HAVE_ATOMIC64_LOADSTORE 447 atomic_store_release(&xc->xc_donep, xc->xc_donep + 1); 448 #else 449 xc->xc_donep++; 450 #endif 451 } 452 /* NOTREACHED */ 453 } 454 455 /* 456 * xc_ipi_handler: 457 * 458 * Handler of cross-call IPI. 459 */ 460 void 461 xc_ipi_handler(void) 462 { 463 xc_state_t *xc = & xc_high_pri; 464 465 KASSERT(xc->xc_ipl < __arraycount(xc_sihs)); 466 KASSERT(xc_sihs[xc->xc_ipl] != NULL); 467 468 /* Executes xc__highpri_intr() via software interrupt. */ 469 softint_schedule(xc_sihs[xc->xc_ipl]); 470 } 471 472 /* 473 * xc__highpri_intr: 474 * 475 * A software interrupt handler for high priority calls. 476 */ 477 void 478 xc__highpri_intr(void *dummy) 479 { 480 xc_state_t *xc = &xc_high_pri; 481 void *arg1, *arg2; 482 xcfunc_t func; 483 484 KASSERTMSG(!cpu_intr_p(), "high priority xcall for function %p", 485 xc->xc_func); 486 /* 487 * Lock-less fetch of function and its arguments. 488 * Safe since it cannot change at this point. 489 */ 490 func = xc->xc_func; 491 arg1 = xc->xc_arg1; 492 arg2 = xc->xc_arg2; 493 494 KASSERT(func != NULL); 495 (*func)(arg1, arg2); 496 497 /* 498 * Note the request as done, and if we have reached the head, 499 * cross-call has been processed - notify waiters, if any. 500 */ 501 mutex_enter(&xc->xc_lock); 502 KASSERT(xc->xc_donep < xc->xc_headp); 503 #ifdef __HAVE_ATOMIC64_LOADSTORE 504 atomic_store_release(&xc->xc_donep, xc->xc_donep + 1); 505 #else 506 xc->xc_donep++; 507 #endif 508 if (xc->xc_donep == xc->xc_headp) { 509 cv_broadcast(&xc->xc_busy); 510 } 511 mutex_exit(&xc->xc_lock); 512 } 513 514 /* 515 * xc_highpri: 516 * 517 * Trigger a high priority call on one or more CPUs. 518 */ 519 static inline uint64_t 520 xc_highpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci, 521 unsigned int ipl) 522 { 523 xc_state_t *xc = &xc_high_pri; 524 uint64_t where; 525 526 mutex_enter(&xc->xc_lock); 527 while (xc->xc_headp != xc->xc_donep) { 528 cv_wait(&xc->xc_busy, &xc->xc_lock); 529 } 530 xc->xc_func = func; 531 xc->xc_arg1 = arg1; 532 xc->xc_arg2 = arg2; 533 xc->xc_headp += (ci ? 1 : ncpu); 534 xc->xc_ipl = ipl; 535 where = xc->xc_headp; 536 mutex_exit(&xc->xc_lock); 537 538 /* 539 * Send the IPI once lock is released. 540 * Note: it will handle the local CPU case. 541 */ 542 543 #ifdef _RUMPKERNEL 544 rump_xc_highpri(ci); 545 #else 546 #ifdef MULTIPROCESSOR 547 kpreempt_disable(); 548 if (curcpu() == ci) { 549 /* Unicast: local CPU. */ 550 xc_ipi_handler(); 551 } else if (ci) { 552 /* Unicast: remote CPU. */ 553 xc_send_ipi(ci); 554 } else { 555 /* Broadcast: all, including local. */ 556 xc_send_ipi(NULL); 557 xc_ipi_handler(); 558 } 559 kpreempt_enable(); 560 #else 561 KASSERT(ci == NULL || curcpu() == ci); 562 xc_ipi_handler(); 563 #endif 564 #endif 565 566 /* Indicate a high priority ticket. */ 567 return (where | XC_PRI_BIT); 568 } 569