xref: /netbsd-src/sys/kern/subr_vmem.c (revision ce099b40997c43048fb78bd578195f81d2456523)
1 /*	$NetBSD: subr_vmem.c,v 1.42 2008/03/17 08:27:50 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c)2006 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * reference:
31  * -	Magazines and Vmem: Extending the Slab Allocator
32  *	to Many CPUs and Arbitrary Resources
33  *	http://www.usenix.org/event/usenix01/bonwick.html
34  *
35  * todo:
36  * -	decide how to import segments for vmem_xalloc.
37  * -	don't rely on malloc(9).
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.42 2008/03/17 08:27:50 yamt Exp $");
42 
43 #define	VMEM_DEBUG
44 #if defined(_KERNEL)
45 #include "opt_ddb.h"
46 #define	QCACHE
47 #endif /* defined(_KERNEL) */
48 
49 #include <sys/param.h>
50 #include <sys/hash.h>
51 #include <sys/queue.h>
52 
53 #if defined(_KERNEL)
54 #include <sys/systm.h>
55 #include <sys/kernel.h>	/* hz */
56 #include <sys/callout.h>
57 #include <sys/malloc.h>
58 #include <sys/once.h>
59 #include <sys/pool.h>
60 #include <sys/vmem.h>
61 #include <sys/workqueue.h>
62 #else /* defined(_KERNEL) */
63 #include "../sys/vmem.h"
64 #endif /* defined(_KERNEL) */
65 
66 #if defined(_KERNEL)
67 #define	LOCK_DECL(name)		kmutex_t name
68 #else /* defined(_KERNEL) */
69 #include <errno.h>
70 #include <assert.h>
71 #include <stdlib.h>
72 
73 #define	KASSERT(a)		assert(a)
74 #define	LOCK_DECL(name)		/* nothing */
75 #define	mutex_init(a, b, c)	/* nothing */
76 #define	mutex_destroy(a)	/* nothing */
77 #define	mutex_enter(a)		/* nothing */
78 #define	mutex_exit(a)		/* nothing */
79 #define	mutex_owned(a)		/* nothing */
80 #define	ASSERT_SLEEPABLE()	 /* nothing */
81 #define	IPL_VM			0
82 #endif /* defined(_KERNEL) */
83 
84 struct vmem;
85 struct vmem_btag;
86 
87 #if defined(VMEM_DEBUG)
88 void vmem_dump(const vmem_t *);
89 #endif /* defined(VMEM_DEBUG) */
90 
91 #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
92 
93 #define	VMEM_HASHSIZE_MIN	1	/* XXX */
94 #define	VMEM_HASHSIZE_MAX	8192	/* XXX */
95 #define	VMEM_HASHSIZE_INIT	VMEM_HASHSIZE_MIN
96 
97 #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
98 
99 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
100 LIST_HEAD(vmem_freelist, vmem_btag);
101 LIST_HEAD(vmem_hashlist, vmem_btag);
102 
103 #if defined(QCACHE)
104 #define	VMEM_QCACHE_IDX_MAX	32
105 
106 #define	QC_NAME_MAX	16
107 
108 struct qcache {
109 	pool_cache_t qc_cache;
110 	vmem_t *qc_vmem;
111 	char qc_name[QC_NAME_MAX];
112 };
113 typedef struct qcache qcache_t;
114 #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
115 #endif /* defined(QCACHE) */
116 
117 /* vmem arena */
118 struct vmem {
119 	LOCK_DECL(vm_lock);
120 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
121 	    vm_flag_t);
122 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
123 	vmem_t *vm_source;
124 	struct vmem_seglist vm_seglist;
125 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
126 	size_t vm_hashsize;
127 	size_t vm_nbusytag;
128 	struct vmem_hashlist *vm_hashlist;
129 	size_t vm_quantum_mask;
130 	int vm_quantum_shift;
131 	const char *vm_name;
132 	LIST_ENTRY(vmem) vm_alllist;
133 
134 #if defined(QCACHE)
135 	/* quantum cache */
136 	size_t vm_qcache_max;
137 	struct pool_allocator vm_qcache_allocator;
138 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
139 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
140 #endif /* defined(QCACHE) */
141 };
142 
143 #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
144 #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
145 #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
146 #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
147 #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
148 #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
149 
150 /* boundary tag */
151 struct vmem_btag {
152 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
153 	union {
154 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
155 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
156 	} bt_u;
157 #define	bt_hashlist	bt_u.u_hashlist
158 #define	bt_freelist	bt_u.u_freelist
159 	vmem_addr_t bt_start;
160 	vmem_size_t bt_size;
161 	int bt_type;
162 };
163 
164 #define	BT_TYPE_SPAN		1
165 #define	BT_TYPE_SPAN_STATIC	2
166 #define	BT_TYPE_FREE		3
167 #define	BT_TYPE_BUSY		4
168 #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
169 
170 #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
171 
172 typedef struct vmem_btag bt_t;
173 
174 /* ---- misc */
175 
176 #define	VMEM_ALIGNUP(addr, align) \
177 	(-(-(addr) & -(align)))
178 #define	VMEM_CROSS_P(addr1, addr2, boundary) \
179 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
180 
181 #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
182 
183 static int
184 calc_order(vmem_size_t size)
185 {
186 	vmem_size_t target;
187 	int i;
188 
189 	KASSERT(size != 0);
190 
191 	i = 0;
192 	target = size >> 1;
193 	while (ORDER2SIZE(i) <= target) {
194 		i++;
195 	}
196 
197 	KASSERT(ORDER2SIZE(i) <= size);
198 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
199 
200 	return i;
201 }
202 
203 #if defined(_KERNEL)
204 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
205 #endif /* defined(_KERNEL) */
206 
207 static void *
208 xmalloc(size_t sz, vm_flag_t flags)
209 {
210 
211 #if defined(_KERNEL)
212 	return malloc(sz, M_VMEM,
213 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
214 #else /* defined(_KERNEL) */
215 	return malloc(sz);
216 #endif /* defined(_KERNEL) */
217 }
218 
219 static void
220 xfree(void *p)
221 {
222 
223 #if defined(_KERNEL)
224 	return free(p, M_VMEM);
225 #else /* defined(_KERNEL) */
226 	return free(p);
227 #endif /* defined(_KERNEL) */
228 }
229 
230 /* ---- boundary tag */
231 
232 #if defined(_KERNEL)
233 static struct pool_cache bt_cache;
234 #endif /* defined(_KERNEL) */
235 
236 static bt_t *
237 bt_alloc(vmem_t *vm, vm_flag_t flags)
238 {
239 	bt_t *bt;
240 
241 #if defined(_KERNEL)
242 	bt = pool_cache_get(&bt_cache,
243 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
244 #else /* defined(_KERNEL) */
245 	bt = malloc(sizeof *bt);
246 #endif /* defined(_KERNEL) */
247 
248 	return bt;
249 }
250 
251 static void
252 bt_free(vmem_t *vm, bt_t *bt)
253 {
254 
255 #if defined(_KERNEL)
256 	pool_cache_put(&bt_cache, bt);
257 #else /* defined(_KERNEL) */
258 	free(bt);
259 #endif /* defined(_KERNEL) */
260 }
261 
262 /*
263  * freelist[0] ... [1, 1]
264  * freelist[1] ... [2, 3]
265  * freelist[2] ... [4, 7]
266  * freelist[3] ... [8, 15]
267  *  :
268  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
269  *  :
270  */
271 
272 static struct vmem_freelist *
273 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
274 {
275 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
276 	int idx;
277 
278 	KASSERT((size & vm->vm_quantum_mask) == 0);
279 	KASSERT(size != 0);
280 
281 	idx = calc_order(qsize);
282 	KASSERT(idx >= 0);
283 	KASSERT(idx < VMEM_MAXORDER);
284 
285 	return &vm->vm_freelist[idx];
286 }
287 
288 static struct vmem_freelist *
289 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
290 {
291 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
292 	int idx;
293 
294 	KASSERT((size & vm->vm_quantum_mask) == 0);
295 	KASSERT(size != 0);
296 
297 	idx = calc_order(qsize);
298 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
299 		idx++;
300 		/* check too large request? */
301 	}
302 	KASSERT(idx >= 0);
303 	KASSERT(idx < VMEM_MAXORDER);
304 
305 	return &vm->vm_freelist[idx];
306 }
307 
308 /* ---- boundary tag hash */
309 
310 static struct vmem_hashlist *
311 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
312 {
313 	struct vmem_hashlist *list;
314 	unsigned int hash;
315 
316 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
317 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
318 
319 	return list;
320 }
321 
322 static bt_t *
323 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
324 {
325 	struct vmem_hashlist *list;
326 	bt_t *bt;
327 
328 	list = bt_hashhead(vm, addr);
329 	LIST_FOREACH(bt, list, bt_hashlist) {
330 		if (bt->bt_start == addr) {
331 			break;
332 		}
333 	}
334 
335 	return bt;
336 }
337 
338 static void
339 bt_rembusy(vmem_t *vm, bt_t *bt)
340 {
341 
342 	KASSERT(vm->vm_nbusytag > 0);
343 	vm->vm_nbusytag--;
344 	LIST_REMOVE(bt, bt_hashlist);
345 }
346 
347 static void
348 bt_insbusy(vmem_t *vm, bt_t *bt)
349 {
350 	struct vmem_hashlist *list;
351 
352 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
353 
354 	list = bt_hashhead(vm, bt->bt_start);
355 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
356 	vm->vm_nbusytag++;
357 }
358 
359 /* ---- boundary tag list */
360 
361 static void
362 bt_remseg(vmem_t *vm, bt_t *bt)
363 {
364 
365 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
366 }
367 
368 static void
369 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
370 {
371 
372 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
373 }
374 
375 static void
376 bt_insseg_tail(vmem_t *vm, bt_t *bt)
377 {
378 
379 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
380 }
381 
382 static void
383 bt_remfree(vmem_t *vm, bt_t *bt)
384 {
385 
386 	KASSERT(bt->bt_type == BT_TYPE_FREE);
387 
388 	LIST_REMOVE(bt, bt_freelist);
389 }
390 
391 static void
392 bt_insfree(vmem_t *vm, bt_t *bt)
393 {
394 	struct vmem_freelist *list;
395 
396 	list = bt_freehead_tofree(vm, bt->bt_size);
397 	LIST_INSERT_HEAD(list, bt, bt_freelist);
398 }
399 
400 /* ---- vmem internal functions */
401 
402 #if defined(_KERNEL)
403 static kmutex_t vmem_list_lock;
404 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
405 #endif /* defined(_KERNEL) */
406 
407 #if defined(QCACHE)
408 static inline vm_flag_t
409 prf_to_vmf(int prflags)
410 {
411 	vm_flag_t vmflags;
412 
413 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
414 	if ((prflags & PR_WAITOK) != 0) {
415 		vmflags = VM_SLEEP;
416 	} else {
417 		vmflags = VM_NOSLEEP;
418 	}
419 	return vmflags;
420 }
421 
422 static inline int
423 vmf_to_prf(vm_flag_t vmflags)
424 {
425 	int prflags;
426 
427 	if ((vmflags & VM_SLEEP) != 0) {
428 		prflags = PR_WAITOK;
429 	} else {
430 		prflags = PR_NOWAIT;
431 	}
432 	return prflags;
433 }
434 
435 static size_t
436 qc_poolpage_size(size_t qcache_max)
437 {
438 	int i;
439 
440 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
441 		/* nothing */
442 	}
443 	return ORDER2SIZE(i);
444 }
445 
446 static void *
447 qc_poolpage_alloc(struct pool *pool, int prflags)
448 {
449 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
450 	vmem_t *vm = qc->qc_vmem;
451 
452 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
453 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
454 }
455 
456 static void
457 qc_poolpage_free(struct pool *pool, void *addr)
458 {
459 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
460 	vmem_t *vm = qc->qc_vmem;
461 
462 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
463 }
464 
465 static void
466 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
467 {
468 	qcache_t *prevqc;
469 	struct pool_allocator *pa;
470 	int qcache_idx_max;
471 	int i;
472 
473 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
474 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
475 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
476 	}
477 	vm->vm_qcache_max = qcache_max;
478 	pa = &vm->vm_qcache_allocator;
479 	memset(pa, 0, sizeof(*pa));
480 	pa->pa_alloc = qc_poolpage_alloc;
481 	pa->pa_free = qc_poolpage_free;
482 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
483 
484 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
485 	prevqc = NULL;
486 	for (i = qcache_idx_max; i > 0; i--) {
487 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
488 		size_t size = i << vm->vm_quantum_shift;
489 
490 		qc->qc_vmem = vm;
491 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
492 		    vm->vm_name, size);
493 		qc->qc_cache = pool_cache_init(size,
494 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
495 		    PR_NOALIGN | PR_NOTOUCH /* XXX */,
496 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
497 		KASSERT(qc->qc_cache != NULL);	/* XXX */
498 		if (prevqc != NULL &&
499 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
500 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
501 			pool_cache_destroy(qc->qc_cache);
502 			vm->vm_qcache[i - 1] = prevqc;
503 			continue;
504 		}
505 		qc->qc_cache->pc_pool.pr_qcache = qc;
506 		vm->vm_qcache[i - 1] = qc;
507 		prevqc = qc;
508 	}
509 }
510 
511 static void
512 qc_destroy(vmem_t *vm)
513 {
514 	const qcache_t *prevqc;
515 	int i;
516 	int qcache_idx_max;
517 
518 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
519 	prevqc = NULL;
520 	for (i = 0; i < qcache_idx_max; i++) {
521 		qcache_t *qc = vm->vm_qcache[i];
522 
523 		if (prevqc == qc) {
524 			continue;
525 		}
526 		pool_cache_destroy(qc->qc_cache);
527 		prevqc = qc;
528 	}
529 }
530 
531 static bool
532 qc_reap(vmem_t *vm)
533 {
534 	const qcache_t *prevqc;
535 	int i;
536 	int qcache_idx_max;
537 	bool didsomething = false;
538 
539 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
540 	prevqc = NULL;
541 	for (i = 0; i < qcache_idx_max; i++) {
542 		qcache_t *qc = vm->vm_qcache[i];
543 
544 		if (prevqc == qc) {
545 			continue;
546 		}
547 		if (pool_cache_reclaim(qc->qc_cache) != 0) {
548 			didsomething = true;
549 		}
550 		prevqc = qc;
551 	}
552 
553 	return didsomething;
554 }
555 #endif /* defined(QCACHE) */
556 
557 #if defined(_KERNEL)
558 static int
559 vmem_init(void)
560 {
561 
562 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
563 	pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
564 	    NULL, IPL_VM, NULL, NULL, NULL);
565 	return 0;
566 }
567 #endif /* defined(_KERNEL) */
568 
569 static vmem_addr_t
570 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
571     int spanbttype)
572 {
573 	bt_t *btspan;
574 	bt_t *btfree;
575 
576 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
577 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
578 
579 	btspan = bt_alloc(vm, flags);
580 	if (btspan == NULL) {
581 		return VMEM_ADDR_NULL;
582 	}
583 	btfree = bt_alloc(vm, flags);
584 	if (btfree == NULL) {
585 		bt_free(vm, btspan);
586 		return VMEM_ADDR_NULL;
587 	}
588 
589 	btspan->bt_type = spanbttype;
590 	btspan->bt_start = addr;
591 	btspan->bt_size = size;
592 
593 	btfree->bt_type = BT_TYPE_FREE;
594 	btfree->bt_start = addr;
595 	btfree->bt_size = size;
596 
597 	VMEM_LOCK(vm);
598 	bt_insseg_tail(vm, btspan);
599 	bt_insseg(vm, btfree, btspan);
600 	bt_insfree(vm, btfree);
601 	VMEM_UNLOCK(vm);
602 
603 	return addr;
604 }
605 
606 static void
607 vmem_destroy1(vmem_t *vm)
608 {
609 
610 #if defined(QCACHE)
611 	qc_destroy(vm);
612 #endif /* defined(QCACHE) */
613 	if (vm->vm_hashlist != NULL) {
614 		int i;
615 
616 		for (i = 0; i < vm->vm_hashsize; i++) {
617 			bt_t *bt;
618 
619 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
620 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
621 				bt_free(vm, bt);
622 			}
623 		}
624 		xfree(vm->vm_hashlist);
625 	}
626 	VMEM_LOCK_DESTROY(vm);
627 	xfree(vm);
628 }
629 
630 static int
631 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
632 {
633 	vmem_addr_t addr;
634 
635 	if (vm->vm_allocfn == NULL) {
636 		return EINVAL;
637 	}
638 
639 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
640 	if (addr == VMEM_ADDR_NULL) {
641 		return ENOMEM;
642 	}
643 
644 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
645 		(*vm->vm_freefn)(vm->vm_source, addr, size);
646 		return ENOMEM;
647 	}
648 
649 	return 0;
650 }
651 
652 static int
653 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
654 {
655 	bt_t *bt;
656 	int i;
657 	struct vmem_hashlist *newhashlist;
658 	struct vmem_hashlist *oldhashlist;
659 	size_t oldhashsize;
660 
661 	KASSERT(newhashsize > 0);
662 
663 	newhashlist =
664 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
665 	if (newhashlist == NULL) {
666 		return ENOMEM;
667 	}
668 	for (i = 0; i < newhashsize; i++) {
669 		LIST_INIT(&newhashlist[i]);
670 	}
671 
672 	if (!VMEM_TRYLOCK(vm)) {
673 		xfree(newhashlist);
674 		return EBUSY;
675 	}
676 	oldhashlist = vm->vm_hashlist;
677 	oldhashsize = vm->vm_hashsize;
678 	vm->vm_hashlist = newhashlist;
679 	vm->vm_hashsize = newhashsize;
680 	if (oldhashlist == NULL) {
681 		VMEM_UNLOCK(vm);
682 		return 0;
683 	}
684 	for (i = 0; i < oldhashsize; i++) {
685 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
686 			bt_rembusy(vm, bt); /* XXX */
687 			bt_insbusy(vm, bt);
688 		}
689 	}
690 	VMEM_UNLOCK(vm);
691 
692 	xfree(oldhashlist);
693 
694 	return 0;
695 }
696 
697 /*
698  * vmem_fit: check if a bt can satisfy the given restrictions.
699  */
700 
701 static vmem_addr_t
702 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
703     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
704 {
705 	vmem_addr_t start;
706 	vmem_addr_t end;
707 
708 	KASSERT(bt->bt_size >= size);
709 
710 	/*
711 	 * XXX assumption: vmem_addr_t and vmem_size_t are
712 	 * unsigned integer of the same size.
713 	 */
714 
715 	start = bt->bt_start;
716 	if (start < minaddr) {
717 		start = minaddr;
718 	}
719 	end = BT_END(bt);
720 	if (end > maxaddr - 1) {
721 		end = maxaddr - 1;
722 	}
723 	if (start >= end) {
724 		return VMEM_ADDR_NULL;
725 	}
726 
727 	start = VMEM_ALIGNUP(start - phase, align) + phase;
728 	if (start < bt->bt_start) {
729 		start += align;
730 	}
731 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
732 		KASSERT(align < nocross);
733 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
734 	}
735 	if (start < end && end - start >= size) {
736 		KASSERT((start & (align - 1)) == phase);
737 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
738 		KASSERT(minaddr <= start);
739 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
740 		KASSERT(bt->bt_start <= start);
741 		KASSERT(start + size <= BT_END(bt));
742 		return start;
743 	}
744 	return VMEM_ADDR_NULL;
745 }
746 
747 /* ---- vmem API */
748 
749 /*
750  * vmem_create: create an arena.
751  *
752  * => must not be called from interrupt context.
753  */
754 
755 vmem_t *
756 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
757     vmem_size_t quantum,
758     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
759     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
760     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
761     int ipl)
762 {
763 	vmem_t *vm;
764 	int i;
765 #if defined(_KERNEL)
766 	static ONCE_DECL(control);
767 #endif /* defined(_KERNEL) */
768 
769 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
770 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
771 
772 #if defined(_KERNEL)
773 	if (RUN_ONCE(&control, vmem_init)) {
774 		return NULL;
775 	}
776 #endif /* defined(_KERNEL) */
777 	vm = xmalloc(sizeof(*vm), flags);
778 	if (vm == NULL) {
779 		return NULL;
780 	}
781 
782 	VMEM_LOCK_INIT(vm, ipl);
783 	vm->vm_name = name;
784 	vm->vm_quantum_mask = quantum - 1;
785 	vm->vm_quantum_shift = calc_order(quantum);
786 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
787 	vm->vm_allocfn = allocfn;
788 	vm->vm_freefn = freefn;
789 	vm->vm_source = source;
790 	vm->vm_nbusytag = 0;
791 #if defined(QCACHE)
792 	qc_init(vm, qcache_max, ipl);
793 #endif /* defined(QCACHE) */
794 
795 	CIRCLEQ_INIT(&vm->vm_seglist);
796 	for (i = 0; i < VMEM_MAXORDER; i++) {
797 		LIST_INIT(&vm->vm_freelist[i]);
798 	}
799 	vm->vm_hashlist = NULL;
800 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
801 		vmem_destroy1(vm);
802 		return NULL;
803 	}
804 
805 	if (size != 0) {
806 		if (vmem_add(vm, base, size, flags) == 0) {
807 			vmem_destroy1(vm);
808 			return NULL;
809 		}
810 	}
811 
812 #if defined(_KERNEL)
813 	mutex_enter(&vmem_list_lock);
814 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
815 	mutex_exit(&vmem_list_lock);
816 #endif /* defined(_KERNEL) */
817 
818 	return vm;
819 }
820 
821 void
822 vmem_destroy(vmem_t *vm)
823 {
824 
825 #if defined(_KERNEL)
826 	mutex_enter(&vmem_list_lock);
827 	LIST_REMOVE(vm, vm_alllist);
828 	mutex_exit(&vmem_list_lock);
829 #endif /* defined(_KERNEL) */
830 
831 	vmem_destroy1(vm);
832 }
833 
834 vmem_size_t
835 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
836 {
837 
838 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
839 }
840 
841 /*
842  * vmem_alloc:
843  *
844  * => caller must ensure appropriate spl,
845  *    if the arena can be accessed from interrupt context.
846  */
847 
848 vmem_addr_t
849 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
850 {
851 	const vm_flag_t strat __unused = flags & VM_FITMASK;
852 
853 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
854 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
855 
856 	KASSERT(size > 0);
857 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
858 	if ((flags & VM_SLEEP) != 0) {
859 		ASSERT_SLEEPABLE();
860 	}
861 
862 #if defined(QCACHE)
863 	if (size <= vm->vm_qcache_max) {
864 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
865 		qcache_t *qc = vm->vm_qcache[qidx - 1];
866 
867 		return (vmem_addr_t)pool_cache_get(qc->qc_cache,
868 		    vmf_to_prf(flags));
869 	}
870 #endif /* defined(QCACHE) */
871 
872 	return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
873 }
874 
875 vmem_addr_t
876 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
877     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
878     vm_flag_t flags)
879 {
880 	struct vmem_freelist *list;
881 	struct vmem_freelist *first;
882 	struct vmem_freelist *end;
883 	bt_t *bt;
884 	bt_t *btnew;
885 	bt_t *btnew2;
886 	const vmem_size_t size = vmem_roundup_size(vm, size0);
887 	vm_flag_t strat = flags & VM_FITMASK;
888 	vmem_addr_t start;
889 
890 	KASSERT(size0 > 0);
891 	KASSERT(size > 0);
892 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
893 	if ((flags & VM_SLEEP) != 0) {
894 		ASSERT_SLEEPABLE();
895 	}
896 	KASSERT((align & vm->vm_quantum_mask) == 0);
897 	KASSERT((align & (align - 1)) == 0);
898 	KASSERT((phase & vm->vm_quantum_mask) == 0);
899 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
900 	KASSERT((nocross & (nocross - 1)) == 0);
901 	KASSERT((align == 0 && phase == 0) || phase < align);
902 	KASSERT(nocross == 0 || nocross >= size);
903 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
904 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
905 
906 	if (align == 0) {
907 		align = vm->vm_quantum_mask + 1;
908 	}
909 	btnew = bt_alloc(vm, flags);
910 	if (btnew == NULL) {
911 		return VMEM_ADDR_NULL;
912 	}
913 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
914 	if (btnew2 == NULL) {
915 		bt_free(vm, btnew);
916 		return VMEM_ADDR_NULL;
917 	}
918 
919 retry_strat:
920 	first = bt_freehead_toalloc(vm, size, strat);
921 	end = &vm->vm_freelist[VMEM_MAXORDER];
922 retry:
923 	bt = NULL;
924 	VMEM_LOCK(vm);
925 	if (strat == VM_INSTANTFIT) {
926 		for (list = first; list < end; list++) {
927 			bt = LIST_FIRST(list);
928 			if (bt != NULL) {
929 				start = vmem_fit(bt, size, align, phase,
930 				    nocross, minaddr, maxaddr);
931 				if (start != VMEM_ADDR_NULL) {
932 					goto gotit;
933 				}
934 			}
935 		}
936 	} else { /* VM_BESTFIT */
937 		for (list = first; list < end; list++) {
938 			LIST_FOREACH(bt, list, bt_freelist) {
939 				if (bt->bt_size >= size) {
940 					start = vmem_fit(bt, size, align, phase,
941 					    nocross, minaddr, maxaddr);
942 					if (start != VMEM_ADDR_NULL) {
943 						goto gotit;
944 					}
945 				}
946 			}
947 		}
948 	}
949 	VMEM_UNLOCK(vm);
950 #if 1
951 	if (strat == VM_INSTANTFIT) {
952 		strat = VM_BESTFIT;
953 		goto retry_strat;
954 	}
955 #endif
956 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
957 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
958 
959 		/*
960 		 * XXX should try to import a region large enough to
961 		 * satisfy restrictions?
962 		 */
963 
964 		goto fail;
965 	}
966 	if (vmem_import(vm, size, flags) == 0) {
967 		goto retry;
968 	}
969 	/* XXX */
970 fail:
971 	bt_free(vm, btnew);
972 	bt_free(vm, btnew2);
973 	return VMEM_ADDR_NULL;
974 
975 gotit:
976 	KASSERT(bt->bt_type == BT_TYPE_FREE);
977 	KASSERT(bt->bt_size >= size);
978 	bt_remfree(vm, bt);
979 	if (bt->bt_start != start) {
980 		btnew2->bt_type = BT_TYPE_FREE;
981 		btnew2->bt_start = bt->bt_start;
982 		btnew2->bt_size = start - bt->bt_start;
983 		bt->bt_start = start;
984 		bt->bt_size -= btnew2->bt_size;
985 		bt_insfree(vm, btnew2);
986 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
987 		btnew2 = NULL;
988 	}
989 	KASSERT(bt->bt_start == start);
990 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
991 		/* split */
992 		btnew->bt_type = BT_TYPE_BUSY;
993 		btnew->bt_start = bt->bt_start;
994 		btnew->bt_size = size;
995 		bt->bt_start = bt->bt_start + size;
996 		bt->bt_size -= size;
997 		bt_insfree(vm, bt);
998 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
999 		bt_insbusy(vm, btnew);
1000 		VMEM_UNLOCK(vm);
1001 	} else {
1002 		bt->bt_type = BT_TYPE_BUSY;
1003 		bt_insbusy(vm, bt);
1004 		VMEM_UNLOCK(vm);
1005 		bt_free(vm, btnew);
1006 		btnew = bt;
1007 	}
1008 	if (btnew2 != NULL) {
1009 		bt_free(vm, btnew2);
1010 	}
1011 	KASSERT(btnew->bt_size >= size);
1012 	btnew->bt_type = BT_TYPE_BUSY;
1013 
1014 	return btnew->bt_start;
1015 }
1016 
1017 /*
1018  * vmem_free:
1019  *
1020  * => caller must ensure appropriate spl,
1021  *    if the arena can be accessed from interrupt context.
1022  */
1023 
1024 void
1025 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1026 {
1027 
1028 	KASSERT(addr != VMEM_ADDR_NULL);
1029 	KASSERT(size > 0);
1030 
1031 #if defined(QCACHE)
1032 	if (size <= vm->vm_qcache_max) {
1033 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1034 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1035 
1036 		return pool_cache_put(qc->qc_cache, (void *)addr);
1037 	}
1038 #endif /* defined(QCACHE) */
1039 
1040 	vmem_xfree(vm, addr, size);
1041 }
1042 
1043 void
1044 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1045 {
1046 	bt_t *bt;
1047 	bt_t *t;
1048 
1049 	KASSERT(addr != VMEM_ADDR_NULL);
1050 	KASSERT(size > 0);
1051 
1052 	VMEM_LOCK(vm);
1053 
1054 	bt = bt_lookupbusy(vm, addr);
1055 	KASSERT(bt != NULL);
1056 	KASSERT(bt->bt_start == addr);
1057 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1058 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1059 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
1060 	bt_rembusy(vm, bt);
1061 	bt->bt_type = BT_TYPE_FREE;
1062 
1063 	/* coalesce */
1064 	t = CIRCLEQ_NEXT(bt, bt_seglist);
1065 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1066 		KASSERT(BT_END(bt) == t->bt_start);
1067 		bt_remfree(vm, t);
1068 		bt_remseg(vm, t);
1069 		bt->bt_size += t->bt_size;
1070 		bt_free(vm, t);
1071 	}
1072 	t = CIRCLEQ_PREV(bt, bt_seglist);
1073 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1074 		KASSERT(BT_END(t) == bt->bt_start);
1075 		bt_remfree(vm, t);
1076 		bt_remseg(vm, t);
1077 		bt->bt_size += t->bt_size;
1078 		bt->bt_start = t->bt_start;
1079 		bt_free(vm, t);
1080 	}
1081 
1082 	t = CIRCLEQ_PREV(bt, bt_seglist);
1083 	KASSERT(t != NULL);
1084 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1085 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1086 	    t->bt_size == bt->bt_size) {
1087 		vmem_addr_t spanaddr;
1088 		vmem_size_t spansize;
1089 
1090 		KASSERT(t->bt_start == bt->bt_start);
1091 		spanaddr = bt->bt_start;
1092 		spansize = bt->bt_size;
1093 		bt_remseg(vm, bt);
1094 		bt_free(vm, bt);
1095 		bt_remseg(vm, t);
1096 		bt_free(vm, t);
1097 		VMEM_UNLOCK(vm);
1098 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1099 	} else {
1100 		bt_insfree(vm, bt);
1101 		VMEM_UNLOCK(vm);
1102 	}
1103 }
1104 
1105 /*
1106  * vmem_add:
1107  *
1108  * => caller must ensure appropriate spl,
1109  *    if the arena can be accessed from interrupt context.
1110  */
1111 
1112 vmem_addr_t
1113 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1114 {
1115 
1116 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1117 }
1118 
1119 /*
1120  * vmem_reap: reap unused resources.
1121  *
1122  * => return true if we successfully reaped something.
1123  */
1124 
1125 bool
1126 vmem_reap(vmem_t *vm)
1127 {
1128 	bool didsomething = false;
1129 
1130 #if defined(QCACHE)
1131 	didsomething = qc_reap(vm);
1132 #endif /* defined(QCACHE) */
1133 	return didsomething;
1134 }
1135 
1136 /* ---- rehash */
1137 
1138 #if defined(_KERNEL)
1139 static struct callout vmem_rehash_ch;
1140 static int vmem_rehash_interval;
1141 static struct workqueue *vmem_rehash_wq;
1142 static struct work vmem_rehash_wk;
1143 
1144 static void
1145 vmem_rehash_all(struct work *wk, void *dummy)
1146 {
1147 	vmem_t *vm;
1148 
1149 	KASSERT(wk == &vmem_rehash_wk);
1150 	mutex_enter(&vmem_list_lock);
1151 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1152 		size_t desired;
1153 		size_t current;
1154 
1155 		if (!VMEM_TRYLOCK(vm)) {
1156 			continue;
1157 		}
1158 		desired = vm->vm_nbusytag;
1159 		current = vm->vm_hashsize;
1160 		VMEM_UNLOCK(vm);
1161 
1162 		if (desired > VMEM_HASHSIZE_MAX) {
1163 			desired = VMEM_HASHSIZE_MAX;
1164 		} else if (desired < VMEM_HASHSIZE_MIN) {
1165 			desired = VMEM_HASHSIZE_MIN;
1166 		}
1167 		if (desired > current * 2 || desired * 2 < current) {
1168 			vmem_rehash(vm, desired, VM_NOSLEEP);
1169 		}
1170 	}
1171 	mutex_exit(&vmem_list_lock);
1172 
1173 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1174 }
1175 
1176 static void
1177 vmem_rehash_all_kick(void *dummy)
1178 {
1179 
1180 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1181 }
1182 
1183 void
1184 vmem_rehash_start(void)
1185 {
1186 	int error;
1187 
1188 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1189 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1190 	if (error) {
1191 		panic("%s: workqueue_create %d\n", __func__, error);
1192 	}
1193 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1194 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1195 
1196 	vmem_rehash_interval = hz * 10;
1197 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1198 }
1199 #endif /* defined(_KERNEL) */
1200 
1201 /* ---- debug */
1202 
1203 #if defined(DDB)
1204 static bt_t *
1205 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1206 {
1207 	bt_t *bt;
1208 
1209 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1210 		if (BT_ISSPAN_P(bt)) {
1211 			continue;
1212 		}
1213 		if (bt->bt_start <= addr && addr < BT_END(bt)) {
1214 			return bt;
1215 		}
1216 	}
1217 
1218 	return NULL;
1219 }
1220 
1221 void
1222 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1223 {
1224 	vmem_t *vm;
1225 
1226 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1227 		bt_t *bt;
1228 
1229 		bt = vmem_whatis_lookup(vm, addr);
1230 		if (bt == NULL) {
1231 			continue;
1232 		}
1233 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1234 		    (void *)addr, (void *)bt->bt_start,
1235 		    (size_t)(addr - bt->bt_start), vm->vm_name,
1236 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1237 	}
1238 }
1239 #endif /* defined(DDB) */
1240 
1241 #if defined(VMEM_DEBUG)
1242 
1243 #if !defined(_KERNEL)
1244 #include <stdio.h>
1245 #endif /* !defined(_KERNEL) */
1246 
1247 void bt_dump(const bt_t *);
1248 
1249 void
1250 bt_dump(const bt_t *bt)
1251 {
1252 
1253 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1254 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1255 	    bt->bt_type);
1256 }
1257 
1258 void
1259 vmem_dump(const vmem_t *vm)
1260 {
1261 	const bt_t *bt;
1262 	int i;
1263 
1264 	printf("vmem %p '%s'\n", vm, vm->vm_name);
1265 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1266 		bt_dump(bt);
1267 	}
1268 
1269 	for (i = 0; i < VMEM_MAXORDER; i++) {
1270 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1271 
1272 		if (LIST_EMPTY(fl)) {
1273 			continue;
1274 		}
1275 
1276 		printf("freelist[%d]\n", i);
1277 		LIST_FOREACH(bt, fl, bt_freelist) {
1278 			bt_dump(bt);
1279 			if (bt->bt_size) {
1280 			}
1281 		}
1282 	}
1283 }
1284 
1285 #if !defined(_KERNEL)
1286 
1287 int
1288 main()
1289 {
1290 	vmem_t *vm;
1291 	vmem_addr_t p;
1292 	struct reg {
1293 		vmem_addr_t p;
1294 		vmem_size_t sz;
1295 		bool x;
1296 	} *reg = NULL;
1297 	int nreg = 0;
1298 	int nalloc = 0;
1299 	int nfree = 0;
1300 	vmem_size_t total = 0;
1301 #if 1
1302 	vm_flag_t strat = VM_INSTANTFIT;
1303 #else
1304 	vm_flag_t strat = VM_BESTFIT;
1305 #endif
1306 
1307 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1308 	    NULL, NULL, NULL, 0, VM_SLEEP);
1309 	if (vm == NULL) {
1310 		printf("vmem_create\n");
1311 		exit(EXIT_FAILURE);
1312 	}
1313 	vmem_dump(vm);
1314 
1315 	p = vmem_add(vm, 100, 200, VM_SLEEP);
1316 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
1317 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1318 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1319 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
1320 	vmem_dump(vm);
1321 	for (;;) {
1322 		struct reg *r;
1323 		int t = rand() % 100;
1324 
1325 		if (t > 45) {
1326 			/* alloc */
1327 			vmem_size_t sz = rand() % 500 + 1;
1328 			bool x;
1329 			vmem_size_t align, phase, nocross;
1330 			vmem_addr_t minaddr, maxaddr;
1331 
1332 			if (t > 70) {
1333 				x = true;
1334 				/* XXX */
1335 				align = 1 << (rand() % 15);
1336 				phase = rand() % 65536;
1337 				nocross = 1 << (rand() % 15);
1338 				if (align <= phase) {
1339 					phase = 0;
1340 				}
1341 				if (VMEM_CROSS_P(phase, phase + sz - 1,
1342 				    nocross)) {
1343 					nocross = 0;
1344 				}
1345 				minaddr = rand() % 50000;
1346 				maxaddr = rand() % 70000;
1347 				if (minaddr > maxaddr) {
1348 					minaddr = 0;
1349 					maxaddr = 0;
1350 				}
1351 				printf("=== xalloc %" PRIu64
1352 				    " align=%" PRIu64 ", phase=%" PRIu64
1353 				    ", nocross=%" PRIu64 ", min=%" PRIu64
1354 				    ", max=%" PRIu64 "\n",
1355 				    (uint64_t)sz,
1356 				    (uint64_t)align,
1357 				    (uint64_t)phase,
1358 				    (uint64_t)nocross,
1359 				    (uint64_t)minaddr,
1360 				    (uint64_t)maxaddr);
1361 				p = vmem_xalloc(vm, sz, align, phase, nocross,
1362 				    minaddr, maxaddr, strat|VM_SLEEP);
1363 			} else {
1364 				x = false;
1365 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1366 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1367 			}
1368 			printf("-> %" PRIu64 "\n", (uint64_t)p);
1369 			vmem_dump(vm);
1370 			if (p == VMEM_ADDR_NULL) {
1371 				if (x) {
1372 					continue;
1373 				}
1374 				break;
1375 			}
1376 			nreg++;
1377 			reg = realloc(reg, sizeof(*reg) * nreg);
1378 			r = &reg[nreg - 1];
1379 			r->p = p;
1380 			r->sz = sz;
1381 			r->x = x;
1382 			total += sz;
1383 			nalloc++;
1384 		} else if (nreg != 0) {
1385 			/* free */
1386 			r = &reg[rand() % nreg];
1387 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1388 			    (uint64_t)r->p, (uint64_t)r->sz);
1389 			if (r->x) {
1390 				vmem_xfree(vm, r->p, r->sz);
1391 			} else {
1392 				vmem_free(vm, r->p, r->sz);
1393 			}
1394 			total -= r->sz;
1395 			vmem_dump(vm);
1396 			*r = reg[nreg - 1];
1397 			nreg--;
1398 			nfree++;
1399 		}
1400 		printf("total=%" PRIu64 "\n", (uint64_t)total);
1401 	}
1402 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1403 	    (uint64_t)total, nalloc, nfree);
1404 	exit(EXIT_SUCCESS);
1405 }
1406 #endif /* !defined(_KERNEL) */
1407 #endif /* defined(VMEM_DEBUG) */
1408