xref: /netbsd-src/sys/kern/subr_vmem.c (revision 33881f779a77dce6440bdc44610d94de75bebefe)
1 /*	$NetBSD: subr_vmem.c,v 1.100 2019/12/21 14:50:34 ad Exp $	*/
2 
3 /*-
4  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * reference:
31  * -	Magazines and Vmem: Extending the Slab Allocator
32  *	to Many CPUs and Arbitrary Resources
33  *	http://www.usenix.org/event/usenix01/bonwick.html
34  *
35  * locking & the boundary tag pool:
36  * - 	A pool(9) is used for vmem boundary tags
37  * - 	During a pool get call the global vmem_btag_refill_lock is taken,
38  *	to serialize access to the allocation reserve, but no other
39  *	vmem arena locks.
40  * -	During pool_put calls no vmem mutexes are locked.
41  * - 	pool_drain doesn't hold the pool's mutex while releasing memory to
42  * 	its backing therefore no interferance with any vmem mutexes.
43  * -	The boundary tag pool is forced to put page headers into pool pages
44  *  	(PR_PHINPAGE) and not off page to avoid pool recursion.
45  *  	(due to sizeof(bt_t) it should be the case anyway)
46  */
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.100 2019/12/21 14:50:34 ad Exp $");
50 
51 #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 #include "opt_ddb.h"
53 #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54 
55 #include <sys/param.h>
56 #include <sys/hash.h>
57 #include <sys/queue.h>
58 #include <sys/bitops.h>
59 
60 #if defined(_KERNEL)
61 #include <sys/systm.h>
62 #include <sys/kernel.h>	/* hz */
63 #include <sys/callout.h>
64 #include <sys/kmem.h>
65 #include <sys/pool.h>
66 #include <sys/vmem.h>
67 #include <sys/vmem_impl.h>
68 #include <sys/workqueue.h>
69 #include <sys/atomic.h>
70 #include <uvm/uvm.h>
71 #include <uvm/uvm_extern.h>
72 #include <uvm/uvm_km.h>
73 #include <uvm/uvm_page.h>
74 #include <uvm/uvm_pdaemon.h>
75 #else /* defined(_KERNEL) */
76 #include <stdio.h>
77 #include <errno.h>
78 #include <assert.h>
79 #include <stdlib.h>
80 #include <string.h>
81 #include "../sys/vmem.h"
82 #include "../sys/vmem_impl.h"
83 #endif /* defined(_KERNEL) */
84 
85 
86 #if defined(_KERNEL)
87 #include <sys/evcnt.h>
88 #define VMEM_EVCNT_DEFINE(name) \
89 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
90     "vmem", #name); \
91 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
92 #define VMEM_EVCNT_INCR(ev)	vmem_evcnt_##ev.ev_count++
93 #define VMEM_EVCNT_DECR(ev)	vmem_evcnt_##ev.ev_count--
94 
95 VMEM_EVCNT_DEFINE(static_bt_count)
96 VMEM_EVCNT_DEFINE(static_bt_inuse)
97 
98 #define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
99 #define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
100 #define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
101 #define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
102 
103 #else /* defined(_KERNEL) */
104 
105 #define VMEM_EVCNT_INCR(ev)	/* nothing */
106 #define VMEM_EVCNT_DECR(ev)	/* nothing */
107 
108 #define	VMEM_CONDVAR_INIT(vm, wchan)	/* nothing */
109 #define	VMEM_CONDVAR_DESTROY(vm)	/* nothing */
110 #define	VMEM_CONDVAR_WAIT(vm)		/* nothing */
111 #define	VMEM_CONDVAR_BROADCAST(vm)	/* nothing */
112 
113 #define	UNITTEST
114 #define	KASSERT(a)		assert(a)
115 #define	mutex_init(a, b, c)	/* nothing */
116 #define	mutex_destroy(a)	/* nothing */
117 #define	mutex_enter(a)		/* nothing */
118 #define	mutex_tryenter(a)	true
119 #define	mutex_exit(a)		/* nothing */
120 #define	mutex_owned(a)		/* nothing */
121 #define	ASSERT_SLEEPABLE()	/* nothing */
122 #define	panic(...)		printf(__VA_ARGS__); abort()
123 #endif /* defined(_KERNEL) */
124 
125 #if defined(VMEM_SANITY)
126 static void vmem_check(vmem_t *);
127 #else /* defined(VMEM_SANITY) */
128 #define vmem_check(vm)	/* nothing */
129 #endif /* defined(VMEM_SANITY) */
130 
131 #define	VMEM_HASHSIZE_MIN	1	/* XXX */
132 #define	VMEM_HASHSIZE_MAX	65536	/* XXX */
133 #define	VMEM_HASHSIZE_INIT	1
134 
135 #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
136 
137 #if defined(_KERNEL)
138 static bool vmem_bootstrapped = false;
139 static kmutex_t vmem_list_lock;
140 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
141 #endif /* defined(_KERNEL) */
142 
143 /* ---- misc */
144 
145 #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
146 #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
147 #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
148 #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
149 #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
150 #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
151 
152 #define	VMEM_ALIGNUP(addr, align) \
153 	(-(-(addr) & -(align)))
154 
155 #define	VMEM_CROSS_P(addr1, addr2, boundary) \
156 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
157 
158 #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
159 #define	SIZE2ORDER(size)	((int)ilog2(size))
160 
161 #if !defined(_KERNEL)
162 #define	xmalloc(sz, flags)	malloc(sz)
163 #define	xfree(p, sz)		free(p)
164 #define	bt_alloc(vm, flags)	malloc(sizeof(bt_t))
165 #define	bt_free(vm, bt)		free(bt)
166 #else /* defined(_KERNEL) */
167 
168 #define	xmalloc(sz, flags) \
169     kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
170 #define	xfree(p, sz)		kmem_free(p, sz);
171 
172 /*
173  * BT_RESERVE calculation:
174  * we allocate memory for boundry tags with vmem; therefore we have
175  * to keep a reserve of bts used to allocated memory for bts.
176  * This reserve is 4 for each arena involved in allocating vmems memory.
177  * BT_MAXFREE: don't cache excessive counts of bts in arenas
178  */
179 #define STATIC_BT_COUNT 200
180 #define BT_MINRESERVE 4
181 #define BT_MAXFREE 64
182 
183 static struct vmem_btag static_bts[STATIC_BT_COUNT];
184 static int static_bt_count = STATIC_BT_COUNT;
185 
186 static struct vmem kmem_va_meta_arena_store;
187 vmem_t *kmem_va_meta_arena;
188 static struct vmem kmem_meta_arena_store;
189 vmem_t *kmem_meta_arena = NULL;
190 
191 static kmutex_t vmem_btag_refill_lock;
192 static kmutex_t vmem_btag_lock;
193 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
194 static size_t vmem_btag_freelist_count = 0;
195 static struct pool vmem_btag_pool;
196 
197 static void
198 vmem_kick_pdaemon(void)
199 {
200 #if defined(_KERNEL)
201 	uvm_kick_pdaemon();
202 #endif
203 }
204 
205 /* ---- boundary tag */
206 
207 static int bt_refill(vmem_t *vm);
208 
209 static void *
210 pool_page_alloc_vmem_meta(struct pool *pp, int flags)
211 {
212 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
213 	vmem_addr_t va;
214 	int ret;
215 
216 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
217 	    (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
218 
219 	return ret ? NULL : (void *)va;
220 }
221 
222 static void
223 pool_page_free_vmem_meta(struct pool *pp, void *v)
224 {
225 
226 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
227 }
228 
229 /* allocator for vmem-pool metadata */
230 struct pool_allocator pool_allocator_vmem_meta = {
231 	.pa_alloc = pool_page_alloc_vmem_meta,
232 	.pa_free = pool_page_free_vmem_meta,
233 	.pa_pagesz = 0
234 };
235 
236 static int
237 bt_refill(vmem_t *vm)
238 {
239 	bt_t *bt;
240 
241 	VMEM_LOCK(vm);
242 	if (vm->vm_nfreetags > BT_MINRESERVE) {
243 		VMEM_UNLOCK(vm);
244 		return 0;
245 	}
246 
247 	mutex_enter(&vmem_btag_lock);
248 	while (!LIST_EMPTY(&vmem_btag_freelist) &&
249 	    vm->vm_nfreetags <= BT_MINRESERVE) {
250 		bt = LIST_FIRST(&vmem_btag_freelist);
251 		LIST_REMOVE(bt, bt_freelist);
252 		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
253 		vm->vm_nfreetags++;
254 		vmem_btag_freelist_count--;
255 		VMEM_EVCNT_INCR(static_bt_inuse);
256 	}
257 	mutex_exit(&vmem_btag_lock);
258 
259 	while (vm->vm_nfreetags <= BT_MINRESERVE) {
260 		VMEM_UNLOCK(vm);
261 		mutex_enter(&vmem_btag_refill_lock);
262 		bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
263 		mutex_exit(&vmem_btag_refill_lock);
264 		VMEM_LOCK(vm);
265 		if (bt == NULL)
266 			break;
267 		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
268 		vm->vm_nfreetags++;
269 	}
270 
271 	if (vm->vm_nfreetags <= BT_MINRESERVE) {
272 		VMEM_UNLOCK(vm);
273 		return ENOMEM;
274 	}
275 
276 	VMEM_UNLOCK(vm);
277 
278 	if (kmem_meta_arena != NULL) {
279 		(void)bt_refill(kmem_arena);
280 		(void)bt_refill(kmem_va_meta_arena);
281 		(void)bt_refill(kmem_meta_arena);
282 	}
283 
284 	return 0;
285 }
286 
287 static bt_t *
288 bt_alloc(vmem_t *vm, vm_flag_t flags)
289 {
290 	bt_t *bt;
291 	VMEM_LOCK(vm);
292 	while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
293 		VMEM_UNLOCK(vm);
294 		if (bt_refill(vm)) {
295 			if ((flags & VM_NOSLEEP) != 0) {
296 				return NULL;
297 			}
298 
299 			/*
300 			 * It would be nice to wait for something specific here
301 			 * but there are multiple ways that a retry could
302 			 * succeed and we can't wait for multiple things
303 			 * simultaneously.  So we'll just sleep for an arbitrary
304 			 * short period of time and retry regardless.
305 			 * This should be a very rare case.
306 			 */
307 
308 			vmem_kick_pdaemon();
309 			kpause("btalloc", false, 1, NULL);
310 		}
311 		VMEM_LOCK(vm);
312 	}
313 	bt = LIST_FIRST(&vm->vm_freetags);
314 	LIST_REMOVE(bt, bt_freelist);
315 	vm->vm_nfreetags--;
316 	VMEM_UNLOCK(vm);
317 
318 	return bt;
319 }
320 
321 static void
322 bt_free(vmem_t *vm, bt_t *bt)
323 {
324 
325 	VMEM_LOCK(vm);
326 	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
327 	vm->vm_nfreetags++;
328 	VMEM_UNLOCK(vm);
329 }
330 
331 static void
332 bt_freetrim(vmem_t *vm, int freelimit)
333 {
334 	bt_t *t;
335 	LIST_HEAD(, vmem_btag) tofree;
336 
337 	LIST_INIT(&tofree);
338 
339 	VMEM_LOCK(vm);
340 	while (vm->vm_nfreetags > freelimit) {
341 		bt_t *bt = LIST_FIRST(&vm->vm_freetags);
342 		LIST_REMOVE(bt, bt_freelist);
343 		vm->vm_nfreetags--;
344 		if (bt >= static_bts
345 		    && bt < &static_bts[STATIC_BT_COUNT]) {
346 			mutex_enter(&vmem_btag_lock);
347 			LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
348 			vmem_btag_freelist_count++;
349 			mutex_exit(&vmem_btag_lock);
350 			VMEM_EVCNT_DECR(static_bt_inuse);
351 		} else {
352 			LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
353 		}
354 	}
355 
356 	VMEM_UNLOCK(vm);
357 	while (!LIST_EMPTY(&tofree)) {
358 		t = LIST_FIRST(&tofree);
359 		LIST_REMOVE(t, bt_freelist);
360 		pool_put(&vmem_btag_pool, t);
361 	}
362 }
363 #endif	/* defined(_KERNEL) */
364 
365 /*
366  * freelist[0] ... [1, 1]
367  * freelist[1] ... [2, 3]
368  * freelist[2] ... [4, 7]
369  * freelist[3] ... [8, 15]
370  *  :
371  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
372  *  :
373  */
374 
375 static struct vmem_freelist *
376 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
377 {
378 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
379 	const int idx = SIZE2ORDER(qsize);
380 
381 	KASSERT(size != 0 && qsize != 0);
382 	KASSERT((size & vm->vm_quantum_mask) == 0);
383 	KASSERT(idx >= 0);
384 	KASSERT(idx < VMEM_MAXORDER);
385 
386 	return &vm->vm_freelist[idx];
387 }
388 
389 /*
390  * bt_freehead_toalloc: return the freelist for the given size and allocation
391  * strategy.
392  *
393  * for VM_INSTANTFIT, return the list in which any blocks are large enough
394  * for the requested size.  otherwise, return the list which can have blocks
395  * large enough for the requested size.
396  */
397 
398 static struct vmem_freelist *
399 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
400 {
401 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
402 	int idx = SIZE2ORDER(qsize);
403 
404 	KASSERT(size != 0 && qsize != 0);
405 	KASSERT((size & vm->vm_quantum_mask) == 0);
406 
407 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
408 		idx++;
409 		/* check too large request? */
410 	}
411 	KASSERT(idx >= 0);
412 	KASSERT(idx < VMEM_MAXORDER);
413 
414 	return &vm->vm_freelist[idx];
415 }
416 
417 /* ---- boundary tag hash */
418 
419 static struct vmem_hashlist *
420 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
421 {
422 	struct vmem_hashlist *list;
423 	unsigned int hash;
424 
425 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
426 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
427 
428 	return list;
429 }
430 
431 static bt_t *
432 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
433 {
434 	struct vmem_hashlist *list;
435 	bt_t *bt;
436 
437 	list = bt_hashhead(vm, addr);
438 	LIST_FOREACH(bt, list, bt_hashlist) {
439 		if (bt->bt_start == addr) {
440 			break;
441 		}
442 	}
443 
444 	return bt;
445 }
446 
447 static void
448 bt_rembusy(vmem_t *vm, bt_t *bt)
449 {
450 
451 	KASSERT(vm->vm_nbusytag > 0);
452 	vm->vm_inuse -= bt->bt_size;
453 	vm->vm_nbusytag--;
454 	LIST_REMOVE(bt, bt_hashlist);
455 }
456 
457 static void
458 bt_insbusy(vmem_t *vm, bt_t *bt)
459 {
460 	struct vmem_hashlist *list;
461 
462 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
463 
464 	list = bt_hashhead(vm, bt->bt_start);
465 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
466 	vm->vm_nbusytag++;
467 	vm->vm_inuse += bt->bt_size;
468 }
469 
470 /* ---- boundary tag list */
471 
472 static void
473 bt_remseg(vmem_t *vm, bt_t *bt)
474 {
475 
476 	TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
477 }
478 
479 static void
480 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
481 {
482 
483 	TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
484 }
485 
486 static void
487 bt_insseg_tail(vmem_t *vm, bt_t *bt)
488 {
489 
490 	TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
491 }
492 
493 static void
494 bt_remfree(vmem_t *vm, bt_t *bt)
495 {
496 
497 	KASSERT(bt->bt_type == BT_TYPE_FREE);
498 
499 	LIST_REMOVE(bt, bt_freelist);
500 }
501 
502 static void
503 bt_insfree(vmem_t *vm, bt_t *bt)
504 {
505 	struct vmem_freelist *list;
506 
507 	list = bt_freehead_tofree(vm, bt->bt_size);
508 	LIST_INSERT_HEAD(list, bt, bt_freelist);
509 }
510 
511 /* ---- vmem internal functions */
512 
513 #if defined(QCACHE)
514 static inline vm_flag_t
515 prf_to_vmf(int prflags)
516 {
517 	vm_flag_t vmflags;
518 
519 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
520 	if ((prflags & PR_WAITOK) != 0) {
521 		vmflags = VM_SLEEP;
522 	} else {
523 		vmflags = VM_NOSLEEP;
524 	}
525 	return vmflags;
526 }
527 
528 static inline int
529 vmf_to_prf(vm_flag_t vmflags)
530 {
531 	int prflags;
532 
533 	if ((vmflags & VM_SLEEP) != 0) {
534 		prflags = PR_WAITOK;
535 	} else {
536 		prflags = PR_NOWAIT;
537 	}
538 	return prflags;
539 }
540 
541 static size_t
542 qc_poolpage_size(size_t qcache_max)
543 {
544 	int i;
545 
546 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
547 		/* nothing */
548 	}
549 	return ORDER2SIZE(i);
550 }
551 
552 static void *
553 qc_poolpage_alloc(struct pool *pool, int prflags)
554 {
555 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
556 	vmem_t *vm = qc->qc_vmem;
557 	vmem_addr_t addr;
558 
559 	if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
560 	    prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
561 		return NULL;
562 	return (void *)addr;
563 }
564 
565 static void
566 qc_poolpage_free(struct pool *pool, void *addr)
567 {
568 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
569 	vmem_t *vm = qc->qc_vmem;
570 
571 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
572 }
573 
574 static void
575 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
576 {
577 	qcache_t *prevqc;
578 	struct pool_allocator *pa;
579 	int qcache_idx_max;
580 	int i;
581 
582 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
583 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
584 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
585 	}
586 	vm->vm_qcache_max = qcache_max;
587 	pa = &vm->vm_qcache_allocator;
588 	memset(pa, 0, sizeof(*pa));
589 	pa->pa_alloc = qc_poolpage_alloc;
590 	pa->pa_free = qc_poolpage_free;
591 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
592 
593 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
594 	prevqc = NULL;
595 	for (i = qcache_idx_max; i > 0; i--) {
596 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
597 		size_t size = i << vm->vm_quantum_shift;
598 		pool_cache_t pc;
599 
600 		qc->qc_vmem = vm;
601 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
602 		    vm->vm_name, size);
603 
604 		pc = pool_cache_init(size,
605 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
606 		    PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
607 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
608 
609 		KASSERT(pc);
610 
611 		qc->qc_cache = pc;
612 		KASSERT(qc->qc_cache != NULL);	/* XXX */
613 		if (prevqc != NULL &&
614 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
615 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
616 			pool_cache_destroy(qc->qc_cache);
617 			vm->vm_qcache[i - 1] = prevqc;
618 			continue;
619 		}
620 		qc->qc_cache->pc_pool.pr_qcache = qc;
621 		vm->vm_qcache[i - 1] = qc;
622 		prevqc = qc;
623 	}
624 }
625 
626 static void
627 qc_destroy(vmem_t *vm)
628 {
629 	const qcache_t *prevqc;
630 	int i;
631 	int qcache_idx_max;
632 
633 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
634 	prevqc = NULL;
635 	for (i = 0; i < qcache_idx_max; i++) {
636 		qcache_t *qc = vm->vm_qcache[i];
637 
638 		if (prevqc == qc) {
639 			continue;
640 		}
641 		pool_cache_destroy(qc->qc_cache);
642 		prevqc = qc;
643 	}
644 }
645 #endif
646 
647 #if defined(_KERNEL)
648 static void
649 vmem_bootstrap(void)
650 {
651 
652 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
653 	mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
654 	mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
655 
656 	while (static_bt_count-- > 0) {
657 		bt_t *bt = &static_bts[static_bt_count];
658 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
659 		VMEM_EVCNT_INCR(static_bt_count);
660 		vmem_btag_freelist_count++;
661 	}
662 	vmem_bootstrapped = TRUE;
663 }
664 
665 void
666 vmem_subsystem_init(vmem_t *vm)
667 {
668 
669 	kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
670 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
671 	    0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
672 	    IPL_VM);
673 
674 	kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
675 	    0, 0, PAGE_SIZE,
676 	    uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
677 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
678 
679 	pool_init(&vmem_btag_pool, sizeof(bt_t), 0, 0, PR_PHINPAGE,
680 		    "vmembt", &pool_allocator_vmem_meta, IPL_VM);
681 }
682 #endif /* defined(_KERNEL) */
683 
684 static int
685 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
686     int spanbttype)
687 {
688 	bt_t *btspan;
689 	bt_t *btfree;
690 
691 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
692 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
693 	KASSERT(spanbttype == BT_TYPE_SPAN ||
694 	    spanbttype == BT_TYPE_SPAN_STATIC);
695 
696 	btspan = bt_alloc(vm, flags);
697 	if (btspan == NULL) {
698 		return ENOMEM;
699 	}
700 	btfree = bt_alloc(vm, flags);
701 	if (btfree == NULL) {
702 		bt_free(vm, btspan);
703 		return ENOMEM;
704 	}
705 
706 	btspan->bt_type = spanbttype;
707 	btspan->bt_start = addr;
708 	btspan->bt_size = size;
709 
710 	btfree->bt_type = BT_TYPE_FREE;
711 	btfree->bt_start = addr;
712 	btfree->bt_size = size;
713 
714 	VMEM_LOCK(vm);
715 	bt_insseg_tail(vm, btspan);
716 	bt_insseg(vm, btfree, btspan);
717 	bt_insfree(vm, btfree);
718 	vm->vm_size += size;
719 	VMEM_UNLOCK(vm);
720 
721 	return 0;
722 }
723 
724 static void
725 vmem_destroy1(vmem_t *vm)
726 {
727 
728 #if defined(QCACHE)
729 	qc_destroy(vm);
730 #endif /* defined(QCACHE) */
731 	if (vm->vm_hashlist != NULL) {
732 		int i;
733 
734 		for (i = 0; i < vm->vm_hashsize; i++) {
735 			bt_t *bt;
736 
737 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
738 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
739 				bt_free(vm, bt);
740 			}
741 		}
742 		if (vm->vm_hashlist != &vm->vm_hash0) {
743 			xfree(vm->vm_hashlist,
744 			    sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
745 		}
746 	}
747 
748 	bt_freetrim(vm, 0);
749 
750 	VMEM_CONDVAR_DESTROY(vm);
751 	VMEM_LOCK_DESTROY(vm);
752 	xfree(vm, sizeof(*vm));
753 }
754 
755 static int
756 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
757 {
758 	vmem_addr_t addr;
759 	int rc;
760 
761 	if (vm->vm_importfn == NULL) {
762 		return EINVAL;
763 	}
764 
765 	if (vm->vm_flags & VM_LARGEIMPORT) {
766 		size *= 16;
767 	}
768 
769 	if (vm->vm_flags & VM_XIMPORT) {
770 		rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg,
771 		    size, &size, flags, &addr);
772 	} else {
773 		rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
774 	}
775 	if (rc) {
776 		return ENOMEM;
777 	}
778 
779 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
780 		(*vm->vm_releasefn)(vm->vm_arg, addr, size);
781 		return ENOMEM;
782 	}
783 
784 	return 0;
785 }
786 
787 static int
788 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
789 {
790 	bt_t *bt;
791 	int i;
792 	struct vmem_hashlist *newhashlist;
793 	struct vmem_hashlist *oldhashlist;
794 	size_t oldhashsize;
795 
796 	KASSERT(newhashsize > 0);
797 
798 	newhashlist =
799 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
800 	if (newhashlist == NULL) {
801 		return ENOMEM;
802 	}
803 	for (i = 0; i < newhashsize; i++) {
804 		LIST_INIT(&newhashlist[i]);
805 	}
806 
807 	if (!VMEM_TRYLOCK(vm)) {
808 		xfree(newhashlist,
809 		    sizeof(struct vmem_hashlist *) * newhashsize);
810 		return EBUSY;
811 	}
812 	oldhashlist = vm->vm_hashlist;
813 	oldhashsize = vm->vm_hashsize;
814 	vm->vm_hashlist = newhashlist;
815 	vm->vm_hashsize = newhashsize;
816 	if (oldhashlist == NULL) {
817 		VMEM_UNLOCK(vm);
818 		return 0;
819 	}
820 	for (i = 0; i < oldhashsize; i++) {
821 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
822 			bt_rembusy(vm, bt); /* XXX */
823 			bt_insbusy(vm, bt);
824 		}
825 	}
826 	VMEM_UNLOCK(vm);
827 
828 	if (oldhashlist != &vm->vm_hash0) {
829 		xfree(oldhashlist,
830 		    sizeof(struct vmem_hashlist *) * oldhashsize);
831 	}
832 
833 	return 0;
834 }
835 
836 /*
837  * vmem_fit: check if a bt can satisfy the given restrictions.
838  *
839  * it's a caller's responsibility to ensure the region is big enough
840  * before calling us.
841  */
842 
843 static int
844 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
845     vmem_size_t phase, vmem_size_t nocross,
846     vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
847 {
848 	vmem_addr_t start;
849 	vmem_addr_t end;
850 
851 	KASSERT(size > 0);
852 	KASSERT(bt->bt_size >= size); /* caller's responsibility */
853 
854 	/*
855 	 * XXX assumption: vmem_addr_t and vmem_size_t are
856 	 * unsigned integer of the same size.
857 	 */
858 
859 	start = bt->bt_start;
860 	if (start < minaddr) {
861 		start = minaddr;
862 	}
863 	end = BT_END(bt);
864 	if (end > maxaddr) {
865 		end = maxaddr;
866 	}
867 	if (start > end) {
868 		return ENOMEM;
869 	}
870 
871 	start = VMEM_ALIGNUP(start - phase, align) + phase;
872 	if (start < bt->bt_start) {
873 		start += align;
874 	}
875 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
876 		KASSERT(align < nocross);
877 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
878 	}
879 	if (start <= end && end - start >= size - 1) {
880 		KASSERT((start & (align - 1)) == phase);
881 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
882 		KASSERT(minaddr <= start);
883 		KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
884 		KASSERT(bt->bt_start <= start);
885 		KASSERT(BT_END(bt) - start >= size - 1);
886 		*addrp = start;
887 		return 0;
888 	}
889 	return ENOMEM;
890 }
891 
892 /* ---- vmem API */
893 
894 /*
895  * vmem_create_internal: creates a vmem arena.
896  */
897 
898 vmem_t *
899 vmem_init(vmem_t *vm, const char *name,
900     vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
901     vmem_import_t *importfn, vmem_release_t *releasefn,
902     vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
903 {
904 	int i;
905 
906 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
907 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
908 	KASSERT(quantum > 0);
909 
910 #if defined(_KERNEL)
911 	/* XXX: SMP, we get called early... */
912 	if (!vmem_bootstrapped) {
913 		vmem_bootstrap();
914 	}
915 #endif /* defined(_KERNEL) */
916 
917 	if (vm == NULL) {
918 		vm = xmalloc(sizeof(*vm), flags);
919 	}
920 	if (vm == NULL) {
921 		return NULL;
922 	}
923 
924 	VMEM_CONDVAR_INIT(vm, "vmem");
925 	VMEM_LOCK_INIT(vm, ipl);
926 	vm->vm_flags = flags;
927 	vm->vm_nfreetags = 0;
928 	LIST_INIT(&vm->vm_freetags);
929 	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
930 	vm->vm_quantum_mask = quantum - 1;
931 	vm->vm_quantum_shift = SIZE2ORDER(quantum);
932 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
933 	vm->vm_importfn = importfn;
934 	vm->vm_releasefn = releasefn;
935 	vm->vm_arg = arg;
936 	vm->vm_nbusytag = 0;
937 	vm->vm_size = 0;
938 	vm->vm_inuse = 0;
939 #if defined(QCACHE)
940 	qc_init(vm, qcache_max, ipl);
941 #endif /* defined(QCACHE) */
942 
943 	TAILQ_INIT(&vm->vm_seglist);
944 	for (i = 0; i < VMEM_MAXORDER; i++) {
945 		LIST_INIT(&vm->vm_freelist[i]);
946 	}
947 	memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
948 	vm->vm_hashsize = 1;
949 	vm->vm_hashlist = &vm->vm_hash0;
950 
951 	if (size != 0) {
952 		if (vmem_add(vm, base, size, flags) != 0) {
953 			vmem_destroy1(vm);
954 			return NULL;
955 		}
956 	}
957 
958 #if defined(_KERNEL)
959 	if (flags & VM_BOOTSTRAP) {
960 		bt_refill(vm);
961 	}
962 
963 	mutex_enter(&vmem_list_lock);
964 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
965 	mutex_exit(&vmem_list_lock);
966 #endif /* defined(_KERNEL) */
967 
968 	return vm;
969 }
970 
971 
972 
973 /*
974  * vmem_create: create an arena.
975  *
976  * => must not be called from interrupt context.
977  */
978 
979 vmem_t *
980 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
981     vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
982     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
983 {
984 
985 	KASSERT((flags & (VM_XIMPORT)) == 0);
986 
987 	return vmem_init(NULL, name, base, size, quantum,
988 	    importfn, releasefn, source, qcache_max, flags, ipl);
989 }
990 
991 /*
992  * vmem_xcreate: create an arena takes alternative import func.
993  *
994  * => must not be called from interrupt context.
995  */
996 
997 vmem_t *
998 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
999     vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1000     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1001 {
1002 
1003 	KASSERT((flags & (VM_XIMPORT)) == 0);
1004 
1005 	return vmem_init(NULL, name, base, size, quantum,
1006 	    __FPTRCAST(vmem_import_t *, importfn), releasefn, source,
1007 	    qcache_max, flags | VM_XIMPORT, ipl);
1008 }
1009 
1010 void
1011 vmem_destroy(vmem_t *vm)
1012 {
1013 
1014 #if defined(_KERNEL)
1015 	mutex_enter(&vmem_list_lock);
1016 	LIST_REMOVE(vm, vm_alllist);
1017 	mutex_exit(&vmem_list_lock);
1018 #endif /* defined(_KERNEL) */
1019 
1020 	vmem_destroy1(vm);
1021 }
1022 
1023 vmem_size_t
1024 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1025 {
1026 
1027 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1028 }
1029 
1030 /*
1031  * vmem_alloc: allocate resource from the arena.
1032  */
1033 
1034 int
1035 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1036 {
1037 	const vm_flag_t strat __diagused = flags & VM_FITMASK;
1038 	int error;
1039 
1040 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1041 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1042 
1043 	KASSERT(size > 0);
1044 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1045 	if ((flags & VM_SLEEP) != 0) {
1046 		ASSERT_SLEEPABLE();
1047 	}
1048 
1049 #if defined(QCACHE)
1050 	if (size <= vm->vm_qcache_max) {
1051 		void *p;
1052 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1053 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1054 
1055 		p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1056 		if (addrp != NULL)
1057 			*addrp = (vmem_addr_t)p;
1058 		error = (p == NULL) ? ENOMEM : 0;
1059 		goto out;
1060 	}
1061 #endif /* defined(QCACHE) */
1062 
1063 	error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1064 	    flags, addrp);
1065 out:
1066 	KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1067 	return error;
1068 }
1069 
1070 int
1071 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1072     const vmem_size_t phase, const vmem_size_t nocross,
1073     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1074     vmem_addr_t *addrp)
1075 {
1076 	struct vmem_freelist *list;
1077 	struct vmem_freelist *first;
1078 	struct vmem_freelist *end;
1079 	bt_t *bt;
1080 	bt_t *btnew;
1081 	bt_t *btnew2;
1082 	const vmem_size_t size = vmem_roundup_size(vm, size0);
1083 	vm_flag_t strat = flags & VM_FITMASK;
1084 	vmem_addr_t start;
1085 	int rc;
1086 
1087 	KASSERT(size0 > 0);
1088 	KASSERT(size > 0);
1089 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1090 	if ((flags & VM_SLEEP) != 0) {
1091 		ASSERT_SLEEPABLE();
1092 	}
1093 	KASSERT((align & vm->vm_quantum_mask) == 0);
1094 	KASSERT((align & (align - 1)) == 0);
1095 	KASSERT((phase & vm->vm_quantum_mask) == 0);
1096 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
1097 	KASSERT((nocross & (nocross - 1)) == 0);
1098 	KASSERT((align == 0 && phase == 0) || phase < align);
1099 	KASSERT(nocross == 0 || nocross >= size);
1100 	KASSERT(minaddr <= maxaddr);
1101 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1102 
1103 	if (align == 0) {
1104 		align = vm->vm_quantum_mask + 1;
1105 	}
1106 
1107 	/*
1108 	 * allocate boundary tags before acquiring the vmem lock.
1109 	 */
1110 	btnew = bt_alloc(vm, flags);
1111 	if (btnew == NULL) {
1112 		return ENOMEM;
1113 	}
1114 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1115 	if (btnew2 == NULL) {
1116 		bt_free(vm, btnew);
1117 		return ENOMEM;
1118 	}
1119 
1120 	/*
1121 	 * choose a free block from which we allocate.
1122 	 */
1123 retry_strat:
1124 	first = bt_freehead_toalloc(vm, size, strat);
1125 	end = &vm->vm_freelist[VMEM_MAXORDER];
1126 retry:
1127 	bt = NULL;
1128 	VMEM_LOCK(vm);
1129 	vmem_check(vm);
1130 	if (strat == VM_INSTANTFIT) {
1131 		/*
1132 		 * just choose the first block which satisfies our restrictions.
1133 		 *
1134 		 * note that we don't need to check the size of the blocks
1135 		 * because any blocks found on these list should be larger than
1136 		 * the given size.
1137 		 */
1138 		for (list = first; list < end; list++) {
1139 			bt = LIST_FIRST(list);
1140 			if (bt != NULL) {
1141 				rc = vmem_fit(bt, size, align, phase,
1142 				    nocross, minaddr, maxaddr, &start);
1143 				if (rc == 0) {
1144 					goto gotit;
1145 				}
1146 				/*
1147 				 * don't bother to follow the bt_freelist link
1148 				 * here.  the list can be very long and we are
1149 				 * told to run fast.  blocks from the later free
1150 				 * lists are larger and have better chances to
1151 				 * satisfy our restrictions.
1152 				 */
1153 			}
1154 		}
1155 	} else { /* VM_BESTFIT */
1156 		/*
1157 		 * we assume that, for space efficiency, it's better to
1158 		 * allocate from a smaller block.  thus we will start searching
1159 		 * from the lower-order list than VM_INSTANTFIT.
1160 		 * however, don't bother to find the smallest block in a free
1161 		 * list because the list can be very long.  we can revisit it
1162 		 * if/when it turns out to be a problem.
1163 		 *
1164 		 * note that the 'first' list can contain blocks smaller than
1165 		 * the requested size.  thus we need to check bt_size.
1166 		 */
1167 		for (list = first; list < end; list++) {
1168 			LIST_FOREACH(bt, list, bt_freelist) {
1169 				if (bt->bt_size >= size) {
1170 					rc = vmem_fit(bt, size, align, phase,
1171 					    nocross, minaddr, maxaddr, &start);
1172 					if (rc == 0) {
1173 						goto gotit;
1174 					}
1175 				}
1176 			}
1177 		}
1178 	}
1179 	VMEM_UNLOCK(vm);
1180 #if 1
1181 	if (strat == VM_INSTANTFIT) {
1182 		strat = VM_BESTFIT;
1183 		goto retry_strat;
1184 	}
1185 #endif
1186 	if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1187 
1188 		/*
1189 		 * XXX should try to import a region large enough to
1190 		 * satisfy restrictions?
1191 		 */
1192 
1193 		goto fail;
1194 	}
1195 	/* XXX eeek, minaddr & maxaddr not respected */
1196 	if (vmem_import(vm, size, flags) == 0) {
1197 		goto retry;
1198 	}
1199 	/* XXX */
1200 
1201 	if ((flags & VM_SLEEP) != 0) {
1202 		vmem_kick_pdaemon();
1203 		VMEM_LOCK(vm);
1204 		VMEM_CONDVAR_WAIT(vm);
1205 		VMEM_UNLOCK(vm);
1206 		goto retry;
1207 	}
1208 fail:
1209 	bt_free(vm, btnew);
1210 	bt_free(vm, btnew2);
1211 	return ENOMEM;
1212 
1213 gotit:
1214 	KASSERT(bt->bt_type == BT_TYPE_FREE);
1215 	KASSERT(bt->bt_size >= size);
1216 	bt_remfree(vm, bt);
1217 	vmem_check(vm);
1218 	if (bt->bt_start != start) {
1219 		btnew2->bt_type = BT_TYPE_FREE;
1220 		btnew2->bt_start = bt->bt_start;
1221 		btnew2->bt_size = start - bt->bt_start;
1222 		bt->bt_start = start;
1223 		bt->bt_size -= btnew2->bt_size;
1224 		bt_insfree(vm, btnew2);
1225 		bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1226 		btnew2 = NULL;
1227 		vmem_check(vm);
1228 	}
1229 	KASSERT(bt->bt_start == start);
1230 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1231 		/* split */
1232 		btnew->bt_type = BT_TYPE_BUSY;
1233 		btnew->bt_start = bt->bt_start;
1234 		btnew->bt_size = size;
1235 		bt->bt_start = bt->bt_start + size;
1236 		bt->bt_size -= size;
1237 		bt_insfree(vm, bt);
1238 		bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1239 		bt_insbusy(vm, btnew);
1240 		vmem_check(vm);
1241 		VMEM_UNLOCK(vm);
1242 	} else {
1243 		bt->bt_type = BT_TYPE_BUSY;
1244 		bt_insbusy(vm, bt);
1245 		vmem_check(vm);
1246 		VMEM_UNLOCK(vm);
1247 		bt_free(vm, btnew);
1248 		btnew = bt;
1249 	}
1250 	if (btnew2 != NULL) {
1251 		bt_free(vm, btnew2);
1252 	}
1253 	KASSERT(btnew->bt_size >= size);
1254 	btnew->bt_type = BT_TYPE_BUSY;
1255 
1256 	if (addrp != NULL)
1257 		*addrp = btnew->bt_start;
1258 	return 0;
1259 }
1260 
1261 /*
1262  * vmem_free: free the resource to the arena.
1263  */
1264 
1265 void
1266 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1267 {
1268 
1269 	KASSERT(size > 0);
1270 
1271 #if defined(QCACHE)
1272 	if (size <= vm->vm_qcache_max) {
1273 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1274 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1275 
1276 		pool_cache_put(qc->qc_cache, (void *)addr);
1277 		return;
1278 	}
1279 #endif /* defined(QCACHE) */
1280 
1281 	vmem_xfree(vm, addr, size);
1282 }
1283 
1284 void
1285 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1286 {
1287 	bt_t *bt;
1288 	bt_t *t;
1289 	LIST_HEAD(, vmem_btag) tofree;
1290 
1291 	LIST_INIT(&tofree);
1292 
1293 	KASSERT(size > 0);
1294 
1295 	VMEM_LOCK(vm);
1296 
1297 	bt = bt_lookupbusy(vm, addr);
1298 	KASSERT(bt != NULL);
1299 	KASSERT(bt->bt_start == addr);
1300 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1301 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1302 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
1303 	bt_rembusy(vm, bt);
1304 	bt->bt_type = BT_TYPE_FREE;
1305 
1306 	/* coalesce */
1307 	t = TAILQ_NEXT(bt, bt_seglist);
1308 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1309 		KASSERT(BT_END(bt) < t->bt_start);	/* YYY */
1310 		bt_remfree(vm, t);
1311 		bt_remseg(vm, t);
1312 		bt->bt_size += t->bt_size;
1313 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1314 	}
1315 	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1316 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1317 		KASSERT(BT_END(t) < bt->bt_start);	/* YYY */
1318 		bt_remfree(vm, t);
1319 		bt_remseg(vm, t);
1320 		bt->bt_size += t->bt_size;
1321 		bt->bt_start = t->bt_start;
1322 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1323 	}
1324 
1325 	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1326 	KASSERT(t != NULL);
1327 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1328 	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1329 	    t->bt_size == bt->bt_size) {
1330 		vmem_addr_t spanaddr;
1331 		vmem_size_t spansize;
1332 
1333 		KASSERT(t->bt_start == bt->bt_start);
1334 		spanaddr = bt->bt_start;
1335 		spansize = bt->bt_size;
1336 		bt_remseg(vm, bt);
1337 		LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1338 		bt_remseg(vm, t);
1339 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1340 		vm->vm_size -= spansize;
1341 		VMEM_CONDVAR_BROADCAST(vm);
1342 		VMEM_UNLOCK(vm);
1343 		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1344 	} else {
1345 		bt_insfree(vm, bt);
1346 		VMEM_CONDVAR_BROADCAST(vm);
1347 		VMEM_UNLOCK(vm);
1348 	}
1349 
1350 	while (!LIST_EMPTY(&tofree)) {
1351 		t = LIST_FIRST(&tofree);
1352 		LIST_REMOVE(t, bt_freelist);
1353 		bt_free(vm, t);
1354 	}
1355 
1356 	bt_freetrim(vm, BT_MAXFREE);
1357 }
1358 
1359 /*
1360  * vmem_add:
1361  *
1362  * => caller must ensure appropriate spl,
1363  *    if the arena can be accessed from interrupt context.
1364  */
1365 
1366 int
1367 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1368 {
1369 
1370 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1371 }
1372 
1373 /*
1374  * vmem_size: information about arenas size
1375  *
1376  * => return free/allocated size in arena
1377  */
1378 vmem_size_t
1379 vmem_size(vmem_t *vm, int typemask)
1380 {
1381 
1382 	switch (typemask) {
1383 	case VMEM_ALLOC:
1384 		return vm->vm_inuse;
1385 	case VMEM_FREE:
1386 		return vm->vm_size - vm->vm_inuse;
1387 	case VMEM_FREE|VMEM_ALLOC:
1388 		return vm->vm_size;
1389 	default:
1390 		panic("vmem_size");
1391 	}
1392 }
1393 
1394 /* ---- rehash */
1395 
1396 #if defined(_KERNEL)
1397 static struct callout vmem_rehash_ch;
1398 static int vmem_rehash_interval;
1399 static struct workqueue *vmem_rehash_wq;
1400 static struct work vmem_rehash_wk;
1401 
1402 static void
1403 vmem_rehash_all(struct work *wk, void *dummy)
1404 {
1405 	vmem_t *vm;
1406 
1407 	KASSERT(wk == &vmem_rehash_wk);
1408 	mutex_enter(&vmem_list_lock);
1409 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1410 		size_t desired;
1411 		size_t current;
1412 
1413 		if (!VMEM_TRYLOCK(vm)) {
1414 			continue;
1415 		}
1416 		desired = vm->vm_nbusytag;
1417 		current = vm->vm_hashsize;
1418 		VMEM_UNLOCK(vm);
1419 
1420 		if (desired > VMEM_HASHSIZE_MAX) {
1421 			desired = VMEM_HASHSIZE_MAX;
1422 		} else if (desired < VMEM_HASHSIZE_MIN) {
1423 			desired = VMEM_HASHSIZE_MIN;
1424 		}
1425 		if (desired > current * 2 || desired * 2 < current) {
1426 			vmem_rehash(vm, desired, VM_NOSLEEP);
1427 		}
1428 	}
1429 	mutex_exit(&vmem_list_lock);
1430 
1431 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1432 }
1433 
1434 static void
1435 vmem_rehash_all_kick(void *dummy)
1436 {
1437 
1438 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1439 }
1440 
1441 void
1442 vmem_rehash_start(void)
1443 {
1444 	int error;
1445 
1446 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1447 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1448 	if (error) {
1449 		panic("%s: workqueue_create %d\n", __func__, error);
1450 	}
1451 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1452 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1453 
1454 	vmem_rehash_interval = hz * 10;
1455 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1456 }
1457 #endif /* defined(_KERNEL) */
1458 
1459 /* ---- debug */
1460 
1461 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1462 
1463 static void bt_dump(const bt_t *, void (*)(const char *, ...)
1464     __printflike(1, 2));
1465 
1466 static const char *
1467 bt_type_string(int type)
1468 {
1469 	static const char * const table[] = {
1470 		[BT_TYPE_BUSY] = "busy",
1471 		[BT_TYPE_FREE] = "free",
1472 		[BT_TYPE_SPAN] = "span",
1473 		[BT_TYPE_SPAN_STATIC] = "static span",
1474 	};
1475 
1476 	if (type >= __arraycount(table)) {
1477 		return "BOGUS";
1478 	}
1479 	return table[type];
1480 }
1481 
1482 static void
1483 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1484 {
1485 
1486 	(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1487 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1488 	    bt->bt_type, bt_type_string(bt->bt_type));
1489 }
1490 
1491 static void
1492 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1493 {
1494 	const bt_t *bt;
1495 	int i;
1496 
1497 	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1498 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1499 		bt_dump(bt, pr);
1500 	}
1501 
1502 	for (i = 0; i < VMEM_MAXORDER; i++) {
1503 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1504 
1505 		if (LIST_EMPTY(fl)) {
1506 			continue;
1507 		}
1508 
1509 		(*pr)("freelist[%d]\n", i);
1510 		LIST_FOREACH(bt, fl, bt_freelist) {
1511 			bt_dump(bt, pr);
1512 		}
1513 	}
1514 }
1515 
1516 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1517 
1518 #if defined(DDB)
1519 static bt_t *
1520 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1521 {
1522 	bt_t *bt;
1523 
1524 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1525 		if (BT_ISSPAN_P(bt)) {
1526 			continue;
1527 		}
1528 		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1529 			return bt;
1530 		}
1531 	}
1532 
1533 	return NULL;
1534 }
1535 
1536 void
1537 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1538 {
1539 	vmem_t *vm;
1540 
1541 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1542 		bt_t *bt;
1543 
1544 		bt = vmem_whatis_lookup(vm, addr);
1545 		if (bt == NULL) {
1546 			continue;
1547 		}
1548 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1549 		    (void *)addr, (void *)bt->bt_start,
1550 		    (size_t)(addr - bt->bt_start), vm->vm_name,
1551 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1552 	}
1553 }
1554 
1555 void
1556 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1557 {
1558 	const vmem_t *vm;
1559 
1560 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1561 		vmem_dump(vm, pr);
1562 	}
1563 }
1564 
1565 void
1566 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1567 {
1568 	const vmem_t *vm = (const void *)addr;
1569 
1570 	vmem_dump(vm, pr);
1571 }
1572 #endif /* defined(DDB) */
1573 
1574 #if defined(_KERNEL)
1575 #define vmem_printf printf
1576 #else
1577 #include <stdio.h>
1578 #include <stdarg.h>
1579 
1580 static void
1581 vmem_printf(const char *fmt, ...)
1582 {
1583 	va_list ap;
1584 	va_start(ap, fmt);
1585 	vprintf(fmt, ap);
1586 	va_end(ap);
1587 }
1588 #endif
1589 
1590 #if defined(VMEM_SANITY)
1591 
1592 static bool
1593 vmem_check_sanity(vmem_t *vm)
1594 {
1595 	const bt_t *bt, *bt2;
1596 
1597 	KASSERT(vm != NULL);
1598 
1599 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1600 		if (bt->bt_start > BT_END(bt)) {
1601 			printf("corrupted tag\n");
1602 			bt_dump(bt, vmem_printf);
1603 			return false;
1604 		}
1605 	}
1606 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1607 		TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1608 			if (bt == bt2) {
1609 				continue;
1610 			}
1611 			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1612 				continue;
1613 			}
1614 			if (bt->bt_start <= BT_END(bt2) &&
1615 			    bt2->bt_start <= BT_END(bt)) {
1616 				printf("overwrapped tags\n");
1617 				bt_dump(bt, vmem_printf);
1618 				bt_dump(bt2, vmem_printf);
1619 				return false;
1620 			}
1621 		}
1622 	}
1623 
1624 	return true;
1625 }
1626 
1627 static void
1628 vmem_check(vmem_t *vm)
1629 {
1630 
1631 	if (!vmem_check_sanity(vm)) {
1632 		panic("insanity vmem %p", vm);
1633 	}
1634 }
1635 
1636 #endif /* defined(VMEM_SANITY) */
1637 
1638 #if defined(UNITTEST)
1639 int
1640 main(void)
1641 {
1642 	int rc;
1643 	vmem_t *vm;
1644 	vmem_addr_t p;
1645 	struct reg {
1646 		vmem_addr_t p;
1647 		vmem_size_t sz;
1648 		bool x;
1649 	} *reg = NULL;
1650 	int nreg = 0;
1651 	int nalloc = 0;
1652 	int nfree = 0;
1653 	vmem_size_t total = 0;
1654 #if 1
1655 	vm_flag_t strat = VM_INSTANTFIT;
1656 #else
1657 	vm_flag_t strat = VM_BESTFIT;
1658 #endif
1659 
1660 	vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1661 #ifdef _KERNEL
1662 	    IPL_NONE
1663 #else
1664 	    0
1665 #endif
1666 	    );
1667 	if (vm == NULL) {
1668 		printf("vmem_create\n");
1669 		exit(EXIT_FAILURE);
1670 	}
1671 	vmem_dump(vm, vmem_printf);
1672 
1673 	rc = vmem_add(vm, 0, 50, VM_SLEEP);
1674 	assert(rc == 0);
1675 	rc = vmem_add(vm, 100, 200, VM_SLEEP);
1676 	assert(rc == 0);
1677 	rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1678 	assert(rc == 0);
1679 	rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1680 	assert(rc == 0);
1681 	rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1682 	assert(rc == 0);
1683 	rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1684 	assert(rc == 0);
1685 	rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1686 	assert(rc == 0);
1687 	rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1688 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1689 	assert(rc != 0);
1690 	rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1691 	assert(rc == 0 && p == 0);
1692 	vmem_xfree(vm, p, 50);
1693 	rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1694 	assert(rc == 0 && p == 0);
1695 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1696 	    0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1697 	assert(rc != 0);
1698 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1699 	    0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1700 	assert(rc != 0);
1701 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1702 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1703 	assert(rc == 0);
1704 	vmem_dump(vm, vmem_printf);
1705 	for (;;) {
1706 		struct reg *r;
1707 		int t = rand() % 100;
1708 
1709 		if (t > 45) {
1710 			/* alloc */
1711 			vmem_size_t sz = rand() % 500 + 1;
1712 			bool x;
1713 			vmem_size_t align, phase, nocross;
1714 			vmem_addr_t minaddr, maxaddr;
1715 
1716 			if (t > 70) {
1717 				x = true;
1718 				/* XXX */
1719 				align = 1 << (rand() % 15);
1720 				phase = rand() % 65536;
1721 				nocross = 1 << (rand() % 15);
1722 				if (align <= phase) {
1723 					phase = 0;
1724 				}
1725 				if (VMEM_CROSS_P(phase, phase + sz - 1,
1726 				    nocross)) {
1727 					nocross = 0;
1728 				}
1729 				do {
1730 					minaddr = rand() % 50000;
1731 					maxaddr = rand() % 70000;
1732 				} while (minaddr > maxaddr);
1733 				printf("=== xalloc %" PRIu64
1734 				    " align=%" PRIu64 ", phase=%" PRIu64
1735 				    ", nocross=%" PRIu64 ", min=%" PRIu64
1736 				    ", max=%" PRIu64 "\n",
1737 				    (uint64_t)sz,
1738 				    (uint64_t)align,
1739 				    (uint64_t)phase,
1740 				    (uint64_t)nocross,
1741 				    (uint64_t)minaddr,
1742 				    (uint64_t)maxaddr);
1743 				rc = vmem_xalloc(vm, sz, align, phase, nocross,
1744 				    minaddr, maxaddr, strat|VM_SLEEP, &p);
1745 			} else {
1746 				x = false;
1747 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1748 				rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1749 			}
1750 			printf("-> %" PRIu64 "\n", (uint64_t)p);
1751 			vmem_dump(vm, vmem_printf);
1752 			if (rc != 0) {
1753 				if (x) {
1754 					continue;
1755 				}
1756 				break;
1757 			}
1758 			nreg++;
1759 			reg = realloc(reg, sizeof(*reg) * nreg);
1760 			r = &reg[nreg - 1];
1761 			r->p = p;
1762 			r->sz = sz;
1763 			r->x = x;
1764 			total += sz;
1765 			nalloc++;
1766 		} else if (nreg != 0) {
1767 			/* free */
1768 			r = &reg[rand() % nreg];
1769 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1770 			    (uint64_t)r->p, (uint64_t)r->sz);
1771 			if (r->x) {
1772 				vmem_xfree(vm, r->p, r->sz);
1773 			} else {
1774 				vmem_free(vm, r->p, r->sz);
1775 			}
1776 			total -= r->sz;
1777 			vmem_dump(vm, vmem_printf);
1778 			*r = reg[nreg - 1];
1779 			nreg--;
1780 			nfree++;
1781 		}
1782 		printf("total=%" PRIu64 "\n", (uint64_t)total);
1783 	}
1784 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1785 	    (uint64_t)total, nalloc, nfree);
1786 	exit(EXIT_SUCCESS);
1787 }
1788 #endif /* defined(UNITTEST) */
1789