xref: /netbsd-src/sys/kern/subr_vmem.c (revision 9ddb6ab554e70fb9bbd90c3d96b812bc57755a14)
1 /*	$NetBSD: subr_vmem.c,v 1.73 2012/03/04 14:28:49 para Exp $	*/
2 
3 /*-
4  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * reference:
31  * -	Magazines and Vmem: Extending the Slab Allocator
32  *	to Many CPUs and Arbitrary Resources
33  *	http://www.usenix.org/event/usenix01/bonwick.html
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.73 2012/03/04 14:28:49 para Exp $");
38 
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #define	QCACHE
42 #endif /* defined(_KERNEL) */
43 
44 #include <sys/param.h>
45 #include <sys/hash.h>
46 #include <sys/queue.h>
47 #include <sys/bitops.h>
48 
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/kernel.h>	/* hz */
52 #include <sys/callout.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66 
67 
68 #if defined(_KERNEL)
69 #include <sys/evcnt.h>
70 #define VMEM_EVCNT_DEFINE(name) \
71 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72     "vmemev", #name); \
73 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74 #define VMEM_EVCNT_INCR(ev)	vmem_evcnt_##ev.ev_count++
75 #define VMEM_EVCNT_DECR(ev)	vmem_evcnt_##ev.ev_count--
76 
77 VMEM_EVCNT_DEFINE(bt_pages)
78 VMEM_EVCNT_DEFINE(bt_count)
79 VMEM_EVCNT_DEFINE(bt_inuse)
80 
81 #define	LOCK_DECL(name)		\
82     kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83 
84 #define CONDVAR_DECL(name)	\
85     kcondvar_t name;
86 
87 #else /* defined(_KERNEL) */
88 #include <stdio.h>
89 #include <errno.h>
90 #include <assert.h>
91 #include <stdlib.h>
92 #include <string.h>
93 
94 #define VMEM_EVCNT_INCR(ev)	/* nothing */
95 #define VMEM_EVCNT_DECR(ev)	/* nothing */
96 
97 #define	UNITTEST
98 #define	KASSERT(a)		assert(a)
99 #define	LOCK_DECL(name)		/* nothing */
100 #define	CONDVAR_DECL(name)	/* nothing */
101 #define	VMEM_CONDVAR_INIT(vm, wchan)	/* nothing */
102 #define	VMEM_CONDVAR_BROADCAST(vm)	/* nothing */
103 #define	mutex_init(a, b, c)	/* nothing */
104 #define	mutex_destroy(a)	/* nothing */
105 #define	mutex_enter(a)		/* nothing */
106 #define	mutex_tryenter(a)	true
107 #define	mutex_exit(a)		/* nothing */
108 #define	mutex_owned(a)		/* nothing */
109 #define	ASSERT_SLEEPABLE()	/* nothing */
110 #define	panic(...)		printf(__VA_ARGS__); abort()
111 #endif /* defined(_KERNEL) */
112 
113 struct vmem;
114 struct vmem_btag;
115 
116 #if defined(VMEM_SANITY)
117 static void vmem_check(vmem_t *);
118 #else /* defined(VMEM_SANITY) */
119 #define vmem_check(vm)	/* nothing */
120 #endif /* defined(VMEM_SANITY) */
121 
122 #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
123 
124 #define	VMEM_HASHSIZE_MIN	1	/* XXX */
125 #define	VMEM_HASHSIZE_MAX	65536	/* XXX */
126 #define	VMEM_HASHSIZE_INIT	1
127 
128 #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
129 
130 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
131 LIST_HEAD(vmem_freelist, vmem_btag);
132 LIST_HEAD(vmem_hashlist, vmem_btag);
133 
134 #if defined(QCACHE)
135 #define	VMEM_QCACHE_IDX_MAX	32
136 
137 #define	QC_NAME_MAX	16
138 
139 struct qcache {
140 	pool_cache_t qc_cache;
141 	vmem_t *qc_vmem;
142 	char qc_name[QC_NAME_MAX];
143 };
144 typedef struct qcache qcache_t;
145 #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
146 #endif /* defined(QCACHE) */
147 
148 #define	VMEM_NAME_MAX	16
149 
150 /* vmem arena */
151 struct vmem {
152 	CONDVAR_DECL(vm_cv);
153 	LOCK_DECL(vm_lock);
154 	vm_flag_t vm_flags;
155 	vmem_import_t *vm_importfn;
156 	vmem_release_t *vm_releasefn;
157 	size_t vm_nfreetags;
158 	LIST_HEAD(, vmem_btag) vm_freetags;
159 	void *vm_arg;
160 	struct vmem_seglist vm_seglist;
161 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
162 	size_t vm_hashsize;
163 	size_t vm_nbusytag;
164 	struct vmem_hashlist *vm_hashlist;
165 	struct vmem_hashlist vm_hash0;
166 	size_t vm_quantum_mask;
167 	int vm_quantum_shift;
168 	size_t vm_size;
169 	size_t vm_inuse;
170 	char vm_name[VMEM_NAME_MAX+1];
171 	LIST_ENTRY(vmem) vm_alllist;
172 
173 #if defined(QCACHE)
174 	/* quantum cache */
175 	size_t vm_qcache_max;
176 	struct pool_allocator vm_qcache_allocator;
177 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
178 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
179 #endif /* defined(QCACHE) */
180 };
181 
182 #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
183 #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
184 #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
185 #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
186 #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
187 #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
188 
189 #if defined(_KERNEL)
190 #define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
191 #define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
192 #define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
193 #define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
194 #endif /* defined(_KERNEL) */
195 
196 /* boundary tag */
197 struct vmem_btag {
198 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
199 	union {
200 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
201 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
202 	} bt_u;
203 #define	bt_hashlist	bt_u.u_hashlist
204 #define	bt_freelist	bt_u.u_freelist
205 	vmem_addr_t bt_start;
206 	vmem_size_t bt_size;
207 	int bt_type;
208 };
209 
210 #define	BT_TYPE_SPAN		1
211 #define	BT_TYPE_SPAN_STATIC	2
212 #define	BT_TYPE_FREE		3
213 #define	BT_TYPE_BUSY		4
214 #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
215 
216 #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
217 
218 typedef struct vmem_btag bt_t;
219 
220 #if defined(_KERNEL)
221 static kmutex_t vmem_list_lock;
222 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
223 #endif /* defined(_KERNEL) */
224 
225 /* ---- misc */
226 
227 #define	VMEM_ALIGNUP(addr, align) \
228 	(-(-(addr) & -(align)))
229 
230 #define	VMEM_CROSS_P(addr1, addr2, boundary) \
231 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
232 
233 #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
234 #define	SIZE2ORDER(size)	((int)ilog2(size))
235 
236 #if !defined(_KERNEL)
237 #define	xmalloc(sz, flags)	malloc(sz)
238 #define	xfree(p, sz)		free(p)
239 #define	bt_alloc(vm, flags)	malloc(sizeof(bt_t))
240 #define	bt_free(vm, bt)		free(bt)
241 #else /* defined(_KERNEL) */
242 
243 #define	xmalloc(sz, flags) \
244     kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
245 #define	xfree(p, sz)		kmem_free(p, sz);
246 
247 #define BT_MINRESERVE 6
248 #define BT_MAXFREE 64
249 #define STATIC_VMEM_COUNT 5
250 #define STATIC_BT_COUNT 200
251 /* must be equal or greater then qcache multiplier for kmem_va_arena */
252 #define STATIC_QC_POOL_COUNT 8
253 
254 static struct vmem static_vmems[STATIC_VMEM_COUNT];
255 static int static_vmem_count = STATIC_VMEM_COUNT;
256 
257 static struct vmem_btag static_bts[STATIC_BT_COUNT];
258 static int static_bt_count = STATIC_BT_COUNT;
259 
260 static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
261 static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
262 
263 vmem_t *kmem_va_meta_arena;
264 vmem_t *kmem_meta_arena;
265 
266 static kmutex_t vmem_btag_lock;
267 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
268 static size_t vmem_btag_freelist_count = 0;
269 static size_t vmem_btag_count = STATIC_BT_COUNT;
270 
271 /* ---- boundary tag */
272 
273 #define	BT_PER_PAGE	(PAGE_SIZE / sizeof(bt_t))
274 
275 static int bt_refill(vmem_t *vm, vm_flag_t flags);
276 
277 static int
278 bt_refillglobal(vm_flag_t flags)
279 {
280 	vmem_addr_t va;
281 	bt_t *btp;
282 	bt_t *bt;
283 	int i;
284 
285 	mutex_enter(&vmem_btag_lock);
286 	if (vmem_btag_freelist_count > (BT_MINRESERVE * 16)) {
287 		mutex_exit(&vmem_btag_lock);
288 		return 0;
289 	}
290 
291 	if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
292 	    (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
293 		mutex_exit(&vmem_btag_lock);
294 		return ENOMEM;
295 	}
296 	VMEM_EVCNT_INCR(bt_pages);
297 
298 	btp = (void *) va;
299 	for (i = 0; i < (BT_PER_PAGE); i++) {
300 		bt = btp;
301 		memset(bt, 0, sizeof(*bt));
302 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
303 		    bt_freelist);
304 		vmem_btag_freelist_count++;
305 		vmem_btag_count++;
306 		VMEM_EVCNT_INCR(bt_count);
307 		btp++;
308 	}
309 	mutex_exit(&vmem_btag_lock);
310 
311 	bt_refill(kmem_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
312 	bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
313 	bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
314 
315 	return 0;
316 }
317 
318 static int
319 bt_refill(vmem_t *vm, vm_flag_t flags)
320 {
321 	bt_t *bt;
322 
323 	bt_refillglobal(flags);
324 
325 	VMEM_LOCK(vm);
326 	mutex_enter(&vmem_btag_lock);
327 	while (!LIST_EMPTY(&vmem_btag_freelist) &&
328 	    vm->vm_nfreetags < (BT_MINRESERVE * 2)) {
329 		bt = LIST_FIRST(&vmem_btag_freelist);
330 		LIST_REMOVE(bt, bt_freelist);
331 		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
332 		vm->vm_nfreetags++;
333 		vmem_btag_freelist_count--;
334 	}
335 	mutex_exit(&vmem_btag_lock);
336 
337 	if (vm->vm_nfreetags == 0) {
338 		VMEM_UNLOCK(vm);
339 		return ENOMEM;
340 	}
341 	VMEM_UNLOCK(vm);
342 
343 	return 0;
344 }
345 
346 static inline bt_t *
347 bt_alloc(vmem_t *vm, vm_flag_t flags)
348 {
349 	bt_t *bt;
350 again:
351 	VMEM_LOCK(vm);
352 	if (vm->vm_nfreetags < BT_MINRESERVE &&
353 	    (flags & VM_POPULATING) == 0) {
354 		VMEM_UNLOCK(vm);
355 		if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
356 			return NULL;
357 		}
358 		goto again;
359 	}
360 	bt = LIST_FIRST(&vm->vm_freetags);
361 	LIST_REMOVE(bt, bt_freelist);
362 	vm->vm_nfreetags--;
363 	VMEM_UNLOCK(vm);
364 	VMEM_EVCNT_INCR(bt_inuse);
365 
366 	return bt;
367 }
368 
369 static inline void
370 bt_free(vmem_t *vm, bt_t *bt)
371 {
372 
373 	VMEM_LOCK(vm);
374 	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
375 	vm->vm_nfreetags++;
376 	while (vm->vm_nfreetags > BT_MAXFREE) {
377 		bt = LIST_FIRST(&vm->vm_freetags);
378 		LIST_REMOVE(bt, bt_freelist);
379 		vm->vm_nfreetags--;
380 		mutex_enter(&vmem_btag_lock);
381 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
382 		vmem_btag_freelist_count++;
383 		mutex_exit(&vmem_btag_lock);
384 	}
385 	VMEM_UNLOCK(vm);
386 	VMEM_EVCNT_DECR(bt_inuse);
387 }
388 
389 #endif	/* defined(_KERNEL) */
390 
391 /*
392  * freelist[0] ... [1, 1]
393  * freelist[1] ... [2, 3]
394  * freelist[2] ... [4, 7]
395  * freelist[3] ... [8, 15]
396  *  :
397  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
398  *  :
399  */
400 
401 static struct vmem_freelist *
402 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
403 {
404 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
405 	const int idx = SIZE2ORDER(qsize);
406 
407 	KASSERT(size != 0 && qsize != 0);
408 	KASSERT((size & vm->vm_quantum_mask) == 0);
409 	KASSERT(idx >= 0);
410 	KASSERT(idx < VMEM_MAXORDER);
411 
412 	return &vm->vm_freelist[idx];
413 }
414 
415 /*
416  * bt_freehead_toalloc: return the freelist for the given size and allocation
417  * strategy.
418  *
419  * for VM_INSTANTFIT, return the list in which any blocks are large enough
420  * for the requested size.  otherwise, return the list which can have blocks
421  * large enough for the requested size.
422  */
423 
424 static struct vmem_freelist *
425 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
426 {
427 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
428 	int idx = SIZE2ORDER(qsize);
429 
430 	KASSERT(size != 0 && qsize != 0);
431 	KASSERT((size & vm->vm_quantum_mask) == 0);
432 
433 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
434 		idx++;
435 		/* check too large request? */
436 	}
437 	KASSERT(idx >= 0);
438 	KASSERT(idx < VMEM_MAXORDER);
439 
440 	return &vm->vm_freelist[idx];
441 }
442 
443 /* ---- boundary tag hash */
444 
445 static struct vmem_hashlist *
446 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
447 {
448 	struct vmem_hashlist *list;
449 	unsigned int hash;
450 
451 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
452 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
453 
454 	return list;
455 }
456 
457 static bt_t *
458 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
459 {
460 	struct vmem_hashlist *list;
461 	bt_t *bt;
462 
463 	list = bt_hashhead(vm, addr);
464 	LIST_FOREACH(bt, list, bt_hashlist) {
465 		if (bt->bt_start == addr) {
466 			break;
467 		}
468 	}
469 
470 	return bt;
471 }
472 
473 static void
474 bt_rembusy(vmem_t *vm, bt_t *bt)
475 {
476 
477 	KASSERT(vm->vm_nbusytag > 0);
478 	vm->vm_inuse -= bt->bt_size;
479 	vm->vm_nbusytag--;
480 	LIST_REMOVE(bt, bt_hashlist);
481 }
482 
483 static void
484 bt_insbusy(vmem_t *vm, bt_t *bt)
485 {
486 	struct vmem_hashlist *list;
487 
488 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
489 
490 	list = bt_hashhead(vm, bt->bt_start);
491 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
492 	vm->vm_nbusytag++;
493 	vm->vm_inuse += bt->bt_size;
494 }
495 
496 /* ---- boundary tag list */
497 
498 static void
499 bt_remseg(vmem_t *vm, bt_t *bt)
500 {
501 
502 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
503 }
504 
505 static void
506 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
507 {
508 
509 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
510 }
511 
512 static void
513 bt_insseg_tail(vmem_t *vm, bt_t *bt)
514 {
515 
516 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
517 }
518 
519 static void
520 bt_remfree(vmem_t *vm, bt_t *bt)
521 {
522 
523 	KASSERT(bt->bt_type == BT_TYPE_FREE);
524 
525 	LIST_REMOVE(bt, bt_freelist);
526 }
527 
528 static void
529 bt_insfree(vmem_t *vm, bt_t *bt)
530 {
531 	struct vmem_freelist *list;
532 
533 	list = bt_freehead_tofree(vm, bt->bt_size);
534 	LIST_INSERT_HEAD(list, bt, bt_freelist);
535 }
536 
537 /* ---- vmem internal functions */
538 
539 #if defined(QCACHE)
540 static inline vm_flag_t
541 prf_to_vmf(int prflags)
542 {
543 	vm_flag_t vmflags;
544 
545 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
546 	if ((prflags & PR_WAITOK) != 0) {
547 		vmflags = VM_SLEEP;
548 	} else {
549 		vmflags = VM_NOSLEEP;
550 	}
551 	return vmflags;
552 }
553 
554 static inline int
555 vmf_to_prf(vm_flag_t vmflags)
556 {
557 	int prflags;
558 
559 	if ((vmflags & VM_SLEEP) != 0) {
560 		prflags = PR_WAITOK;
561 	} else {
562 		prflags = PR_NOWAIT;
563 	}
564 	return prflags;
565 }
566 
567 static size_t
568 qc_poolpage_size(size_t qcache_max)
569 {
570 	int i;
571 
572 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
573 		/* nothing */
574 	}
575 	return ORDER2SIZE(i);
576 }
577 
578 static void *
579 qc_poolpage_alloc(struct pool *pool, int prflags)
580 {
581 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
582 	vmem_t *vm = qc->qc_vmem;
583 	vmem_addr_t addr;
584 
585 	if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
586 	    prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
587 		return NULL;
588 	return (void *)addr;
589 }
590 
591 static void
592 qc_poolpage_free(struct pool *pool, void *addr)
593 {
594 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
595 	vmem_t *vm = qc->qc_vmem;
596 
597 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
598 }
599 
600 static void
601 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
602 {
603 	qcache_t *prevqc;
604 	struct pool_allocator *pa;
605 	int qcache_idx_max;
606 	int i;
607 
608 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
609 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
610 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
611 	}
612 	vm->vm_qcache_max = qcache_max;
613 	pa = &vm->vm_qcache_allocator;
614 	memset(pa, 0, sizeof(*pa));
615 	pa->pa_alloc = qc_poolpage_alloc;
616 	pa->pa_free = qc_poolpage_free;
617 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
618 
619 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
620 	prevqc = NULL;
621 	for (i = qcache_idx_max; i > 0; i--) {
622 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
623 		size_t size = i << vm->vm_quantum_shift;
624 		pool_cache_t pc;
625 
626 		qc->qc_vmem = vm;
627 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
628 		    vm->vm_name, size);
629 
630 		if (vm->vm_flags & VM_BOOTSTRAP) {
631 			KASSERT(static_qc_pool_count > 0);
632 			pc = &static_qc_pools[--static_qc_pool_count];
633 			pool_cache_bootstrap(pc, size,
634 			    ORDER2SIZE(vm->vm_quantum_shift), 0,
635 			    PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
636 			    qc->qc_name, pa, ipl, NULL, NULL, NULL);
637 		} else {
638 			pc = pool_cache_init(size,
639 			    ORDER2SIZE(vm->vm_quantum_shift), 0,
640 			    PR_NOALIGN | PR_NOTOUCH /* XXX */,
641 			    qc->qc_name, pa, ipl, NULL, NULL, NULL);
642 		}
643 		qc->qc_cache = pc;
644 		KASSERT(qc->qc_cache != NULL);	/* XXX */
645 		if (prevqc != NULL &&
646 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
647 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
648 			if (vm->vm_flags & VM_BOOTSTRAP) {
649 				pool_cache_bootstrap_destroy(pc);
650 				//static_qc_pool_count++;
651 			} else {
652 				pool_cache_destroy(qc->qc_cache);
653 			}
654 			vm->vm_qcache[i - 1] = prevqc;
655 			continue;
656 		}
657 		qc->qc_cache->pc_pool.pr_qcache = qc;
658 		vm->vm_qcache[i - 1] = qc;
659 		prevqc = qc;
660 	}
661 }
662 
663 static void
664 qc_destroy(vmem_t *vm)
665 {
666 	const qcache_t *prevqc;
667 	int i;
668 	int qcache_idx_max;
669 
670 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
671 	prevqc = NULL;
672 	for (i = 0; i < qcache_idx_max; i++) {
673 		qcache_t *qc = vm->vm_qcache[i];
674 
675 		if (prevqc == qc) {
676 			continue;
677 		}
678 		if (vm->vm_flags & VM_BOOTSTRAP) {
679 			pool_cache_bootstrap_destroy(qc->qc_cache);
680 		} else {
681 			pool_cache_destroy(qc->qc_cache);
682 		}
683 		prevqc = qc;
684 	}
685 }
686 #endif
687 
688 #if defined(_KERNEL)
689 void
690 vmem_bootstrap(void)
691 {
692 
693 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
694 	mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
695 
696 	while (static_bt_count-- > 0) {
697 		bt_t *bt = &static_bts[static_bt_count];
698 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
699 		VMEM_EVCNT_INCR(bt_count);
700 		vmem_btag_freelist_count++;
701 	}
702 }
703 
704 void
705 vmem_init(vmem_t *vm)
706 {
707 
708 	kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
709 	    vmem_alloc, vmem_free, vm,
710 	    0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
711 	    IPL_VM);
712 
713 	kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
714 	    uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
715 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
716 }
717 #endif /* defined(_KERNEL) */
718 
719 static int
720 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
721     int spanbttype)
722 {
723 	bt_t *btspan;
724 	bt_t *btfree;
725 
726 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
727 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
728 	KASSERT(spanbttype == BT_TYPE_SPAN ||
729 	    spanbttype == BT_TYPE_SPAN_STATIC);
730 
731 	btspan = bt_alloc(vm, flags);
732 	if (btspan == NULL) {
733 		return ENOMEM;
734 	}
735 	btfree = bt_alloc(vm, flags);
736 	if (btfree == NULL) {
737 		bt_free(vm, btspan);
738 		return ENOMEM;
739 	}
740 
741 	btspan->bt_type = spanbttype;
742 	btspan->bt_start = addr;
743 	btspan->bt_size = size;
744 
745 	btfree->bt_type = BT_TYPE_FREE;
746 	btfree->bt_start = addr;
747 	btfree->bt_size = size;
748 
749 	VMEM_LOCK(vm);
750 	bt_insseg_tail(vm, btspan);
751 	bt_insseg(vm, btfree, btspan);
752 	bt_insfree(vm, btfree);
753 	vm->vm_size += size;
754 	VMEM_UNLOCK(vm);
755 
756 	return 0;
757 }
758 
759 static void
760 vmem_destroy1(vmem_t *vm)
761 {
762 
763 #if defined(QCACHE)
764 	qc_destroy(vm);
765 #endif /* defined(QCACHE) */
766 	if (vm->vm_hashlist != NULL) {
767 		int i;
768 
769 		for (i = 0; i < vm->vm_hashsize; i++) {
770 			bt_t *bt;
771 
772 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
773 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
774 				bt_free(vm, bt);
775 			}
776 		}
777 		if (vm->vm_hashlist != &vm->vm_hash0) {
778 			xfree(vm->vm_hashlist,
779 			    sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
780 		}
781 	}
782 
783 	while (vm->vm_nfreetags > 0) {
784 		bt_t *bt = LIST_FIRST(&vm->vm_freetags);
785 		LIST_REMOVE(bt, bt_freelist);
786 		vm->vm_nfreetags--;
787 		mutex_enter(&vmem_btag_lock);
788 #if defined (_KERNEL)
789 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
790 		vmem_btag_freelist_count++;
791 #endif /* defined(_KERNEL) */
792 		mutex_exit(&vmem_btag_lock);
793 	}
794 
795 	VMEM_LOCK_DESTROY(vm);
796 	xfree(vm, sizeof(*vm));
797 }
798 
799 static int
800 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
801 {
802 	vmem_addr_t addr;
803 	int rc;
804 
805 	if (vm->vm_importfn == NULL) {
806 		return EINVAL;
807 	}
808 
809 	if (vm->vm_flags & VM_LARGEIMPORT) {
810 		size *= 8;
811 	}
812 
813 	if (vm->vm_flags & VM_XIMPORT) {
814 		rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
815 		    &size, flags, &addr);
816 	} else {
817 		rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
818 	}
819 	if (rc) {
820 		return ENOMEM;
821 	}
822 
823 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
824 		(*vm->vm_releasefn)(vm->vm_arg, addr, size);
825 		return ENOMEM;
826 	}
827 
828 	return 0;
829 }
830 
831 static int
832 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
833 {
834 	bt_t *bt;
835 	int i;
836 	struct vmem_hashlist *newhashlist;
837 	struct vmem_hashlist *oldhashlist;
838 	size_t oldhashsize;
839 
840 	KASSERT(newhashsize > 0);
841 
842 	newhashlist =
843 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
844 	if (newhashlist == NULL) {
845 		return ENOMEM;
846 	}
847 	for (i = 0; i < newhashsize; i++) {
848 		LIST_INIT(&newhashlist[i]);
849 	}
850 
851 	if (!VMEM_TRYLOCK(vm)) {
852 		xfree(newhashlist,
853 		    sizeof(struct vmem_hashlist *) * newhashsize);
854 		return EBUSY;
855 	}
856 	oldhashlist = vm->vm_hashlist;
857 	oldhashsize = vm->vm_hashsize;
858 	vm->vm_hashlist = newhashlist;
859 	vm->vm_hashsize = newhashsize;
860 	if (oldhashlist == NULL) {
861 		VMEM_UNLOCK(vm);
862 		return 0;
863 	}
864 	for (i = 0; i < oldhashsize; i++) {
865 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
866 			bt_rembusy(vm, bt); /* XXX */
867 			bt_insbusy(vm, bt);
868 		}
869 	}
870 	VMEM_UNLOCK(vm);
871 
872 	if (oldhashlist != &vm->vm_hash0) {
873 		xfree(oldhashlist,
874 		    sizeof(struct vmem_hashlist *) * oldhashsize);
875 	}
876 
877 	return 0;
878 }
879 
880 /*
881  * vmem_fit: check if a bt can satisfy the given restrictions.
882  *
883  * it's a caller's responsibility to ensure the region is big enough
884  * before calling us.
885  */
886 
887 static int
888 vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
889     vmem_size_t phase, vmem_size_t nocross,
890     vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
891 {
892 	vmem_addr_t start;
893 	vmem_addr_t end;
894 
895 	KASSERT(size > 0);
896 	KASSERT(bt->bt_size >= size); /* caller's responsibility */
897 
898 	/*
899 	 * XXX assumption: vmem_addr_t and vmem_size_t are
900 	 * unsigned integer of the same size.
901 	 */
902 
903 	start = bt->bt_start;
904 	if (start < minaddr) {
905 		start = minaddr;
906 	}
907 	end = BT_END(bt);
908 	if (end > maxaddr) {
909 		end = maxaddr;
910 	}
911 	if (start > end) {
912 		return ENOMEM;
913 	}
914 
915 	start = VMEM_ALIGNUP(start - phase, align) + phase;
916 	if (start < bt->bt_start) {
917 		start += align;
918 	}
919 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
920 		KASSERT(align < nocross);
921 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
922 	}
923 	if (start <= end && end - start >= size - 1) {
924 		KASSERT((start & (align - 1)) == phase);
925 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
926 		KASSERT(minaddr <= start);
927 		KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
928 		KASSERT(bt->bt_start <= start);
929 		KASSERT(BT_END(bt) - start >= size - 1);
930 		*addrp = start;
931 		return 0;
932 	}
933 	return ENOMEM;
934 }
935 
936 
937 /*
938  * vmem_create_internal: creates a vmem arena.
939  */
940 
941 static vmem_t *
942 vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
943     vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
944     void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
945 {
946 	vmem_t *vm = NULL;
947 	int i;
948 
949 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
950 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
951 	KASSERT(quantum > 0);
952 
953 	if (flags & VM_BOOTSTRAP) {
954 #if defined(_KERNEL)
955 		KASSERT(static_vmem_count > 0);
956 		vm = &static_vmems[--static_vmem_count];
957 #endif /* defined(_KERNEL) */
958 	} else {
959 		vm = xmalloc(sizeof(*vm), flags);
960 	}
961 	if (vm == NULL) {
962 		return NULL;
963 	}
964 
965 	VMEM_CONDVAR_INIT(vm, "vmem");
966 	VMEM_LOCK_INIT(vm, ipl);
967 	vm->vm_flags = flags;
968 	vm->vm_nfreetags = 0;
969 	LIST_INIT(&vm->vm_freetags);
970 	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
971 	vm->vm_quantum_mask = quantum - 1;
972 	vm->vm_quantum_shift = SIZE2ORDER(quantum);
973 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
974 	vm->vm_importfn = importfn;
975 	vm->vm_releasefn = releasefn;
976 	vm->vm_arg = arg;
977 	vm->vm_nbusytag = 0;
978 	vm->vm_size = 0;
979 	vm->vm_inuse = 0;
980 #if defined(QCACHE)
981 	qc_init(vm, qcache_max, ipl);
982 #endif /* defined(QCACHE) */
983 
984 	CIRCLEQ_INIT(&vm->vm_seglist);
985 	for (i = 0; i < VMEM_MAXORDER; i++) {
986 		LIST_INIT(&vm->vm_freelist[i]);
987 	}
988 	vm->vm_hashlist = NULL;
989 	if (flags & VM_BOOTSTRAP) {
990 		vm->vm_hashsize = 1;
991 		vm->vm_hashlist = &vm->vm_hash0;
992 	} else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
993 		vmem_destroy1(vm);
994 		return NULL;
995 	}
996 
997 	if (size != 0) {
998 		if (vmem_add(vm, base, size, flags) != 0) {
999 			vmem_destroy1(vm);
1000 			return NULL;
1001 		}
1002 	}
1003 
1004 #if defined(_KERNEL)
1005 	if (flags & VM_BOOTSTRAP) {
1006 		bt_refill(vm, VM_NOSLEEP);
1007 	}
1008 
1009 	mutex_enter(&vmem_list_lock);
1010 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1011 	mutex_exit(&vmem_list_lock);
1012 #endif /* defined(_KERNEL) */
1013 
1014 	return vm;
1015 }
1016 
1017 
1018 /* ---- vmem API */
1019 
1020 /*
1021  * vmem_create: create an arena.
1022  *
1023  * => must not be called from interrupt context.
1024  */
1025 
1026 vmem_t *
1027 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1028     vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1029     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1030 {
1031 
1032 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1033 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1034 	KASSERT((flags & (VM_XIMPORT)) == 0);
1035 
1036 	return vmem_create_internal(name, base, size, quantum,
1037 	    importfn, releasefn, source, qcache_max, flags, ipl);
1038 }
1039 
1040 /*
1041  * vmem_xcreate: create an arena takes alternative import func.
1042  *
1043  * => must not be called from interrupt context.
1044  */
1045 
1046 vmem_t *
1047 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1048     vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1049     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1050 {
1051 
1052 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1053 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1054 	KASSERT((flags & (VM_XIMPORT)) == 0);
1055 
1056 	return vmem_create_internal(name, base, size, quantum,
1057 	    (vmem_import_t *)importfn, releasefn, source,
1058 	    qcache_max, flags | VM_XIMPORT, ipl);
1059 }
1060 
1061 void
1062 vmem_destroy(vmem_t *vm)
1063 {
1064 
1065 #if defined(_KERNEL)
1066 	mutex_enter(&vmem_list_lock);
1067 	LIST_REMOVE(vm, vm_alllist);
1068 	mutex_exit(&vmem_list_lock);
1069 #endif /* defined(_KERNEL) */
1070 
1071 	vmem_destroy1(vm);
1072 }
1073 
1074 vmem_size_t
1075 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1076 {
1077 
1078 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1079 }
1080 
1081 /*
1082  * vmem_alloc:
1083  *
1084  * => caller must ensure appropriate spl,
1085  *    if the arena can be accessed from interrupt context.
1086  */
1087 
1088 int
1089 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1090 {
1091 	const vm_flag_t strat __unused = flags & VM_FITMASK;
1092 
1093 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1094 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1095 
1096 	KASSERT(size > 0);
1097 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1098 	if ((flags & VM_SLEEP) != 0) {
1099 		ASSERT_SLEEPABLE();
1100 	}
1101 
1102 #if defined(QCACHE)
1103 	if (size <= vm->vm_qcache_max) {
1104 		void *p;
1105 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1106 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1107 
1108 		p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1109 		if (addrp != NULL)
1110 			*addrp = (vmem_addr_t)p;
1111 		return (p == NULL) ? ENOMEM : 0;
1112 	}
1113 #endif /* defined(QCACHE) */
1114 
1115 	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1116 	    flags, addrp);
1117 }
1118 
1119 int
1120 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1121     const vmem_size_t phase, const vmem_size_t nocross,
1122     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1123     vmem_addr_t *addrp)
1124 {
1125 	struct vmem_freelist *list;
1126 	struct vmem_freelist *first;
1127 	struct vmem_freelist *end;
1128 	bt_t *bt;
1129 	bt_t *btnew;
1130 	bt_t *btnew2;
1131 	const vmem_size_t size = vmem_roundup_size(vm, size0);
1132 	vm_flag_t strat = flags & VM_FITMASK;
1133 	vmem_addr_t start;
1134 	int rc;
1135 
1136 	KASSERT(size0 > 0);
1137 	KASSERT(size > 0);
1138 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1139 	if ((flags & VM_SLEEP) != 0) {
1140 		ASSERT_SLEEPABLE();
1141 	}
1142 	KASSERT((align & vm->vm_quantum_mask) == 0);
1143 	KASSERT((align & (align - 1)) == 0);
1144 	KASSERT((phase & vm->vm_quantum_mask) == 0);
1145 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
1146 	KASSERT((nocross & (nocross - 1)) == 0);
1147 	KASSERT((align == 0 && phase == 0) || phase < align);
1148 	KASSERT(nocross == 0 || nocross >= size);
1149 	KASSERT(minaddr <= maxaddr);
1150 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1151 
1152 	if (align == 0) {
1153 		align = vm->vm_quantum_mask + 1;
1154 	}
1155 
1156 	/*
1157 	 * allocate boundary tags before acquiring the vmem lock.
1158 	 */
1159 	btnew = bt_alloc(vm, flags);
1160 	if (btnew == NULL) {
1161 		return ENOMEM;
1162 	}
1163 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1164 	if (btnew2 == NULL) {
1165 		bt_free(vm, btnew);
1166 		return ENOMEM;
1167 	}
1168 
1169 	/*
1170 	 * choose a free block from which we allocate.
1171 	 */
1172 retry_strat:
1173 	first = bt_freehead_toalloc(vm, size, strat);
1174 	end = &vm->vm_freelist[VMEM_MAXORDER];
1175 retry:
1176 	bt = NULL;
1177 	VMEM_LOCK(vm);
1178 	vmem_check(vm);
1179 	if (strat == VM_INSTANTFIT) {
1180 		/*
1181 		 * just choose the first block which satisfies our restrictions.
1182 		 *
1183 		 * note that we don't need to check the size of the blocks
1184 		 * because any blocks found on these list should be larger than
1185 		 * the given size.
1186 		 */
1187 		for (list = first; list < end; list++) {
1188 			bt = LIST_FIRST(list);
1189 			if (bt != NULL) {
1190 				rc = vmem_fit(bt, size, align, phase,
1191 				    nocross, minaddr, maxaddr, &start);
1192 				if (rc == 0) {
1193 					goto gotit;
1194 				}
1195 				/*
1196 				 * don't bother to follow the bt_freelist link
1197 				 * here.  the list can be very long and we are
1198 				 * told to run fast.  blocks from the later free
1199 				 * lists are larger and have better chances to
1200 				 * satisfy our restrictions.
1201 				 */
1202 			}
1203 		}
1204 	} else { /* VM_BESTFIT */
1205 		/*
1206 		 * we assume that, for space efficiency, it's better to
1207 		 * allocate from a smaller block.  thus we will start searching
1208 		 * from the lower-order list than VM_INSTANTFIT.
1209 		 * however, don't bother to find the smallest block in a free
1210 		 * list because the list can be very long.  we can revisit it
1211 		 * if/when it turns out to be a problem.
1212 		 *
1213 		 * note that the 'first' list can contain blocks smaller than
1214 		 * the requested size.  thus we need to check bt_size.
1215 		 */
1216 		for (list = first; list < end; list++) {
1217 			LIST_FOREACH(bt, list, bt_freelist) {
1218 				if (bt->bt_size >= size) {
1219 					rc = vmem_fit(bt, size, align, phase,
1220 					    nocross, minaddr, maxaddr, &start);
1221 					if (rc == 0) {
1222 						goto gotit;
1223 					}
1224 				}
1225 			}
1226 		}
1227 	}
1228 	VMEM_UNLOCK(vm);
1229 #if 1
1230 	if (strat == VM_INSTANTFIT) {
1231 		strat = VM_BESTFIT;
1232 		goto retry_strat;
1233 	}
1234 #endif
1235 	if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1236 
1237 		/*
1238 		 * XXX should try to import a region large enough to
1239 		 * satisfy restrictions?
1240 		 */
1241 
1242 		goto fail;
1243 	}
1244 	/* XXX eeek, minaddr & maxaddr not respected */
1245 	if (vmem_import(vm, size, flags) == 0) {
1246 		goto retry;
1247 	}
1248 	/* XXX */
1249 
1250 	if ((flags & VM_SLEEP) != 0) {
1251 #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1252 		mutex_spin_enter(&uvm_fpageqlock);
1253 		uvm_kick_pdaemon();
1254 		mutex_spin_exit(&uvm_fpageqlock);
1255 #endif
1256 		VMEM_LOCK(vm);
1257 		VMEM_CONDVAR_WAIT(vm);
1258 		VMEM_UNLOCK(vm);
1259 		goto retry;
1260 	}
1261 fail:
1262 	bt_free(vm, btnew);
1263 	bt_free(vm, btnew2);
1264 	return ENOMEM;
1265 
1266 gotit:
1267 	KASSERT(bt->bt_type == BT_TYPE_FREE);
1268 	KASSERT(bt->bt_size >= size);
1269 	bt_remfree(vm, bt);
1270 	vmem_check(vm);
1271 	if (bt->bt_start != start) {
1272 		btnew2->bt_type = BT_TYPE_FREE;
1273 		btnew2->bt_start = bt->bt_start;
1274 		btnew2->bt_size = start - bt->bt_start;
1275 		bt->bt_start = start;
1276 		bt->bt_size -= btnew2->bt_size;
1277 		bt_insfree(vm, btnew2);
1278 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1279 		btnew2 = NULL;
1280 		vmem_check(vm);
1281 	}
1282 	KASSERT(bt->bt_start == start);
1283 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1284 		/* split */
1285 		btnew->bt_type = BT_TYPE_BUSY;
1286 		btnew->bt_start = bt->bt_start;
1287 		btnew->bt_size = size;
1288 		bt->bt_start = bt->bt_start + size;
1289 		bt->bt_size -= size;
1290 		bt_insfree(vm, bt);
1291 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1292 		bt_insbusy(vm, btnew);
1293 		vmem_check(vm);
1294 		VMEM_UNLOCK(vm);
1295 	} else {
1296 		bt->bt_type = BT_TYPE_BUSY;
1297 		bt_insbusy(vm, bt);
1298 		vmem_check(vm);
1299 		VMEM_UNLOCK(vm);
1300 		bt_free(vm, btnew);
1301 		btnew = bt;
1302 	}
1303 	if (btnew2 != NULL) {
1304 		bt_free(vm, btnew2);
1305 	}
1306 	KASSERT(btnew->bt_size >= size);
1307 	btnew->bt_type = BT_TYPE_BUSY;
1308 
1309 	if (addrp != NULL)
1310 		*addrp = btnew->bt_start;
1311 	return 0;
1312 }
1313 
1314 /*
1315  * vmem_free:
1316  *
1317  * => caller must ensure appropriate spl,
1318  *    if the arena can be accessed from interrupt context.
1319  */
1320 
1321 void
1322 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1323 {
1324 
1325 	KASSERT(size > 0);
1326 
1327 #if defined(QCACHE)
1328 	if (size <= vm->vm_qcache_max) {
1329 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1330 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1331 
1332 		pool_cache_put(qc->qc_cache, (void *)addr);
1333 		return;
1334 	}
1335 #endif /* defined(QCACHE) */
1336 
1337 	vmem_xfree(vm, addr, size);
1338 }
1339 
1340 void
1341 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1342 {
1343 	bt_t *bt;
1344 	bt_t *t;
1345 	LIST_HEAD(, vmem_btag) tofree;
1346 
1347 	LIST_INIT(&tofree);
1348 
1349 	KASSERT(size > 0);
1350 
1351 	VMEM_LOCK(vm);
1352 
1353 	bt = bt_lookupbusy(vm, addr);
1354 	KASSERT(bt != NULL);
1355 	KASSERT(bt->bt_start == addr);
1356 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1357 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1358 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
1359 	bt_rembusy(vm, bt);
1360 	bt->bt_type = BT_TYPE_FREE;
1361 
1362 	/* coalesce */
1363 	t = CIRCLEQ_NEXT(bt, bt_seglist);
1364 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1365 		KASSERT(BT_END(bt) < t->bt_start);	/* YYY */
1366 		bt_remfree(vm, t);
1367 		bt_remseg(vm, t);
1368 		bt->bt_size += t->bt_size;
1369 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1370 	}
1371 	t = CIRCLEQ_PREV(bt, bt_seglist);
1372 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1373 		KASSERT(BT_END(t) < bt->bt_start);	/* YYY */
1374 		bt_remfree(vm, t);
1375 		bt_remseg(vm, t);
1376 		bt->bt_size += t->bt_size;
1377 		bt->bt_start = t->bt_start;
1378 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1379 	}
1380 
1381 	t = CIRCLEQ_PREV(bt, bt_seglist);
1382 	KASSERT(t != NULL);
1383 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1384 	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1385 	    t->bt_size == bt->bt_size) {
1386 		vmem_addr_t spanaddr;
1387 		vmem_size_t spansize;
1388 
1389 		KASSERT(t->bt_start == bt->bt_start);
1390 		spanaddr = bt->bt_start;
1391 		spansize = bt->bt_size;
1392 		bt_remseg(vm, bt);
1393 		LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1394 		bt_remseg(vm, t);
1395 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1396 		vm->vm_size -= spansize;
1397 		VMEM_CONDVAR_BROADCAST(vm);
1398 		VMEM_UNLOCK(vm);
1399 		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1400 	} else {
1401 		bt_insfree(vm, bt);
1402 		VMEM_CONDVAR_BROADCAST(vm);
1403 		VMEM_UNLOCK(vm);
1404 	}
1405 
1406 	while (!LIST_EMPTY(&tofree)) {
1407 		t = LIST_FIRST(&tofree);
1408 		LIST_REMOVE(t, bt_freelist);
1409 		bt_free(vm, t);
1410 	}
1411 }
1412 
1413 /*
1414  * vmem_add:
1415  *
1416  * => caller must ensure appropriate spl,
1417  *    if the arena can be accessed from interrupt context.
1418  */
1419 
1420 int
1421 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1422 {
1423 
1424 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1425 }
1426 
1427 /*
1428  * vmem_size: information about arenas size
1429  *
1430  * => return free/allocated size in arena
1431  */
1432 vmem_size_t
1433 vmem_size(vmem_t *vm, int typemask)
1434 {
1435 
1436 	switch (typemask) {
1437 	case VMEM_ALLOC:
1438 		return vm->vm_inuse;
1439 	case VMEM_FREE:
1440 		return vm->vm_size - vm->vm_inuse;
1441 	case VMEM_FREE|VMEM_ALLOC:
1442 		return vm->vm_size;
1443 	default:
1444 		panic("vmem_size");
1445 	}
1446 }
1447 
1448 /* ---- rehash */
1449 
1450 #if defined(_KERNEL)
1451 static struct callout vmem_rehash_ch;
1452 static int vmem_rehash_interval;
1453 static struct workqueue *vmem_rehash_wq;
1454 static struct work vmem_rehash_wk;
1455 
1456 static void
1457 vmem_rehash_all(struct work *wk, void *dummy)
1458 {
1459 	vmem_t *vm;
1460 
1461 	KASSERT(wk == &vmem_rehash_wk);
1462 	mutex_enter(&vmem_list_lock);
1463 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1464 		size_t desired;
1465 		size_t current;
1466 
1467 		if (!VMEM_TRYLOCK(vm)) {
1468 			continue;
1469 		}
1470 		desired = vm->vm_nbusytag;
1471 		current = vm->vm_hashsize;
1472 		VMEM_UNLOCK(vm);
1473 
1474 		if (desired > VMEM_HASHSIZE_MAX) {
1475 			desired = VMEM_HASHSIZE_MAX;
1476 		} else if (desired < VMEM_HASHSIZE_MIN) {
1477 			desired = VMEM_HASHSIZE_MIN;
1478 		}
1479 		if (desired > current * 2 || desired * 2 < current) {
1480 			vmem_rehash(vm, desired, VM_NOSLEEP);
1481 		}
1482 	}
1483 	mutex_exit(&vmem_list_lock);
1484 
1485 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1486 }
1487 
1488 static void
1489 vmem_rehash_all_kick(void *dummy)
1490 {
1491 
1492 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1493 }
1494 
1495 void
1496 vmem_rehash_start(void)
1497 {
1498 	int error;
1499 
1500 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1501 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1502 	if (error) {
1503 		panic("%s: workqueue_create %d\n", __func__, error);
1504 	}
1505 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1506 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1507 
1508 	vmem_rehash_interval = hz * 10;
1509 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1510 }
1511 #endif /* defined(_KERNEL) */
1512 
1513 /* ---- debug */
1514 
1515 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1516 
1517 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1518 
1519 static const char *
1520 bt_type_string(int type)
1521 {
1522 	static const char * const table[] = {
1523 		[BT_TYPE_BUSY] = "busy",
1524 		[BT_TYPE_FREE] = "free",
1525 		[BT_TYPE_SPAN] = "span",
1526 		[BT_TYPE_SPAN_STATIC] = "static span",
1527 	};
1528 
1529 	if (type >= __arraycount(table)) {
1530 		return "BOGUS";
1531 	}
1532 	return table[type];
1533 }
1534 
1535 static void
1536 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1537 {
1538 
1539 	(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1540 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1541 	    bt->bt_type, bt_type_string(bt->bt_type));
1542 }
1543 
1544 static void
1545 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1546 {
1547 	const bt_t *bt;
1548 	int i;
1549 
1550 	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1551 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1552 		bt_dump(bt, pr);
1553 	}
1554 
1555 	for (i = 0; i < VMEM_MAXORDER; i++) {
1556 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1557 
1558 		if (LIST_EMPTY(fl)) {
1559 			continue;
1560 		}
1561 
1562 		(*pr)("freelist[%d]\n", i);
1563 		LIST_FOREACH(bt, fl, bt_freelist) {
1564 			bt_dump(bt, pr);
1565 		}
1566 	}
1567 }
1568 
1569 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1570 
1571 #if defined(DDB)
1572 static bt_t *
1573 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1574 {
1575 	bt_t *bt;
1576 
1577 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1578 		if (BT_ISSPAN_P(bt)) {
1579 			continue;
1580 		}
1581 		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1582 			return bt;
1583 		}
1584 	}
1585 
1586 	return NULL;
1587 }
1588 
1589 void
1590 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1591 {
1592 	vmem_t *vm;
1593 
1594 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1595 		bt_t *bt;
1596 
1597 		bt = vmem_whatis_lookup(vm, addr);
1598 		if (bt == NULL) {
1599 			continue;
1600 		}
1601 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1602 		    (void *)addr, (void *)bt->bt_start,
1603 		    (size_t)(addr - bt->bt_start), vm->vm_name,
1604 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1605 	}
1606 }
1607 
1608 void
1609 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1610 {
1611 	const vmem_t *vm;
1612 
1613 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1614 		vmem_dump(vm, pr);
1615 	}
1616 }
1617 
1618 void
1619 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1620 {
1621 	const vmem_t *vm = (const void *)addr;
1622 
1623 	vmem_dump(vm, pr);
1624 }
1625 #endif /* defined(DDB) */
1626 
1627 #if defined(_KERNEL)
1628 #define vmem_printf printf
1629 #else
1630 #include <stdio.h>
1631 #include <stdarg.h>
1632 
1633 static void
1634 vmem_printf(const char *fmt, ...)
1635 {
1636 	va_list ap;
1637 	va_start(ap, fmt);
1638 	vprintf(fmt, ap);
1639 	va_end(ap);
1640 }
1641 #endif
1642 
1643 #if defined(VMEM_SANITY)
1644 
1645 static bool
1646 vmem_check_sanity(vmem_t *vm)
1647 {
1648 	const bt_t *bt, *bt2;
1649 
1650 	KASSERT(vm != NULL);
1651 
1652 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1653 		if (bt->bt_start > BT_END(bt)) {
1654 			printf("corrupted tag\n");
1655 			bt_dump(bt, vmem_printf);
1656 			return false;
1657 		}
1658 	}
1659 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1660 		CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1661 			if (bt == bt2) {
1662 				continue;
1663 			}
1664 			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1665 				continue;
1666 			}
1667 			if (bt->bt_start <= BT_END(bt2) &&
1668 			    bt2->bt_start <= BT_END(bt)) {
1669 				printf("overwrapped tags\n");
1670 				bt_dump(bt, vmem_printf);
1671 				bt_dump(bt2, vmem_printf);
1672 				return false;
1673 			}
1674 		}
1675 	}
1676 
1677 	return true;
1678 }
1679 
1680 static void
1681 vmem_check(vmem_t *vm)
1682 {
1683 
1684 	if (!vmem_check_sanity(vm)) {
1685 		panic("insanity vmem %p", vm);
1686 	}
1687 }
1688 
1689 #endif /* defined(VMEM_SANITY) */
1690 
1691 #if defined(UNITTEST)
1692 int
1693 main(void)
1694 {
1695 	int rc;
1696 	vmem_t *vm;
1697 	vmem_addr_t p;
1698 	struct reg {
1699 		vmem_addr_t p;
1700 		vmem_size_t sz;
1701 		bool x;
1702 	} *reg = NULL;
1703 	int nreg = 0;
1704 	int nalloc = 0;
1705 	int nfree = 0;
1706 	vmem_size_t total = 0;
1707 #if 1
1708 	vm_flag_t strat = VM_INSTANTFIT;
1709 #else
1710 	vm_flag_t strat = VM_BESTFIT;
1711 #endif
1712 
1713 	vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1714 #ifdef _KERNEL
1715 	    IPL_NONE
1716 #else
1717 	    0
1718 #endif
1719 	    );
1720 	if (vm == NULL) {
1721 		printf("vmem_create\n");
1722 		exit(EXIT_FAILURE);
1723 	}
1724 	vmem_dump(vm, vmem_printf);
1725 
1726 	rc = vmem_add(vm, 0, 50, VM_SLEEP);
1727 	assert(rc == 0);
1728 	rc = vmem_add(vm, 100, 200, VM_SLEEP);
1729 	assert(rc == 0);
1730 	rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1731 	assert(rc == 0);
1732 	rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1733 	assert(rc == 0);
1734 	rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1735 	assert(rc == 0);
1736 	rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1737 	assert(rc == 0);
1738 	rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1739 	assert(rc == 0);
1740 	rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1741 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1742 	assert(rc != 0);
1743 	rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1744 	assert(rc == 0 && p == 0);
1745 	vmem_xfree(vm, p, 50);
1746 	rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1747 	assert(rc == 0 && p == 0);
1748 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1749 	    0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1750 	assert(rc != 0);
1751 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1752 	    0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1753 	assert(rc != 0);
1754 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1755 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1756 	assert(rc == 0);
1757 	vmem_dump(vm, vmem_printf);
1758 	for (;;) {
1759 		struct reg *r;
1760 		int t = rand() % 100;
1761 
1762 		if (t > 45) {
1763 			/* alloc */
1764 			vmem_size_t sz = rand() % 500 + 1;
1765 			bool x;
1766 			vmem_size_t align, phase, nocross;
1767 			vmem_addr_t minaddr, maxaddr;
1768 
1769 			if (t > 70) {
1770 				x = true;
1771 				/* XXX */
1772 				align = 1 << (rand() % 15);
1773 				phase = rand() % 65536;
1774 				nocross = 1 << (rand() % 15);
1775 				if (align <= phase) {
1776 					phase = 0;
1777 				}
1778 				if (VMEM_CROSS_P(phase, phase + sz - 1,
1779 				    nocross)) {
1780 					nocross = 0;
1781 				}
1782 				do {
1783 					minaddr = rand() % 50000;
1784 					maxaddr = rand() % 70000;
1785 				} while (minaddr > maxaddr);
1786 				printf("=== xalloc %" PRIu64
1787 				    " align=%" PRIu64 ", phase=%" PRIu64
1788 				    ", nocross=%" PRIu64 ", min=%" PRIu64
1789 				    ", max=%" PRIu64 "\n",
1790 				    (uint64_t)sz,
1791 				    (uint64_t)align,
1792 				    (uint64_t)phase,
1793 				    (uint64_t)nocross,
1794 				    (uint64_t)minaddr,
1795 				    (uint64_t)maxaddr);
1796 				rc = vmem_xalloc(vm, sz, align, phase, nocross,
1797 				    minaddr, maxaddr, strat|VM_SLEEP, &p);
1798 			} else {
1799 				x = false;
1800 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1801 				rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1802 			}
1803 			printf("-> %" PRIu64 "\n", (uint64_t)p);
1804 			vmem_dump(vm, vmem_printf);
1805 			if (rc != 0) {
1806 				if (x) {
1807 					continue;
1808 				}
1809 				break;
1810 			}
1811 			nreg++;
1812 			reg = realloc(reg, sizeof(*reg) * nreg);
1813 			r = &reg[nreg - 1];
1814 			r->p = p;
1815 			r->sz = sz;
1816 			r->x = x;
1817 			total += sz;
1818 			nalloc++;
1819 		} else if (nreg != 0) {
1820 			/* free */
1821 			r = &reg[rand() % nreg];
1822 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1823 			    (uint64_t)r->p, (uint64_t)r->sz);
1824 			if (r->x) {
1825 				vmem_xfree(vm, r->p, r->sz);
1826 			} else {
1827 				vmem_free(vm, r->p, r->sz);
1828 			}
1829 			total -= r->sz;
1830 			vmem_dump(vm, vmem_printf);
1831 			*r = reg[nreg - 1];
1832 			nreg--;
1833 			nfree++;
1834 		}
1835 		printf("total=%" PRIu64 "\n", (uint64_t)total);
1836 	}
1837 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1838 	    (uint64_t)total, nalloc, nfree);
1839 	exit(EXIT_SUCCESS);
1840 }
1841 #endif /* defined(UNITTEST) */
1842