xref: /netbsd-src/sys/kern/subr_vmem.c (revision ead2c0eee3abe6bcf08c63bfc78eb8a93a579b2b)
1 /*	$NetBSD: subr_vmem.c,v 1.72 2012/02/10 17:35:47 para Exp $	*/
2 
3 /*-
4  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * reference:
31  * -	Magazines and Vmem: Extending the Slab Allocator
32  *	to Many CPUs and Arbitrary Resources
33  *	http://www.usenix.org/event/usenix01/bonwick.html
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.72 2012/02/10 17:35:47 para Exp $");
38 
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #define	QCACHE
42 #endif /* defined(_KERNEL) */
43 
44 #include <sys/param.h>
45 #include <sys/hash.h>
46 #include <sys/queue.h>
47 #include <sys/bitops.h>
48 
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/kernel.h>	/* hz */
52 #include <sys/callout.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66 
67 
68 #if defined(_KERNEL)
69 #include <sys/evcnt.h>
70 #define VMEM_EVCNT_DEFINE(name) \
71 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72     "vmemev", #name); \
73 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74 #define VMEM_EVCNT_INCR(ev)	vmem_evcnt_##ev.ev_count++
75 #define VMEM_EVCNT_DECR(ev)	vmem_evcnt_##ev.ev_count--
76 
77 VMEM_EVCNT_DEFINE(bt_pages)
78 VMEM_EVCNT_DEFINE(bt_count)
79 VMEM_EVCNT_DEFINE(bt_inuse)
80 
81 #define	LOCK_DECL(name)		\
82     kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83 
84 #define CONDVAR_DECL(name)	\
85     kcondvar_t name;
86 
87 #else /* defined(_KERNEL) */
88 #include <stdio.h>
89 #include <errno.h>
90 #include <assert.h>
91 #include <stdlib.h>
92 #include <string.h>
93 
94 #define VMEM_EVCNT_INCR(ev)	/* nothing */
95 #define VMEM_EVCNT_DECR(ev)	/* nothing */
96 
97 #define	UNITTEST
98 #define	KASSERT(a)		assert(a)
99 #define	LOCK_DECL(name)		/* nothing */
100 #define	CONDVAR_DECL(name)	/* nothing */
101 #define	VMEM_CONDVAR_INIT(vm, wchan)	/* nothing */
102 #define	VMEM_CONDVAR_BROADCAST(vm)	/* nothing */
103 #define	mutex_init(a, b, c)	/* nothing */
104 #define	mutex_destroy(a)	/* nothing */
105 #define	mutex_enter(a)		/* nothing */
106 #define	mutex_tryenter(a)	true
107 #define	mutex_exit(a)		/* nothing */
108 #define	mutex_owned(a)		/* nothing */
109 #define	ASSERT_SLEEPABLE()	/* nothing */
110 #define	panic(...)		printf(__VA_ARGS__); abort()
111 #endif /* defined(_KERNEL) */
112 
113 struct vmem;
114 struct vmem_btag;
115 
116 #if defined(VMEM_SANITY)
117 static void vmem_check(vmem_t *);
118 #else /* defined(VMEM_SANITY) */
119 #define vmem_check(vm)	/* nothing */
120 #endif /* defined(VMEM_SANITY) */
121 
122 #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
123 
124 #define	VMEM_HASHSIZE_MIN	1	/* XXX */
125 #define	VMEM_HASHSIZE_MAX	65536	/* XXX */
126 #define	VMEM_HASHSIZE_INIT	1
127 
128 #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
129 
130 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
131 LIST_HEAD(vmem_freelist, vmem_btag);
132 LIST_HEAD(vmem_hashlist, vmem_btag);
133 
134 #if defined(QCACHE)
135 #define	VMEM_QCACHE_IDX_MAX	32
136 
137 #define	QC_NAME_MAX	16
138 
139 struct qcache {
140 	pool_cache_t qc_cache;
141 	vmem_t *qc_vmem;
142 	char qc_name[QC_NAME_MAX];
143 };
144 typedef struct qcache qcache_t;
145 #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
146 #endif /* defined(QCACHE) */
147 
148 #define	VMEM_NAME_MAX	16
149 
150 /* vmem arena */
151 struct vmem {
152 	CONDVAR_DECL(vm_cv);
153 	LOCK_DECL(vm_lock);
154 	vm_flag_t vm_flags;
155 	vmem_import_t *vm_importfn;
156 	vmem_release_t *vm_releasefn;
157 	size_t vm_nfreetags;
158 	LIST_HEAD(, vmem_btag) vm_freetags;
159 	void *vm_arg;
160 	struct vmem_seglist vm_seglist;
161 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
162 	size_t vm_hashsize;
163 	size_t vm_nbusytag;
164 	struct vmem_hashlist *vm_hashlist;
165 	struct vmem_hashlist vm_hash0;
166 	size_t vm_quantum_mask;
167 	int vm_quantum_shift;
168 	size_t vm_size;
169 	size_t vm_inuse;
170 	char vm_name[VMEM_NAME_MAX+1];
171 	LIST_ENTRY(vmem) vm_alllist;
172 
173 #if defined(QCACHE)
174 	/* quantum cache */
175 	size_t vm_qcache_max;
176 	struct pool_allocator vm_qcache_allocator;
177 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
178 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
179 #endif /* defined(QCACHE) */
180 };
181 
182 #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
183 #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
184 #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
185 #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
186 #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
187 #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
188 
189 #if defined(_KERNEL)
190 #define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
191 #define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
192 #define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
193 #define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
194 #endif /* defined(_KERNEL) */
195 
196 /* boundary tag */
197 struct vmem_btag {
198 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
199 	union {
200 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
201 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
202 	} bt_u;
203 #define	bt_hashlist	bt_u.u_hashlist
204 #define	bt_freelist	bt_u.u_freelist
205 	vmem_addr_t bt_start;
206 	vmem_size_t bt_size;
207 	int bt_type;
208 };
209 
210 #define	BT_TYPE_SPAN		1
211 #define	BT_TYPE_SPAN_STATIC	2
212 #define	BT_TYPE_FREE		3
213 #define	BT_TYPE_BUSY		4
214 #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
215 
216 #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
217 
218 typedef struct vmem_btag bt_t;
219 
220 #if defined(_KERNEL)
221 static kmutex_t vmem_list_lock;
222 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
223 #endif /* defined(_KERNEL) */
224 
225 /* ---- misc */
226 
227 #define	VMEM_ALIGNUP(addr, align) \
228 	(-(-(addr) & -(align)))
229 
230 #define	VMEM_CROSS_P(addr1, addr2, boundary) \
231 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
232 
233 #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
234 #define	SIZE2ORDER(size)	((int)ilog2(size))
235 
236 #if !defined(_KERNEL)
237 #define	xmalloc(sz, flags)	malloc(sz)
238 #define	xfree(p, sz)		free(p)
239 #define	bt_alloc(vm, flags)	malloc(sizeof(bt_t))
240 #define	bt_free(vm, bt)		free(bt)
241 #else /* defined(_KERNEL) */
242 
243 #define	xmalloc(sz, flags) \
244     kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
245 #define	xfree(p, sz)		kmem_free(p, sz);
246 
247 #define BT_MINRESERVE 6
248 #define BT_MAXFREE 64
249 #define STATIC_VMEM_COUNT 5
250 #define STATIC_BT_COUNT 200
251 #define STATIC_QC_POOL_COUNT (VMEM_QCACHE_IDX_MAX + 1)
252 
253 static struct vmem static_vmems[STATIC_VMEM_COUNT];
254 static int static_vmem_count = STATIC_VMEM_COUNT;
255 
256 static struct vmem_btag static_bts[STATIC_BT_COUNT];
257 static int static_bt_count = STATIC_BT_COUNT;
258 
259 static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
260 static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
261 
262 vmem_t *kmem_va_meta_arena;
263 vmem_t *kmem_meta_arena;
264 
265 static kmutex_t vmem_btag_lock;
266 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
267 static size_t vmem_btag_freelist_count = 0;
268 static size_t vmem_btag_count = STATIC_BT_COUNT;
269 
270 /* ---- boundary tag */
271 
272 #define	BT_PER_PAGE	(PAGE_SIZE / sizeof(bt_t))
273 
274 static int bt_refill(vmem_t *vm, vm_flag_t flags);
275 
276 static int
277 bt_refillglobal(vm_flag_t flags)
278 {
279 	vmem_addr_t va;
280 	bt_t *btp;
281 	bt_t *bt;
282 	int i;
283 
284 	mutex_enter(&vmem_btag_lock);
285 	if (vmem_btag_freelist_count > (BT_MINRESERVE * 16)) {
286 		mutex_exit(&vmem_btag_lock);
287 		return 0;
288 	}
289 
290 	if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
291 	    (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
292 		mutex_exit(&vmem_btag_lock);
293 		return ENOMEM;
294 	}
295 	VMEM_EVCNT_INCR(bt_pages);
296 
297 	btp = (void *) va;
298 	for (i = 0; i < (BT_PER_PAGE); i++) {
299 		bt = btp;
300 		memset(bt, 0, sizeof(*bt));
301 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
302 		    bt_freelist);
303 		vmem_btag_freelist_count++;
304 		vmem_btag_count++;
305 		VMEM_EVCNT_INCR(bt_count);
306 		btp++;
307 	}
308 	mutex_exit(&vmem_btag_lock);
309 
310 	bt_refill(kmem_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
311 	bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
312 	bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
313 
314 	return 0;
315 }
316 
317 static int
318 bt_refill(vmem_t *vm, vm_flag_t flags)
319 {
320 	bt_t *bt;
321 
322 	bt_refillglobal(flags);
323 
324 	VMEM_LOCK(vm);
325 	mutex_enter(&vmem_btag_lock);
326 	while (!LIST_EMPTY(&vmem_btag_freelist) &&
327 	    vm->vm_nfreetags < (BT_MINRESERVE * 2)) {
328 		bt = LIST_FIRST(&vmem_btag_freelist);
329 		LIST_REMOVE(bt, bt_freelist);
330 		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
331 		vm->vm_nfreetags++;
332 		vmem_btag_freelist_count--;
333 	}
334 	mutex_exit(&vmem_btag_lock);
335 
336 	if (vm->vm_nfreetags == 0) {
337 		VMEM_UNLOCK(vm);
338 		return ENOMEM;
339 	}
340 	VMEM_UNLOCK(vm);
341 
342 	return 0;
343 }
344 
345 static inline bt_t *
346 bt_alloc(vmem_t *vm, vm_flag_t flags)
347 {
348 	bt_t *bt;
349 again:
350 	VMEM_LOCK(vm);
351 	if (vm->vm_nfreetags < BT_MINRESERVE &&
352 	    (flags & VM_POPULATING) == 0) {
353 		VMEM_UNLOCK(vm);
354 		if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
355 			return NULL;
356 		}
357 		goto again;
358 	}
359 	bt = LIST_FIRST(&vm->vm_freetags);
360 	LIST_REMOVE(bt, bt_freelist);
361 	vm->vm_nfreetags--;
362 	VMEM_UNLOCK(vm);
363 	VMEM_EVCNT_INCR(bt_inuse);
364 
365 	return bt;
366 }
367 
368 static inline void
369 bt_free(vmem_t *vm, bt_t *bt)
370 {
371 
372 	VMEM_LOCK(vm);
373 	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
374 	vm->vm_nfreetags++;
375 	while (vm->vm_nfreetags > BT_MAXFREE) {
376 		bt = LIST_FIRST(&vm->vm_freetags);
377 		LIST_REMOVE(bt, bt_freelist);
378 		vm->vm_nfreetags--;
379 		mutex_enter(&vmem_btag_lock);
380 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
381 		vmem_btag_freelist_count++;
382 		mutex_exit(&vmem_btag_lock);
383 	}
384 	VMEM_UNLOCK(vm);
385 	VMEM_EVCNT_DECR(bt_inuse);
386 }
387 
388 #endif	/* defined(_KERNEL) */
389 
390 /*
391  * freelist[0] ... [1, 1]
392  * freelist[1] ... [2, 3]
393  * freelist[2] ... [4, 7]
394  * freelist[3] ... [8, 15]
395  *  :
396  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
397  *  :
398  */
399 
400 static struct vmem_freelist *
401 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
402 {
403 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
404 	const int idx = SIZE2ORDER(qsize);
405 
406 	KASSERT(size != 0 && qsize != 0);
407 	KASSERT((size & vm->vm_quantum_mask) == 0);
408 	KASSERT(idx >= 0);
409 	KASSERT(idx < VMEM_MAXORDER);
410 
411 	return &vm->vm_freelist[idx];
412 }
413 
414 /*
415  * bt_freehead_toalloc: return the freelist for the given size and allocation
416  * strategy.
417  *
418  * for VM_INSTANTFIT, return the list in which any blocks are large enough
419  * for the requested size.  otherwise, return the list which can have blocks
420  * large enough for the requested size.
421  */
422 
423 static struct vmem_freelist *
424 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
425 {
426 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
427 	int idx = SIZE2ORDER(qsize);
428 
429 	KASSERT(size != 0 && qsize != 0);
430 	KASSERT((size & vm->vm_quantum_mask) == 0);
431 
432 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
433 		idx++;
434 		/* check too large request? */
435 	}
436 	KASSERT(idx >= 0);
437 	KASSERT(idx < VMEM_MAXORDER);
438 
439 	return &vm->vm_freelist[idx];
440 }
441 
442 /* ---- boundary tag hash */
443 
444 static struct vmem_hashlist *
445 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
446 {
447 	struct vmem_hashlist *list;
448 	unsigned int hash;
449 
450 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
451 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
452 
453 	return list;
454 }
455 
456 static bt_t *
457 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
458 {
459 	struct vmem_hashlist *list;
460 	bt_t *bt;
461 
462 	list = bt_hashhead(vm, addr);
463 	LIST_FOREACH(bt, list, bt_hashlist) {
464 		if (bt->bt_start == addr) {
465 			break;
466 		}
467 	}
468 
469 	return bt;
470 }
471 
472 static void
473 bt_rembusy(vmem_t *vm, bt_t *bt)
474 {
475 
476 	KASSERT(vm->vm_nbusytag > 0);
477 	vm->vm_nbusytag--;
478 	LIST_REMOVE(bt, bt_hashlist);
479 }
480 
481 static void
482 bt_insbusy(vmem_t *vm, bt_t *bt)
483 {
484 	struct vmem_hashlist *list;
485 
486 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
487 
488 	list = bt_hashhead(vm, bt->bt_start);
489 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
490 	vm->vm_nbusytag++;
491 }
492 
493 /* ---- boundary tag list */
494 
495 static void
496 bt_remseg(vmem_t *vm, bt_t *bt)
497 {
498 
499 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
500 }
501 
502 static void
503 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
504 {
505 
506 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
507 }
508 
509 static void
510 bt_insseg_tail(vmem_t *vm, bt_t *bt)
511 {
512 
513 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
514 }
515 
516 static void
517 bt_remfree(vmem_t *vm, bt_t *bt)
518 {
519 
520 	KASSERT(bt->bt_type == BT_TYPE_FREE);
521 
522 	LIST_REMOVE(bt, bt_freelist);
523 }
524 
525 static void
526 bt_insfree(vmem_t *vm, bt_t *bt)
527 {
528 	struct vmem_freelist *list;
529 
530 	list = bt_freehead_tofree(vm, bt->bt_size);
531 	LIST_INSERT_HEAD(list, bt, bt_freelist);
532 }
533 
534 /* ---- vmem internal functions */
535 
536 #if defined(QCACHE)
537 static inline vm_flag_t
538 prf_to_vmf(int prflags)
539 {
540 	vm_flag_t vmflags;
541 
542 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
543 	if ((prflags & PR_WAITOK) != 0) {
544 		vmflags = VM_SLEEP;
545 	} else {
546 		vmflags = VM_NOSLEEP;
547 	}
548 	return vmflags;
549 }
550 
551 static inline int
552 vmf_to_prf(vm_flag_t vmflags)
553 {
554 	int prflags;
555 
556 	if ((vmflags & VM_SLEEP) != 0) {
557 		prflags = PR_WAITOK;
558 	} else {
559 		prflags = PR_NOWAIT;
560 	}
561 	return prflags;
562 }
563 
564 static size_t
565 qc_poolpage_size(size_t qcache_max)
566 {
567 	int i;
568 
569 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
570 		/* nothing */
571 	}
572 	return ORDER2SIZE(i);
573 }
574 
575 static void *
576 qc_poolpage_alloc(struct pool *pool, int prflags)
577 {
578 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
579 	vmem_t *vm = qc->qc_vmem;
580 	vmem_addr_t addr;
581 
582 	if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
583 	    prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
584 		return NULL;
585 	return (void *)addr;
586 }
587 
588 static void
589 qc_poolpage_free(struct pool *pool, void *addr)
590 {
591 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
592 	vmem_t *vm = qc->qc_vmem;
593 
594 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
595 }
596 
597 static void
598 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
599 {
600 	qcache_t *prevqc;
601 	struct pool_allocator *pa;
602 	int qcache_idx_max;
603 	int i;
604 
605 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
606 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
607 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
608 	}
609 	vm->vm_qcache_max = qcache_max;
610 	pa = &vm->vm_qcache_allocator;
611 	memset(pa, 0, sizeof(*pa));
612 	pa->pa_alloc = qc_poolpage_alloc;
613 	pa->pa_free = qc_poolpage_free;
614 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
615 
616 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
617 	prevqc = NULL;
618 	for (i = qcache_idx_max; i > 0; i--) {
619 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
620 		size_t size = i << vm->vm_quantum_shift;
621 		pool_cache_t pc;
622 
623 		qc->qc_vmem = vm;
624 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
625 		    vm->vm_name, size);
626 
627 		if (vm->vm_flags & VM_BOOTSTRAP) {
628 			KASSERT(static_qc_pool_count > 0);
629 			pc = &static_qc_pools[--static_qc_pool_count];
630 			pool_cache_bootstrap(pc, size,
631 			    ORDER2SIZE(vm->vm_quantum_shift), 0,
632 			    PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
633 			    qc->qc_name, pa, ipl, NULL, NULL, NULL);
634 		} else {
635 			pc = pool_cache_init(size,
636 			    ORDER2SIZE(vm->vm_quantum_shift), 0,
637 			    PR_NOALIGN | PR_NOTOUCH /* XXX */,
638 			    qc->qc_name, pa, ipl, NULL, NULL, NULL);
639 		}
640 		qc->qc_cache = pc;
641 		KASSERT(qc->qc_cache != NULL);	/* XXX */
642 		if (prevqc != NULL &&
643 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
644 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
645 			if (vm->vm_flags & VM_BOOTSTRAP) {
646 				pool_cache_bootstrap_destroy(pc);
647 				//static_qc_pool_count++;
648 			} else {
649 				pool_cache_destroy(qc->qc_cache);
650 			}
651 			vm->vm_qcache[i - 1] = prevqc;
652 			continue;
653 		}
654 		qc->qc_cache->pc_pool.pr_qcache = qc;
655 		vm->vm_qcache[i - 1] = qc;
656 		prevqc = qc;
657 	}
658 }
659 
660 static void
661 qc_destroy(vmem_t *vm)
662 {
663 	const qcache_t *prevqc;
664 	int i;
665 	int qcache_idx_max;
666 
667 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
668 	prevqc = NULL;
669 	for (i = 0; i < qcache_idx_max; i++) {
670 		qcache_t *qc = vm->vm_qcache[i];
671 
672 		if (prevqc == qc) {
673 			continue;
674 		}
675 		if (vm->vm_flags & VM_BOOTSTRAP) {
676 			pool_cache_bootstrap_destroy(qc->qc_cache);
677 		} else {
678 			pool_cache_destroy(qc->qc_cache);
679 		}
680 		prevqc = qc;
681 	}
682 }
683 #endif
684 
685 #if defined(_KERNEL)
686 void
687 vmem_bootstrap(void)
688 {
689 
690 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
691 	mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
692 
693 	while (static_bt_count-- > 0) {
694 		bt_t *bt = &static_bts[static_bt_count];
695 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
696 		VMEM_EVCNT_INCR(bt_count);
697 		vmem_btag_freelist_count++;
698 	}
699 }
700 
701 void
702 vmem_init(vmem_t *vm)
703 {
704 
705 	kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
706 	    vmem_alloc, vmem_free, vm,
707 	    0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
708 	    IPL_VM);
709 
710 	kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
711 	    uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
712 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
713 }
714 #endif /* defined(_KERNEL) */
715 
716 static int
717 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
718     int spanbttype)
719 {
720 	bt_t *btspan;
721 	bt_t *btfree;
722 
723 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
724 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
725 	KASSERT(spanbttype == BT_TYPE_SPAN ||
726 	    spanbttype == BT_TYPE_SPAN_STATIC);
727 
728 	btspan = bt_alloc(vm, flags);
729 	if (btspan == NULL) {
730 		return ENOMEM;
731 	}
732 	btfree = bt_alloc(vm, flags);
733 	if (btfree == NULL) {
734 		bt_free(vm, btspan);
735 		return ENOMEM;
736 	}
737 
738 	btspan->bt_type = spanbttype;
739 	btspan->bt_start = addr;
740 	btspan->bt_size = size;
741 
742 	btfree->bt_type = BT_TYPE_FREE;
743 	btfree->bt_start = addr;
744 	btfree->bt_size = size;
745 
746 	VMEM_LOCK(vm);
747 	bt_insseg_tail(vm, btspan);
748 	bt_insseg(vm, btfree, btspan);
749 	bt_insfree(vm, btfree);
750 	vm->vm_size += size;
751 	VMEM_UNLOCK(vm);
752 
753 	return 0;
754 }
755 
756 static void
757 vmem_destroy1(vmem_t *vm)
758 {
759 
760 #if defined(QCACHE)
761 	qc_destroy(vm);
762 #endif /* defined(QCACHE) */
763 	if (vm->vm_hashlist != NULL) {
764 		int i;
765 
766 		for (i = 0; i < vm->vm_hashsize; i++) {
767 			bt_t *bt;
768 
769 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
770 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
771 				bt_free(vm, bt);
772 			}
773 		}
774 		if (vm->vm_hashlist != &vm->vm_hash0) {
775 			xfree(vm->vm_hashlist,
776 			    sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
777 		}
778 	}
779 
780 	while (vm->vm_nfreetags > 0) {
781 		bt_t *bt = LIST_FIRST(&vm->vm_freetags);
782 		LIST_REMOVE(bt, bt_freelist);
783 		vm->vm_nfreetags--;
784 		mutex_enter(&vmem_btag_lock);
785 #if defined (_KERNEL)
786 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
787 		vmem_btag_freelist_count++;
788 #endif /* defined(_KERNEL) */
789 		mutex_exit(&vmem_btag_lock);
790 	}
791 
792 	VMEM_LOCK_DESTROY(vm);
793 	xfree(vm, sizeof(*vm));
794 }
795 
796 static int
797 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
798 {
799 	vmem_addr_t addr;
800 	int rc;
801 
802 	if (vm->vm_importfn == NULL) {
803 		return EINVAL;
804 	}
805 
806 	if (vm->vm_flags & VM_LARGEIMPORT) {
807 		size *= 8;
808 	}
809 
810 	if (vm->vm_flags & VM_XIMPORT) {
811 		rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
812 		    &size, flags, &addr);
813 	} else {
814 		rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
815 	}
816 	if (rc) {
817 		return ENOMEM;
818 	}
819 
820 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
821 		(*vm->vm_releasefn)(vm->vm_arg, addr, size);
822 		return ENOMEM;
823 	}
824 
825 	return 0;
826 }
827 
828 static int
829 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
830 {
831 	bt_t *bt;
832 	int i;
833 	struct vmem_hashlist *newhashlist;
834 	struct vmem_hashlist *oldhashlist;
835 	size_t oldhashsize;
836 
837 	KASSERT(newhashsize > 0);
838 
839 	newhashlist =
840 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
841 	if (newhashlist == NULL) {
842 		return ENOMEM;
843 	}
844 	for (i = 0; i < newhashsize; i++) {
845 		LIST_INIT(&newhashlist[i]);
846 	}
847 
848 	if (!VMEM_TRYLOCK(vm)) {
849 		xfree(newhashlist,
850 		    sizeof(struct vmem_hashlist *) * newhashsize);
851 		return EBUSY;
852 	}
853 	oldhashlist = vm->vm_hashlist;
854 	oldhashsize = vm->vm_hashsize;
855 	vm->vm_hashlist = newhashlist;
856 	vm->vm_hashsize = newhashsize;
857 	if (oldhashlist == NULL) {
858 		VMEM_UNLOCK(vm);
859 		return 0;
860 	}
861 	for (i = 0; i < oldhashsize; i++) {
862 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
863 			bt_rembusy(vm, bt); /* XXX */
864 			bt_insbusy(vm, bt);
865 		}
866 	}
867 	VMEM_UNLOCK(vm);
868 
869 	if (oldhashlist != &vm->vm_hash0) {
870 		xfree(oldhashlist,
871 		    sizeof(struct vmem_hashlist *) * oldhashsize);
872 	}
873 
874 	return 0;
875 }
876 
877 /*
878  * vmem_fit: check if a bt can satisfy the given restrictions.
879  *
880  * it's a caller's responsibility to ensure the region is big enough
881  * before calling us.
882  */
883 
884 static int
885 vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
886     vmem_size_t phase, vmem_size_t nocross,
887     vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
888 {
889 	vmem_addr_t start;
890 	vmem_addr_t end;
891 
892 	KASSERT(size > 0);
893 	KASSERT(bt->bt_size >= size); /* caller's responsibility */
894 
895 	/*
896 	 * XXX assumption: vmem_addr_t and vmem_size_t are
897 	 * unsigned integer of the same size.
898 	 */
899 
900 	start = bt->bt_start;
901 	if (start < minaddr) {
902 		start = minaddr;
903 	}
904 	end = BT_END(bt);
905 	if (end > maxaddr) {
906 		end = maxaddr;
907 	}
908 	if (start > end) {
909 		return ENOMEM;
910 	}
911 
912 	start = VMEM_ALIGNUP(start - phase, align) + phase;
913 	if (start < bt->bt_start) {
914 		start += align;
915 	}
916 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
917 		KASSERT(align < nocross);
918 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
919 	}
920 	if (start <= end && end - start >= size - 1) {
921 		KASSERT((start & (align - 1)) == phase);
922 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
923 		KASSERT(minaddr <= start);
924 		KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
925 		KASSERT(bt->bt_start <= start);
926 		KASSERT(BT_END(bt) - start >= size - 1);
927 		*addrp = start;
928 		return 0;
929 	}
930 	return ENOMEM;
931 }
932 
933 
934 /*
935  * vmem_create_internal: creates a vmem arena.
936  */
937 
938 static vmem_t *
939 vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
940     vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
941     void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
942 {
943 	vmem_t *vm = NULL;
944 	int i;
945 
946 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
947 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
948 	KASSERT(quantum > 0);
949 
950 	if (flags & VM_BOOTSTRAP) {
951 #if defined(_KERNEL)
952 		KASSERT(static_vmem_count > 0);
953 		vm = &static_vmems[--static_vmem_count];
954 #endif /* defined(_KERNEL) */
955 	} else {
956 		vm = xmalloc(sizeof(*vm), flags);
957 	}
958 	if (vm == NULL) {
959 		return NULL;
960 	}
961 
962 	VMEM_CONDVAR_INIT(vm, "vmem");
963 	VMEM_LOCK_INIT(vm, ipl);
964 	vm->vm_flags = flags;
965 	vm->vm_nfreetags = 0;
966 	LIST_INIT(&vm->vm_freetags);
967 	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
968 	vm->vm_quantum_mask = quantum - 1;
969 	vm->vm_quantum_shift = SIZE2ORDER(quantum);
970 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
971 	vm->vm_importfn = importfn;
972 	vm->vm_releasefn = releasefn;
973 	vm->vm_arg = arg;
974 	vm->vm_nbusytag = 0;
975 	vm->vm_size = 0;
976 	vm->vm_inuse = 0;
977 #if defined(QCACHE)
978 	qc_init(vm, qcache_max, ipl);
979 #endif /* defined(QCACHE) */
980 
981 	CIRCLEQ_INIT(&vm->vm_seglist);
982 	for (i = 0; i < VMEM_MAXORDER; i++) {
983 		LIST_INIT(&vm->vm_freelist[i]);
984 	}
985 	vm->vm_hashlist = NULL;
986 	if (flags & VM_BOOTSTRAP) {
987 		vm->vm_hashsize = 1;
988 		vm->vm_hashlist = &vm->vm_hash0;
989 	} else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
990 		vmem_destroy1(vm);
991 		return NULL;
992 	}
993 
994 	if (size != 0) {
995 		if (vmem_add(vm, base, size, flags) != 0) {
996 			vmem_destroy1(vm);
997 			return NULL;
998 		}
999 	}
1000 
1001 #if defined(_KERNEL)
1002 	if (flags & VM_BOOTSTRAP) {
1003 		bt_refill(vm, VM_NOSLEEP);
1004 	}
1005 
1006 	mutex_enter(&vmem_list_lock);
1007 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1008 	mutex_exit(&vmem_list_lock);
1009 #endif /* defined(_KERNEL) */
1010 
1011 	return vm;
1012 }
1013 
1014 
1015 /* ---- vmem API */
1016 
1017 /*
1018  * vmem_create: create an arena.
1019  *
1020  * => must not be called from interrupt context.
1021  */
1022 
1023 vmem_t *
1024 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1025     vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1026     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1027 {
1028 
1029 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1030 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1031 	KASSERT((flags & (VM_XIMPORT)) == 0);
1032 
1033 	return vmem_create_internal(name, base, size, quantum,
1034 	    importfn, releasefn, source, qcache_max, flags, ipl);
1035 }
1036 
1037 /*
1038  * vmem_xcreate: create an arena takes alternative import func.
1039  *
1040  * => must not be called from interrupt context.
1041  */
1042 
1043 vmem_t *
1044 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1045     vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1046     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1047 {
1048 
1049 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1050 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1051 	KASSERT((flags & (VM_XIMPORT)) == 0);
1052 
1053 	return vmem_create_internal(name, base, size, quantum,
1054 	    (vmem_import_t *)importfn, releasefn, source,
1055 	    qcache_max, flags | VM_XIMPORT, ipl);
1056 }
1057 
1058 void
1059 vmem_destroy(vmem_t *vm)
1060 {
1061 
1062 #if defined(_KERNEL)
1063 	mutex_enter(&vmem_list_lock);
1064 	LIST_REMOVE(vm, vm_alllist);
1065 	mutex_exit(&vmem_list_lock);
1066 #endif /* defined(_KERNEL) */
1067 
1068 	vmem_destroy1(vm);
1069 }
1070 
1071 vmem_size_t
1072 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1073 {
1074 
1075 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1076 }
1077 
1078 /*
1079  * vmem_alloc:
1080  *
1081  * => caller must ensure appropriate spl,
1082  *    if the arena can be accessed from interrupt context.
1083  */
1084 
1085 int
1086 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1087 {
1088 	const vm_flag_t strat __unused = flags & VM_FITMASK;
1089 
1090 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1091 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1092 
1093 	KASSERT(size > 0);
1094 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1095 	if ((flags & VM_SLEEP) != 0) {
1096 		ASSERT_SLEEPABLE();
1097 	}
1098 
1099 #if defined(QCACHE)
1100 	if (size <= vm->vm_qcache_max) {
1101 		void *p;
1102 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1103 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1104 
1105 		p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1106 		if (addrp != NULL)
1107 			*addrp = (vmem_addr_t)p;
1108 		return (p == NULL) ? ENOMEM : 0;
1109 	}
1110 #endif /* defined(QCACHE) */
1111 
1112 	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1113 	    flags, addrp);
1114 }
1115 
1116 int
1117 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1118     const vmem_size_t phase, const vmem_size_t nocross,
1119     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1120     vmem_addr_t *addrp)
1121 {
1122 	struct vmem_freelist *list;
1123 	struct vmem_freelist *first;
1124 	struct vmem_freelist *end;
1125 	bt_t *bt;
1126 	bt_t *btnew;
1127 	bt_t *btnew2;
1128 	const vmem_size_t size = vmem_roundup_size(vm, size0);
1129 	vm_flag_t strat = flags & VM_FITMASK;
1130 	vmem_addr_t start;
1131 	int rc;
1132 
1133 	KASSERT(size0 > 0);
1134 	KASSERT(size > 0);
1135 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1136 	if ((flags & VM_SLEEP) != 0) {
1137 		ASSERT_SLEEPABLE();
1138 	}
1139 	KASSERT((align & vm->vm_quantum_mask) == 0);
1140 	KASSERT((align & (align - 1)) == 0);
1141 	KASSERT((phase & vm->vm_quantum_mask) == 0);
1142 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
1143 	KASSERT((nocross & (nocross - 1)) == 0);
1144 	KASSERT((align == 0 && phase == 0) || phase < align);
1145 	KASSERT(nocross == 0 || nocross >= size);
1146 	KASSERT(minaddr <= maxaddr);
1147 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1148 
1149 	if (align == 0) {
1150 		align = vm->vm_quantum_mask + 1;
1151 	}
1152 
1153 	/*
1154 	 * allocate boundary tags before acquiring the vmem lock.
1155 	 */
1156 	btnew = bt_alloc(vm, flags);
1157 	if (btnew == NULL) {
1158 		return ENOMEM;
1159 	}
1160 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1161 	if (btnew2 == NULL) {
1162 		bt_free(vm, btnew);
1163 		return ENOMEM;
1164 	}
1165 
1166 	/*
1167 	 * choose a free block from which we allocate.
1168 	 */
1169 retry_strat:
1170 	first = bt_freehead_toalloc(vm, size, strat);
1171 	end = &vm->vm_freelist[VMEM_MAXORDER];
1172 retry:
1173 	bt = NULL;
1174 	VMEM_LOCK(vm);
1175 	vmem_check(vm);
1176 	if (strat == VM_INSTANTFIT) {
1177 		/*
1178 		 * just choose the first block which satisfies our restrictions.
1179 		 *
1180 		 * note that we don't need to check the size of the blocks
1181 		 * because any blocks found on these list should be larger than
1182 		 * the given size.
1183 		 */
1184 		for (list = first; list < end; list++) {
1185 			bt = LIST_FIRST(list);
1186 			if (bt != NULL) {
1187 				rc = vmem_fit(bt, size, align, phase,
1188 				    nocross, minaddr, maxaddr, &start);
1189 				if (rc == 0) {
1190 					goto gotit;
1191 				}
1192 				/*
1193 				 * don't bother to follow the bt_freelist link
1194 				 * here.  the list can be very long and we are
1195 				 * told to run fast.  blocks from the later free
1196 				 * lists are larger and have better chances to
1197 				 * satisfy our restrictions.
1198 				 */
1199 			}
1200 		}
1201 	} else { /* VM_BESTFIT */
1202 		/*
1203 		 * we assume that, for space efficiency, it's better to
1204 		 * allocate from a smaller block.  thus we will start searching
1205 		 * from the lower-order list than VM_INSTANTFIT.
1206 		 * however, don't bother to find the smallest block in a free
1207 		 * list because the list can be very long.  we can revisit it
1208 		 * if/when it turns out to be a problem.
1209 		 *
1210 		 * note that the 'first' list can contain blocks smaller than
1211 		 * the requested size.  thus we need to check bt_size.
1212 		 */
1213 		for (list = first; list < end; list++) {
1214 			LIST_FOREACH(bt, list, bt_freelist) {
1215 				if (bt->bt_size >= size) {
1216 					rc = vmem_fit(bt, size, align, phase,
1217 					    nocross, minaddr, maxaddr, &start);
1218 					if (rc == 0) {
1219 						goto gotit;
1220 					}
1221 				}
1222 			}
1223 		}
1224 	}
1225 	VMEM_UNLOCK(vm);
1226 #if 1
1227 	if (strat == VM_INSTANTFIT) {
1228 		strat = VM_BESTFIT;
1229 		goto retry_strat;
1230 	}
1231 #endif
1232 	if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1233 
1234 		/*
1235 		 * XXX should try to import a region large enough to
1236 		 * satisfy restrictions?
1237 		 */
1238 
1239 		goto fail;
1240 	}
1241 	/* XXX eeek, minaddr & maxaddr not respected */
1242 	if (vmem_import(vm, size, flags) == 0) {
1243 		goto retry;
1244 	}
1245 	/* XXX */
1246 
1247 	if ((flags & VM_SLEEP) != 0) {
1248 #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1249 		mutex_spin_enter(&uvm_fpageqlock);
1250 		uvm_kick_pdaemon();
1251 		mutex_spin_exit(&uvm_fpageqlock);
1252 #endif
1253 		VMEM_LOCK(vm);
1254 		VMEM_CONDVAR_WAIT(vm);
1255 		VMEM_UNLOCK(vm);
1256 		goto retry;
1257 	}
1258 fail:
1259 	bt_free(vm, btnew);
1260 	bt_free(vm, btnew2);
1261 	return ENOMEM;
1262 
1263 gotit:
1264 	KASSERT(bt->bt_type == BT_TYPE_FREE);
1265 	KASSERT(bt->bt_size >= size);
1266 	bt_remfree(vm, bt);
1267 	vmem_check(vm);
1268 	vm->vm_inuse += size;
1269 	if (bt->bt_start != start) {
1270 		btnew2->bt_type = BT_TYPE_FREE;
1271 		btnew2->bt_start = bt->bt_start;
1272 		btnew2->bt_size = start - bt->bt_start;
1273 		bt->bt_start = start;
1274 		bt->bt_size -= btnew2->bt_size;
1275 		bt_insfree(vm, btnew2);
1276 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1277 		btnew2 = NULL;
1278 		vmem_check(vm);
1279 	}
1280 	KASSERT(bt->bt_start == start);
1281 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1282 		/* split */
1283 		btnew->bt_type = BT_TYPE_BUSY;
1284 		btnew->bt_start = bt->bt_start;
1285 		btnew->bt_size = size;
1286 		bt->bt_start = bt->bt_start + size;
1287 		bt->bt_size -= size;
1288 		bt_insfree(vm, bt);
1289 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1290 		bt_insbusy(vm, btnew);
1291 		vmem_check(vm);
1292 		VMEM_UNLOCK(vm);
1293 	} else {
1294 		bt->bt_type = BT_TYPE_BUSY;
1295 		bt_insbusy(vm, bt);
1296 		vmem_check(vm);
1297 		VMEM_UNLOCK(vm);
1298 		bt_free(vm, btnew);
1299 		btnew = bt;
1300 	}
1301 	if (btnew2 != NULL) {
1302 		bt_free(vm, btnew2);
1303 	}
1304 	KASSERT(btnew->bt_size >= size);
1305 	btnew->bt_type = BT_TYPE_BUSY;
1306 
1307 	if (addrp != NULL)
1308 		*addrp = btnew->bt_start;
1309 	return 0;
1310 }
1311 
1312 /*
1313  * vmem_free:
1314  *
1315  * => caller must ensure appropriate spl,
1316  *    if the arena can be accessed from interrupt context.
1317  */
1318 
1319 void
1320 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1321 {
1322 
1323 	KASSERT(size > 0);
1324 
1325 #if defined(QCACHE)
1326 	if (size <= vm->vm_qcache_max) {
1327 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1328 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1329 
1330 		pool_cache_put(qc->qc_cache, (void *)addr);
1331 		return;
1332 	}
1333 #endif /* defined(QCACHE) */
1334 
1335 	vmem_xfree(vm, addr, size);
1336 }
1337 
1338 void
1339 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1340 {
1341 	bt_t *bt;
1342 	bt_t *t;
1343 	LIST_HEAD(, vmem_btag) tofree;
1344 
1345 	LIST_INIT(&tofree);
1346 
1347 	KASSERT(size > 0);
1348 
1349 	VMEM_LOCK(vm);
1350 
1351 	bt = bt_lookupbusy(vm, addr);
1352 	KASSERT(bt != NULL);
1353 	KASSERT(bt->bt_start == addr);
1354 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1355 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1356 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
1357 	bt_rembusy(vm, bt);
1358 	bt->bt_type = BT_TYPE_FREE;
1359 
1360 	vm->vm_inuse -= bt->bt_size;
1361 
1362 	/* coalesce */
1363 	t = CIRCLEQ_NEXT(bt, bt_seglist);
1364 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1365 		KASSERT(BT_END(bt) < t->bt_start);	/* YYY */
1366 		bt_remfree(vm, t);
1367 		bt_remseg(vm, t);
1368 		bt->bt_size += t->bt_size;
1369 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1370 	}
1371 	t = CIRCLEQ_PREV(bt, bt_seglist);
1372 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1373 		KASSERT(BT_END(t) < bt->bt_start);	/* YYY */
1374 		bt_remfree(vm, t);
1375 		bt_remseg(vm, t);
1376 		bt->bt_size += t->bt_size;
1377 		bt->bt_start = t->bt_start;
1378 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1379 	}
1380 
1381 	t = CIRCLEQ_PREV(bt, bt_seglist);
1382 	KASSERT(t != NULL);
1383 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1384 	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1385 	    t->bt_size == bt->bt_size) {
1386 		vmem_addr_t spanaddr;
1387 		vmem_size_t spansize;
1388 
1389 		KASSERT(t->bt_start == bt->bt_start);
1390 		spanaddr = bt->bt_start;
1391 		spansize = bt->bt_size;
1392 		bt_remseg(vm, bt);
1393 		LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1394 		bt_remseg(vm, t);
1395 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1396 		vm->vm_size -= spansize;
1397 		VMEM_CONDVAR_BROADCAST(vm);
1398 		VMEM_UNLOCK(vm);
1399 		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1400 	} else {
1401 		bt_insfree(vm, bt);
1402 		VMEM_CONDVAR_BROADCAST(vm);
1403 		VMEM_UNLOCK(vm);
1404 	}
1405 
1406 	while (!LIST_EMPTY(&tofree)) {
1407 		t = LIST_FIRST(&tofree);
1408 		LIST_REMOVE(t, bt_freelist);
1409 		bt_free(vm, t);
1410 	}
1411 }
1412 
1413 /*
1414  * vmem_add:
1415  *
1416  * => caller must ensure appropriate spl,
1417  *    if the arena can be accessed from interrupt context.
1418  */
1419 
1420 int
1421 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1422 {
1423 
1424 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1425 }
1426 
1427 /*
1428  * vmem_size: information about arenas size
1429  *
1430  * => return free/allocated size in arena
1431  */
1432 vmem_size_t
1433 vmem_size(vmem_t *vm, int typemask)
1434 {
1435 
1436 	switch (typemask) {
1437 	case VMEM_ALLOC:
1438 		return vm->vm_inuse;
1439 	case VMEM_FREE:
1440 		return vm->vm_size - vm->vm_inuse;
1441 	case VMEM_FREE|VMEM_ALLOC:
1442 		return vm->vm_size;
1443 	default:
1444 		panic("vmem_size");
1445 	}
1446 }
1447 
1448 /* ---- rehash */
1449 
1450 #if defined(_KERNEL)
1451 static struct callout vmem_rehash_ch;
1452 static int vmem_rehash_interval;
1453 static struct workqueue *vmem_rehash_wq;
1454 static struct work vmem_rehash_wk;
1455 
1456 static void
1457 vmem_rehash_all(struct work *wk, void *dummy)
1458 {
1459 	vmem_t *vm;
1460 
1461 	KASSERT(wk == &vmem_rehash_wk);
1462 	mutex_enter(&vmem_list_lock);
1463 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1464 		size_t desired;
1465 		size_t current;
1466 
1467 		if (!VMEM_TRYLOCK(vm)) {
1468 			continue;
1469 		}
1470 		desired = vm->vm_nbusytag;
1471 		current = vm->vm_hashsize;
1472 		VMEM_UNLOCK(vm);
1473 
1474 		if (desired > VMEM_HASHSIZE_MAX) {
1475 			desired = VMEM_HASHSIZE_MAX;
1476 		} else if (desired < VMEM_HASHSIZE_MIN) {
1477 			desired = VMEM_HASHSIZE_MIN;
1478 		}
1479 		if (desired > current * 2 || desired * 2 < current) {
1480 			vmem_rehash(vm, desired, VM_NOSLEEP);
1481 		}
1482 	}
1483 	mutex_exit(&vmem_list_lock);
1484 
1485 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1486 }
1487 
1488 static void
1489 vmem_rehash_all_kick(void *dummy)
1490 {
1491 
1492 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1493 }
1494 
1495 void
1496 vmem_rehash_start(void)
1497 {
1498 	int error;
1499 
1500 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1501 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1502 	if (error) {
1503 		panic("%s: workqueue_create %d\n", __func__, error);
1504 	}
1505 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1506 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1507 
1508 	vmem_rehash_interval = hz * 10;
1509 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1510 }
1511 #endif /* defined(_KERNEL) */
1512 
1513 /* ---- debug */
1514 
1515 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1516 
1517 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1518 
1519 static const char *
1520 bt_type_string(int type)
1521 {
1522 	static const char * const table[] = {
1523 		[BT_TYPE_BUSY] = "busy",
1524 		[BT_TYPE_FREE] = "free",
1525 		[BT_TYPE_SPAN] = "span",
1526 		[BT_TYPE_SPAN_STATIC] = "static span",
1527 	};
1528 
1529 	if (type >= __arraycount(table)) {
1530 		return "BOGUS";
1531 	}
1532 	return table[type];
1533 }
1534 
1535 static void
1536 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1537 {
1538 
1539 	(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1540 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1541 	    bt->bt_type, bt_type_string(bt->bt_type));
1542 }
1543 
1544 static void
1545 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1546 {
1547 	const bt_t *bt;
1548 	int i;
1549 
1550 	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1551 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1552 		bt_dump(bt, pr);
1553 	}
1554 
1555 	for (i = 0; i < VMEM_MAXORDER; i++) {
1556 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1557 
1558 		if (LIST_EMPTY(fl)) {
1559 			continue;
1560 		}
1561 
1562 		(*pr)("freelist[%d]\n", i);
1563 		LIST_FOREACH(bt, fl, bt_freelist) {
1564 			bt_dump(bt, pr);
1565 		}
1566 	}
1567 }
1568 
1569 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1570 
1571 #if defined(DDB)
1572 static bt_t *
1573 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1574 {
1575 	bt_t *bt;
1576 
1577 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1578 		if (BT_ISSPAN_P(bt)) {
1579 			continue;
1580 		}
1581 		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1582 			return bt;
1583 		}
1584 	}
1585 
1586 	return NULL;
1587 }
1588 
1589 void
1590 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1591 {
1592 	vmem_t *vm;
1593 
1594 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1595 		bt_t *bt;
1596 
1597 		bt = vmem_whatis_lookup(vm, addr);
1598 		if (bt == NULL) {
1599 			continue;
1600 		}
1601 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1602 		    (void *)addr, (void *)bt->bt_start,
1603 		    (size_t)(addr - bt->bt_start), vm->vm_name,
1604 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1605 	}
1606 }
1607 
1608 void
1609 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1610 {
1611 	const vmem_t *vm;
1612 
1613 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1614 		vmem_dump(vm, pr);
1615 	}
1616 }
1617 
1618 void
1619 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1620 {
1621 	const vmem_t *vm = (const void *)addr;
1622 
1623 	vmem_dump(vm, pr);
1624 }
1625 #endif /* defined(DDB) */
1626 
1627 #if defined(_KERNEL)
1628 #define vmem_printf printf
1629 #else
1630 #include <stdio.h>
1631 #include <stdarg.h>
1632 
1633 static void
1634 vmem_printf(const char *fmt, ...)
1635 {
1636 	va_list ap;
1637 	va_start(ap, fmt);
1638 	vprintf(fmt, ap);
1639 	va_end(ap);
1640 }
1641 #endif
1642 
1643 #if defined(VMEM_SANITY)
1644 
1645 static bool
1646 vmem_check_sanity(vmem_t *vm)
1647 {
1648 	const bt_t *bt, *bt2;
1649 
1650 	KASSERT(vm != NULL);
1651 
1652 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1653 		if (bt->bt_start > BT_END(bt)) {
1654 			printf("corrupted tag\n");
1655 			bt_dump(bt, vmem_printf);
1656 			return false;
1657 		}
1658 	}
1659 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1660 		CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1661 			if (bt == bt2) {
1662 				continue;
1663 			}
1664 			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1665 				continue;
1666 			}
1667 			if (bt->bt_start <= BT_END(bt2) &&
1668 			    bt2->bt_start <= BT_END(bt)) {
1669 				printf("overwrapped tags\n");
1670 				bt_dump(bt, vmem_printf);
1671 				bt_dump(bt2, vmem_printf);
1672 				return false;
1673 			}
1674 		}
1675 	}
1676 
1677 	return true;
1678 }
1679 
1680 static void
1681 vmem_check(vmem_t *vm)
1682 {
1683 
1684 	if (!vmem_check_sanity(vm)) {
1685 		panic("insanity vmem %p", vm);
1686 	}
1687 }
1688 
1689 #endif /* defined(VMEM_SANITY) */
1690 
1691 #if defined(UNITTEST)
1692 int
1693 main(void)
1694 {
1695 	int rc;
1696 	vmem_t *vm;
1697 	vmem_addr_t p;
1698 	struct reg {
1699 		vmem_addr_t p;
1700 		vmem_size_t sz;
1701 		bool x;
1702 	} *reg = NULL;
1703 	int nreg = 0;
1704 	int nalloc = 0;
1705 	int nfree = 0;
1706 	vmem_size_t total = 0;
1707 #if 1
1708 	vm_flag_t strat = VM_INSTANTFIT;
1709 #else
1710 	vm_flag_t strat = VM_BESTFIT;
1711 #endif
1712 
1713 	vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1714 #ifdef _KERNEL
1715 	    IPL_NONE
1716 #else
1717 	    0
1718 #endif
1719 	    );
1720 	if (vm == NULL) {
1721 		printf("vmem_create\n");
1722 		exit(EXIT_FAILURE);
1723 	}
1724 	vmem_dump(vm, vmem_printf);
1725 
1726 	rc = vmem_add(vm, 0, 50, VM_SLEEP);
1727 	assert(rc == 0);
1728 	rc = vmem_add(vm, 100, 200, VM_SLEEP);
1729 	assert(rc == 0);
1730 	rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1731 	assert(rc == 0);
1732 	rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1733 	assert(rc == 0);
1734 	rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1735 	assert(rc == 0);
1736 	rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1737 	assert(rc == 0);
1738 	rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1739 	assert(rc == 0);
1740 	rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1741 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1742 	assert(rc != 0);
1743 	rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1744 	assert(rc == 0 && p == 0);
1745 	vmem_xfree(vm, p, 50);
1746 	rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1747 	assert(rc == 0 && p == 0);
1748 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1749 	    0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1750 	assert(rc != 0);
1751 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1752 	    0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1753 	assert(rc != 0);
1754 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1755 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1756 	assert(rc == 0);
1757 	vmem_dump(vm, vmem_printf);
1758 	for (;;) {
1759 		struct reg *r;
1760 		int t = rand() % 100;
1761 
1762 		if (t > 45) {
1763 			/* alloc */
1764 			vmem_size_t sz = rand() % 500 + 1;
1765 			bool x;
1766 			vmem_size_t align, phase, nocross;
1767 			vmem_addr_t minaddr, maxaddr;
1768 
1769 			if (t > 70) {
1770 				x = true;
1771 				/* XXX */
1772 				align = 1 << (rand() % 15);
1773 				phase = rand() % 65536;
1774 				nocross = 1 << (rand() % 15);
1775 				if (align <= phase) {
1776 					phase = 0;
1777 				}
1778 				if (VMEM_CROSS_P(phase, phase + sz - 1,
1779 				    nocross)) {
1780 					nocross = 0;
1781 				}
1782 				do {
1783 					minaddr = rand() % 50000;
1784 					maxaddr = rand() % 70000;
1785 				} while (minaddr > maxaddr);
1786 				printf("=== xalloc %" PRIu64
1787 				    " align=%" PRIu64 ", phase=%" PRIu64
1788 				    ", nocross=%" PRIu64 ", min=%" PRIu64
1789 				    ", max=%" PRIu64 "\n",
1790 				    (uint64_t)sz,
1791 				    (uint64_t)align,
1792 				    (uint64_t)phase,
1793 				    (uint64_t)nocross,
1794 				    (uint64_t)minaddr,
1795 				    (uint64_t)maxaddr);
1796 				rc = vmem_xalloc(vm, sz, align, phase, nocross,
1797 				    minaddr, maxaddr, strat|VM_SLEEP, &p);
1798 			} else {
1799 				x = false;
1800 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1801 				rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1802 			}
1803 			printf("-> %" PRIu64 "\n", (uint64_t)p);
1804 			vmem_dump(vm, vmem_printf);
1805 			if (rc != 0) {
1806 				if (x) {
1807 					continue;
1808 				}
1809 				break;
1810 			}
1811 			nreg++;
1812 			reg = realloc(reg, sizeof(*reg) * nreg);
1813 			r = &reg[nreg - 1];
1814 			r->p = p;
1815 			r->sz = sz;
1816 			r->x = x;
1817 			total += sz;
1818 			nalloc++;
1819 		} else if (nreg != 0) {
1820 			/* free */
1821 			r = &reg[rand() % nreg];
1822 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1823 			    (uint64_t)r->p, (uint64_t)r->sz);
1824 			if (r->x) {
1825 				vmem_xfree(vm, r->p, r->sz);
1826 			} else {
1827 				vmem_free(vm, r->p, r->sz);
1828 			}
1829 			total -= r->sz;
1830 			vmem_dump(vm, vmem_printf);
1831 			*r = reg[nreg - 1];
1832 			nreg--;
1833 			nfree++;
1834 		}
1835 		printf("total=%" PRIu64 "\n", (uint64_t)total);
1836 	}
1837 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1838 	    (uint64_t)total, nalloc, nfree);
1839 	exit(EXIT_SUCCESS);
1840 }
1841 #endif /* defined(UNITTEST) */
1842