1 /* $NetBSD: subr_xcall.c,v 1.34 2020/12/22 01:57:29 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2007-2010, 2019 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran and Mindaugas Rasiukevicius. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Cross call support 34 * 35 * Background 36 * 37 * Sometimes it is necessary to modify hardware state that is tied 38 * directly to individual CPUs (such as a CPU's local timer), and 39 * these updates can not be done remotely by another CPU. The LWP 40 * requesting the update may be unable to guarantee that it will be 41 * running on the CPU where the update must occur, when the update 42 * occurs. 43 * 44 * Additionally, it's sometimes necessary to modify per-CPU software 45 * state from a remote CPU. Where these update operations are so 46 * rare or the access to the per-CPU data so frequent that the cost 47 * of using locking or atomic operations to provide coherency is 48 * prohibitive, another way must be found. 49 * 50 * Cross calls help to solve these types of problem by allowing 51 * any LWP in the system to request that an arbitrary function be 52 * executed on a specific CPU. 53 * 54 * Implementation 55 * 56 * A slow mechanism for making low priority cross calls is 57 * provided. The function to be executed runs on the remote CPU 58 * within a bound kthread. No queueing is provided, and the 59 * implementation uses global state. The function being called may 60 * block briefly on locks, but in doing so must be careful to not 61 * interfere with other cross calls in the system. The function is 62 * called with thread context and not from a soft interrupt, so it 63 * can ensure that it is not interrupting other code running on the 64 * CPU, and so has exclusive access to the CPU. Since this facility 65 * is heavyweight, it's expected that it will not be used often. 66 * 67 * Cross calls must not allocate memory, as the pagedaemon uses cross 68 * calls (and memory allocation may need to wait on the pagedaemon). 69 * 70 * A low-overhead mechanism for high priority calls (XC_HIGHPRI) is 71 * also provided. The function to be executed runs in software 72 * interrupt context at IPL_SOFTSERIAL level, and is expected to 73 * be very lightweight, e.g. avoid blocking. 74 */ 75 76 #include <sys/cdefs.h> 77 __KERNEL_RCSID(0, "$NetBSD: subr_xcall.c,v 1.34 2020/12/22 01:57:29 ad Exp $"); 78 79 #include <sys/types.h> 80 #include <sys/param.h> 81 #include <sys/xcall.h> 82 #include <sys/mutex.h> 83 #include <sys/condvar.h> 84 #include <sys/evcnt.h> 85 #include <sys/kthread.h> 86 #include <sys/cpu.h> 87 #include <sys/atomic.h> 88 89 #ifdef _RUMPKERNEL 90 #include "rump_private.h" 91 #endif 92 93 /* Cross-call state box. */ 94 typedef struct { 95 kmutex_t xc_lock; 96 kcondvar_t xc_busy; 97 xcfunc_t xc_func; 98 void * xc_arg1; 99 void * xc_arg2; 100 uint64_t xc_headp; 101 uint64_t xc_donep; 102 unsigned int xc_ipl; 103 } xc_state_t; 104 105 /* Bit indicating high (1) or low (0) priority. */ 106 #define XC_PRI_BIT (1ULL << 63) 107 108 /* Low priority xcall structures. */ 109 static xc_state_t xc_low_pri __cacheline_aligned; 110 111 /* High priority xcall structures. */ 112 static xc_state_t xc_high_pri __cacheline_aligned; 113 static void * xc_sihs[4] __cacheline_aligned; 114 115 /* Event counters. */ 116 static struct evcnt xc_unicast_ev __cacheline_aligned; 117 static struct evcnt xc_broadcast_ev __cacheline_aligned; 118 119 static void xc_init(void); 120 static void xc_thread(void *); 121 122 static inline uint64_t xc_highpri(xcfunc_t, void *, void *, struct cpu_info *, 123 unsigned int); 124 static inline uint64_t xc_lowpri(xcfunc_t, void *, void *, struct cpu_info *); 125 126 /* The internal form of IPL */ 127 #define XC_IPL_MASK 0xff00 128 /* 129 * Assign 0 to XC_IPL_SOFTSERIAL to treat IPL_SOFTSERIAL as the default value 130 * (just XC_HIGHPRI). 131 */ 132 #define XC_IPL_SOFTSERIAL 0 133 #define XC_IPL_SOFTNET 1 134 #define XC_IPL_SOFTBIO 2 135 #define XC_IPL_SOFTCLOCK 3 136 #define XC_IPL_MAX XC_IPL_SOFTCLOCK 137 138 CTASSERT(XC_IPL_MAX <= __arraycount(xc_sihs)); 139 140 /* 141 * xc_init: 142 * 143 * Initialize low and high priority cross-call structures. 144 */ 145 static void 146 xc_init(void) 147 { 148 xc_state_t *xclo = &xc_low_pri, *xchi = &xc_high_pri; 149 150 memset(xclo, 0, sizeof(xc_state_t)); 151 mutex_init(&xclo->xc_lock, MUTEX_DEFAULT, IPL_NONE); 152 cv_init(&xclo->xc_busy, "xclocv"); 153 154 memset(xchi, 0, sizeof(xc_state_t)); 155 mutex_init(&xchi->xc_lock, MUTEX_DEFAULT, IPL_SOFTSERIAL); 156 cv_init(&xchi->xc_busy, "xchicv"); 157 158 /* Set up a softint for each IPL_SOFT*. */ 159 #define SETUP_SOFTINT(xipl, sipl) do { \ 160 xc_sihs[(xipl)] = softint_establish( (sipl) | SOFTINT_MPSAFE,\ 161 xc__highpri_intr, NULL); \ 162 KASSERT(xc_sihs[(xipl)] != NULL); \ 163 } while (0) 164 165 SETUP_SOFTINT(XC_IPL_SOFTSERIAL, SOFTINT_SERIAL); 166 /* 167 * If a IPL_SOFTXXX have the same value of the previous, we don't use 168 * the IPL (see xc_encode_ipl). So we don't need to allocate a softint 169 * for it. 170 */ 171 #if IPL_SOFTNET != IPL_SOFTSERIAL 172 SETUP_SOFTINT(XC_IPL_SOFTNET, SOFTINT_NET); 173 #endif 174 #if IPL_SOFTBIO != IPL_SOFTNET 175 SETUP_SOFTINT(XC_IPL_SOFTBIO, SOFTINT_BIO); 176 #endif 177 #if IPL_SOFTCLOCK != IPL_SOFTBIO 178 SETUP_SOFTINT(XC_IPL_SOFTCLOCK, SOFTINT_CLOCK); 179 #endif 180 181 #undef SETUP_SOFTINT 182 183 evcnt_attach_dynamic(&xc_unicast_ev, EVCNT_TYPE_MISC, NULL, 184 "crosscall", "unicast"); 185 evcnt_attach_dynamic(&xc_broadcast_ev, EVCNT_TYPE_MISC, NULL, 186 "crosscall", "broadcast"); 187 } 188 189 /* 190 * Encode an IPL to a form that can be embedded into flags of xc_broadcast 191 * or xc_unicast. 192 */ 193 unsigned int 194 xc_encode_ipl(int ipl) 195 { 196 197 switch (ipl) { 198 case IPL_SOFTSERIAL: 199 return __SHIFTIN(XC_IPL_SOFTSERIAL, XC_IPL_MASK); 200 /* IPL_SOFT* can be the same value (e.g., on sparc or mips). */ 201 #if IPL_SOFTNET != IPL_SOFTSERIAL 202 case IPL_SOFTNET: 203 return __SHIFTIN(XC_IPL_SOFTNET, XC_IPL_MASK); 204 #endif 205 #if IPL_SOFTBIO != IPL_SOFTNET 206 case IPL_SOFTBIO: 207 return __SHIFTIN(XC_IPL_SOFTBIO, XC_IPL_MASK); 208 #endif 209 #if IPL_SOFTCLOCK != IPL_SOFTBIO 210 case IPL_SOFTCLOCK: 211 return __SHIFTIN(XC_IPL_SOFTCLOCK, XC_IPL_MASK); 212 #endif 213 } 214 215 panic("Invalid IPL: %d", ipl); 216 } 217 218 /* 219 * Extract an XC_IPL from flags of xc_broadcast or xc_unicast. 220 */ 221 static inline unsigned int 222 xc_extract_ipl(unsigned int flags) 223 { 224 225 return __SHIFTOUT(flags, XC_IPL_MASK); 226 } 227 228 /* 229 * xc_init_cpu: 230 * 231 * Initialize the cross-call subsystem. Called once for each CPU 232 * in the system as they are attached. 233 */ 234 void 235 xc_init_cpu(struct cpu_info *ci) 236 { 237 static bool again = false; 238 int error __diagused; 239 240 if (!again) { 241 /* Autoconfiguration will prevent re-entry. */ 242 xc_init(); 243 again = true; 244 } 245 cv_init(&ci->ci_data.cpu_xcall, "xcall"); 246 error = kthread_create(PRI_XCALL, KTHREAD_MPSAFE, ci, xc_thread, 247 NULL, NULL, "xcall/%u", ci->ci_index); 248 KASSERT(error == 0); 249 } 250 251 /* 252 * xc_broadcast: 253 * 254 * Trigger a call on all CPUs in the system. 255 */ 256 uint64_t 257 xc_broadcast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2) 258 { 259 260 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 261 ASSERT_SLEEPABLE(); 262 263 if (__predict_false(!mp_online)) { 264 (*func)(arg1, arg2); 265 return 0; 266 } 267 268 if ((flags & XC_HIGHPRI) != 0) { 269 int ipl = xc_extract_ipl(flags); 270 return xc_highpri(func, arg1, arg2, NULL, ipl); 271 } else { 272 return xc_lowpri(func, arg1, arg2, NULL); 273 } 274 } 275 276 static void 277 xc_nop(void *arg1, void *arg2) 278 { 279 280 return; 281 } 282 283 /* 284 * xc_barrier: 285 * 286 * Broadcast a nop to all CPUs in the system. 287 */ 288 void 289 xc_barrier(unsigned int flags) 290 { 291 uint64_t where; 292 293 where = xc_broadcast(flags, xc_nop, NULL, NULL); 294 xc_wait(where); 295 } 296 297 /* 298 * xc_unicast: 299 * 300 * Trigger a call on one CPU. 301 */ 302 uint64_t 303 xc_unicast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2, 304 struct cpu_info *ci) 305 { 306 int s; 307 308 KASSERT(ci != NULL); 309 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 310 ASSERT_SLEEPABLE(); 311 312 if (__predict_false(!mp_online)) { 313 KASSERT(ci == curcpu()); 314 s = splsoftserial(); 315 (*func)(arg1, arg2); 316 splx(s); 317 return 0; 318 } 319 320 if ((flags & XC_HIGHPRI) != 0) { 321 int ipl = xc_extract_ipl(flags); 322 return xc_highpri(func, arg1, arg2, ci, ipl); 323 } else { 324 return xc_lowpri(func, arg1, arg2, ci); 325 } 326 } 327 328 /* 329 * xc_wait: 330 * 331 * Wait for a cross call to complete. 332 */ 333 void 334 xc_wait(uint64_t where) 335 { 336 xc_state_t *xc; 337 338 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 339 ASSERT_SLEEPABLE(); 340 341 if (__predict_false(!mp_online)) { 342 return; 343 } 344 345 /* Determine whether it is high or low priority cross-call. */ 346 if ((where & XC_PRI_BIT) != 0) { 347 xc = &xc_high_pri; 348 where &= ~XC_PRI_BIT; 349 } else { 350 xc = &xc_low_pri; 351 } 352 353 #ifdef __HAVE_ATOMIC64_LOADSTORE 354 /* Fast path, if already done. */ 355 if (atomic_load_acquire(&xc->xc_donep) >= where) { 356 return; 357 } 358 #endif 359 360 /* Slow path: block until awoken. */ 361 mutex_enter(&xc->xc_lock); 362 while (xc->xc_donep < where) { 363 cv_wait(&xc->xc_busy, &xc->xc_lock); 364 } 365 mutex_exit(&xc->xc_lock); 366 } 367 368 /* 369 * xc_lowpri: 370 * 371 * Trigger a low priority call on one or more CPUs. 372 */ 373 static inline uint64_t 374 xc_lowpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci) 375 { 376 xc_state_t *xc = &xc_low_pri; 377 CPU_INFO_ITERATOR cii; 378 uint64_t where; 379 380 mutex_enter(&xc->xc_lock); 381 while (xc->xc_headp != xc->xc_donep) { 382 cv_wait(&xc->xc_busy, &xc->xc_lock); 383 } 384 xc->xc_arg1 = arg1; 385 xc->xc_arg2 = arg2; 386 xc->xc_func = func; 387 if (ci == NULL) { 388 xc_broadcast_ev.ev_count++; 389 for (CPU_INFO_FOREACH(cii, ci)) { 390 if ((ci->ci_schedstate.spc_flags & SPCF_RUNNING) == 0) 391 continue; 392 xc->xc_headp += 1; 393 ci->ci_data.cpu_xcall_pending = true; 394 cv_signal(&ci->ci_data.cpu_xcall); 395 } 396 } else { 397 xc_unicast_ev.ev_count++; 398 xc->xc_headp += 1; 399 ci->ci_data.cpu_xcall_pending = true; 400 cv_signal(&ci->ci_data.cpu_xcall); 401 } 402 KASSERT(xc->xc_donep < xc->xc_headp); 403 where = xc->xc_headp; 404 mutex_exit(&xc->xc_lock); 405 406 /* Return a low priority ticket. */ 407 KASSERT((where & XC_PRI_BIT) == 0); 408 return where; 409 } 410 411 /* 412 * xc_thread: 413 * 414 * One thread per-CPU to dispatch low priority calls. 415 */ 416 static void 417 xc_thread(void *cookie) 418 { 419 struct cpu_info *ci = curcpu(); 420 xc_state_t *xc = &xc_low_pri; 421 void *arg1, *arg2; 422 xcfunc_t func; 423 424 mutex_enter(&xc->xc_lock); 425 for (;;) { 426 while (!ci->ci_data.cpu_xcall_pending) { 427 if (xc->xc_headp == xc->xc_donep) { 428 cv_broadcast(&xc->xc_busy); 429 } 430 cv_wait(&ci->ci_data.cpu_xcall, &xc->xc_lock); 431 KASSERT(ci == curcpu()); 432 } 433 ci->ci_data.cpu_xcall_pending = false; 434 func = xc->xc_func; 435 arg1 = xc->xc_arg1; 436 arg2 = xc->xc_arg2; 437 mutex_exit(&xc->xc_lock); 438 439 KASSERT(func != NULL); 440 (*func)(arg1, arg2); 441 442 mutex_enter(&xc->xc_lock); 443 #ifdef __HAVE_ATOMIC64_LOADSTORE 444 atomic_store_release(&xc->xc_donep, xc->xc_donep + 1); 445 #else 446 xc->xc_donep++; 447 #endif 448 } 449 /* NOTREACHED */ 450 } 451 452 /* 453 * xc_ipi_handler: 454 * 455 * Handler of cross-call IPI. 456 */ 457 void 458 xc_ipi_handler(void) 459 { 460 xc_state_t *xc = & xc_high_pri; 461 462 KASSERT(xc->xc_ipl < __arraycount(xc_sihs)); 463 KASSERT(xc_sihs[xc->xc_ipl] != NULL); 464 465 /* Executes xc__highpri_intr() via software interrupt. */ 466 softint_schedule(xc_sihs[xc->xc_ipl]); 467 } 468 469 /* 470 * xc__highpri_intr: 471 * 472 * A software interrupt handler for high priority calls. 473 */ 474 void 475 xc__highpri_intr(void *dummy) 476 { 477 xc_state_t *xc = &xc_high_pri; 478 void *arg1, *arg2; 479 xcfunc_t func; 480 481 KASSERTMSG(!cpu_intr_p(), "high priority xcall for function %p", 482 xc->xc_func); 483 /* 484 * Lock-less fetch of function and its arguments. 485 * Safe since it cannot change at this point. 486 */ 487 func = xc->xc_func; 488 arg1 = xc->xc_arg1; 489 arg2 = xc->xc_arg2; 490 491 KASSERT(func != NULL); 492 (*func)(arg1, arg2); 493 494 /* 495 * Note the request as done, and if we have reached the head, 496 * cross-call has been processed - notify waiters, if any. 497 */ 498 mutex_enter(&xc->xc_lock); 499 KASSERT(xc->xc_donep < xc->xc_headp); 500 #ifdef __HAVE_ATOMIC64_LOADSTORE 501 atomic_store_release(&xc->xc_donep, xc->xc_donep + 1); 502 #else 503 xc->xc_donep++; 504 #endif 505 if (xc->xc_donep == xc->xc_headp) { 506 cv_broadcast(&xc->xc_busy); 507 } 508 mutex_exit(&xc->xc_lock); 509 } 510 511 /* 512 * xc_highpri: 513 * 514 * Trigger a high priority call on one or more CPUs. 515 */ 516 static inline uint64_t 517 xc_highpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci, 518 unsigned int ipl) 519 { 520 xc_state_t *xc = &xc_high_pri; 521 uint64_t where; 522 523 mutex_enter(&xc->xc_lock); 524 while (xc->xc_headp != xc->xc_donep) { 525 cv_wait(&xc->xc_busy, &xc->xc_lock); 526 } 527 xc->xc_func = func; 528 xc->xc_arg1 = arg1; 529 xc->xc_arg2 = arg2; 530 xc->xc_headp += (ci ? 1 : ncpu); 531 xc->xc_ipl = ipl; 532 where = xc->xc_headp; 533 mutex_exit(&xc->xc_lock); 534 535 /* 536 * Send the IPI once lock is released. 537 * Note: it will handle the local CPU case. 538 */ 539 540 #ifdef _RUMPKERNEL 541 rump_xc_highpri(ci); 542 #else 543 #ifdef MULTIPROCESSOR 544 kpreempt_disable(); 545 if (curcpu() == ci) { 546 /* Unicast: local CPU. */ 547 xc_ipi_handler(); 548 } else if (ci) { 549 /* Unicast: remote CPU. */ 550 xc_send_ipi(ci); 551 } else { 552 /* Broadcast: all, including local. */ 553 xc_send_ipi(NULL); 554 xc_ipi_handler(); 555 } 556 kpreempt_enable(); 557 #else 558 KASSERT(ci == NULL || curcpu() == ci); 559 xc_ipi_handler(); 560 #endif 561 #endif 562 563 /* Indicate a high priority ticket. */ 564 return (where | XC_PRI_BIT); 565 } 566