xref: /netbsd-src/sys/kern/subr_vmem.c (revision 46f5119e40af2e51998f686b2fdcc76b5488f7f3)
1 /*	$NetBSD: subr_vmem.c,v 1.58 2010/12/17 22:24:11 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * reference:
31  * -	Magazines and Vmem: Extending the Slab Allocator
32  *	to Many CPUs and Arbitrary Resources
33  *	http://www.usenix.org/event/usenix01/bonwick.html
34  *
35  * todo:
36  * -	decide how to import segments for vmem_xalloc.
37  * -	don't rely on malloc(9).
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.58 2010/12/17 22:24:11 yamt Exp $");
42 
43 #if defined(_KERNEL)
44 #include "opt_ddb.h"
45 #define	QCACHE
46 #endif /* defined(_KERNEL) */
47 
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51 
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/kernel.h>	/* hz */
55 #include <sys/callout.h>
56 #include <sys/malloc.h>
57 #include <sys/once.h>
58 #include <sys/pool.h>
59 #include <sys/vmem.h>
60 #include <sys/workqueue.h>
61 #else /* defined(_KERNEL) */
62 #include "../sys/vmem.h"
63 #endif /* defined(_KERNEL) */
64 
65 #if defined(_KERNEL)
66 #define	LOCK_DECL(name)		\
67     kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
68 #else /* defined(_KERNEL) */
69 #include <errno.h>
70 #include <assert.h>
71 #include <stdlib.h>
72 
73 #define	UNITTEST
74 #define	KASSERT(a)		assert(a)
75 #define	LOCK_DECL(name)		/* nothing */
76 #define	mutex_init(a, b, c)	/* nothing */
77 #define	mutex_destroy(a)	/* nothing */
78 #define	mutex_enter(a)		/* nothing */
79 #define	mutex_tryenter(a)	true
80 #define	mutex_exit(a)		/* nothing */
81 #define	mutex_owned(a)		/* nothing */
82 #define	ASSERT_SLEEPABLE()	/* nothing */
83 #define	panic(...)		printf(__VA_ARGS__); abort()
84 #endif /* defined(_KERNEL) */
85 
86 struct vmem;
87 struct vmem_btag;
88 
89 #if defined(VMEM_SANITY)
90 static void vmem_check(vmem_t *);
91 #else /* defined(VMEM_SANITY) */
92 #define vmem_check(vm)	/* nothing */
93 #endif /* defined(VMEM_SANITY) */
94 
95 #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
96 
97 #define	VMEM_HASHSIZE_MIN	1	/* XXX */
98 #define	VMEM_HASHSIZE_MAX	65536	/* XXX */
99 #define	VMEM_HASHSIZE_INIT	128
100 
101 #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
102 
103 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
104 LIST_HEAD(vmem_freelist, vmem_btag);
105 LIST_HEAD(vmem_hashlist, vmem_btag);
106 
107 #if defined(QCACHE)
108 #define	VMEM_QCACHE_IDX_MAX	32
109 
110 #define	QC_NAME_MAX	16
111 
112 struct qcache {
113 	pool_cache_t qc_cache;
114 	vmem_t *qc_vmem;
115 	char qc_name[QC_NAME_MAX];
116 };
117 typedef struct qcache qcache_t;
118 #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
119 #endif /* defined(QCACHE) */
120 
121 /* vmem arena */
122 struct vmem {
123 	LOCK_DECL(vm_lock);
124 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
125 	    vm_flag_t);
126 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
127 	vmem_t *vm_source;
128 	struct vmem_seglist vm_seglist;
129 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
130 	size_t vm_hashsize;
131 	size_t vm_nbusytag;
132 	struct vmem_hashlist *vm_hashlist;
133 	size_t vm_quantum_mask;
134 	int vm_quantum_shift;
135 	const char *vm_name;
136 	LIST_ENTRY(vmem) vm_alllist;
137 
138 #if defined(QCACHE)
139 	/* quantum cache */
140 	size_t vm_qcache_max;
141 	struct pool_allocator vm_qcache_allocator;
142 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
143 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
144 #endif /* defined(QCACHE) */
145 };
146 
147 #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
148 #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
149 #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
150 #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
151 #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
152 #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
153 
154 /* boundary tag */
155 struct vmem_btag {
156 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
157 	union {
158 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
159 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
160 	} bt_u;
161 #define	bt_hashlist	bt_u.u_hashlist
162 #define	bt_freelist	bt_u.u_freelist
163 	vmem_addr_t bt_start;
164 	vmem_size_t bt_size;
165 	int bt_type;
166 };
167 
168 #define	BT_TYPE_SPAN		1
169 #define	BT_TYPE_SPAN_STATIC	2
170 #define	BT_TYPE_FREE		3
171 #define	BT_TYPE_BUSY		4
172 #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
173 
174 #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
175 
176 typedef struct vmem_btag bt_t;
177 
178 /* ---- misc */
179 
180 #define	VMEM_ALIGNUP(addr, align) \
181 	(-(-(addr) & -(align)))
182 #define	VMEM_CROSS_P(addr1, addr2, boundary) \
183 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
184 
185 #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
186 
187 static int
188 calc_order(vmem_size_t size)
189 {
190 	vmem_size_t target;
191 	int i;
192 
193 	KASSERT(size != 0);
194 
195 	i = 0;
196 	target = size >> 1;
197 	while (ORDER2SIZE(i) <= target) {
198 		i++;
199 	}
200 
201 	KASSERT(ORDER2SIZE(i) <= size);
202 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
203 
204 	return i;
205 }
206 
207 #if defined(_KERNEL)
208 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
209 #endif /* defined(_KERNEL) */
210 
211 static void *
212 xmalloc(size_t sz, vm_flag_t flags)
213 {
214 
215 #if defined(_KERNEL)
216 	return malloc(sz, M_VMEM,
217 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
218 #else /* defined(_KERNEL) */
219 	return malloc(sz);
220 #endif /* defined(_KERNEL) */
221 }
222 
223 static void
224 xfree(void *p)
225 {
226 
227 #if defined(_KERNEL)
228 	return free(p, M_VMEM);
229 #else /* defined(_KERNEL) */
230 	return free(p);
231 #endif /* defined(_KERNEL) */
232 }
233 
234 /* ---- boundary tag */
235 
236 #if defined(_KERNEL)
237 static struct pool_cache bt_cache;
238 #endif /* defined(_KERNEL) */
239 
240 static bt_t *
241 bt_alloc(vmem_t *vm, vm_flag_t flags)
242 {
243 	bt_t *bt;
244 
245 #if defined(_KERNEL)
246 	bt = pool_cache_get(&bt_cache,
247 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
248 #else /* defined(_KERNEL) */
249 	bt = malloc(sizeof *bt);
250 #endif /* defined(_KERNEL) */
251 
252 	return bt;
253 }
254 
255 static void
256 bt_free(vmem_t *vm, bt_t *bt)
257 {
258 
259 #if defined(_KERNEL)
260 	pool_cache_put(&bt_cache, bt);
261 #else /* defined(_KERNEL) */
262 	free(bt);
263 #endif /* defined(_KERNEL) */
264 }
265 
266 /*
267  * freelist[0] ... [1, 1]
268  * freelist[1] ... [2, 3]
269  * freelist[2] ... [4, 7]
270  * freelist[3] ... [8, 15]
271  *  :
272  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
273  *  :
274  */
275 
276 static struct vmem_freelist *
277 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
278 {
279 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
280 	int idx;
281 
282 	KASSERT((size & vm->vm_quantum_mask) == 0);
283 	KASSERT(size != 0);
284 
285 	idx = calc_order(qsize);
286 	KASSERT(idx >= 0);
287 	KASSERT(idx < VMEM_MAXORDER);
288 
289 	return &vm->vm_freelist[idx];
290 }
291 
292 static struct vmem_freelist *
293 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
294 {
295 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
296 	int idx;
297 
298 	KASSERT((size & vm->vm_quantum_mask) == 0);
299 	KASSERT(size != 0);
300 
301 	idx = calc_order(qsize);
302 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
303 		idx++;
304 		/* check too large request? */
305 	}
306 	KASSERT(idx >= 0);
307 	KASSERT(idx < VMEM_MAXORDER);
308 
309 	return &vm->vm_freelist[idx];
310 }
311 
312 /* ---- boundary tag hash */
313 
314 static struct vmem_hashlist *
315 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
316 {
317 	struct vmem_hashlist *list;
318 	unsigned int hash;
319 
320 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
321 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
322 
323 	return list;
324 }
325 
326 static bt_t *
327 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
328 {
329 	struct vmem_hashlist *list;
330 	bt_t *bt;
331 
332 	list = bt_hashhead(vm, addr);
333 	LIST_FOREACH(bt, list, bt_hashlist) {
334 		if (bt->bt_start == addr) {
335 			break;
336 		}
337 	}
338 
339 	return bt;
340 }
341 
342 static void
343 bt_rembusy(vmem_t *vm, bt_t *bt)
344 {
345 
346 	KASSERT(vm->vm_nbusytag > 0);
347 	vm->vm_nbusytag--;
348 	LIST_REMOVE(bt, bt_hashlist);
349 }
350 
351 static void
352 bt_insbusy(vmem_t *vm, bt_t *bt)
353 {
354 	struct vmem_hashlist *list;
355 
356 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
357 
358 	list = bt_hashhead(vm, bt->bt_start);
359 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
360 	vm->vm_nbusytag++;
361 }
362 
363 /* ---- boundary tag list */
364 
365 static void
366 bt_remseg(vmem_t *vm, bt_t *bt)
367 {
368 
369 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
370 }
371 
372 static void
373 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
374 {
375 
376 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
377 }
378 
379 static void
380 bt_insseg_tail(vmem_t *vm, bt_t *bt)
381 {
382 
383 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
384 }
385 
386 static void
387 bt_remfree(vmem_t *vm, bt_t *bt)
388 {
389 
390 	KASSERT(bt->bt_type == BT_TYPE_FREE);
391 
392 	LIST_REMOVE(bt, bt_freelist);
393 }
394 
395 static void
396 bt_insfree(vmem_t *vm, bt_t *bt)
397 {
398 	struct vmem_freelist *list;
399 
400 	list = bt_freehead_tofree(vm, bt->bt_size);
401 	LIST_INSERT_HEAD(list, bt, bt_freelist);
402 }
403 
404 /* ---- vmem internal functions */
405 
406 #if defined(_KERNEL)
407 static kmutex_t vmem_list_lock;
408 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
409 #endif /* defined(_KERNEL) */
410 
411 #if defined(QCACHE)
412 static inline vm_flag_t
413 prf_to_vmf(int prflags)
414 {
415 	vm_flag_t vmflags;
416 
417 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
418 	if ((prflags & PR_WAITOK) != 0) {
419 		vmflags = VM_SLEEP;
420 	} else {
421 		vmflags = VM_NOSLEEP;
422 	}
423 	return vmflags;
424 }
425 
426 static inline int
427 vmf_to_prf(vm_flag_t vmflags)
428 {
429 	int prflags;
430 
431 	if ((vmflags & VM_SLEEP) != 0) {
432 		prflags = PR_WAITOK;
433 	} else {
434 		prflags = PR_NOWAIT;
435 	}
436 	return prflags;
437 }
438 
439 static size_t
440 qc_poolpage_size(size_t qcache_max)
441 {
442 	int i;
443 
444 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
445 		/* nothing */
446 	}
447 	return ORDER2SIZE(i);
448 }
449 
450 static void *
451 qc_poolpage_alloc(struct pool *pool, int prflags)
452 {
453 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
454 	vmem_t *vm = qc->qc_vmem;
455 
456 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
457 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
458 }
459 
460 static void
461 qc_poolpage_free(struct pool *pool, void *addr)
462 {
463 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
464 	vmem_t *vm = qc->qc_vmem;
465 
466 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
467 }
468 
469 static void
470 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
471 {
472 	qcache_t *prevqc;
473 	struct pool_allocator *pa;
474 	int qcache_idx_max;
475 	int i;
476 
477 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
478 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
479 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
480 	}
481 	vm->vm_qcache_max = qcache_max;
482 	pa = &vm->vm_qcache_allocator;
483 	memset(pa, 0, sizeof(*pa));
484 	pa->pa_alloc = qc_poolpage_alloc;
485 	pa->pa_free = qc_poolpage_free;
486 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
487 
488 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
489 	prevqc = NULL;
490 	for (i = qcache_idx_max; i > 0; i--) {
491 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
492 		size_t size = i << vm->vm_quantum_shift;
493 
494 		qc->qc_vmem = vm;
495 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
496 		    vm->vm_name, size);
497 		qc->qc_cache = pool_cache_init(size,
498 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
499 		    PR_NOALIGN | PR_NOTOUCH /* XXX */,
500 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
501 		KASSERT(qc->qc_cache != NULL);	/* XXX */
502 		if (prevqc != NULL &&
503 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
504 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
505 			pool_cache_destroy(qc->qc_cache);
506 			vm->vm_qcache[i - 1] = prevqc;
507 			continue;
508 		}
509 		qc->qc_cache->pc_pool.pr_qcache = qc;
510 		vm->vm_qcache[i - 1] = qc;
511 		prevqc = qc;
512 	}
513 }
514 
515 static void
516 qc_destroy(vmem_t *vm)
517 {
518 	const qcache_t *prevqc;
519 	int i;
520 	int qcache_idx_max;
521 
522 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
523 	prevqc = NULL;
524 	for (i = 0; i < qcache_idx_max; i++) {
525 		qcache_t *qc = vm->vm_qcache[i];
526 
527 		if (prevqc == qc) {
528 			continue;
529 		}
530 		pool_cache_destroy(qc->qc_cache);
531 		prevqc = qc;
532 	}
533 }
534 
535 static bool
536 qc_reap(vmem_t *vm)
537 {
538 	const qcache_t *prevqc;
539 	int i;
540 	int qcache_idx_max;
541 	bool didsomething = false;
542 
543 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
544 	prevqc = NULL;
545 	for (i = 0; i < qcache_idx_max; i++) {
546 		qcache_t *qc = vm->vm_qcache[i];
547 
548 		if (prevqc == qc) {
549 			continue;
550 		}
551 		if (pool_cache_reclaim(qc->qc_cache) != 0) {
552 			didsomething = true;
553 		}
554 		prevqc = qc;
555 	}
556 
557 	return didsomething;
558 }
559 #endif /* defined(QCACHE) */
560 
561 #if defined(_KERNEL)
562 static int
563 vmem_init(void)
564 {
565 
566 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
567 	pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
568 	    NULL, IPL_VM, NULL, NULL, NULL);
569 	return 0;
570 }
571 #endif /* defined(_KERNEL) */
572 
573 static vmem_addr_t
574 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
575     int spanbttype)
576 {
577 	bt_t *btspan;
578 	bt_t *btfree;
579 
580 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
581 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
582 	KASSERT(spanbttype == BT_TYPE_SPAN ||
583 	    spanbttype == BT_TYPE_SPAN_STATIC);
584 
585 	btspan = bt_alloc(vm, flags);
586 	if (btspan == NULL) {
587 		return VMEM_ADDR_NULL;
588 	}
589 	btfree = bt_alloc(vm, flags);
590 	if (btfree == NULL) {
591 		bt_free(vm, btspan);
592 		return VMEM_ADDR_NULL;
593 	}
594 
595 	btspan->bt_type = spanbttype;
596 	btspan->bt_start = addr;
597 	btspan->bt_size = size;
598 
599 	btfree->bt_type = BT_TYPE_FREE;
600 	btfree->bt_start = addr;
601 	btfree->bt_size = size;
602 
603 	VMEM_LOCK(vm);
604 	bt_insseg_tail(vm, btspan);
605 	bt_insseg(vm, btfree, btspan);
606 	bt_insfree(vm, btfree);
607 	VMEM_UNLOCK(vm);
608 
609 	return addr;
610 }
611 
612 static void
613 vmem_destroy1(vmem_t *vm)
614 {
615 
616 #if defined(QCACHE)
617 	qc_destroy(vm);
618 #endif /* defined(QCACHE) */
619 	if (vm->vm_hashlist != NULL) {
620 		int i;
621 
622 		for (i = 0; i < vm->vm_hashsize; i++) {
623 			bt_t *bt;
624 
625 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
626 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
627 				bt_free(vm, bt);
628 			}
629 		}
630 		xfree(vm->vm_hashlist);
631 	}
632 	VMEM_LOCK_DESTROY(vm);
633 	xfree(vm);
634 }
635 
636 static int
637 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
638 {
639 	vmem_addr_t addr;
640 
641 	if (vm->vm_allocfn == NULL) {
642 		return EINVAL;
643 	}
644 
645 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
646 	if (addr == VMEM_ADDR_NULL) {
647 		return ENOMEM;
648 	}
649 
650 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
651 		(*vm->vm_freefn)(vm->vm_source, addr, size);
652 		return ENOMEM;
653 	}
654 
655 	return 0;
656 }
657 
658 static int
659 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
660 {
661 	bt_t *bt;
662 	int i;
663 	struct vmem_hashlist *newhashlist;
664 	struct vmem_hashlist *oldhashlist;
665 	size_t oldhashsize;
666 
667 	KASSERT(newhashsize > 0);
668 
669 	newhashlist =
670 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
671 	if (newhashlist == NULL) {
672 		return ENOMEM;
673 	}
674 	for (i = 0; i < newhashsize; i++) {
675 		LIST_INIT(&newhashlist[i]);
676 	}
677 
678 	if (!VMEM_TRYLOCK(vm)) {
679 		xfree(newhashlist);
680 		return EBUSY;
681 	}
682 	oldhashlist = vm->vm_hashlist;
683 	oldhashsize = vm->vm_hashsize;
684 	vm->vm_hashlist = newhashlist;
685 	vm->vm_hashsize = newhashsize;
686 	if (oldhashlist == NULL) {
687 		VMEM_UNLOCK(vm);
688 		return 0;
689 	}
690 	for (i = 0; i < oldhashsize; i++) {
691 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
692 			bt_rembusy(vm, bt); /* XXX */
693 			bt_insbusy(vm, bt);
694 		}
695 	}
696 	VMEM_UNLOCK(vm);
697 
698 	xfree(oldhashlist);
699 
700 	return 0;
701 }
702 
703 /*
704  * vmem_fit: check if a bt can satisfy the given restrictions.
705  */
706 
707 static vmem_addr_t
708 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
709     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
710 {
711 	vmem_addr_t start;
712 	vmem_addr_t end;
713 
714 	KASSERT(bt->bt_size >= size);
715 
716 	/*
717 	 * XXX assumption: vmem_addr_t and vmem_size_t are
718 	 * unsigned integer of the same size.
719 	 */
720 
721 	start = bt->bt_start;
722 	if (start < minaddr) {
723 		start = minaddr;
724 	}
725 	end = BT_END(bt);
726 	if (end > maxaddr - 1) {
727 		end = maxaddr - 1;
728 	}
729 	if (start >= end) {
730 		return VMEM_ADDR_NULL;
731 	}
732 
733 	start = VMEM_ALIGNUP(start - phase, align) + phase;
734 	if (start < bt->bt_start) {
735 		start += align;
736 	}
737 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
738 		KASSERT(align < nocross);
739 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
740 	}
741 	if (start < end && end - start >= size) {
742 		KASSERT((start & (align - 1)) == phase);
743 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
744 		KASSERT(minaddr <= start);
745 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
746 		KASSERT(bt->bt_start <= start);
747 		KASSERT(start + size <= BT_END(bt));
748 		return start;
749 	}
750 	return VMEM_ADDR_NULL;
751 }
752 
753 /* ---- vmem API */
754 
755 /*
756  * vmem_create: create an arena.
757  *
758  * => must not be called from interrupt context.
759  */
760 
761 vmem_t *
762 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
763     vmem_size_t quantum,
764     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
765     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
766     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
767     int ipl)
768 {
769 	vmem_t *vm;
770 	int i;
771 #if defined(_KERNEL)
772 	static ONCE_DECL(control);
773 #endif /* defined(_KERNEL) */
774 
775 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
776 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
777 
778 #if defined(_KERNEL)
779 	if (RUN_ONCE(&control, vmem_init)) {
780 		return NULL;
781 	}
782 #endif /* defined(_KERNEL) */
783 	vm = xmalloc(sizeof(*vm), flags);
784 	if (vm == NULL) {
785 		return NULL;
786 	}
787 
788 	VMEM_LOCK_INIT(vm, ipl);
789 	vm->vm_name = name;
790 	vm->vm_quantum_mask = quantum - 1;
791 	vm->vm_quantum_shift = calc_order(quantum);
792 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
793 	vm->vm_allocfn = allocfn;
794 	vm->vm_freefn = freefn;
795 	vm->vm_source = source;
796 	vm->vm_nbusytag = 0;
797 #if defined(QCACHE)
798 	qc_init(vm, qcache_max, ipl);
799 #endif /* defined(QCACHE) */
800 
801 	CIRCLEQ_INIT(&vm->vm_seglist);
802 	for (i = 0; i < VMEM_MAXORDER; i++) {
803 		LIST_INIT(&vm->vm_freelist[i]);
804 	}
805 	vm->vm_hashlist = NULL;
806 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
807 		vmem_destroy1(vm);
808 		return NULL;
809 	}
810 
811 	if (size != 0) {
812 		if (vmem_add(vm, base, size, flags) == 0) {
813 			vmem_destroy1(vm);
814 			return NULL;
815 		}
816 	}
817 
818 #if defined(_KERNEL)
819 	mutex_enter(&vmem_list_lock);
820 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
821 	mutex_exit(&vmem_list_lock);
822 #endif /* defined(_KERNEL) */
823 
824 	return vm;
825 }
826 
827 void
828 vmem_destroy(vmem_t *vm)
829 {
830 
831 #if defined(_KERNEL)
832 	mutex_enter(&vmem_list_lock);
833 	LIST_REMOVE(vm, vm_alllist);
834 	mutex_exit(&vmem_list_lock);
835 #endif /* defined(_KERNEL) */
836 
837 	vmem_destroy1(vm);
838 }
839 
840 vmem_size_t
841 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
842 {
843 
844 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
845 }
846 
847 /*
848  * vmem_alloc:
849  *
850  * => caller must ensure appropriate spl,
851  *    if the arena can be accessed from interrupt context.
852  */
853 
854 vmem_addr_t
855 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
856 {
857 	const vm_flag_t strat __unused = flags & VM_FITMASK;
858 
859 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
860 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
861 
862 	KASSERT(size > 0);
863 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
864 	if ((flags & VM_SLEEP) != 0) {
865 		ASSERT_SLEEPABLE();
866 	}
867 
868 #if defined(QCACHE)
869 	if (size <= vm->vm_qcache_max) {
870 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
871 		qcache_t *qc = vm->vm_qcache[qidx - 1];
872 
873 		return (vmem_addr_t)pool_cache_get(qc->qc_cache,
874 		    vmf_to_prf(flags));
875 	}
876 #endif /* defined(QCACHE) */
877 
878 	return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
879 }
880 
881 vmem_addr_t
882 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
883     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
884     vm_flag_t flags)
885 {
886 	struct vmem_freelist *list;
887 	struct vmem_freelist *first;
888 	struct vmem_freelist *end;
889 	bt_t *bt;
890 	bt_t *btnew;
891 	bt_t *btnew2;
892 	const vmem_size_t size = vmem_roundup_size(vm, size0);
893 	vm_flag_t strat = flags & VM_FITMASK;
894 	vmem_addr_t start;
895 
896 	KASSERT(size0 > 0);
897 	KASSERT(size > 0);
898 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
899 	if ((flags & VM_SLEEP) != 0) {
900 		ASSERT_SLEEPABLE();
901 	}
902 	KASSERT((align & vm->vm_quantum_mask) == 0);
903 	KASSERT((align & (align - 1)) == 0);
904 	KASSERT((phase & vm->vm_quantum_mask) == 0);
905 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
906 	KASSERT((nocross & (nocross - 1)) == 0);
907 	KASSERT((align == 0 && phase == 0) || phase < align);
908 	KASSERT(nocross == 0 || nocross >= size);
909 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
910 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
911 
912 	if (align == 0) {
913 		align = vm->vm_quantum_mask + 1;
914 	}
915 	btnew = bt_alloc(vm, flags);
916 	if (btnew == NULL) {
917 		return VMEM_ADDR_NULL;
918 	}
919 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
920 	if (btnew2 == NULL) {
921 		bt_free(vm, btnew);
922 		return VMEM_ADDR_NULL;
923 	}
924 
925 retry_strat:
926 	first = bt_freehead_toalloc(vm, size, strat);
927 	end = &vm->vm_freelist[VMEM_MAXORDER];
928 retry:
929 	bt = NULL;
930 	VMEM_LOCK(vm);
931 	vmem_check(vm);
932 	if (strat == VM_INSTANTFIT) {
933 		for (list = first; list < end; list++) {
934 			bt = LIST_FIRST(list);
935 			if (bt != NULL) {
936 				start = vmem_fit(bt, size, align, phase,
937 				    nocross, minaddr, maxaddr);
938 				if (start != VMEM_ADDR_NULL) {
939 					goto gotit;
940 				}
941 			}
942 		}
943 	} else { /* VM_BESTFIT */
944 		for (list = first; list < end; list++) {
945 			LIST_FOREACH(bt, list, bt_freelist) {
946 				if (bt->bt_size >= size) {
947 					start = vmem_fit(bt, size, align, phase,
948 					    nocross, minaddr, maxaddr);
949 					if (start != VMEM_ADDR_NULL) {
950 						goto gotit;
951 					}
952 				}
953 			}
954 		}
955 	}
956 	VMEM_UNLOCK(vm);
957 #if 1
958 	if (strat == VM_INSTANTFIT) {
959 		strat = VM_BESTFIT;
960 		goto retry_strat;
961 	}
962 #endif
963 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
964 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
965 
966 		/*
967 		 * XXX should try to import a region large enough to
968 		 * satisfy restrictions?
969 		 */
970 
971 		goto fail;
972 	}
973 	if (vmem_import(vm, size, flags) == 0) {
974 		goto retry;
975 	}
976 	/* XXX */
977 fail:
978 	bt_free(vm, btnew);
979 	bt_free(vm, btnew2);
980 	return VMEM_ADDR_NULL;
981 
982 gotit:
983 	KASSERT(bt->bt_type == BT_TYPE_FREE);
984 	KASSERT(bt->bt_size >= size);
985 	bt_remfree(vm, bt);
986 	vmem_check(vm);
987 	if (bt->bt_start != start) {
988 		btnew2->bt_type = BT_TYPE_FREE;
989 		btnew2->bt_start = bt->bt_start;
990 		btnew2->bt_size = start - bt->bt_start;
991 		bt->bt_start = start;
992 		bt->bt_size -= btnew2->bt_size;
993 		bt_insfree(vm, btnew2);
994 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
995 		btnew2 = NULL;
996 		vmem_check(vm);
997 	}
998 	KASSERT(bt->bt_start == start);
999 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1000 		/* split */
1001 		btnew->bt_type = BT_TYPE_BUSY;
1002 		btnew->bt_start = bt->bt_start;
1003 		btnew->bt_size = size;
1004 		bt->bt_start = bt->bt_start + size;
1005 		bt->bt_size -= size;
1006 		bt_insfree(vm, bt);
1007 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1008 		bt_insbusy(vm, btnew);
1009 		vmem_check(vm);
1010 		VMEM_UNLOCK(vm);
1011 	} else {
1012 		bt->bt_type = BT_TYPE_BUSY;
1013 		bt_insbusy(vm, bt);
1014 		vmem_check(vm);
1015 		VMEM_UNLOCK(vm);
1016 		bt_free(vm, btnew);
1017 		btnew = bt;
1018 	}
1019 	if (btnew2 != NULL) {
1020 		bt_free(vm, btnew2);
1021 	}
1022 	KASSERT(btnew->bt_size >= size);
1023 	btnew->bt_type = BT_TYPE_BUSY;
1024 
1025 	return btnew->bt_start;
1026 }
1027 
1028 /*
1029  * vmem_free:
1030  *
1031  * => caller must ensure appropriate spl,
1032  *    if the arena can be accessed from interrupt context.
1033  */
1034 
1035 void
1036 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1037 {
1038 
1039 	KASSERT(addr != VMEM_ADDR_NULL);
1040 	KASSERT(size > 0);
1041 
1042 #if defined(QCACHE)
1043 	if (size <= vm->vm_qcache_max) {
1044 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1045 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1046 
1047 		return pool_cache_put(qc->qc_cache, (void *)addr);
1048 	}
1049 #endif /* defined(QCACHE) */
1050 
1051 	vmem_xfree(vm, addr, size);
1052 }
1053 
1054 void
1055 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1056 {
1057 	bt_t *bt;
1058 	bt_t *t;
1059 
1060 	KASSERT(addr != VMEM_ADDR_NULL);
1061 	KASSERT(size > 0);
1062 
1063 	VMEM_LOCK(vm);
1064 
1065 	bt = bt_lookupbusy(vm, addr);
1066 	KASSERT(bt != NULL);
1067 	KASSERT(bt->bt_start == addr);
1068 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1069 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1070 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
1071 	bt_rembusy(vm, bt);
1072 	bt->bt_type = BT_TYPE_FREE;
1073 
1074 	/* coalesce */
1075 	t = CIRCLEQ_NEXT(bt, bt_seglist);
1076 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1077 		KASSERT(BT_END(bt) == t->bt_start);
1078 		bt_remfree(vm, t);
1079 		bt_remseg(vm, t);
1080 		bt->bt_size += t->bt_size;
1081 		bt_free(vm, t);
1082 	}
1083 	t = CIRCLEQ_PREV(bt, bt_seglist);
1084 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1085 		KASSERT(BT_END(t) == bt->bt_start);
1086 		bt_remfree(vm, t);
1087 		bt_remseg(vm, t);
1088 		bt->bt_size += t->bt_size;
1089 		bt->bt_start = t->bt_start;
1090 		bt_free(vm, t);
1091 	}
1092 
1093 	t = CIRCLEQ_PREV(bt, bt_seglist);
1094 	KASSERT(t != NULL);
1095 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1096 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1097 	    t->bt_size == bt->bt_size) {
1098 		vmem_addr_t spanaddr;
1099 		vmem_size_t spansize;
1100 
1101 		KASSERT(t->bt_start == bt->bt_start);
1102 		spanaddr = bt->bt_start;
1103 		spansize = bt->bt_size;
1104 		bt_remseg(vm, bt);
1105 		bt_free(vm, bt);
1106 		bt_remseg(vm, t);
1107 		bt_free(vm, t);
1108 		VMEM_UNLOCK(vm);
1109 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1110 	} else {
1111 		bt_insfree(vm, bt);
1112 		VMEM_UNLOCK(vm);
1113 	}
1114 }
1115 
1116 /*
1117  * vmem_add:
1118  *
1119  * => caller must ensure appropriate spl,
1120  *    if the arena can be accessed from interrupt context.
1121  */
1122 
1123 vmem_addr_t
1124 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1125 {
1126 
1127 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1128 }
1129 
1130 /*
1131  * vmem_reap: reap unused resources.
1132  *
1133  * => return true if we successfully reaped something.
1134  */
1135 
1136 bool
1137 vmem_reap(vmem_t *vm)
1138 {
1139 	bool didsomething = false;
1140 
1141 #if defined(QCACHE)
1142 	didsomething = qc_reap(vm);
1143 #endif /* defined(QCACHE) */
1144 	return didsomething;
1145 }
1146 
1147 /* ---- rehash */
1148 
1149 #if defined(_KERNEL)
1150 static struct callout vmem_rehash_ch;
1151 static int vmem_rehash_interval;
1152 static struct workqueue *vmem_rehash_wq;
1153 static struct work vmem_rehash_wk;
1154 
1155 static void
1156 vmem_rehash_all(struct work *wk, void *dummy)
1157 {
1158 	vmem_t *vm;
1159 
1160 	KASSERT(wk == &vmem_rehash_wk);
1161 	mutex_enter(&vmem_list_lock);
1162 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1163 		size_t desired;
1164 		size_t current;
1165 
1166 		if (!VMEM_TRYLOCK(vm)) {
1167 			continue;
1168 		}
1169 		desired = vm->vm_nbusytag;
1170 		current = vm->vm_hashsize;
1171 		VMEM_UNLOCK(vm);
1172 
1173 		if (desired > VMEM_HASHSIZE_MAX) {
1174 			desired = VMEM_HASHSIZE_MAX;
1175 		} else if (desired < VMEM_HASHSIZE_MIN) {
1176 			desired = VMEM_HASHSIZE_MIN;
1177 		}
1178 		if (desired > current * 2 || desired * 2 < current) {
1179 			vmem_rehash(vm, desired, VM_NOSLEEP);
1180 		}
1181 	}
1182 	mutex_exit(&vmem_list_lock);
1183 
1184 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1185 }
1186 
1187 static void
1188 vmem_rehash_all_kick(void *dummy)
1189 {
1190 
1191 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1192 }
1193 
1194 void
1195 vmem_rehash_start(void)
1196 {
1197 	int error;
1198 
1199 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1200 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1201 	if (error) {
1202 		panic("%s: workqueue_create %d\n", __func__, error);
1203 	}
1204 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1205 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1206 
1207 	vmem_rehash_interval = hz * 10;
1208 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1209 }
1210 #endif /* defined(_KERNEL) */
1211 
1212 /* ---- debug */
1213 
1214 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1215 
1216 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1217 
1218 static const char *
1219 bt_type_string(int type)
1220 {
1221 	static const char * const table[] = {
1222 		[BT_TYPE_BUSY] = "busy",
1223 		[BT_TYPE_FREE] = "free",
1224 		[BT_TYPE_SPAN] = "span",
1225 		[BT_TYPE_SPAN_STATIC] = "static span",
1226 	};
1227 
1228 	if (type >= __arraycount(table)) {
1229 		return "BOGUS";
1230 	}
1231 	return table[type];
1232 }
1233 
1234 static void
1235 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1236 {
1237 
1238 	(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1239 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1240 	    bt->bt_type, bt_type_string(bt->bt_type));
1241 }
1242 
1243 static void
1244 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1245 {
1246 	const bt_t *bt;
1247 	int i;
1248 
1249 	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1250 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1251 		bt_dump(bt, pr);
1252 	}
1253 
1254 	for (i = 0; i < VMEM_MAXORDER; i++) {
1255 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1256 
1257 		if (LIST_EMPTY(fl)) {
1258 			continue;
1259 		}
1260 
1261 		(*pr)("freelist[%d]\n", i);
1262 		LIST_FOREACH(bt, fl, bt_freelist) {
1263 			bt_dump(bt, pr);
1264 		}
1265 	}
1266 }
1267 
1268 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1269 
1270 #if defined(DDB)
1271 static bt_t *
1272 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1273 {
1274 	bt_t *bt;
1275 
1276 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1277 		if (BT_ISSPAN_P(bt)) {
1278 			continue;
1279 		}
1280 		if (bt->bt_start <= addr && addr < BT_END(bt)) {
1281 			return bt;
1282 		}
1283 	}
1284 
1285 	return NULL;
1286 }
1287 
1288 void
1289 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1290 {
1291 	vmem_t *vm;
1292 
1293 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1294 		bt_t *bt;
1295 
1296 		bt = vmem_whatis_lookup(vm, addr);
1297 		if (bt == NULL) {
1298 			continue;
1299 		}
1300 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1301 		    (void *)addr, (void *)bt->bt_start,
1302 		    (size_t)(addr - bt->bt_start), vm->vm_name,
1303 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1304 	}
1305 }
1306 
1307 void
1308 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1309 {
1310 	const vmem_t *vm;
1311 
1312 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1313 		vmem_dump(vm, pr);
1314 	}
1315 }
1316 
1317 void
1318 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1319 {
1320 	const vmem_t *vm = (const void *)addr;
1321 
1322 	vmem_dump(vm, pr);
1323 }
1324 #endif /* defined(DDB) */
1325 
1326 #if !defined(_KERNEL)
1327 #include <stdio.h>
1328 #endif /* !defined(_KERNEL) */
1329 
1330 #if defined(VMEM_SANITY)
1331 
1332 static bool
1333 vmem_check_sanity(vmem_t *vm)
1334 {
1335 	const bt_t *bt, *bt2;
1336 
1337 	KASSERT(vm != NULL);
1338 
1339 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1340 		if (bt->bt_start >= BT_END(bt)) {
1341 			printf("corrupted tag\n");
1342 			bt_dump(bt, (void *)printf);
1343 			return false;
1344 		}
1345 	}
1346 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1347 		CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1348 			if (bt == bt2) {
1349 				continue;
1350 			}
1351 			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1352 				continue;
1353 			}
1354 			if (bt->bt_start < BT_END(bt2) &&
1355 			    bt2->bt_start < BT_END(bt)) {
1356 				printf("overwrapped tags\n");
1357 				bt_dump(bt, (void *)printf);
1358 				bt_dump(bt2, (void *)printf);
1359 				return false;
1360 			}
1361 		}
1362 	}
1363 
1364 	return true;
1365 }
1366 
1367 static void
1368 vmem_check(vmem_t *vm)
1369 {
1370 
1371 	if (!vmem_check_sanity(vm)) {
1372 		panic("insanity vmem %p", vm);
1373 	}
1374 }
1375 
1376 #endif /* defined(VMEM_SANITY) */
1377 
1378 #if defined(UNITTEST)
1379 int
1380 main(void)
1381 {
1382 	vmem_t *vm;
1383 	vmem_addr_t p;
1384 	struct reg {
1385 		vmem_addr_t p;
1386 		vmem_size_t sz;
1387 		bool x;
1388 	} *reg = NULL;
1389 	int nreg = 0;
1390 	int nalloc = 0;
1391 	int nfree = 0;
1392 	vmem_size_t total = 0;
1393 #if 1
1394 	vm_flag_t strat = VM_INSTANTFIT;
1395 #else
1396 	vm_flag_t strat = VM_BESTFIT;
1397 #endif
1398 
1399 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1400 	    NULL, NULL, NULL, 0, VM_SLEEP, 0/*XXX*/);
1401 	if (vm == NULL) {
1402 		printf("vmem_create\n");
1403 		exit(EXIT_FAILURE);
1404 	}
1405 	vmem_dump(vm, (void *)printf);
1406 
1407 	p = vmem_add(vm, 100, 200, VM_SLEEP);
1408 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
1409 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1410 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1411 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
1412 	vmem_dump(vm, (void *)printf);
1413 	for (;;) {
1414 		struct reg *r;
1415 		int t = rand() % 100;
1416 
1417 		if (t > 45) {
1418 			/* alloc */
1419 			vmem_size_t sz = rand() % 500 + 1;
1420 			bool x;
1421 			vmem_size_t align, phase, nocross;
1422 			vmem_addr_t minaddr, maxaddr;
1423 
1424 			if (t > 70) {
1425 				x = true;
1426 				/* XXX */
1427 				align = 1 << (rand() % 15);
1428 				phase = rand() % 65536;
1429 				nocross = 1 << (rand() % 15);
1430 				if (align <= phase) {
1431 					phase = 0;
1432 				}
1433 				if (VMEM_CROSS_P(phase, phase + sz - 1,
1434 				    nocross)) {
1435 					nocross = 0;
1436 				}
1437 				minaddr = rand() % 50000;
1438 				maxaddr = rand() % 70000;
1439 				if (minaddr > maxaddr) {
1440 					minaddr = 0;
1441 					maxaddr = 0;
1442 				}
1443 				printf("=== xalloc %" PRIu64
1444 				    " align=%" PRIu64 ", phase=%" PRIu64
1445 				    ", nocross=%" PRIu64 ", min=%" PRIu64
1446 				    ", max=%" PRIu64 "\n",
1447 				    (uint64_t)sz,
1448 				    (uint64_t)align,
1449 				    (uint64_t)phase,
1450 				    (uint64_t)nocross,
1451 				    (uint64_t)minaddr,
1452 				    (uint64_t)maxaddr);
1453 				p = vmem_xalloc(vm, sz, align, phase, nocross,
1454 				    minaddr, maxaddr, strat|VM_SLEEP);
1455 			} else {
1456 				x = false;
1457 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1458 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1459 			}
1460 			printf("-> %" PRIu64 "\n", (uint64_t)p);
1461 			vmem_dump(vm, (void *)printf);
1462 			if (p == VMEM_ADDR_NULL) {
1463 				if (x) {
1464 					continue;
1465 				}
1466 				break;
1467 			}
1468 			nreg++;
1469 			reg = realloc(reg, sizeof(*reg) * nreg);
1470 			r = &reg[nreg - 1];
1471 			r->p = p;
1472 			r->sz = sz;
1473 			r->x = x;
1474 			total += sz;
1475 			nalloc++;
1476 		} else if (nreg != 0) {
1477 			/* free */
1478 			r = &reg[rand() % nreg];
1479 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1480 			    (uint64_t)r->p, (uint64_t)r->sz);
1481 			if (r->x) {
1482 				vmem_xfree(vm, r->p, r->sz);
1483 			} else {
1484 				vmem_free(vm, r->p, r->sz);
1485 			}
1486 			total -= r->sz;
1487 			vmem_dump(vm, (void *)printf);
1488 			*r = reg[nreg - 1];
1489 			nreg--;
1490 			nfree++;
1491 		}
1492 		printf("total=%" PRIu64 "\n", (uint64_t)total);
1493 	}
1494 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1495 	    (uint64_t)total, nalloc, nfree);
1496 	exit(EXIT_SUCCESS);
1497 }
1498 #endif /* defined(UNITTEST) */
1499