1 /* $NetBSD: subr_vmem.c,v 1.109 2023/04/09 09:18:09 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi, 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * reference: 31 * - Magazines and Vmem: Extending the Slab Allocator 32 * to Many CPUs and Arbitrary Resources 33 * http://www.usenix.org/event/usenix01/bonwick.html 34 * 35 * locking & the boundary tag pool: 36 * - A pool(9) is used for vmem boundary tags 37 * - During a pool get call the global vmem_btag_refill_lock is taken, 38 * to serialize access to the allocation reserve, but no other 39 * vmem arena locks. 40 * - During pool_put calls no vmem mutexes are locked. 41 * - pool_drain doesn't hold the pool's mutex while releasing memory to 42 * its backing therefore no interference with any vmem mutexes. 43 * - The boundary tag pool is forced to put page headers into pool pages 44 * (PR_PHINPAGE) and not off page to avoid pool recursion. 45 * (due to sizeof(bt_t) it should be the case anyway) 46 */ 47 48 #include <sys/cdefs.h> 49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.109 2023/04/09 09:18:09 riastradh Exp $"); 50 51 #if defined(_KERNEL) && defined(_KERNEL_OPT) 52 #include "opt_ddb.h" 53 #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */ 54 55 #include <sys/param.h> 56 #include <sys/hash.h> 57 #include <sys/queue.h> 58 #include <sys/bitops.h> 59 60 #if defined(_KERNEL) 61 #include <sys/systm.h> 62 #include <sys/kernel.h> /* hz */ 63 #include <sys/callout.h> 64 #include <sys/kmem.h> 65 #include <sys/pool.h> 66 #include <sys/vmem.h> 67 #include <sys/vmem_impl.h> 68 #include <sys/workqueue.h> 69 #include <sys/atomic.h> 70 #include <uvm/uvm.h> 71 #include <uvm/uvm_extern.h> 72 #include <uvm/uvm_km.h> 73 #include <uvm/uvm_page.h> 74 #include <uvm/uvm_pdaemon.h> 75 #else /* defined(_KERNEL) */ 76 #include <stdio.h> 77 #include <errno.h> 78 #include <assert.h> 79 #include <stdlib.h> 80 #include <string.h> 81 #include "../sys/vmem.h" 82 #include "../sys/vmem_impl.h" 83 #endif /* defined(_KERNEL) */ 84 85 86 #if defined(_KERNEL) 87 #include <sys/evcnt.h> 88 #define VMEM_EVCNT_DEFINE(name) \ 89 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \ 90 "vmem", #name); \ 91 EVCNT_ATTACH_STATIC(vmem_evcnt_##name); 92 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++ 93 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count-- 94 95 VMEM_EVCNT_DEFINE(static_bt_count) 96 VMEM_EVCNT_DEFINE(static_bt_inuse) 97 98 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan) 99 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv) 100 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock) 101 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv) 102 103 #else /* defined(_KERNEL) */ 104 105 #define VMEM_EVCNT_INCR(ev) /* nothing */ 106 #define VMEM_EVCNT_DECR(ev) /* nothing */ 107 108 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */ 109 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */ 110 #define VMEM_CONDVAR_WAIT(vm) /* nothing */ 111 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */ 112 113 #define UNITTEST 114 #define KASSERT(a) assert(a) 115 #define mutex_init(a, b, c) /* nothing */ 116 #define mutex_destroy(a) /* nothing */ 117 #define mutex_enter(a) /* nothing */ 118 #define mutex_tryenter(a) true 119 #define mutex_exit(a) /* nothing */ 120 #define mutex_owned(a) /* nothing */ 121 #define ASSERT_SLEEPABLE() /* nothing */ 122 #define panic(...) printf(__VA_ARGS__); abort() 123 #endif /* defined(_KERNEL) */ 124 125 #if defined(VMEM_SANITY) 126 static void vmem_check(vmem_t *); 127 #else /* defined(VMEM_SANITY) */ 128 #define vmem_check(vm) /* nothing */ 129 #endif /* defined(VMEM_SANITY) */ 130 131 #define VMEM_HASHSIZE_MIN 1 /* XXX */ 132 #define VMEM_HASHSIZE_MAX 65536 /* XXX */ 133 #define VMEM_HASHSIZE_INIT 1 134 135 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT) 136 137 #if defined(_KERNEL) 138 static bool vmem_bootstrapped = false; 139 static kmutex_t vmem_list_lock; 140 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list); 141 #endif /* defined(_KERNEL) */ 142 143 /* ---- misc */ 144 145 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock) 146 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock) 147 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock) 148 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl) 149 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock) 150 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock)) 151 152 #define VMEM_ALIGNUP(addr, align) \ 153 (-(-(addr) & -(align))) 154 155 #define VMEM_CROSS_P(addr1, addr2, boundary) \ 156 ((((addr1) ^ (addr2)) & -(boundary)) != 0) 157 158 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order)) 159 #define SIZE2ORDER(size) ((int)ilog2(size)) 160 161 #if !defined(_KERNEL) 162 #define xmalloc(sz, flags) malloc(sz) 163 #define xfree(p, sz) free(p) 164 #define bt_alloc(vm, flags) malloc(sizeof(bt_t)) 165 #define bt_free(vm, bt) free(bt) 166 #else /* defined(_KERNEL) */ 167 168 #define xmalloc(sz, flags) \ 169 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); 170 #define xfree(p, sz) kmem_free(p, sz); 171 172 /* 173 * BT_RESERVE calculation: 174 * we allocate memory for boundary tags with vmem; therefore we have 175 * to keep a reserve of bts used to allocated memory for bts. 176 * This reserve is 4 for each arena involved in allocating vmems memory. 177 * BT_MAXFREE: don't cache excessive counts of bts in arenas 178 */ 179 #define STATIC_BT_COUNT 200 180 #define BT_MINRESERVE 4 181 #define BT_MAXFREE 64 182 183 static struct vmem_btag static_bts[STATIC_BT_COUNT]; 184 static int static_bt_count = STATIC_BT_COUNT; 185 186 static struct vmem kmem_va_meta_arena_store; 187 vmem_t *kmem_va_meta_arena; 188 static struct vmem kmem_meta_arena_store; 189 vmem_t *kmem_meta_arena = NULL; 190 191 static kmutex_t vmem_btag_refill_lock; 192 static kmutex_t vmem_btag_lock; 193 static LIST_HEAD(, vmem_btag) vmem_btag_freelist; 194 static size_t vmem_btag_freelist_count = 0; 195 static struct pool vmem_btag_pool; 196 197 static void vmem_xfree_bt(vmem_t *, bt_t *); 198 199 static void 200 vmem_kick_pdaemon(void) 201 { 202 #if defined(_KERNEL) 203 uvm_kick_pdaemon(); 204 #endif 205 } 206 207 /* ---- boundary tag */ 208 209 static int bt_refill(vmem_t *vm); 210 static int bt_refill_locked(vmem_t *vm); 211 212 static void * 213 pool_page_alloc_vmem_meta(struct pool *pp, int flags) 214 { 215 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 216 vmem_addr_t va; 217 int ret; 218 219 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 220 (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va); 221 222 return ret ? NULL : (void *)va; 223 } 224 225 static void 226 pool_page_free_vmem_meta(struct pool *pp, void *v) 227 { 228 229 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 230 } 231 232 /* allocator for vmem-pool metadata */ 233 struct pool_allocator pool_allocator_vmem_meta = { 234 .pa_alloc = pool_page_alloc_vmem_meta, 235 .pa_free = pool_page_free_vmem_meta, 236 .pa_pagesz = 0 237 }; 238 239 static int 240 bt_refill_locked(vmem_t *vm) 241 { 242 bt_t *bt; 243 244 VMEM_ASSERT_LOCKED(vm); 245 246 if (vm->vm_nfreetags > BT_MINRESERVE) { 247 return 0; 248 } 249 250 mutex_enter(&vmem_btag_lock); 251 while (!LIST_EMPTY(&vmem_btag_freelist) && 252 vm->vm_nfreetags <= BT_MINRESERVE) { 253 bt = LIST_FIRST(&vmem_btag_freelist); 254 LIST_REMOVE(bt, bt_freelist); 255 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 256 vm->vm_nfreetags++; 257 vmem_btag_freelist_count--; 258 VMEM_EVCNT_INCR(static_bt_inuse); 259 } 260 mutex_exit(&vmem_btag_lock); 261 262 while (vm->vm_nfreetags <= BT_MINRESERVE) { 263 VMEM_UNLOCK(vm); 264 mutex_enter(&vmem_btag_refill_lock); 265 bt = pool_get(&vmem_btag_pool, PR_NOWAIT); 266 mutex_exit(&vmem_btag_refill_lock); 267 VMEM_LOCK(vm); 268 if (bt == NULL) 269 break; 270 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 271 vm->vm_nfreetags++; 272 } 273 274 if (vm->vm_nfreetags <= BT_MINRESERVE) { 275 return ENOMEM; 276 } 277 278 if (kmem_meta_arena != NULL) { 279 VMEM_UNLOCK(vm); 280 (void)bt_refill(kmem_arena); 281 (void)bt_refill(kmem_va_meta_arena); 282 (void)bt_refill(kmem_meta_arena); 283 VMEM_LOCK(vm); 284 } 285 286 return 0; 287 } 288 289 static int 290 bt_refill(vmem_t *vm) 291 { 292 int rv; 293 294 VMEM_LOCK(vm); 295 rv = bt_refill_locked(vm); 296 VMEM_UNLOCK(vm); 297 return rv; 298 } 299 300 static bt_t * 301 bt_alloc(vmem_t *vm, vm_flag_t flags) 302 { 303 bt_t *bt; 304 305 VMEM_ASSERT_LOCKED(vm); 306 307 while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) { 308 if (bt_refill_locked(vm)) { 309 if ((flags & VM_NOSLEEP) != 0) { 310 return NULL; 311 } 312 313 /* 314 * It would be nice to wait for something specific here 315 * but there are multiple ways that a retry could 316 * succeed and we can't wait for multiple things 317 * simultaneously. So we'll just sleep for an arbitrary 318 * short period of time and retry regardless. 319 * This should be a very rare case. 320 */ 321 322 vmem_kick_pdaemon(); 323 kpause("btalloc", false, 1, &vm->vm_lock); 324 } 325 } 326 bt = LIST_FIRST(&vm->vm_freetags); 327 LIST_REMOVE(bt, bt_freelist); 328 vm->vm_nfreetags--; 329 330 return bt; 331 } 332 333 static void 334 bt_free(vmem_t *vm, bt_t *bt) 335 { 336 337 VMEM_ASSERT_LOCKED(vm); 338 339 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 340 vm->vm_nfreetags++; 341 } 342 343 static void 344 bt_freetrim(vmem_t *vm, int freelimit) 345 { 346 bt_t *t; 347 LIST_HEAD(, vmem_btag) tofree; 348 349 VMEM_ASSERT_LOCKED(vm); 350 351 LIST_INIT(&tofree); 352 353 while (vm->vm_nfreetags > freelimit) { 354 bt_t *bt = LIST_FIRST(&vm->vm_freetags); 355 LIST_REMOVE(bt, bt_freelist); 356 vm->vm_nfreetags--; 357 if (bt >= static_bts 358 && bt < &static_bts[STATIC_BT_COUNT]) { 359 mutex_enter(&vmem_btag_lock); 360 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist); 361 vmem_btag_freelist_count++; 362 mutex_exit(&vmem_btag_lock); 363 VMEM_EVCNT_DECR(static_bt_inuse); 364 } else { 365 LIST_INSERT_HEAD(&tofree, bt, bt_freelist); 366 } 367 } 368 369 VMEM_UNLOCK(vm); 370 while (!LIST_EMPTY(&tofree)) { 371 t = LIST_FIRST(&tofree); 372 LIST_REMOVE(t, bt_freelist); 373 pool_put(&vmem_btag_pool, t); 374 } 375 } 376 #endif /* defined(_KERNEL) */ 377 378 /* 379 * freelist[0] ... [1, 1] 380 * freelist[1] ... [2, 3] 381 * freelist[2] ... [4, 7] 382 * freelist[3] ... [8, 15] 383 * : 384 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1] 385 * : 386 */ 387 388 static struct vmem_freelist * 389 bt_freehead_tofree(vmem_t *vm, vmem_size_t size) 390 { 391 const vmem_size_t qsize = size >> vm->vm_quantum_shift; 392 const int idx = SIZE2ORDER(qsize); 393 394 KASSERT(size != 0); 395 KASSERT(qsize != 0); 396 KASSERT((size & vm->vm_quantum_mask) == 0); 397 KASSERT(idx >= 0); 398 KASSERT(idx < VMEM_MAXORDER); 399 400 return &vm->vm_freelist[idx]; 401 } 402 403 /* 404 * bt_freehead_toalloc: return the freelist for the given size and allocation 405 * strategy. 406 * 407 * for VM_INSTANTFIT, return the list in which any blocks are large enough 408 * for the requested size. otherwise, return the list which can have blocks 409 * large enough for the requested size. 410 */ 411 412 static struct vmem_freelist * 413 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat) 414 { 415 const vmem_size_t qsize = size >> vm->vm_quantum_shift; 416 int idx = SIZE2ORDER(qsize); 417 418 KASSERT(size != 0); 419 KASSERT(qsize != 0); 420 KASSERT((size & vm->vm_quantum_mask) == 0); 421 422 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) { 423 idx++; 424 /* check too large request? */ 425 } 426 KASSERT(idx >= 0); 427 KASSERT(idx < VMEM_MAXORDER); 428 429 return &vm->vm_freelist[idx]; 430 } 431 432 /* ---- boundary tag hash */ 433 434 static struct vmem_hashlist * 435 bt_hashhead(vmem_t *vm, vmem_addr_t addr) 436 { 437 struct vmem_hashlist *list; 438 unsigned int hash; 439 440 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT); 441 list = &vm->vm_hashlist[hash & vm->vm_hashmask]; 442 443 return list; 444 } 445 446 static bt_t * 447 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr) 448 { 449 struct vmem_hashlist *list; 450 bt_t *bt; 451 452 list = bt_hashhead(vm, addr); 453 LIST_FOREACH(bt, list, bt_hashlist) { 454 if (bt->bt_start == addr) { 455 break; 456 } 457 } 458 459 return bt; 460 } 461 462 static void 463 bt_rembusy(vmem_t *vm, bt_t *bt) 464 { 465 466 KASSERT(vm->vm_nbusytag > 0); 467 vm->vm_inuse -= bt->bt_size; 468 vm->vm_nbusytag--; 469 LIST_REMOVE(bt, bt_hashlist); 470 } 471 472 static void 473 bt_insbusy(vmem_t *vm, bt_t *bt) 474 { 475 struct vmem_hashlist *list; 476 477 KASSERT(bt->bt_type == BT_TYPE_BUSY); 478 479 list = bt_hashhead(vm, bt->bt_start); 480 LIST_INSERT_HEAD(list, bt, bt_hashlist); 481 if (++vm->vm_nbusytag > vm->vm_maxbusytag) { 482 vm->vm_maxbusytag = vm->vm_nbusytag; 483 } 484 vm->vm_inuse += bt->bt_size; 485 } 486 487 /* ---- boundary tag list */ 488 489 static void 490 bt_remseg(vmem_t *vm, bt_t *bt) 491 { 492 493 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist); 494 } 495 496 static void 497 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev) 498 { 499 500 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist); 501 } 502 503 static void 504 bt_insseg_tail(vmem_t *vm, bt_t *bt) 505 { 506 507 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist); 508 } 509 510 static void 511 bt_remfree(vmem_t *vm, bt_t *bt) 512 { 513 514 KASSERT(bt->bt_type == BT_TYPE_FREE); 515 516 LIST_REMOVE(bt, bt_freelist); 517 } 518 519 static void 520 bt_insfree(vmem_t *vm, bt_t *bt) 521 { 522 struct vmem_freelist *list; 523 524 list = bt_freehead_tofree(vm, bt->bt_size); 525 LIST_INSERT_HEAD(list, bt, bt_freelist); 526 } 527 528 /* ---- vmem internal functions */ 529 530 #if defined(QCACHE) 531 static inline vm_flag_t 532 prf_to_vmf(int prflags) 533 { 534 vm_flag_t vmflags; 535 536 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0); 537 if ((prflags & PR_WAITOK) != 0) { 538 vmflags = VM_SLEEP; 539 } else { 540 vmflags = VM_NOSLEEP; 541 } 542 return vmflags; 543 } 544 545 static inline int 546 vmf_to_prf(vm_flag_t vmflags) 547 { 548 int prflags; 549 550 if ((vmflags & VM_SLEEP) != 0) { 551 prflags = PR_WAITOK; 552 } else { 553 prflags = PR_NOWAIT; 554 } 555 return prflags; 556 } 557 558 static size_t 559 qc_poolpage_size(size_t qcache_max) 560 { 561 int i; 562 563 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) { 564 /* nothing */ 565 } 566 return ORDER2SIZE(i); 567 } 568 569 static void * 570 qc_poolpage_alloc(struct pool *pool, int prflags) 571 { 572 qcache_t *qc = QC_POOL_TO_QCACHE(pool); 573 vmem_t *vm = qc->qc_vmem; 574 vmem_addr_t addr; 575 576 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz, 577 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0) 578 return NULL; 579 return (void *)addr; 580 } 581 582 static void 583 qc_poolpage_free(struct pool *pool, void *addr) 584 { 585 qcache_t *qc = QC_POOL_TO_QCACHE(pool); 586 vmem_t *vm = qc->qc_vmem; 587 588 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz); 589 } 590 591 static void 592 qc_init(vmem_t *vm, size_t qcache_max, int ipl) 593 { 594 qcache_t *prevqc; 595 struct pool_allocator *pa; 596 int qcache_idx_max; 597 int i; 598 599 KASSERT((qcache_max & vm->vm_quantum_mask) == 0); 600 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) { 601 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift; 602 } 603 vm->vm_qcache_max = qcache_max; 604 pa = &vm->vm_qcache_allocator; 605 memset(pa, 0, sizeof(*pa)); 606 pa->pa_alloc = qc_poolpage_alloc; 607 pa->pa_free = qc_poolpage_free; 608 pa->pa_pagesz = qc_poolpage_size(qcache_max); 609 610 qcache_idx_max = qcache_max >> vm->vm_quantum_shift; 611 prevqc = NULL; 612 for (i = qcache_idx_max; i > 0; i--) { 613 qcache_t *qc = &vm->vm_qcache_store[i - 1]; 614 size_t size = i << vm->vm_quantum_shift; 615 pool_cache_t pc; 616 617 qc->qc_vmem = vm; 618 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu", 619 vm->vm_name, size); 620 621 pc = pool_cache_init(size, 622 ORDER2SIZE(vm->vm_quantum_shift), 0, 623 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */, 624 qc->qc_name, pa, ipl, NULL, NULL, NULL); 625 626 KASSERT(pc); 627 628 qc->qc_cache = pc; 629 KASSERT(qc->qc_cache != NULL); /* XXX */ 630 if (prevqc != NULL && 631 qc->qc_cache->pc_pool.pr_itemsperpage == 632 prevqc->qc_cache->pc_pool.pr_itemsperpage) { 633 pool_cache_destroy(qc->qc_cache); 634 vm->vm_qcache[i - 1] = prevqc; 635 continue; 636 } 637 qc->qc_cache->pc_pool.pr_qcache = qc; 638 vm->vm_qcache[i - 1] = qc; 639 prevqc = qc; 640 } 641 } 642 643 static void 644 qc_destroy(vmem_t *vm) 645 { 646 const qcache_t *prevqc; 647 int i; 648 int qcache_idx_max; 649 650 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift; 651 prevqc = NULL; 652 for (i = 0; i < qcache_idx_max; i++) { 653 qcache_t *qc = vm->vm_qcache[i]; 654 655 if (prevqc == qc) { 656 continue; 657 } 658 pool_cache_destroy(qc->qc_cache); 659 prevqc = qc; 660 } 661 } 662 #endif 663 664 #if defined(_KERNEL) 665 static void 666 vmem_bootstrap(void) 667 { 668 669 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE); 670 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM); 671 mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM); 672 673 while (static_bt_count-- > 0) { 674 bt_t *bt = &static_bts[static_bt_count]; 675 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist); 676 VMEM_EVCNT_INCR(static_bt_count); 677 vmem_btag_freelist_count++; 678 } 679 vmem_bootstrapped = TRUE; 680 } 681 682 void 683 vmem_subsystem_init(vmem_t *vm) 684 { 685 686 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va", 687 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm, 688 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT, 689 IPL_VM); 690 691 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta", 692 0, 0, PAGE_SIZE, 693 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena, 694 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM); 695 696 pool_init(&vmem_btag_pool, sizeof(bt_t), coherency_unit, 0, 697 PR_PHINPAGE, "vmembt", &pool_allocator_vmem_meta, IPL_VM); 698 } 699 #endif /* defined(_KERNEL) */ 700 701 static int 702 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags, 703 int spanbttype) 704 { 705 bt_t *btspan; 706 bt_t *btfree; 707 708 VMEM_ASSERT_LOCKED(vm); 709 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 710 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 711 KASSERT(spanbttype == BT_TYPE_SPAN || 712 spanbttype == BT_TYPE_SPAN_STATIC); 713 714 btspan = bt_alloc(vm, flags); 715 if (btspan == NULL) { 716 return ENOMEM; 717 } 718 btfree = bt_alloc(vm, flags); 719 if (btfree == NULL) { 720 bt_free(vm, btspan); 721 return ENOMEM; 722 } 723 724 btspan->bt_type = spanbttype; 725 btspan->bt_start = addr; 726 btspan->bt_size = size; 727 728 btfree->bt_type = BT_TYPE_FREE; 729 btfree->bt_start = addr; 730 btfree->bt_size = size; 731 732 bt_insseg_tail(vm, btspan); 733 bt_insseg(vm, btfree, btspan); 734 bt_insfree(vm, btfree); 735 vm->vm_size += size; 736 737 return 0; 738 } 739 740 static void 741 vmem_destroy1(vmem_t *vm) 742 { 743 744 #if defined(QCACHE) 745 qc_destroy(vm); 746 #endif /* defined(QCACHE) */ 747 VMEM_LOCK(vm); 748 749 for (int i = 0; i < vm->vm_hashsize; i++) { 750 bt_t *bt; 751 752 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) { 753 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC); 754 LIST_REMOVE(bt, bt_hashlist); 755 bt_free(vm, bt); 756 } 757 } 758 759 /* bt_freetrim() drops the lock. */ 760 bt_freetrim(vm, 0); 761 if (vm->vm_hashlist != &vm->vm_hash0) { 762 xfree(vm->vm_hashlist, 763 sizeof(struct vmem_hashlist) * vm->vm_hashsize); 764 } 765 766 VMEM_CONDVAR_DESTROY(vm); 767 VMEM_LOCK_DESTROY(vm); 768 xfree(vm, sizeof(*vm)); 769 } 770 771 static int 772 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags) 773 { 774 vmem_addr_t addr; 775 int rc; 776 777 VMEM_ASSERT_LOCKED(vm); 778 779 if (vm->vm_importfn == NULL) { 780 return EINVAL; 781 } 782 783 if (vm->vm_flags & VM_LARGEIMPORT) { 784 size *= 16; 785 } 786 787 VMEM_UNLOCK(vm); 788 if (vm->vm_flags & VM_XIMPORT) { 789 rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg, 790 size, &size, flags, &addr); 791 } else { 792 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr); 793 } 794 VMEM_LOCK(vm); 795 796 if (rc) { 797 return ENOMEM; 798 } 799 800 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) { 801 VMEM_UNLOCK(vm); 802 (*vm->vm_releasefn)(vm->vm_arg, addr, size); 803 VMEM_LOCK(vm); 804 return ENOMEM; 805 } 806 807 return 0; 808 } 809 810 static int 811 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags) 812 { 813 bt_t *bt; 814 int i; 815 struct vmem_hashlist *newhashlist; 816 struct vmem_hashlist *oldhashlist; 817 size_t oldhashsize; 818 819 KASSERT(newhashsize > 0); 820 821 /* Round hash size up to a power of 2. */ 822 newhashsize = 1 << (ilog2(newhashsize) + 1); 823 824 newhashlist = 825 xmalloc(sizeof(struct vmem_hashlist) * newhashsize, flags); 826 if (newhashlist == NULL) { 827 return ENOMEM; 828 } 829 for (i = 0; i < newhashsize; i++) { 830 LIST_INIT(&newhashlist[i]); 831 } 832 833 VMEM_LOCK(vm); 834 /* Decay back to a small hash slowly. */ 835 if (vm->vm_maxbusytag >= 2) { 836 vm->vm_maxbusytag = vm->vm_maxbusytag / 2 - 1; 837 if (vm->vm_nbusytag > vm->vm_maxbusytag) { 838 vm->vm_maxbusytag = vm->vm_nbusytag; 839 } 840 } else { 841 vm->vm_maxbusytag = vm->vm_nbusytag; 842 } 843 oldhashlist = vm->vm_hashlist; 844 oldhashsize = vm->vm_hashsize; 845 vm->vm_hashlist = newhashlist; 846 vm->vm_hashsize = newhashsize; 847 vm->vm_hashmask = newhashsize - 1; 848 if (oldhashlist == NULL) { 849 VMEM_UNLOCK(vm); 850 return 0; 851 } 852 for (i = 0; i < oldhashsize; i++) { 853 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) { 854 bt_rembusy(vm, bt); /* XXX */ 855 bt_insbusy(vm, bt); 856 } 857 } 858 VMEM_UNLOCK(vm); 859 860 if (oldhashlist != &vm->vm_hash0) { 861 xfree(oldhashlist, 862 sizeof(struct vmem_hashlist) * oldhashsize); 863 } 864 865 return 0; 866 } 867 868 /* 869 * vmem_fit: check if a bt can satisfy the given restrictions. 870 * 871 * it's a caller's responsibility to ensure the region is big enough 872 * before calling us. 873 */ 874 875 static int 876 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, 877 vmem_size_t phase, vmem_size_t nocross, 878 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp) 879 { 880 vmem_addr_t start; 881 vmem_addr_t end; 882 883 KASSERT(size > 0); 884 KASSERT(bt->bt_size >= size); /* caller's responsibility */ 885 886 /* 887 * XXX assumption: vmem_addr_t and vmem_size_t are 888 * unsigned integer of the same size. 889 */ 890 891 start = bt->bt_start; 892 if (start < minaddr) { 893 start = minaddr; 894 } 895 end = BT_END(bt); 896 if (end > maxaddr) { 897 end = maxaddr; 898 } 899 if (start > end) { 900 return ENOMEM; 901 } 902 903 start = VMEM_ALIGNUP(start - phase, align) + phase; 904 if (start < bt->bt_start) { 905 start += align; 906 } 907 if (VMEM_CROSS_P(start, start + size - 1, nocross)) { 908 KASSERT(align < nocross); 909 start = VMEM_ALIGNUP(start - phase, nocross) + phase; 910 } 911 if (start <= end && end - start >= size - 1) { 912 KASSERT((start & (align - 1)) == phase); 913 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross)); 914 KASSERT(minaddr <= start); 915 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr); 916 KASSERT(bt->bt_start <= start); 917 KASSERT(BT_END(bt) - start >= size - 1); 918 *addrp = start; 919 return 0; 920 } 921 return ENOMEM; 922 } 923 924 /* ---- vmem API */ 925 926 /* 927 * vmem_init: creates a vmem arena. 928 */ 929 930 vmem_t * 931 vmem_init(vmem_t *vm, const char *name, 932 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum, 933 vmem_import_t *importfn, vmem_release_t *releasefn, 934 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl) 935 { 936 int i; 937 938 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 939 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 940 KASSERT(quantum > 0); 941 942 #if defined(_KERNEL) 943 /* XXX: SMP, we get called early... */ 944 if (!vmem_bootstrapped) { 945 vmem_bootstrap(); 946 } 947 #endif /* defined(_KERNEL) */ 948 949 if (vm == NULL) { 950 vm = xmalloc(sizeof(*vm), flags); 951 } 952 if (vm == NULL) { 953 return NULL; 954 } 955 956 VMEM_CONDVAR_INIT(vm, "vmem"); 957 VMEM_LOCK_INIT(vm, ipl); 958 vm->vm_flags = flags; 959 vm->vm_nfreetags = 0; 960 LIST_INIT(&vm->vm_freetags); 961 strlcpy(vm->vm_name, name, sizeof(vm->vm_name)); 962 vm->vm_quantum_mask = quantum - 1; 963 vm->vm_quantum_shift = SIZE2ORDER(quantum); 964 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum); 965 vm->vm_importfn = importfn; 966 vm->vm_releasefn = releasefn; 967 vm->vm_arg = arg; 968 vm->vm_nbusytag = 0; 969 vm->vm_maxbusytag = 0; 970 vm->vm_size = 0; 971 vm->vm_inuse = 0; 972 #if defined(QCACHE) 973 qc_init(vm, qcache_max, ipl); 974 #endif /* defined(QCACHE) */ 975 976 TAILQ_INIT(&vm->vm_seglist); 977 for (i = 0; i < VMEM_MAXORDER; i++) { 978 LIST_INIT(&vm->vm_freelist[i]); 979 } 980 memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0)); 981 vm->vm_hashsize = 1; 982 vm->vm_hashmask = vm->vm_hashsize - 1; 983 vm->vm_hashlist = &vm->vm_hash0; 984 985 if (size != 0) { 986 if (vmem_add(vm, base, size, flags) != 0) { 987 vmem_destroy1(vm); 988 return NULL; 989 } 990 } 991 992 #if defined(_KERNEL) 993 if (flags & VM_BOOTSTRAP) { 994 bt_refill(vm); 995 } 996 997 mutex_enter(&vmem_list_lock); 998 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist); 999 mutex_exit(&vmem_list_lock); 1000 #endif /* defined(_KERNEL) */ 1001 1002 return vm; 1003 } 1004 1005 1006 1007 /* 1008 * vmem_create: create an arena. 1009 * 1010 * => must not be called from interrupt context. 1011 */ 1012 1013 vmem_t * 1014 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size, 1015 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn, 1016 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl) 1017 { 1018 1019 KASSERT((flags & (VM_XIMPORT)) == 0); 1020 1021 return vmem_init(NULL, name, base, size, quantum, 1022 importfn, releasefn, source, qcache_max, flags, ipl); 1023 } 1024 1025 /* 1026 * vmem_xcreate: create an arena takes alternative import func. 1027 * 1028 * => must not be called from interrupt context. 1029 */ 1030 1031 vmem_t * 1032 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size, 1033 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn, 1034 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl) 1035 { 1036 1037 KASSERT((flags & (VM_XIMPORT)) == 0); 1038 1039 return vmem_init(NULL, name, base, size, quantum, 1040 __FPTRCAST(vmem_import_t *, importfn), releasefn, source, 1041 qcache_max, flags | VM_XIMPORT, ipl); 1042 } 1043 1044 void 1045 vmem_destroy(vmem_t *vm) 1046 { 1047 1048 #if defined(_KERNEL) 1049 mutex_enter(&vmem_list_lock); 1050 LIST_REMOVE(vm, vm_alllist); 1051 mutex_exit(&vmem_list_lock); 1052 #endif /* defined(_KERNEL) */ 1053 1054 vmem_destroy1(vm); 1055 } 1056 1057 vmem_size_t 1058 vmem_roundup_size(vmem_t *vm, vmem_size_t size) 1059 { 1060 1061 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask; 1062 } 1063 1064 /* 1065 * vmem_alloc: allocate resource from the arena. 1066 */ 1067 1068 int 1069 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp) 1070 { 1071 const vm_flag_t strat __diagused = flags & VM_FITMASK; 1072 int error; 1073 1074 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 1075 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); 1076 1077 KASSERT(size > 0); 1078 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT); 1079 if ((flags & VM_SLEEP) != 0) { 1080 ASSERT_SLEEPABLE(); 1081 } 1082 1083 #if defined(QCACHE) 1084 if (size <= vm->vm_qcache_max) { 1085 void *p; 1086 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift; 1087 qcache_t *qc = vm->vm_qcache[qidx - 1]; 1088 1089 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags)); 1090 if (addrp != NULL) 1091 *addrp = (vmem_addr_t)p; 1092 error = (p == NULL) ? ENOMEM : 0; 1093 goto out; 1094 } 1095 #endif /* defined(QCACHE) */ 1096 1097 error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, 1098 flags, addrp); 1099 out: 1100 KASSERTMSG(error || addrp == NULL || 1101 (*addrp & vm->vm_quantum_mask) == 0, 1102 "vmem %s mask=0x%jx addr=0x%jx", 1103 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp); 1104 KASSERT(error == 0 || (flags & VM_SLEEP) == 0); 1105 return error; 1106 } 1107 1108 int 1109 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align, 1110 const vmem_size_t phase, const vmem_size_t nocross, 1111 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags, 1112 vmem_addr_t *addrp) 1113 { 1114 struct vmem_freelist *list; 1115 struct vmem_freelist *first; 1116 struct vmem_freelist *end; 1117 bt_t *bt; 1118 bt_t *btnew; 1119 bt_t *btnew2; 1120 const vmem_size_t size = vmem_roundup_size(vm, size0); 1121 vm_flag_t strat = flags & VM_FITMASK; 1122 vmem_addr_t start; 1123 int rc; 1124 1125 KASSERT(size0 > 0); 1126 KASSERT(size > 0); 1127 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT); 1128 if ((flags & VM_SLEEP) != 0) { 1129 ASSERT_SLEEPABLE(); 1130 } 1131 KASSERT((align & vm->vm_quantum_mask) == 0); 1132 KASSERT((align & (align - 1)) == 0); 1133 KASSERT((phase & vm->vm_quantum_mask) == 0); 1134 KASSERT((nocross & vm->vm_quantum_mask) == 0); 1135 KASSERT((nocross & (nocross - 1)) == 0); 1136 KASSERT(align == 0 || phase < align); 1137 KASSERT(phase == 0 || phase < align); 1138 KASSERT(nocross == 0 || nocross >= size); 1139 KASSERT(minaddr <= maxaddr); 1140 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross)); 1141 1142 if (align == 0) { 1143 align = vm->vm_quantum_mask + 1; 1144 } 1145 1146 /* 1147 * allocate boundary tags before acquiring the vmem lock. 1148 */ 1149 VMEM_LOCK(vm); 1150 btnew = bt_alloc(vm, flags); 1151 if (btnew == NULL) { 1152 VMEM_UNLOCK(vm); 1153 return ENOMEM; 1154 } 1155 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */ 1156 if (btnew2 == NULL) { 1157 bt_free(vm, btnew); 1158 VMEM_UNLOCK(vm); 1159 return ENOMEM; 1160 } 1161 1162 /* 1163 * choose a free block from which we allocate. 1164 */ 1165 retry_strat: 1166 first = bt_freehead_toalloc(vm, size, strat); 1167 end = &vm->vm_freelist[VMEM_MAXORDER]; 1168 retry: 1169 bt = NULL; 1170 vmem_check(vm); 1171 if (strat == VM_INSTANTFIT) { 1172 /* 1173 * just choose the first block which satisfies our restrictions. 1174 * 1175 * note that we don't need to check the size of the blocks 1176 * because any blocks found on these list should be larger than 1177 * the given size. 1178 */ 1179 for (list = first; list < end; list++) { 1180 bt = LIST_FIRST(list); 1181 if (bt != NULL) { 1182 rc = vmem_fit(bt, size, align, phase, 1183 nocross, minaddr, maxaddr, &start); 1184 if (rc == 0) { 1185 goto gotit; 1186 } 1187 /* 1188 * don't bother to follow the bt_freelist link 1189 * here. the list can be very long and we are 1190 * told to run fast. blocks from the later free 1191 * lists are larger and have better chances to 1192 * satisfy our restrictions. 1193 */ 1194 } 1195 } 1196 } else { /* VM_BESTFIT */ 1197 /* 1198 * we assume that, for space efficiency, it's better to 1199 * allocate from a smaller block. thus we will start searching 1200 * from the lower-order list than VM_INSTANTFIT. 1201 * however, don't bother to find the smallest block in a free 1202 * list because the list can be very long. we can revisit it 1203 * if/when it turns out to be a problem. 1204 * 1205 * note that the 'first' list can contain blocks smaller than 1206 * the requested size. thus we need to check bt_size. 1207 */ 1208 for (list = first; list < end; list++) { 1209 LIST_FOREACH(bt, list, bt_freelist) { 1210 if (bt->bt_size >= size) { 1211 rc = vmem_fit(bt, size, align, phase, 1212 nocross, minaddr, maxaddr, &start); 1213 if (rc == 0) { 1214 goto gotit; 1215 } 1216 } 1217 } 1218 } 1219 } 1220 #if 1 1221 if (strat == VM_INSTANTFIT) { 1222 strat = VM_BESTFIT; 1223 goto retry_strat; 1224 } 1225 #endif 1226 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) { 1227 1228 /* 1229 * XXX should try to import a region large enough to 1230 * satisfy restrictions? 1231 */ 1232 1233 goto fail; 1234 } 1235 /* XXX eeek, minaddr & maxaddr not respected */ 1236 if (vmem_import(vm, size, flags) == 0) { 1237 goto retry; 1238 } 1239 /* XXX */ 1240 1241 if ((flags & VM_SLEEP) != 0) { 1242 vmem_kick_pdaemon(); 1243 VMEM_CONDVAR_WAIT(vm); 1244 goto retry; 1245 } 1246 fail: 1247 bt_free(vm, btnew); 1248 bt_free(vm, btnew2); 1249 VMEM_UNLOCK(vm); 1250 return ENOMEM; 1251 1252 gotit: 1253 KASSERT(bt->bt_type == BT_TYPE_FREE); 1254 KASSERT(bt->bt_size >= size); 1255 bt_remfree(vm, bt); 1256 vmem_check(vm); 1257 if (bt->bt_start != start) { 1258 btnew2->bt_type = BT_TYPE_FREE; 1259 btnew2->bt_start = bt->bt_start; 1260 btnew2->bt_size = start - bt->bt_start; 1261 bt->bt_start = start; 1262 bt->bt_size -= btnew2->bt_size; 1263 bt_insfree(vm, btnew2); 1264 bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist)); 1265 btnew2 = NULL; 1266 vmem_check(vm); 1267 } 1268 KASSERT(bt->bt_start == start); 1269 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) { 1270 /* split */ 1271 btnew->bt_type = BT_TYPE_BUSY; 1272 btnew->bt_start = bt->bt_start; 1273 btnew->bt_size = size; 1274 bt->bt_start = bt->bt_start + size; 1275 bt->bt_size -= size; 1276 bt_insfree(vm, bt); 1277 bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist)); 1278 bt_insbusy(vm, btnew); 1279 vmem_check(vm); 1280 } else { 1281 bt->bt_type = BT_TYPE_BUSY; 1282 bt_insbusy(vm, bt); 1283 vmem_check(vm); 1284 bt_free(vm, btnew); 1285 btnew = bt; 1286 } 1287 if (btnew2 != NULL) { 1288 bt_free(vm, btnew2); 1289 } 1290 KASSERT(btnew->bt_size >= size); 1291 btnew->bt_type = BT_TYPE_BUSY; 1292 if (addrp != NULL) 1293 *addrp = btnew->bt_start; 1294 VMEM_UNLOCK(vm); 1295 KASSERTMSG(addrp == NULL || 1296 (*addrp & vm->vm_quantum_mask) == 0, 1297 "vmem %s mask=0x%jx addr=0x%jx", 1298 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp); 1299 return 0; 1300 } 1301 1302 /* 1303 * vmem_free: free the resource to the arena. 1304 */ 1305 1306 void 1307 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) 1308 { 1309 1310 KASSERT(size > 0); 1311 KASSERTMSG((addr & vm->vm_quantum_mask) == 0, 1312 "vmem %s mask=0x%jx addr=0x%jx", 1313 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr); 1314 1315 #if defined(QCACHE) 1316 if (size <= vm->vm_qcache_max) { 1317 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift; 1318 qcache_t *qc = vm->vm_qcache[qidx - 1]; 1319 1320 pool_cache_put(qc->qc_cache, (void *)addr); 1321 return; 1322 } 1323 #endif /* defined(QCACHE) */ 1324 1325 vmem_xfree(vm, addr, size); 1326 } 1327 1328 void 1329 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) 1330 { 1331 bt_t *bt; 1332 1333 KASSERT(size > 0); 1334 KASSERTMSG((addr & vm->vm_quantum_mask) == 0, 1335 "vmem %s mask=0x%jx addr=0x%jx", 1336 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr); 1337 1338 VMEM_LOCK(vm); 1339 1340 bt = bt_lookupbusy(vm, addr); 1341 KASSERTMSG(bt != NULL, "vmem %s addr 0x%jx size 0x%jx", 1342 vm->vm_name, (uintmax_t)addr, (uintmax_t)size); 1343 KASSERT(bt->bt_start == addr); 1344 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) || 1345 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask); 1346 1347 /* vmem_xfree_bt() drops the lock. */ 1348 vmem_xfree_bt(vm, bt); 1349 } 1350 1351 void 1352 vmem_xfreeall(vmem_t *vm) 1353 { 1354 bt_t *bt; 1355 1356 /* This can't be used if the arena has a quantum cache. */ 1357 KASSERT(vm->vm_qcache_max == 0); 1358 1359 for (;;) { 1360 VMEM_LOCK(vm); 1361 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1362 if (bt->bt_type == BT_TYPE_BUSY) 1363 break; 1364 } 1365 if (bt != NULL) { 1366 /* vmem_xfree_bt() drops the lock. */ 1367 vmem_xfree_bt(vm, bt); 1368 } else { 1369 VMEM_UNLOCK(vm); 1370 return; 1371 } 1372 } 1373 } 1374 1375 static void 1376 vmem_xfree_bt(vmem_t *vm, bt_t *bt) 1377 { 1378 bt_t *t; 1379 1380 VMEM_ASSERT_LOCKED(vm); 1381 1382 KASSERT(bt->bt_type == BT_TYPE_BUSY); 1383 bt_rembusy(vm, bt); 1384 bt->bt_type = BT_TYPE_FREE; 1385 1386 /* coalesce */ 1387 t = TAILQ_NEXT(bt, bt_seglist); 1388 if (t != NULL && t->bt_type == BT_TYPE_FREE) { 1389 KASSERT(BT_END(bt) < t->bt_start); /* YYY */ 1390 bt_remfree(vm, t); 1391 bt_remseg(vm, t); 1392 bt->bt_size += t->bt_size; 1393 bt_free(vm, t); 1394 } 1395 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); 1396 if (t != NULL && t->bt_type == BT_TYPE_FREE) { 1397 KASSERT(BT_END(t) < bt->bt_start); /* YYY */ 1398 bt_remfree(vm, t); 1399 bt_remseg(vm, t); 1400 bt->bt_size += t->bt_size; 1401 bt->bt_start = t->bt_start; 1402 bt_free(vm, t); 1403 } 1404 1405 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); 1406 KASSERT(t != NULL); 1407 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY); 1408 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN && 1409 t->bt_size == bt->bt_size) { 1410 vmem_addr_t spanaddr; 1411 vmem_size_t spansize; 1412 1413 KASSERT(t->bt_start == bt->bt_start); 1414 spanaddr = bt->bt_start; 1415 spansize = bt->bt_size; 1416 bt_remseg(vm, bt); 1417 bt_free(vm, bt); 1418 bt_remseg(vm, t); 1419 bt_free(vm, t); 1420 vm->vm_size -= spansize; 1421 VMEM_CONDVAR_BROADCAST(vm); 1422 /* bt_freetrim() drops the lock. */ 1423 bt_freetrim(vm, BT_MAXFREE); 1424 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize); 1425 } else { 1426 bt_insfree(vm, bt); 1427 VMEM_CONDVAR_BROADCAST(vm); 1428 /* bt_freetrim() drops the lock. */ 1429 bt_freetrim(vm, BT_MAXFREE); 1430 } 1431 } 1432 1433 /* 1434 * vmem_add: 1435 * 1436 * => caller must ensure appropriate spl, 1437 * if the arena can be accessed from interrupt context. 1438 */ 1439 1440 int 1441 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags) 1442 { 1443 int rv; 1444 1445 VMEM_LOCK(vm); 1446 rv = vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC); 1447 VMEM_UNLOCK(vm); 1448 1449 return rv; 1450 } 1451 1452 /* 1453 * vmem_size: information about arenas size 1454 * 1455 * => return free/allocated size in arena 1456 */ 1457 vmem_size_t 1458 vmem_size(vmem_t *vm, int typemask) 1459 { 1460 1461 switch (typemask) { 1462 case VMEM_ALLOC: 1463 return vm->vm_inuse; 1464 case VMEM_FREE: 1465 return vm->vm_size - vm->vm_inuse; 1466 case VMEM_FREE|VMEM_ALLOC: 1467 return vm->vm_size; 1468 default: 1469 panic("vmem_size"); 1470 } 1471 } 1472 1473 /* ---- rehash */ 1474 1475 #if defined(_KERNEL) 1476 static struct callout vmem_rehash_ch; 1477 static int vmem_rehash_interval; 1478 static struct workqueue *vmem_rehash_wq; 1479 static struct work vmem_rehash_wk; 1480 1481 static void 1482 vmem_rehash_all(struct work *wk, void *dummy) 1483 { 1484 vmem_t *vm; 1485 1486 KASSERT(wk == &vmem_rehash_wk); 1487 mutex_enter(&vmem_list_lock); 1488 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1489 size_t desired; 1490 size_t current; 1491 1492 desired = atomic_load_relaxed(&vm->vm_maxbusytag); 1493 current = atomic_load_relaxed(&vm->vm_hashsize); 1494 1495 if (desired > VMEM_HASHSIZE_MAX) { 1496 desired = VMEM_HASHSIZE_MAX; 1497 } else if (desired < VMEM_HASHSIZE_MIN) { 1498 desired = VMEM_HASHSIZE_MIN; 1499 } 1500 if (desired > current * 2 || desired * 2 < current) { 1501 vmem_rehash(vm, desired, VM_NOSLEEP); 1502 } 1503 } 1504 mutex_exit(&vmem_list_lock); 1505 1506 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval); 1507 } 1508 1509 static void 1510 vmem_rehash_all_kick(void *dummy) 1511 { 1512 1513 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL); 1514 } 1515 1516 void 1517 vmem_rehash_start(void) 1518 { 1519 int error; 1520 1521 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash", 1522 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE); 1523 if (error) { 1524 panic("%s: workqueue_create %d\n", __func__, error); 1525 } 1526 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE); 1527 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL); 1528 1529 vmem_rehash_interval = hz * 10; 1530 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval); 1531 } 1532 #endif /* defined(_KERNEL) */ 1533 1534 /* ---- debug */ 1535 1536 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) 1537 1538 static void bt_dump(const bt_t *, void (*)(const char *, ...) 1539 __printflike(1, 2)); 1540 1541 static const char * 1542 bt_type_string(int type) 1543 { 1544 static const char * const table[] = { 1545 [BT_TYPE_BUSY] = "busy", 1546 [BT_TYPE_FREE] = "free", 1547 [BT_TYPE_SPAN] = "span", 1548 [BT_TYPE_SPAN_STATIC] = "static span", 1549 }; 1550 1551 if (type >= __arraycount(table)) { 1552 return "BOGUS"; 1553 } 1554 return table[type]; 1555 } 1556 1557 static void 1558 bt_dump(const bt_t *bt, void (*pr)(const char *, ...)) 1559 { 1560 1561 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n", 1562 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size, 1563 bt->bt_type, bt_type_string(bt->bt_type)); 1564 } 1565 1566 static void 1567 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2)) 1568 { 1569 const bt_t *bt; 1570 int i; 1571 1572 (*pr)("vmem %p '%s'\n", vm, vm->vm_name); 1573 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1574 bt_dump(bt, pr); 1575 } 1576 1577 for (i = 0; i < VMEM_MAXORDER; i++) { 1578 const struct vmem_freelist *fl = &vm->vm_freelist[i]; 1579 1580 if (LIST_EMPTY(fl)) { 1581 continue; 1582 } 1583 1584 (*pr)("freelist[%d]\n", i); 1585 LIST_FOREACH(bt, fl, bt_freelist) { 1586 bt_dump(bt, pr); 1587 } 1588 } 1589 } 1590 1591 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */ 1592 1593 #if defined(DDB) 1594 static bt_t * 1595 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr) 1596 { 1597 bt_t *bt; 1598 1599 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1600 if (BT_ISSPAN_P(bt)) { 1601 continue; 1602 } 1603 if (bt->bt_start <= addr && addr <= BT_END(bt)) { 1604 return bt; 1605 } 1606 } 1607 1608 return NULL; 1609 } 1610 1611 void 1612 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1613 { 1614 vmem_t *vm; 1615 1616 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1617 bt_t *bt; 1618 1619 bt = vmem_whatis_lookup(vm, addr); 1620 if (bt == NULL) { 1621 continue; 1622 } 1623 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n", 1624 (void *)addr, (void *)bt->bt_start, 1625 (size_t)(addr - bt->bt_start), vm->vm_name, 1626 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free"); 1627 } 1628 } 1629 1630 void 1631 vmem_printall(const char *modif, void (*pr)(const char *, ...)) 1632 { 1633 const vmem_t *vm; 1634 1635 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1636 vmem_dump(vm, pr); 1637 } 1638 } 1639 1640 void 1641 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...)) 1642 { 1643 const vmem_t *vm = (const void *)addr; 1644 1645 vmem_dump(vm, pr); 1646 } 1647 #endif /* defined(DDB) */ 1648 1649 #if defined(_KERNEL) 1650 #define vmem_printf printf 1651 #else 1652 #include <stdio.h> 1653 #include <stdarg.h> 1654 1655 static void 1656 vmem_printf(const char *fmt, ...) 1657 { 1658 va_list ap; 1659 va_start(ap, fmt); 1660 vprintf(fmt, ap); 1661 va_end(ap); 1662 } 1663 #endif 1664 1665 #if defined(VMEM_SANITY) 1666 1667 static bool 1668 vmem_check_sanity(vmem_t *vm) 1669 { 1670 const bt_t *bt, *bt2; 1671 1672 KASSERT(vm != NULL); 1673 1674 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1675 if (bt->bt_start > BT_END(bt)) { 1676 printf("corrupted tag\n"); 1677 bt_dump(bt, vmem_printf); 1678 return false; 1679 } 1680 } 1681 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1682 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) { 1683 if (bt == bt2) { 1684 continue; 1685 } 1686 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) { 1687 continue; 1688 } 1689 if (bt->bt_start <= BT_END(bt2) && 1690 bt2->bt_start <= BT_END(bt)) { 1691 printf("overwrapped tags\n"); 1692 bt_dump(bt, vmem_printf); 1693 bt_dump(bt2, vmem_printf); 1694 return false; 1695 } 1696 } 1697 } 1698 1699 return true; 1700 } 1701 1702 static void 1703 vmem_check(vmem_t *vm) 1704 { 1705 1706 if (!vmem_check_sanity(vm)) { 1707 panic("insanity vmem %p", vm); 1708 } 1709 } 1710 1711 #endif /* defined(VMEM_SANITY) */ 1712 1713 #if defined(UNITTEST) 1714 int 1715 main(void) 1716 { 1717 int rc; 1718 vmem_t *vm; 1719 vmem_addr_t p; 1720 struct reg { 1721 vmem_addr_t p; 1722 vmem_size_t sz; 1723 bool x; 1724 } *reg = NULL; 1725 int nreg = 0; 1726 int nalloc = 0; 1727 int nfree = 0; 1728 vmem_size_t total = 0; 1729 #if 1 1730 vm_flag_t strat = VM_INSTANTFIT; 1731 #else 1732 vm_flag_t strat = VM_BESTFIT; 1733 #endif 1734 1735 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP, 1736 #ifdef _KERNEL 1737 IPL_NONE 1738 #else 1739 0 1740 #endif 1741 ); 1742 if (vm == NULL) { 1743 printf("vmem_create\n"); 1744 exit(EXIT_FAILURE); 1745 } 1746 vmem_dump(vm, vmem_printf); 1747 1748 rc = vmem_add(vm, 0, 50, VM_SLEEP); 1749 assert(rc == 0); 1750 rc = vmem_add(vm, 100, 200, VM_SLEEP); 1751 assert(rc == 0); 1752 rc = vmem_add(vm, 2000, 1, VM_SLEEP); 1753 assert(rc == 0); 1754 rc = vmem_add(vm, 40000, 65536, VM_SLEEP); 1755 assert(rc == 0); 1756 rc = vmem_add(vm, 10000, 10000, VM_SLEEP); 1757 assert(rc == 0); 1758 rc = vmem_add(vm, 500, 1000, VM_SLEEP); 1759 assert(rc == 0); 1760 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP); 1761 assert(rc == 0); 1762 rc = vmem_xalloc(vm, 0x101, 0, 0, 0, 1763 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p); 1764 assert(rc != 0); 1765 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p); 1766 assert(rc == 0 && p == 0); 1767 vmem_xfree(vm, p, 50); 1768 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p); 1769 assert(rc == 0 && p == 0); 1770 rc = vmem_xalloc(vm, 0x100, 0, 0, 0, 1771 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p); 1772 assert(rc != 0); 1773 rc = vmem_xalloc(vm, 0x100, 0, 0, 0, 1774 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p); 1775 assert(rc != 0); 1776 rc = vmem_xalloc(vm, 0x100, 0, 0, 0, 1777 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p); 1778 assert(rc == 0); 1779 vmem_dump(vm, vmem_printf); 1780 for (;;) { 1781 struct reg *r; 1782 int t = rand() % 100; 1783 1784 if (t > 45) { 1785 /* alloc */ 1786 vmem_size_t sz = rand() % 500 + 1; 1787 bool x; 1788 vmem_size_t align, phase, nocross; 1789 vmem_addr_t minaddr, maxaddr; 1790 1791 if (t > 70) { 1792 x = true; 1793 /* XXX */ 1794 align = 1 << (rand() % 15); 1795 phase = rand() % 65536; 1796 nocross = 1 << (rand() % 15); 1797 if (align <= phase) { 1798 phase = 0; 1799 } 1800 if (VMEM_CROSS_P(phase, phase + sz - 1, 1801 nocross)) { 1802 nocross = 0; 1803 } 1804 do { 1805 minaddr = rand() % 50000; 1806 maxaddr = rand() % 70000; 1807 } while (minaddr > maxaddr); 1808 printf("=== xalloc %" PRIu64 1809 " align=%" PRIu64 ", phase=%" PRIu64 1810 ", nocross=%" PRIu64 ", min=%" PRIu64 1811 ", max=%" PRIu64 "\n", 1812 (uint64_t)sz, 1813 (uint64_t)align, 1814 (uint64_t)phase, 1815 (uint64_t)nocross, 1816 (uint64_t)minaddr, 1817 (uint64_t)maxaddr); 1818 rc = vmem_xalloc(vm, sz, align, phase, nocross, 1819 minaddr, maxaddr, strat|VM_SLEEP, &p); 1820 } else { 1821 x = false; 1822 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz); 1823 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p); 1824 } 1825 printf("-> %" PRIu64 "\n", (uint64_t)p); 1826 vmem_dump(vm, vmem_printf); 1827 if (rc != 0) { 1828 if (x) { 1829 continue; 1830 } 1831 break; 1832 } 1833 nreg++; 1834 reg = realloc(reg, sizeof(*reg) * nreg); 1835 r = ®[nreg - 1]; 1836 r->p = p; 1837 r->sz = sz; 1838 r->x = x; 1839 total += sz; 1840 nalloc++; 1841 } else if (nreg != 0) { 1842 /* free */ 1843 r = ®[rand() % nreg]; 1844 printf("=== free %" PRIu64 ", %" PRIu64 "\n", 1845 (uint64_t)r->p, (uint64_t)r->sz); 1846 if (r->x) { 1847 vmem_xfree(vm, r->p, r->sz); 1848 } else { 1849 vmem_free(vm, r->p, r->sz); 1850 } 1851 total -= r->sz; 1852 vmem_dump(vm, vmem_printf); 1853 *r = reg[nreg - 1]; 1854 nreg--; 1855 nfree++; 1856 } 1857 printf("total=%" PRIu64 "\n", (uint64_t)total); 1858 } 1859 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n", 1860 (uint64_t)total, nalloc, nfree); 1861 exit(EXIT_SUCCESS); 1862 } 1863 #endif /* defined(UNITTEST) */ 1864