1 /* $NetBSD: subr_vmem.c,v 1.95 2016/07/07 06:55:43 msaitoh Exp $ */ 2 3 /*- 4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi, 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * reference: 31 * - Magazines and Vmem: Extending the Slab Allocator 32 * to Many CPUs and Arbitrary Resources 33 * http://www.usenix.org/event/usenix01/bonwick.html 34 * 35 * locking & the boundary tag pool: 36 * - A pool(9) is used for vmem boundary tags 37 * - During a pool get call the global vmem_btag_refill_lock is taken, 38 * to serialize access to the allocation reserve, but no other 39 * vmem arena locks. 40 * - During pool_put calls no vmem mutexes are locked. 41 * - pool_drain doesn't hold the pool's mutex while releasing memory to 42 * its backing therefore no interferance with any vmem mutexes. 43 * - The boundary tag pool is forced to put page headers into pool pages 44 * (PR_PHINPAGE) and not off page to avoid pool recursion. 45 * (due to sizeof(bt_t) it should be the case anyway) 46 */ 47 48 #include <sys/cdefs.h> 49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.95 2016/07/07 06:55:43 msaitoh Exp $"); 50 51 #if defined(_KERNEL) && defined(_KERNEL_OPT) 52 #include "opt_ddb.h" 53 #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */ 54 55 #include <sys/param.h> 56 #include <sys/hash.h> 57 #include <sys/queue.h> 58 #include <sys/bitops.h> 59 60 #if defined(_KERNEL) 61 #include <sys/systm.h> 62 #include <sys/kernel.h> /* hz */ 63 #include <sys/callout.h> 64 #include <sys/kmem.h> 65 #include <sys/pool.h> 66 #include <sys/vmem.h> 67 #include <sys/vmem_impl.h> 68 #include <sys/workqueue.h> 69 #include <sys/atomic.h> 70 #include <uvm/uvm.h> 71 #include <uvm/uvm_extern.h> 72 #include <uvm/uvm_km.h> 73 #include <uvm/uvm_page.h> 74 #include <uvm/uvm_pdaemon.h> 75 #else /* defined(_KERNEL) */ 76 #include <stdio.h> 77 #include <errno.h> 78 #include <assert.h> 79 #include <stdlib.h> 80 #include <string.h> 81 #include "../sys/vmem.h" 82 #include "../sys/vmem_impl.h" 83 #endif /* defined(_KERNEL) */ 84 85 86 #if defined(_KERNEL) 87 #include <sys/evcnt.h> 88 #define VMEM_EVCNT_DEFINE(name) \ 89 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \ 90 "vmem", #name); \ 91 EVCNT_ATTACH_STATIC(vmem_evcnt_##name); 92 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++ 93 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count-- 94 95 VMEM_EVCNT_DEFINE(static_bt_count) 96 VMEM_EVCNT_DEFINE(static_bt_inuse) 97 98 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan) 99 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv) 100 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock) 101 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv) 102 103 #else /* defined(_KERNEL) */ 104 105 #define VMEM_EVCNT_INCR(ev) /* nothing */ 106 #define VMEM_EVCNT_DECR(ev) /* nothing */ 107 108 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */ 109 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */ 110 #define VMEM_CONDVAR_WAIT(vm) /* nothing */ 111 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */ 112 113 #define UNITTEST 114 #define KASSERT(a) assert(a) 115 #define mutex_init(a, b, c) /* nothing */ 116 #define mutex_destroy(a) /* nothing */ 117 #define mutex_enter(a) /* nothing */ 118 #define mutex_tryenter(a) true 119 #define mutex_exit(a) /* nothing */ 120 #define mutex_owned(a) /* nothing */ 121 #define ASSERT_SLEEPABLE() /* nothing */ 122 #define panic(...) printf(__VA_ARGS__); abort() 123 #endif /* defined(_KERNEL) */ 124 125 #if defined(VMEM_SANITY) 126 static void vmem_check(vmem_t *); 127 #else /* defined(VMEM_SANITY) */ 128 #define vmem_check(vm) /* nothing */ 129 #endif /* defined(VMEM_SANITY) */ 130 131 #define VMEM_HASHSIZE_MIN 1 /* XXX */ 132 #define VMEM_HASHSIZE_MAX 65536 /* XXX */ 133 #define VMEM_HASHSIZE_INIT 1 134 135 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT) 136 137 #if defined(_KERNEL) 138 static bool vmem_bootstrapped = false; 139 static kmutex_t vmem_list_lock; 140 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list); 141 #endif /* defined(_KERNEL) */ 142 143 /* ---- misc */ 144 145 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock) 146 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock) 147 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock) 148 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl) 149 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock) 150 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock)) 151 152 #define VMEM_ALIGNUP(addr, align) \ 153 (-(-(addr) & -(align))) 154 155 #define VMEM_CROSS_P(addr1, addr2, boundary) \ 156 ((((addr1) ^ (addr2)) & -(boundary)) != 0) 157 158 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order)) 159 #define SIZE2ORDER(size) ((int)ilog2(size)) 160 161 #if !defined(_KERNEL) 162 #define xmalloc(sz, flags) malloc(sz) 163 #define xfree(p, sz) free(p) 164 #define bt_alloc(vm, flags) malloc(sizeof(bt_t)) 165 #define bt_free(vm, bt) free(bt) 166 #else /* defined(_KERNEL) */ 167 168 #define xmalloc(sz, flags) \ 169 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); 170 #define xfree(p, sz) kmem_free(p, sz); 171 172 /* 173 * BT_RESERVE calculation: 174 * we allocate memory for boundry tags with vmem, therefor we have 175 * to keep a reserve of bts used to allocated memory for bts. 176 * This reserve is 4 for each arena involved in allocating vmems memory. 177 * BT_MAXFREE: don't cache excessive counts of bts in arenas 178 */ 179 #define STATIC_BT_COUNT 200 180 #define BT_MINRESERVE 4 181 #define BT_MAXFREE 64 182 183 static struct vmem_btag static_bts[STATIC_BT_COUNT]; 184 static int static_bt_count = STATIC_BT_COUNT; 185 186 static struct vmem kmem_va_meta_arena_store; 187 vmem_t *kmem_va_meta_arena; 188 static struct vmem kmem_meta_arena_store; 189 vmem_t *kmem_meta_arena = NULL; 190 191 static kmutex_t vmem_btag_refill_lock; 192 static kmutex_t vmem_btag_lock; 193 static LIST_HEAD(, vmem_btag) vmem_btag_freelist; 194 static size_t vmem_btag_freelist_count = 0; 195 static struct pool vmem_btag_pool; 196 197 static void 198 vmem_kick_pdaemon(void) 199 { 200 #if defined(_KERNEL) 201 mutex_spin_enter(&uvm_fpageqlock); 202 uvm_kick_pdaemon(); 203 mutex_spin_exit(&uvm_fpageqlock); 204 #endif 205 } 206 207 /* ---- boundary tag */ 208 209 static int bt_refill(vmem_t *vm); 210 211 static void * 212 pool_page_alloc_vmem_meta(struct pool *pp, int flags) 213 { 214 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 215 vmem_addr_t va; 216 int ret; 217 218 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 219 (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va); 220 221 return ret ? NULL : (void *)va; 222 } 223 224 static void 225 pool_page_free_vmem_meta(struct pool *pp, void *v) 226 { 227 228 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 229 } 230 231 /* allocator for vmem-pool metadata */ 232 struct pool_allocator pool_allocator_vmem_meta = { 233 .pa_alloc = pool_page_alloc_vmem_meta, 234 .pa_free = pool_page_free_vmem_meta, 235 .pa_pagesz = 0 236 }; 237 238 static int 239 bt_refill(vmem_t *vm) 240 { 241 bt_t *bt; 242 243 VMEM_LOCK(vm); 244 if (vm->vm_nfreetags > BT_MINRESERVE) { 245 VMEM_UNLOCK(vm); 246 return 0; 247 } 248 249 mutex_enter(&vmem_btag_lock); 250 while (!LIST_EMPTY(&vmem_btag_freelist) && 251 vm->vm_nfreetags <= BT_MINRESERVE) { 252 bt = LIST_FIRST(&vmem_btag_freelist); 253 LIST_REMOVE(bt, bt_freelist); 254 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 255 vm->vm_nfreetags++; 256 vmem_btag_freelist_count--; 257 VMEM_EVCNT_INCR(static_bt_inuse); 258 } 259 mutex_exit(&vmem_btag_lock); 260 261 while (vm->vm_nfreetags <= BT_MINRESERVE) { 262 VMEM_UNLOCK(vm); 263 mutex_enter(&vmem_btag_refill_lock); 264 bt = pool_get(&vmem_btag_pool, PR_NOWAIT); 265 mutex_exit(&vmem_btag_refill_lock); 266 VMEM_LOCK(vm); 267 if (bt == NULL) 268 break; 269 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 270 vm->vm_nfreetags++; 271 } 272 273 if (vm->vm_nfreetags <= BT_MINRESERVE) { 274 VMEM_UNLOCK(vm); 275 return ENOMEM; 276 } 277 278 VMEM_UNLOCK(vm); 279 280 if (kmem_meta_arena != NULL) { 281 (void)bt_refill(kmem_arena); 282 (void)bt_refill(kmem_va_meta_arena); 283 (void)bt_refill(kmem_meta_arena); 284 } 285 286 return 0; 287 } 288 289 static bt_t * 290 bt_alloc(vmem_t *vm, vm_flag_t flags) 291 { 292 bt_t *bt; 293 VMEM_LOCK(vm); 294 while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) { 295 VMEM_UNLOCK(vm); 296 if (bt_refill(vm)) { 297 if ((flags & VM_NOSLEEP) != 0) { 298 return NULL; 299 } 300 301 /* 302 * It would be nice to wait for something specific here 303 * but there are multiple ways that a retry could 304 * succeed and we can't wait for multiple things 305 * simultaneously. So we'll just sleep for an arbitrary 306 * short period of time and retry regardless. 307 * This should be a very rare case. 308 */ 309 310 vmem_kick_pdaemon(); 311 kpause("btalloc", false, 1, NULL); 312 } 313 VMEM_LOCK(vm); 314 } 315 bt = LIST_FIRST(&vm->vm_freetags); 316 LIST_REMOVE(bt, bt_freelist); 317 vm->vm_nfreetags--; 318 VMEM_UNLOCK(vm); 319 320 return bt; 321 } 322 323 static void 324 bt_free(vmem_t *vm, bt_t *bt) 325 { 326 327 VMEM_LOCK(vm); 328 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 329 vm->vm_nfreetags++; 330 VMEM_UNLOCK(vm); 331 } 332 333 static void 334 bt_freetrim(vmem_t *vm, int freelimit) 335 { 336 bt_t *t; 337 LIST_HEAD(, vmem_btag) tofree; 338 339 LIST_INIT(&tofree); 340 341 VMEM_LOCK(vm); 342 while (vm->vm_nfreetags > freelimit) { 343 bt_t *bt = LIST_FIRST(&vm->vm_freetags); 344 LIST_REMOVE(bt, bt_freelist); 345 vm->vm_nfreetags--; 346 if (bt >= static_bts 347 && bt < &static_bts[STATIC_BT_COUNT]) { 348 mutex_enter(&vmem_btag_lock); 349 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist); 350 vmem_btag_freelist_count++; 351 mutex_exit(&vmem_btag_lock); 352 VMEM_EVCNT_DECR(static_bt_inuse); 353 } else { 354 LIST_INSERT_HEAD(&tofree, bt, bt_freelist); 355 } 356 } 357 358 VMEM_UNLOCK(vm); 359 while (!LIST_EMPTY(&tofree)) { 360 t = LIST_FIRST(&tofree); 361 LIST_REMOVE(t, bt_freelist); 362 pool_put(&vmem_btag_pool, t); 363 } 364 } 365 #endif /* defined(_KERNEL) */ 366 367 /* 368 * freelist[0] ... [1, 1] 369 * freelist[1] ... [2, 3] 370 * freelist[2] ... [4, 7] 371 * freelist[3] ... [8, 15] 372 * : 373 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1] 374 * : 375 */ 376 377 static struct vmem_freelist * 378 bt_freehead_tofree(vmem_t *vm, vmem_size_t size) 379 { 380 const vmem_size_t qsize = size >> vm->vm_quantum_shift; 381 const int idx = SIZE2ORDER(qsize); 382 383 KASSERT(size != 0 && qsize != 0); 384 KASSERT((size & vm->vm_quantum_mask) == 0); 385 KASSERT(idx >= 0); 386 KASSERT(idx < VMEM_MAXORDER); 387 388 return &vm->vm_freelist[idx]; 389 } 390 391 /* 392 * bt_freehead_toalloc: return the freelist for the given size and allocation 393 * strategy. 394 * 395 * for VM_INSTANTFIT, return the list in which any blocks are large enough 396 * for the requested size. otherwise, return the list which can have blocks 397 * large enough for the requested size. 398 */ 399 400 static struct vmem_freelist * 401 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat) 402 { 403 const vmem_size_t qsize = size >> vm->vm_quantum_shift; 404 int idx = SIZE2ORDER(qsize); 405 406 KASSERT(size != 0 && qsize != 0); 407 KASSERT((size & vm->vm_quantum_mask) == 0); 408 409 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) { 410 idx++; 411 /* check too large request? */ 412 } 413 KASSERT(idx >= 0); 414 KASSERT(idx < VMEM_MAXORDER); 415 416 return &vm->vm_freelist[idx]; 417 } 418 419 /* ---- boundary tag hash */ 420 421 static struct vmem_hashlist * 422 bt_hashhead(vmem_t *vm, vmem_addr_t addr) 423 { 424 struct vmem_hashlist *list; 425 unsigned int hash; 426 427 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT); 428 list = &vm->vm_hashlist[hash % vm->vm_hashsize]; 429 430 return list; 431 } 432 433 static bt_t * 434 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr) 435 { 436 struct vmem_hashlist *list; 437 bt_t *bt; 438 439 list = bt_hashhead(vm, addr); 440 LIST_FOREACH(bt, list, bt_hashlist) { 441 if (bt->bt_start == addr) { 442 break; 443 } 444 } 445 446 return bt; 447 } 448 449 static void 450 bt_rembusy(vmem_t *vm, bt_t *bt) 451 { 452 453 KASSERT(vm->vm_nbusytag > 0); 454 vm->vm_inuse -= bt->bt_size; 455 vm->vm_nbusytag--; 456 LIST_REMOVE(bt, bt_hashlist); 457 } 458 459 static void 460 bt_insbusy(vmem_t *vm, bt_t *bt) 461 { 462 struct vmem_hashlist *list; 463 464 KASSERT(bt->bt_type == BT_TYPE_BUSY); 465 466 list = bt_hashhead(vm, bt->bt_start); 467 LIST_INSERT_HEAD(list, bt, bt_hashlist); 468 vm->vm_nbusytag++; 469 vm->vm_inuse += bt->bt_size; 470 } 471 472 /* ---- boundary tag list */ 473 474 static void 475 bt_remseg(vmem_t *vm, bt_t *bt) 476 { 477 478 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist); 479 } 480 481 static void 482 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev) 483 { 484 485 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist); 486 } 487 488 static void 489 bt_insseg_tail(vmem_t *vm, bt_t *bt) 490 { 491 492 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist); 493 } 494 495 static void 496 bt_remfree(vmem_t *vm, bt_t *bt) 497 { 498 499 KASSERT(bt->bt_type == BT_TYPE_FREE); 500 501 LIST_REMOVE(bt, bt_freelist); 502 } 503 504 static void 505 bt_insfree(vmem_t *vm, bt_t *bt) 506 { 507 struct vmem_freelist *list; 508 509 list = bt_freehead_tofree(vm, bt->bt_size); 510 LIST_INSERT_HEAD(list, bt, bt_freelist); 511 } 512 513 /* ---- vmem internal functions */ 514 515 #if defined(QCACHE) 516 static inline vm_flag_t 517 prf_to_vmf(int prflags) 518 { 519 vm_flag_t vmflags; 520 521 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0); 522 if ((prflags & PR_WAITOK) != 0) { 523 vmflags = VM_SLEEP; 524 } else { 525 vmflags = VM_NOSLEEP; 526 } 527 return vmflags; 528 } 529 530 static inline int 531 vmf_to_prf(vm_flag_t vmflags) 532 { 533 int prflags; 534 535 if ((vmflags & VM_SLEEP) != 0) { 536 prflags = PR_WAITOK; 537 } else { 538 prflags = PR_NOWAIT; 539 } 540 return prflags; 541 } 542 543 static size_t 544 qc_poolpage_size(size_t qcache_max) 545 { 546 int i; 547 548 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) { 549 /* nothing */ 550 } 551 return ORDER2SIZE(i); 552 } 553 554 static void * 555 qc_poolpage_alloc(struct pool *pool, int prflags) 556 { 557 qcache_t *qc = QC_POOL_TO_QCACHE(pool); 558 vmem_t *vm = qc->qc_vmem; 559 vmem_addr_t addr; 560 561 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz, 562 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0) 563 return NULL; 564 return (void *)addr; 565 } 566 567 static void 568 qc_poolpage_free(struct pool *pool, void *addr) 569 { 570 qcache_t *qc = QC_POOL_TO_QCACHE(pool); 571 vmem_t *vm = qc->qc_vmem; 572 573 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz); 574 } 575 576 static void 577 qc_init(vmem_t *vm, size_t qcache_max, int ipl) 578 { 579 qcache_t *prevqc; 580 struct pool_allocator *pa; 581 int qcache_idx_max; 582 int i; 583 584 KASSERT((qcache_max & vm->vm_quantum_mask) == 0); 585 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) { 586 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift; 587 } 588 vm->vm_qcache_max = qcache_max; 589 pa = &vm->vm_qcache_allocator; 590 memset(pa, 0, sizeof(*pa)); 591 pa->pa_alloc = qc_poolpage_alloc; 592 pa->pa_free = qc_poolpage_free; 593 pa->pa_pagesz = qc_poolpage_size(qcache_max); 594 595 qcache_idx_max = qcache_max >> vm->vm_quantum_shift; 596 prevqc = NULL; 597 for (i = qcache_idx_max; i > 0; i--) { 598 qcache_t *qc = &vm->vm_qcache_store[i - 1]; 599 size_t size = i << vm->vm_quantum_shift; 600 pool_cache_t pc; 601 602 qc->qc_vmem = vm; 603 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu", 604 vm->vm_name, size); 605 606 pc = pool_cache_init(size, 607 ORDER2SIZE(vm->vm_quantum_shift), 0, 608 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */, 609 qc->qc_name, pa, ipl, NULL, NULL, NULL); 610 611 KASSERT(pc); 612 613 qc->qc_cache = pc; 614 KASSERT(qc->qc_cache != NULL); /* XXX */ 615 if (prevqc != NULL && 616 qc->qc_cache->pc_pool.pr_itemsperpage == 617 prevqc->qc_cache->pc_pool.pr_itemsperpage) { 618 pool_cache_destroy(qc->qc_cache); 619 vm->vm_qcache[i - 1] = prevqc; 620 continue; 621 } 622 qc->qc_cache->pc_pool.pr_qcache = qc; 623 vm->vm_qcache[i - 1] = qc; 624 prevqc = qc; 625 } 626 } 627 628 static void 629 qc_destroy(vmem_t *vm) 630 { 631 const qcache_t *prevqc; 632 int i; 633 int qcache_idx_max; 634 635 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift; 636 prevqc = NULL; 637 for (i = 0; i < qcache_idx_max; i++) { 638 qcache_t *qc = vm->vm_qcache[i]; 639 640 if (prevqc == qc) { 641 continue; 642 } 643 pool_cache_destroy(qc->qc_cache); 644 prevqc = qc; 645 } 646 } 647 #endif 648 649 #if defined(_KERNEL) 650 static void 651 vmem_bootstrap(void) 652 { 653 654 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM); 655 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM); 656 mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM); 657 658 while (static_bt_count-- > 0) { 659 bt_t *bt = &static_bts[static_bt_count]; 660 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist); 661 VMEM_EVCNT_INCR(static_bt_count); 662 vmem_btag_freelist_count++; 663 } 664 vmem_bootstrapped = TRUE; 665 } 666 667 void 668 vmem_subsystem_init(vmem_t *vm) 669 { 670 671 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va", 672 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm, 673 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT, 674 IPL_VM); 675 676 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta", 677 0, 0, PAGE_SIZE, 678 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena, 679 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM); 680 681 pool_init(&vmem_btag_pool, sizeof(bt_t), 0, 0, PR_PHINPAGE, 682 "vmembt", &pool_allocator_vmem_meta, IPL_VM); 683 } 684 #endif /* defined(_KERNEL) */ 685 686 static int 687 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags, 688 int spanbttype) 689 { 690 bt_t *btspan; 691 bt_t *btfree; 692 693 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 694 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 695 KASSERT(spanbttype == BT_TYPE_SPAN || 696 spanbttype == BT_TYPE_SPAN_STATIC); 697 698 btspan = bt_alloc(vm, flags); 699 if (btspan == NULL) { 700 return ENOMEM; 701 } 702 btfree = bt_alloc(vm, flags); 703 if (btfree == NULL) { 704 bt_free(vm, btspan); 705 return ENOMEM; 706 } 707 708 btspan->bt_type = spanbttype; 709 btspan->bt_start = addr; 710 btspan->bt_size = size; 711 712 btfree->bt_type = BT_TYPE_FREE; 713 btfree->bt_start = addr; 714 btfree->bt_size = size; 715 716 VMEM_LOCK(vm); 717 bt_insseg_tail(vm, btspan); 718 bt_insseg(vm, btfree, btspan); 719 bt_insfree(vm, btfree); 720 vm->vm_size += size; 721 VMEM_UNLOCK(vm); 722 723 return 0; 724 } 725 726 static void 727 vmem_destroy1(vmem_t *vm) 728 { 729 730 #if defined(QCACHE) 731 qc_destroy(vm); 732 #endif /* defined(QCACHE) */ 733 if (vm->vm_hashlist != NULL) { 734 int i; 735 736 for (i = 0; i < vm->vm_hashsize; i++) { 737 bt_t *bt; 738 739 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) { 740 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC); 741 bt_free(vm, bt); 742 } 743 } 744 if (vm->vm_hashlist != &vm->vm_hash0) { 745 xfree(vm->vm_hashlist, 746 sizeof(struct vmem_hashlist *) * vm->vm_hashsize); 747 } 748 } 749 750 bt_freetrim(vm, 0); 751 752 VMEM_CONDVAR_DESTROY(vm); 753 VMEM_LOCK_DESTROY(vm); 754 xfree(vm, sizeof(*vm)); 755 } 756 757 static int 758 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags) 759 { 760 vmem_addr_t addr; 761 int rc; 762 763 if (vm->vm_importfn == NULL) { 764 return EINVAL; 765 } 766 767 if (vm->vm_flags & VM_LARGEIMPORT) { 768 size *= 16; 769 } 770 771 if (vm->vm_flags & VM_XIMPORT) { 772 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size, 773 &size, flags, &addr); 774 } else { 775 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr); 776 } 777 if (rc) { 778 return ENOMEM; 779 } 780 781 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) { 782 (*vm->vm_releasefn)(vm->vm_arg, addr, size); 783 return ENOMEM; 784 } 785 786 return 0; 787 } 788 789 static int 790 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags) 791 { 792 bt_t *bt; 793 int i; 794 struct vmem_hashlist *newhashlist; 795 struct vmem_hashlist *oldhashlist; 796 size_t oldhashsize; 797 798 KASSERT(newhashsize > 0); 799 800 newhashlist = 801 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags); 802 if (newhashlist == NULL) { 803 return ENOMEM; 804 } 805 for (i = 0; i < newhashsize; i++) { 806 LIST_INIT(&newhashlist[i]); 807 } 808 809 if (!VMEM_TRYLOCK(vm)) { 810 xfree(newhashlist, 811 sizeof(struct vmem_hashlist *) * newhashsize); 812 return EBUSY; 813 } 814 oldhashlist = vm->vm_hashlist; 815 oldhashsize = vm->vm_hashsize; 816 vm->vm_hashlist = newhashlist; 817 vm->vm_hashsize = newhashsize; 818 if (oldhashlist == NULL) { 819 VMEM_UNLOCK(vm); 820 return 0; 821 } 822 for (i = 0; i < oldhashsize; i++) { 823 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) { 824 bt_rembusy(vm, bt); /* XXX */ 825 bt_insbusy(vm, bt); 826 } 827 } 828 VMEM_UNLOCK(vm); 829 830 if (oldhashlist != &vm->vm_hash0) { 831 xfree(oldhashlist, 832 sizeof(struct vmem_hashlist *) * oldhashsize); 833 } 834 835 return 0; 836 } 837 838 /* 839 * vmem_fit: check if a bt can satisfy the given restrictions. 840 * 841 * it's a caller's responsibility to ensure the region is big enough 842 * before calling us. 843 */ 844 845 static int 846 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, 847 vmem_size_t phase, vmem_size_t nocross, 848 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp) 849 { 850 vmem_addr_t start; 851 vmem_addr_t end; 852 853 KASSERT(size > 0); 854 KASSERT(bt->bt_size >= size); /* caller's responsibility */ 855 856 /* 857 * XXX assumption: vmem_addr_t and vmem_size_t are 858 * unsigned integer of the same size. 859 */ 860 861 start = bt->bt_start; 862 if (start < minaddr) { 863 start = minaddr; 864 } 865 end = BT_END(bt); 866 if (end > maxaddr) { 867 end = maxaddr; 868 } 869 if (start > end) { 870 return ENOMEM; 871 } 872 873 start = VMEM_ALIGNUP(start - phase, align) + phase; 874 if (start < bt->bt_start) { 875 start += align; 876 } 877 if (VMEM_CROSS_P(start, start + size - 1, nocross)) { 878 KASSERT(align < nocross); 879 start = VMEM_ALIGNUP(start - phase, nocross) + phase; 880 } 881 if (start <= end && end - start >= size - 1) { 882 KASSERT((start & (align - 1)) == phase); 883 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross)); 884 KASSERT(minaddr <= start); 885 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr); 886 KASSERT(bt->bt_start <= start); 887 KASSERT(BT_END(bt) - start >= size - 1); 888 *addrp = start; 889 return 0; 890 } 891 return ENOMEM; 892 } 893 894 /* ---- vmem API */ 895 896 /* 897 * vmem_create_internal: creates a vmem arena. 898 */ 899 900 vmem_t * 901 vmem_init(vmem_t *vm, const char *name, 902 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum, 903 vmem_import_t *importfn, vmem_release_t *releasefn, 904 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl) 905 { 906 int i; 907 908 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 909 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 910 KASSERT(quantum > 0); 911 912 #if defined(_KERNEL) 913 /* XXX: SMP, we get called early... */ 914 if (!vmem_bootstrapped) { 915 vmem_bootstrap(); 916 } 917 #endif /* defined(_KERNEL) */ 918 919 if (vm == NULL) { 920 vm = xmalloc(sizeof(*vm), flags); 921 } 922 if (vm == NULL) { 923 return NULL; 924 } 925 926 VMEM_CONDVAR_INIT(vm, "vmem"); 927 VMEM_LOCK_INIT(vm, ipl); 928 vm->vm_flags = flags; 929 vm->vm_nfreetags = 0; 930 LIST_INIT(&vm->vm_freetags); 931 strlcpy(vm->vm_name, name, sizeof(vm->vm_name)); 932 vm->vm_quantum_mask = quantum - 1; 933 vm->vm_quantum_shift = SIZE2ORDER(quantum); 934 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum); 935 vm->vm_importfn = importfn; 936 vm->vm_releasefn = releasefn; 937 vm->vm_arg = arg; 938 vm->vm_nbusytag = 0; 939 vm->vm_size = 0; 940 vm->vm_inuse = 0; 941 #if defined(QCACHE) 942 qc_init(vm, qcache_max, ipl); 943 #endif /* defined(QCACHE) */ 944 945 TAILQ_INIT(&vm->vm_seglist); 946 for (i = 0; i < VMEM_MAXORDER; i++) { 947 LIST_INIT(&vm->vm_freelist[i]); 948 } 949 memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist)); 950 vm->vm_hashsize = 1; 951 vm->vm_hashlist = &vm->vm_hash0; 952 953 if (size != 0) { 954 if (vmem_add(vm, base, size, flags) != 0) { 955 vmem_destroy1(vm); 956 return NULL; 957 } 958 } 959 960 #if defined(_KERNEL) 961 if (flags & VM_BOOTSTRAP) { 962 bt_refill(vm); 963 } 964 965 mutex_enter(&vmem_list_lock); 966 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist); 967 mutex_exit(&vmem_list_lock); 968 #endif /* defined(_KERNEL) */ 969 970 return vm; 971 } 972 973 974 975 /* 976 * vmem_create: create an arena. 977 * 978 * => must not be called from interrupt context. 979 */ 980 981 vmem_t * 982 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size, 983 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn, 984 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl) 985 { 986 987 KASSERT((flags & (VM_XIMPORT)) == 0); 988 989 return vmem_init(NULL, name, base, size, quantum, 990 importfn, releasefn, source, qcache_max, flags, ipl); 991 } 992 993 /* 994 * vmem_xcreate: create an arena takes alternative import func. 995 * 996 * => must not be called from interrupt context. 997 */ 998 999 vmem_t * 1000 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size, 1001 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn, 1002 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl) 1003 { 1004 1005 KASSERT((flags & (VM_XIMPORT)) == 0); 1006 1007 return vmem_init(NULL, name, base, size, quantum, 1008 (vmem_import_t *)importfn, releasefn, source, 1009 qcache_max, flags | VM_XIMPORT, ipl); 1010 } 1011 1012 void 1013 vmem_destroy(vmem_t *vm) 1014 { 1015 1016 #if defined(_KERNEL) 1017 mutex_enter(&vmem_list_lock); 1018 LIST_REMOVE(vm, vm_alllist); 1019 mutex_exit(&vmem_list_lock); 1020 #endif /* defined(_KERNEL) */ 1021 1022 vmem_destroy1(vm); 1023 } 1024 1025 vmem_size_t 1026 vmem_roundup_size(vmem_t *vm, vmem_size_t size) 1027 { 1028 1029 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask; 1030 } 1031 1032 /* 1033 * vmem_alloc: allocate resource from the arena. 1034 */ 1035 1036 int 1037 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp) 1038 { 1039 const vm_flag_t strat __diagused = flags & VM_FITMASK; 1040 1041 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 1042 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 1043 1044 KASSERT(size > 0); 1045 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT); 1046 if ((flags & VM_SLEEP) != 0) { 1047 ASSERT_SLEEPABLE(); 1048 } 1049 1050 #if defined(QCACHE) 1051 if (size <= vm->vm_qcache_max) { 1052 void *p; 1053 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift; 1054 qcache_t *qc = vm->vm_qcache[qidx - 1]; 1055 1056 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags)); 1057 if (addrp != NULL) 1058 *addrp = (vmem_addr_t)p; 1059 return (p == NULL) ? ENOMEM : 0; 1060 } 1061 #endif /* defined(QCACHE) */ 1062 1063 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, 1064 flags, addrp); 1065 } 1066 1067 int 1068 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align, 1069 const vmem_size_t phase, const vmem_size_t nocross, 1070 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags, 1071 vmem_addr_t *addrp) 1072 { 1073 struct vmem_freelist *list; 1074 struct vmem_freelist *first; 1075 struct vmem_freelist *end; 1076 bt_t *bt; 1077 bt_t *btnew; 1078 bt_t *btnew2; 1079 const vmem_size_t size = vmem_roundup_size(vm, size0); 1080 vm_flag_t strat = flags & VM_FITMASK; 1081 vmem_addr_t start; 1082 int rc; 1083 1084 KASSERT(size0 > 0); 1085 KASSERT(size > 0); 1086 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT); 1087 if ((flags & VM_SLEEP) != 0) { 1088 ASSERT_SLEEPABLE(); 1089 } 1090 KASSERT((align & vm->vm_quantum_mask) == 0); 1091 KASSERT((align & (align - 1)) == 0); 1092 KASSERT((phase & vm->vm_quantum_mask) == 0); 1093 KASSERT((nocross & vm->vm_quantum_mask) == 0); 1094 KASSERT((nocross & (nocross - 1)) == 0); 1095 KASSERT((align == 0 && phase == 0) || phase < align); 1096 KASSERT(nocross == 0 || nocross >= size); 1097 KASSERT(minaddr <= maxaddr); 1098 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross)); 1099 1100 if (align == 0) { 1101 align = vm->vm_quantum_mask + 1; 1102 } 1103 1104 /* 1105 * allocate boundary tags before acquiring the vmem lock. 1106 */ 1107 btnew = bt_alloc(vm, flags); 1108 if (btnew == NULL) { 1109 return ENOMEM; 1110 } 1111 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */ 1112 if (btnew2 == NULL) { 1113 bt_free(vm, btnew); 1114 return ENOMEM; 1115 } 1116 1117 /* 1118 * choose a free block from which we allocate. 1119 */ 1120 retry_strat: 1121 first = bt_freehead_toalloc(vm, size, strat); 1122 end = &vm->vm_freelist[VMEM_MAXORDER]; 1123 retry: 1124 bt = NULL; 1125 VMEM_LOCK(vm); 1126 vmem_check(vm); 1127 if (strat == VM_INSTANTFIT) { 1128 /* 1129 * just choose the first block which satisfies our restrictions. 1130 * 1131 * note that we don't need to check the size of the blocks 1132 * because any blocks found on these list should be larger than 1133 * the given size. 1134 */ 1135 for (list = first; list < end; list++) { 1136 bt = LIST_FIRST(list); 1137 if (bt != NULL) { 1138 rc = vmem_fit(bt, size, align, phase, 1139 nocross, minaddr, maxaddr, &start); 1140 if (rc == 0) { 1141 goto gotit; 1142 } 1143 /* 1144 * don't bother to follow the bt_freelist link 1145 * here. the list can be very long and we are 1146 * told to run fast. blocks from the later free 1147 * lists are larger and have better chances to 1148 * satisfy our restrictions. 1149 */ 1150 } 1151 } 1152 } else { /* VM_BESTFIT */ 1153 /* 1154 * we assume that, for space efficiency, it's better to 1155 * allocate from a smaller block. thus we will start searching 1156 * from the lower-order list than VM_INSTANTFIT. 1157 * however, don't bother to find the smallest block in a free 1158 * list because the list can be very long. we can revisit it 1159 * if/when it turns out to be a problem. 1160 * 1161 * note that the 'first' list can contain blocks smaller than 1162 * the requested size. thus we need to check bt_size. 1163 */ 1164 for (list = first; list < end; list++) { 1165 LIST_FOREACH(bt, list, bt_freelist) { 1166 if (bt->bt_size >= size) { 1167 rc = vmem_fit(bt, size, align, phase, 1168 nocross, minaddr, maxaddr, &start); 1169 if (rc == 0) { 1170 goto gotit; 1171 } 1172 } 1173 } 1174 } 1175 } 1176 VMEM_UNLOCK(vm); 1177 #if 1 1178 if (strat == VM_INSTANTFIT) { 1179 strat = VM_BESTFIT; 1180 goto retry_strat; 1181 } 1182 #endif 1183 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) { 1184 1185 /* 1186 * XXX should try to import a region large enough to 1187 * satisfy restrictions? 1188 */ 1189 1190 goto fail; 1191 } 1192 /* XXX eeek, minaddr & maxaddr not respected */ 1193 if (vmem_import(vm, size, flags) == 0) { 1194 goto retry; 1195 } 1196 /* XXX */ 1197 1198 if ((flags & VM_SLEEP) != 0) { 1199 vmem_kick_pdaemon(); 1200 VMEM_LOCK(vm); 1201 VMEM_CONDVAR_WAIT(vm); 1202 VMEM_UNLOCK(vm); 1203 goto retry; 1204 } 1205 fail: 1206 bt_free(vm, btnew); 1207 bt_free(vm, btnew2); 1208 return ENOMEM; 1209 1210 gotit: 1211 KASSERT(bt->bt_type == BT_TYPE_FREE); 1212 KASSERT(bt->bt_size >= size); 1213 bt_remfree(vm, bt); 1214 vmem_check(vm); 1215 if (bt->bt_start != start) { 1216 btnew2->bt_type = BT_TYPE_FREE; 1217 btnew2->bt_start = bt->bt_start; 1218 btnew2->bt_size = start - bt->bt_start; 1219 bt->bt_start = start; 1220 bt->bt_size -= btnew2->bt_size; 1221 bt_insfree(vm, btnew2); 1222 bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist)); 1223 btnew2 = NULL; 1224 vmem_check(vm); 1225 } 1226 KASSERT(bt->bt_start == start); 1227 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) { 1228 /* split */ 1229 btnew->bt_type = BT_TYPE_BUSY; 1230 btnew->bt_start = bt->bt_start; 1231 btnew->bt_size = size; 1232 bt->bt_start = bt->bt_start + size; 1233 bt->bt_size -= size; 1234 bt_insfree(vm, bt); 1235 bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist)); 1236 bt_insbusy(vm, btnew); 1237 vmem_check(vm); 1238 VMEM_UNLOCK(vm); 1239 } else { 1240 bt->bt_type = BT_TYPE_BUSY; 1241 bt_insbusy(vm, bt); 1242 vmem_check(vm); 1243 VMEM_UNLOCK(vm); 1244 bt_free(vm, btnew); 1245 btnew = bt; 1246 } 1247 if (btnew2 != NULL) { 1248 bt_free(vm, btnew2); 1249 } 1250 KASSERT(btnew->bt_size >= size); 1251 btnew->bt_type = BT_TYPE_BUSY; 1252 1253 if (addrp != NULL) 1254 *addrp = btnew->bt_start; 1255 return 0; 1256 } 1257 1258 /* 1259 * vmem_free: free the resource to the arena. 1260 */ 1261 1262 void 1263 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) 1264 { 1265 1266 KASSERT(size > 0); 1267 1268 #if defined(QCACHE) 1269 if (size <= vm->vm_qcache_max) { 1270 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift; 1271 qcache_t *qc = vm->vm_qcache[qidx - 1]; 1272 1273 pool_cache_put(qc->qc_cache, (void *)addr); 1274 return; 1275 } 1276 #endif /* defined(QCACHE) */ 1277 1278 vmem_xfree(vm, addr, size); 1279 } 1280 1281 void 1282 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) 1283 { 1284 bt_t *bt; 1285 bt_t *t; 1286 LIST_HEAD(, vmem_btag) tofree; 1287 1288 LIST_INIT(&tofree); 1289 1290 KASSERT(size > 0); 1291 1292 VMEM_LOCK(vm); 1293 1294 bt = bt_lookupbusy(vm, addr); 1295 KASSERT(bt != NULL); 1296 KASSERT(bt->bt_start == addr); 1297 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) || 1298 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask); 1299 KASSERT(bt->bt_type == BT_TYPE_BUSY); 1300 bt_rembusy(vm, bt); 1301 bt->bt_type = BT_TYPE_FREE; 1302 1303 /* coalesce */ 1304 t = TAILQ_NEXT(bt, bt_seglist); 1305 if (t != NULL && t->bt_type == BT_TYPE_FREE) { 1306 KASSERT(BT_END(bt) < t->bt_start); /* YYY */ 1307 bt_remfree(vm, t); 1308 bt_remseg(vm, t); 1309 bt->bt_size += t->bt_size; 1310 LIST_INSERT_HEAD(&tofree, t, bt_freelist); 1311 } 1312 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); 1313 if (t != NULL && t->bt_type == BT_TYPE_FREE) { 1314 KASSERT(BT_END(t) < bt->bt_start); /* YYY */ 1315 bt_remfree(vm, t); 1316 bt_remseg(vm, t); 1317 bt->bt_size += t->bt_size; 1318 bt->bt_start = t->bt_start; 1319 LIST_INSERT_HEAD(&tofree, t, bt_freelist); 1320 } 1321 1322 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); 1323 KASSERT(t != NULL); 1324 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY); 1325 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN && 1326 t->bt_size == bt->bt_size) { 1327 vmem_addr_t spanaddr; 1328 vmem_size_t spansize; 1329 1330 KASSERT(t->bt_start == bt->bt_start); 1331 spanaddr = bt->bt_start; 1332 spansize = bt->bt_size; 1333 bt_remseg(vm, bt); 1334 LIST_INSERT_HEAD(&tofree, bt, bt_freelist); 1335 bt_remseg(vm, t); 1336 LIST_INSERT_HEAD(&tofree, t, bt_freelist); 1337 vm->vm_size -= spansize; 1338 VMEM_CONDVAR_BROADCAST(vm); 1339 VMEM_UNLOCK(vm); 1340 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize); 1341 } else { 1342 bt_insfree(vm, bt); 1343 VMEM_CONDVAR_BROADCAST(vm); 1344 VMEM_UNLOCK(vm); 1345 } 1346 1347 while (!LIST_EMPTY(&tofree)) { 1348 t = LIST_FIRST(&tofree); 1349 LIST_REMOVE(t, bt_freelist); 1350 bt_free(vm, t); 1351 } 1352 1353 bt_freetrim(vm, BT_MAXFREE); 1354 } 1355 1356 /* 1357 * vmem_add: 1358 * 1359 * => caller must ensure appropriate spl, 1360 * if the arena can be accessed from interrupt context. 1361 */ 1362 1363 int 1364 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags) 1365 { 1366 1367 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC); 1368 } 1369 1370 /* 1371 * vmem_size: information about arenas size 1372 * 1373 * => return free/allocated size in arena 1374 */ 1375 vmem_size_t 1376 vmem_size(vmem_t *vm, int typemask) 1377 { 1378 1379 switch (typemask) { 1380 case VMEM_ALLOC: 1381 return vm->vm_inuse; 1382 case VMEM_FREE: 1383 return vm->vm_size - vm->vm_inuse; 1384 case VMEM_FREE|VMEM_ALLOC: 1385 return vm->vm_size; 1386 default: 1387 panic("vmem_size"); 1388 } 1389 } 1390 1391 /* ---- rehash */ 1392 1393 #if defined(_KERNEL) 1394 static struct callout vmem_rehash_ch; 1395 static int vmem_rehash_interval; 1396 static struct workqueue *vmem_rehash_wq; 1397 static struct work vmem_rehash_wk; 1398 1399 static void 1400 vmem_rehash_all(struct work *wk, void *dummy) 1401 { 1402 vmem_t *vm; 1403 1404 KASSERT(wk == &vmem_rehash_wk); 1405 mutex_enter(&vmem_list_lock); 1406 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1407 size_t desired; 1408 size_t current; 1409 1410 if (!VMEM_TRYLOCK(vm)) { 1411 continue; 1412 } 1413 desired = vm->vm_nbusytag; 1414 current = vm->vm_hashsize; 1415 VMEM_UNLOCK(vm); 1416 1417 if (desired > VMEM_HASHSIZE_MAX) { 1418 desired = VMEM_HASHSIZE_MAX; 1419 } else if (desired < VMEM_HASHSIZE_MIN) { 1420 desired = VMEM_HASHSIZE_MIN; 1421 } 1422 if (desired > current * 2 || desired * 2 < current) { 1423 vmem_rehash(vm, desired, VM_NOSLEEP); 1424 } 1425 } 1426 mutex_exit(&vmem_list_lock); 1427 1428 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval); 1429 } 1430 1431 static void 1432 vmem_rehash_all_kick(void *dummy) 1433 { 1434 1435 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL); 1436 } 1437 1438 void 1439 vmem_rehash_start(void) 1440 { 1441 int error; 1442 1443 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash", 1444 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE); 1445 if (error) { 1446 panic("%s: workqueue_create %d\n", __func__, error); 1447 } 1448 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE); 1449 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL); 1450 1451 vmem_rehash_interval = hz * 10; 1452 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval); 1453 } 1454 #endif /* defined(_KERNEL) */ 1455 1456 /* ---- debug */ 1457 1458 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) 1459 1460 static void bt_dump(const bt_t *, void (*)(const char *, ...) 1461 __printflike(1, 2)); 1462 1463 static const char * 1464 bt_type_string(int type) 1465 { 1466 static const char * const table[] = { 1467 [BT_TYPE_BUSY] = "busy", 1468 [BT_TYPE_FREE] = "free", 1469 [BT_TYPE_SPAN] = "span", 1470 [BT_TYPE_SPAN_STATIC] = "static span", 1471 }; 1472 1473 if (type >= __arraycount(table)) { 1474 return "BOGUS"; 1475 } 1476 return table[type]; 1477 } 1478 1479 static void 1480 bt_dump(const bt_t *bt, void (*pr)(const char *, ...)) 1481 { 1482 1483 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n", 1484 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size, 1485 bt->bt_type, bt_type_string(bt->bt_type)); 1486 } 1487 1488 static void 1489 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2)) 1490 { 1491 const bt_t *bt; 1492 int i; 1493 1494 (*pr)("vmem %p '%s'\n", vm, vm->vm_name); 1495 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1496 bt_dump(bt, pr); 1497 } 1498 1499 for (i = 0; i < VMEM_MAXORDER; i++) { 1500 const struct vmem_freelist *fl = &vm->vm_freelist[i]; 1501 1502 if (LIST_EMPTY(fl)) { 1503 continue; 1504 } 1505 1506 (*pr)("freelist[%d]\n", i); 1507 LIST_FOREACH(bt, fl, bt_freelist) { 1508 bt_dump(bt, pr); 1509 } 1510 } 1511 } 1512 1513 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */ 1514 1515 #if defined(DDB) 1516 static bt_t * 1517 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr) 1518 { 1519 bt_t *bt; 1520 1521 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1522 if (BT_ISSPAN_P(bt)) { 1523 continue; 1524 } 1525 if (bt->bt_start <= addr && addr <= BT_END(bt)) { 1526 return bt; 1527 } 1528 } 1529 1530 return NULL; 1531 } 1532 1533 void 1534 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1535 { 1536 vmem_t *vm; 1537 1538 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1539 bt_t *bt; 1540 1541 bt = vmem_whatis_lookup(vm, addr); 1542 if (bt == NULL) { 1543 continue; 1544 } 1545 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n", 1546 (void *)addr, (void *)bt->bt_start, 1547 (size_t)(addr - bt->bt_start), vm->vm_name, 1548 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free"); 1549 } 1550 } 1551 1552 void 1553 vmem_printall(const char *modif, void (*pr)(const char *, ...)) 1554 { 1555 const vmem_t *vm; 1556 1557 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1558 vmem_dump(vm, pr); 1559 } 1560 } 1561 1562 void 1563 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...)) 1564 { 1565 const vmem_t *vm = (const void *)addr; 1566 1567 vmem_dump(vm, pr); 1568 } 1569 #endif /* defined(DDB) */ 1570 1571 #if defined(_KERNEL) 1572 #define vmem_printf printf 1573 #else 1574 #include <stdio.h> 1575 #include <stdarg.h> 1576 1577 static void 1578 vmem_printf(const char *fmt, ...) 1579 { 1580 va_list ap; 1581 va_start(ap, fmt); 1582 vprintf(fmt, ap); 1583 va_end(ap); 1584 } 1585 #endif 1586 1587 #if defined(VMEM_SANITY) 1588 1589 static bool 1590 vmem_check_sanity(vmem_t *vm) 1591 { 1592 const bt_t *bt, *bt2; 1593 1594 KASSERT(vm != NULL); 1595 1596 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1597 if (bt->bt_start > BT_END(bt)) { 1598 printf("corrupted tag\n"); 1599 bt_dump(bt, vmem_printf); 1600 return false; 1601 } 1602 } 1603 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1604 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) { 1605 if (bt == bt2) { 1606 continue; 1607 } 1608 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) { 1609 continue; 1610 } 1611 if (bt->bt_start <= BT_END(bt2) && 1612 bt2->bt_start <= BT_END(bt)) { 1613 printf("overwrapped tags\n"); 1614 bt_dump(bt, vmem_printf); 1615 bt_dump(bt2, vmem_printf); 1616 return false; 1617 } 1618 } 1619 } 1620 1621 return true; 1622 } 1623 1624 static void 1625 vmem_check(vmem_t *vm) 1626 { 1627 1628 if (!vmem_check_sanity(vm)) { 1629 panic("insanity vmem %p", vm); 1630 } 1631 } 1632 1633 #endif /* defined(VMEM_SANITY) */ 1634 1635 #if defined(UNITTEST) 1636 int 1637 main(void) 1638 { 1639 int rc; 1640 vmem_t *vm; 1641 vmem_addr_t p; 1642 struct reg { 1643 vmem_addr_t p; 1644 vmem_size_t sz; 1645 bool x; 1646 } *reg = NULL; 1647 int nreg = 0; 1648 int nalloc = 0; 1649 int nfree = 0; 1650 vmem_size_t total = 0; 1651 #if 1 1652 vm_flag_t strat = VM_INSTANTFIT; 1653 #else 1654 vm_flag_t strat = VM_BESTFIT; 1655 #endif 1656 1657 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP, 1658 #ifdef _KERNEL 1659 IPL_NONE 1660 #else 1661 0 1662 #endif 1663 ); 1664 if (vm == NULL) { 1665 printf("vmem_create\n"); 1666 exit(EXIT_FAILURE); 1667 } 1668 vmem_dump(vm, vmem_printf); 1669 1670 rc = vmem_add(vm, 0, 50, VM_SLEEP); 1671 assert(rc == 0); 1672 rc = vmem_add(vm, 100, 200, VM_SLEEP); 1673 assert(rc == 0); 1674 rc = vmem_add(vm, 2000, 1, VM_SLEEP); 1675 assert(rc == 0); 1676 rc = vmem_add(vm, 40000, 65536, VM_SLEEP); 1677 assert(rc == 0); 1678 rc = vmem_add(vm, 10000, 10000, VM_SLEEP); 1679 assert(rc == 0); 1680 rc = vmem_add(vm, 500, 1000, VM_SLEEP); 1681 assert(rc == 0); 1682 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP); 1683 assert(rc == 0); 1684 rc = vmem_xalloc(vm, 0x101, 0, 0, 0, 1685 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p); 1686 assert(rc != 0); 1687 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p); 1688 assert(rc == 0 && p == 0); 1689 vmem_xfree(vm, p, 50); 1690 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p); 1691 assert(rc == 0 && p == 0); 1692 rc = vmem_xalloc(vm, 0x100, 0, 0, 0, 1693 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p); 1694 assert(rc != 0); 1695 rc = vmem_xalloc(vm, 0x100, 0, 0, 0, 1696 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p); 1697 assert(rc != 0); 1698 rc = vmem_xalloc(vm, 0x100, 0, 0, 0, 1699 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p); 1700 assert(rc == 0); 1701 vmem_dump(vm, vmem_printf); 1702 for (;;) { 1703 struct reg *r; 1704 int t = rand() % 100; 1705 1706 if (t > 45) { 1707 /* alloc */ 1708 vmem_size_t sz = rand() % 500 + 1; 1709 bool x; 1710 vmem_size_t align, phase, nocross; 1711 vmem_addr_t minaddr, maxaddr; 1712 1713 if (t > 70) { 1714 x = true; 1715 /* XXX */ 1716 align = 1 << (rand() % 15); 1717 phase = rand() % 65536; 1718 nocross = 1 << (rand() % 15); 1719 if (align <= phase) { 1720 phase = 0; 1721 } 1722 if (VMEM_CROSS_P(phase, phase + sz - 1, 1723 nocross)) { 1724 nocross = 0; 1725 } 1726 do { 1727 minaddr = rand() % 50000; 1728 maxaddr = rand() % 70000; 1729 } while (minaddr > maxaddr); 1730 printf("=== xalloc %" PRIu64 1731 " align=%" PRIu64 ", phase=%" PRIu64 1732 ", nocross=%" PRIu64 ", min=%" PRIu64 1733 ", max=%" PRIu64 "\n", 1734 (uint64_t)sz, 1735 (uint64_t)align, 1736 (uint64_t)phase, 1737 (uint64_t)nocross, 1738 (uint64_t)minaddr, 1739 (uint64_t)maxaddr); 1740 rc = vmem_xalloc(vm, sz, align, phase, nocross, 1741 minaddr, maxaddr, strat|VM_SLEEP, &p); 1742 } else { 1743 x = false; 1744 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz); 1745 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p); 1746 } 1747 printf("-> %" PRIu64 "\n", (uint64_t)p); 1748 vmem_dump(vm, vmem_printf); 1749 if (rc != 0) { 1750 if (x) { 1751 continue; 1752 } 1753 break; 1754 } 1755 nreg++; 1756 reg = realloc(reg, sizeof(*reg) * nreg); 1757 r = ®[nreg - 1]; 1758 r->p = p; 1759 r->sz = sz; 1760 r->x = x; 1761 total += sz; 1762 nalloc++; 1763 } else if (nreg != 0) { 1764 /* free */ 1765 r = ®[rand() % nreg]; 1766 printf("=== free %" PRIu64 ", %" PRIu64 "\n", 1767 (uint64_t)r->p, (uint64_t)r->sz); 1768 if (r->x) { 1769 vmem_xfree(vm, r->p, r->sz); 1770 } else { 1771 vmem_free(vm, r->p, r->sz); 1772 } 1773 total -= r->sz; 1774 vmem_dump(vm, vmem_printf); 1775 *r = reg[nreg - 1]; 1776 nreg--; 1777 nfree++; 1778 } 1779 printf("total=%" PRIu64 "\n", (uint64_t)total); 1780 } 1781 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n", 1782 (uint64_t)total, nalloc, nfree); 1783 exit(EXIT_SUCCESS); 1784 } 1785 #endif /* defined(UNITTEST) */ 1786