1 /* $NetBSD: subr_thmap.c,v 1.5 2019/02/04 08:00:27 mrg Exp $ */ 2 3 /*- 4 * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Upstream: https://github.com/rmind/thmap/ 29 */ 30 31 /* 32 * Concurrent trie-hash map. 33 * 34 * The data structure is conceptually a radix trie on hashed keys. 35 * Keys are hashed using a 32-bit function. The root level is a special 36 * case: it is managed using the compare-and-swap (CAS) atomic operation 37 * and has a fanout of 64. The subsequent levels are constructed using 38 * intermediate nodes with a fanout of 16 (using 4 bits). As more levels 39 * are created, more blocks of the 32-bit hash value might be generated 40 * by incrementing the seed parameter of the hash function. 41 * 42 * Concurrency 43 * 44 * - READERS: Descending is simply walking through the slot values of 45 * the intermediate nodes. It is lock-free as there is no intermediate 46 * state: the slot is either empty or has a pointer to the child node. 47 * The main assumptions here are the following: 48 * 49 * i) modifications must preserve consistency with the respect to the 50 * readers i.e. the readers can only see the valid node values; 51 * 52 * ii) any invalid view must "fail" the reads, e.g. by making them 53 * re-try from the root; this is a case for deletions and is achieved 54 * using the NODE_DELETED flag. 55 * 56 * iii) the node destruction must be synchronised with the readers, 57 * e.g. by using the Epoch-based reclamation or other techniques. 58 * 59 * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which 60 * is implemented using the NODE_LOCKED bit) -- it provides mutual 61 * exclusion amongst concurrent writers. The lock order for the nodes 62 * is "bottom-up" i.e. they are locked as we ascend the trie. A key 63 * constraint here is that parent pointer never changes. 64 * 65 * - DELETES: In addition to writer's locking, the deletion keeps the 66 * intermediate nodes in a valid state and sets the NODE_DELETED flag, 67 * to indicate that the readers must re-start the walk from the root. 68 * As the levels are collapsed, NODE_DELETED gets propagated up-tree. 69 * The leaf nodes just stay as-is until they are reclaimed. 70 * 71 * - ROOT LEVEL: The root level is a special case, as it is implemented 72 * as an array (rather than intermediate node). The root-level slot can 73 * only be set using CAS and it can only be set to a valid intermediate 74 * node. The root-level slot can only be cleared when the node it points 75 * at becomes empty, is locked and marked as NODE_DELETED (this causes 76 * the insert/delete operations to re-try until the slot is set to NULL). 77 * 78 * References: 79 * 80 * W. Litwin, 1981, Trie Hashing. 81 * Proceedings of the 1981 ACM SIGMOD, p. 19-29 82 * https://dl.acm.org/citation.cfm?id=582322 83 * 84 * P. L. Lehman and S. B. Yao. 85 * Efficient locking for concurrent operations on B-trees. 86 * ACM TODS, 6(4):650-670, 1981 87 * https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf 88 */ 89 90 91 #ifdef _KERNEL 92 #include <sys/cdefs.h> 93 #include <sys/param.h> 94 #include <sys/types.h> 95 #include <sys/thmap.h> 96 #include <sys/kmem.h> 97 #include <sys/lock.h> 98 #include <sys/atomic.h> 99 #include <sys/hash.h> 100 #define THMAP_RCSID(a) __KERNEL_RCSID(0, a) 101 #else 102 #include <stdio.h> 103 #include <stdlib.h> 104 #include <stdbool.h> 105 #include <stddef.h> 106 #include <inttypes.h> 107 #include <string.h> 108 #include <limits.h> 109 #define THMAP_RCSID(a) __RCSID(a) 110 111 #include "thmap.h" 112 #include "utils.h" 113 #endif 114 115 THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.5 2019/02/04 08:00:27 mrg Exp $"); 116 117 /* 118 * NetBSD kernel wrappers 119 */ 120 #ifdef _KERNEL 121 #define ASSERT KASSERT 122 #define atomic_thread_fence(x) x 123 #define memory_order_stores membar_producer() 124 #define memory_order_loads membar_consumer() 125 #define atomic_cas_32_p(p, e, n) (atomic_cas_32((p), (e), (n)) == (e)) 126 #define atomic_cas_ptr_p(p, e, n) \ 127 (atomic_cas_ptr((p), (void *)(e), (void *)(n)) == (e)) 128 #define atomic_exchange atomic_swap_ptr 129 #define murmurhash3 murmurhash2 130 #endif 131 132 /* 133 * The root level fanout is 64 (indexed by the last 6 bits of the hash 134 * value XORed with the length). Each subsequent level, represented by 135 * intermediate nodes, has a fanout of 16 (using 4 bits). 136 * 137 * The hash function produces 32-bit values. 138 */ 139 140 #define HASHVAL_BITS (32) 141 #define HASHVAL_MOD (HASHVAL_BITS - 1) 142 #define HASHVAL_SHIFT (5) 143 144 #define ROOT_BITS (6) 145 #define ROOT_SIZE (1 << ROOT_BITS) 146 #define ROOT_MASK (ROOT_SIZE - 1) 147 #define ROOT_MSBITS (HASHVAL_BITS - ROOT_BITS) 148 149 #define LEVEL_BITS (4) 150 #define LEVEL_SIZE (1 << LEVEL_BITS) 151 #define LEVEL_MASK (LEVEL_SIZE - 1) 152 153 /* 154 * Instead of raw pointers, we use offsets from the base address. 155 * This accommodates the use of this data structure in shared memory, 156 * where mappings can be in different address spaces. 157 * 158 * The pointers must be aligned, since pointer tagging is used to 159 * differentiate the intermediate nodes from leaves. We reserve the 160 * least significant bit. 161 */ 162 typedef uintptr_t thmap_ptr_t; 163 164 #define THMAP_NULL ((thmap_ptr_t)0) 165 166 #define THMAP_LEAF_BIT (0x1) 167 168 #define THMAP_ALIGNED_P(p) (((uintptr_t)(p) & 3) == 0) 169 #define THMAP_ALIGN(p) ((uintptr_t)(p) & ~(uintptr_t)3) 170 #define THMAP_INODE_P(p) (((uintptr_t)(p) & THMAP_LEAF_BIT) == 0) 171 172 #define THMAP_GETPTR(th, p) ((void *)((th)->baseptr + (uintptr_t)(p))) 173 #define THMAP_GETOFF(th, p) ((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr)) 174 #define THMAP_NODE(th, p) THMAP_GETPTR(th, THMAP_ALIGN(p)) 175 176 /* 177 * State field. 178 */ 179 180 #define NODE_LOCKED (1U << 31) // lock (writers) 181 #define NODE_DELETED (1U << 30) // node deleted 182 #define NODE_COUNT(s) ((s) & 0x3fffffff) // slot count mask 183 184 /* 185 * There are two types of nodes: 186 * - Intermediate nodes -- arrays pointing to another level or a leaf; 187 * - Leaves, which store a key-value pair. 188 */ 189 190 typedef struct { 191 uint32_t state; 192 thmap_ptr_t parent; 193 thmap_ptr_t slots[LEVEL_SIZE]; 194 } thmap_inode_t; 195 196 #define THMAP_INODE_LEN sizeof(thmap_inode_t) 197 198 typedef struct { 199 thmap_ptr_t key; 200 size_t len; 201 void * val; 202 } thmap_leaf_t; 203 204 typedef struct { 205 unsigned rslot; // root-level slot index 206 unsigned level; // current level in the tree 207 unsigned hashidx; // current hash index (block of bits) 208 uint32_t hashval; // current hash value 209 } thmap_query_t; 210 211 typedef struct { 212 uintptr_t addr; 213 size_t len; 214 void * next; 215 } thmap_gc_t; 216 217 #define THMAP_ROOT_LEN (sizeof(thmap_ptr_t) * ROOT_SIZE) 218 219 struct thmap { 220 uintptr_t baseptr; 221 thmap_ptr_t * root; 222 unsigned flags; 223 const thmap_ops_t *ops; 224 thmap_gc_t * gc_list; 225 }; 226 227 static void stage_mem_gc(thmap_t *, uintptr_t, size_t); 228 229 /* 230 * A few low-level helper routines. 231 */ 232 233 static uintptr_t 234 alloc_wrapper(size_t len) 235 { 236 return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP); 237 } 238 239 static void 240 free_wrapper(uintptr_t addr, size_t len) 241 { 242 kmem_intr_free((void *)addr, len); 243 } 244 245 static const thmap_ops_t thmap_default_ops = { 246 .alloc = alloc_wrapper, 247 .free = free_wrapper 248 }; 249 250 /* 251 * NODE LOCKING. 252 */ 253 254 #ifdef DIAGNOSTIC 255 static inline bool 256 node_locked_p(const thmap_inode_t *node) 257 { 258 return (node->state & NODE_LOCKED) != 0; 259 } 260 #endif 261 262 static void 263 lock_node(thmap_inode_t *node) 264 { 265 unsigned bcount = SPINLOCK_BACKOFF_MIN; 266 uint32_t s; 267 again: 268 s = node->state; 269 if (s & NODE_LOCKED) { 270 SPINLOCK_BACKOFF(bcount); 271 goto again; 272 } 273 /* 274 * CAS will issue a full memory fence for us. 275 * 276 * WARNING: for optimisations purposes, callers rely on us 277 * issuing load and store fence 278 */ 279 if (!atomic_cas_32_p(&node->state, s, s | NODE_LOCKED)) { 280 bcount = SPINLOCK_BACKOFF_MIN; 281 goto again; 282 } 283 } 284 285 static void 286 unlock_node(thmap_inode_t *node) 287 { 288 uint32_t s = node->state & ~NODE_LOCKED; 289 290 ASSERT(node_locked_p(node)); 291 atomic_thread_fence(memory_order_stores); 292 node->state = s; // atomic store 293 } 294 295 /* 296 * HASH VALUE AND KEY OPERATIONS. 297 */ 298 299 static inline void 300 hashval_init(thmap_query_t *query, const void * restrict key, size_t len) 301 { 302 const uint32_t hashval = murmurhash3(key, len, 0); 303 304 query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK; 305 query->level = 0; 306 query->hashval = hashval; 307 query->hashidx = 0; 308 } 309 310 /* 311 * hashval_getslot: given the key, compute the hash (if not already cached) 312 * and return the offset for the current level. 313 */ 314 static unsigned 315 hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len) 316 { 317 const unsigned offset = query->level * LEVEL_BITS; 318 const unsigned shift = offset & HASHVAL_MOD; 319 const unsigned i = offset >> HASHVAL_SHIFT; 320 321 if (query->hashidx != i) { 322 /* Generate a hash value for a required range. */ 323 query->hashval = murmurhash3(key, len, i); 324 query->hashidx = i; 325 } 326 return (query->hashval >> shift) & LEVEL_MASK; 327 } 328 329 static unsigned 330 hashval_getleafslot(const thmap_t *thmap, 331 const thmap_leaf_t *leaf, unsigned level) 332 { 333 const void *key = THMAP_GETPTR(thmap, leaf->key); 334 const unsigned offset = level * LEVEL_BITS; 335 const unsigned shift = offset & HASHVAL_MOD; 336 const unsigned i = offset >> HASHVAL_SHIFT; 337 338 return (murmurhash3(key, leaf->len, i) >> shift) & LEVEL_MASK; 339 } 340 341 static inline unsigned 342 hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query, 343 const thmap_leaf_t *leaf) 344 { 345 if (__predict_true(query->hashidx == 0)) { 346 return query->hashval & LEVEL_MASK; 347 } 348 return hashval_getleafslot(thmap, leaf, 0); 349 } 350 351 static bool 352 key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf, 353 const void * restrict key, size_t len) 354 { 355 const void *leafkey = THMAP_GETPTR(thmap, leaf->key); 356 return len == leaf->len && memcmp(key, leafkey, len) == 0; 357 } 358 359 /* 360 * INTER-NODE OPERATIONS. 361 */ 362 363 static thmap_inode_t * 364 node_create(thmap_t *thmap, thmap_inode_t *parent) 365 { 366 thmap_inode_t *node; 367 uintptr_t p; 368 369 p = thmap->ops->alloc(THMAP_INODE_LEN); 370 if (!p) { 371 return NULL; 372 } 373 node = THMAP_GETPTR(thmap, p); 374 ASSERT(THMAP_ALIGNED_P(node)); 375 376 memset(node, 0, THMAP_INODE_LEN); 377 if (parent) { 378 node->state = NODE_LOCKED; 379 node->parent = THMAP_GETOFF(thmap, parent); 380 } 381 return node; 382 } 383 384 static void 385 node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child) 386 { 387 ASSERT(node_locked_p(node) || node->parent == THMAP_NULL); 388 ASSERT((node->state & NODE_DELETED) == 0); 389 ASSERT(node->slots[slot] == THMAP_NULL); 390 391 ASSERT(NODE_COUNT(node->state) < LEVEL_SIZE); 392 393 node->slots[slot] = child; 394 node->state++; 395 } 396 397 static void 398 node_remove(thmap_inode_t *node, unsigned slot) 399 { 400 ASSERT(node_locked_p(node)); 401 ASSERT((node->state & NODE_DELETED) == 0); 402 ASSERT(node->slots[slot] != THMAP_NULL); 403 404 ASSERT(NODE_COUNT(node->state) > 0); 405 ASSERT(NODE_COUNT(node->state) <= LEVEL_SIZE); 406 407 node->slots[slot] = THMAP_NULL; 408 node->state--; 409 } 410 411 /* 412 * LEAF OPERATIONS. 413 */ 414 415 static thmap_leaf_t * 416 leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val) 417 { 418 thmap_leaf_t *leaf; 419 uintptr_t leaf_off, key_off; 420 421 leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t)); 422 if (!leaf_off) { 423 return NULL; 424 } 425 leaf = THMAP_GETPTR(thmap, leaf_off); 426 ASSERT(THMAP_ALIGNED_P(leaf)); 427 428 if ((thmap->flags & THMAP_NOCOPY) == 0) { 429 /* 430 * Copy the key. 431 */ 432 key_off = thmap->ops->alloc(len); 433 if (!key_off) { 434 thmap->ops->free(leaf_off, sizeof(thmap_leaf_t)); 435 return NULL; 436 } 437 memcpy(THMAP_GETPTR(thmap, key_off), key, len); 438 leaf->key = key_off; 439 } else { 440 /* Otherwise, we use a reference. */ 441 leaf->key = (uintptr_t)key; 442 } 443 leaf->len = len; 444 leaf->val = val; 445 return leaf; 446 } 447 448 static void 449 leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf) 450 { 451 if ((thmap->flags & THMAP_NOCOPY) == 0) { 452 thmap->ops->free(leaf->key, leaf->len); 453 } 454 thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t)); 455 } 456 457 static thmap_leaf_t * 458 get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot) 459 { 460 thmap_ptr_t node; 461 462 node = parent->slots[slot]; 463 if (THMAP_INODE_P(node)) { 464 return NULL; 465 } 466 return THMAP_NODE(thmap, node); 467 } 468 469 /* 470 * ROOT OPERATIONS. 471 */ 472 473 static inline bool 474 root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf) 475 { 476 const unsigned i = query->rslot; 477 thmap_inode_t *node; 478 thmap_ptr_t nptr; 479 unsigned slot; 480 481 /* 482 * Must pre-check first. 483 */ 484 if (thmap->root[i]) { 485 return false; 486 } 487 488 /* 489 * Create an intermediate node. Since there is no parent set, 490 * it will be created unlocked and the CAS operation will issue 491 * the store memory fence for us. 492 */ 493 node = node_create(thmap, NULL); 494 slot = hashval_getl0slot(thmap, query, leaf); 495 node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT); 496 nptr = THMAP_GETOFF(thmap, node); 497 again: 498 if (thmap->root[i]) { 499 thmap->ops->free(nptr, THMAP_INODE_LEN); 500 return false; 501 } 502 if (!atomic_cas_ptr_p(&thmap->root[i], NULL, nptr)) { 503 goto again; 504 } 505 return true; 506 } 507 508 /* 509 * find_edge_node: given the hash, traverse the tree to find the edge node. 510 * 511 * => Returns an aligned (clean) pointer to the parent node. 512 * => Returns the slot number and sets current level. 513 */ 514 static thmap_inode_t * 515 find_edge_node(const thmap_t *thmap, thmap_query_t *query, 516 const void * restrict key, size_t len, unsigned *slot) 517 { 518 thmap_ptr_t root_slot = thmap->root[query->rslot]; 519 thmap_inode_t *parent; 520 thmap_ptr_t node; 521 unsigned off; 522 523 ASSERT(query->level == 0); 524 525 parent = THMAP_NODE(thmap, root_slot); 526 if (!parent) { 527 return NULL; 528 } 529 descend: 530 off = hashval_getslot(query, key, len); 531 node = parent->slots[off]; 532 533 /* Ensure the parent load happens before the child load. */ 534 atomic_thread_fence(memory_order_loads); 535 536 /* Descend the tree until we find a leaf or empty slot. */ 537 if (node && THMAP_INODE_P(node)) { 538 parent = THMAP_NODE(thmap, node); 539 query->level++; 540 goto descend; 541 } 542 if (parent->state & NODE_DELETED) { 543 return NULL; 544 } 545 *slot = off; 546 return parent; 547 } 548 549 /* 550 * find_edge_node_locked: traverse the tree, like find_edge_node(), 551 * but attempt to lock the edge node. 552 * 553 * => Returns NULL if the deleted node is found. This indicates that 554 * the caller must re-try from the root, as the root slot might have 555 * changed too. 556 */ 557 static thmap_inode_t * 558 find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query, 559 const void * restrict key, size_t len, unsigned *slot) 560 { 561 thmap_inode_t *node; 562 thmap_ptr_t target; 563 retry: 564 /* 565 * Find the edge node and lock it! Re-check the state since 566 * the tree might change by the time we acquire the lock. 567 */ 568 node = find_edge_node(thmap, query, key, len, slot); 569 if (!node) { 570 /* The root slot is empty -- let the caller decide. */ 571 query->level = 0; 572 return NULL; 573 } 574 lock_node(node); 575 if (__predict_false(node->state & NODE_DELETED)) { 576 /* 577 * The node has been deleted. The tree might have a new 578 * shape now, therefore we must re-start from the root. 579 */ 580 unlock_node(node); 581 query->level = 0; 582 return NULL; 583 } 584 target = node->slots[*slot]; 585 if (__predict_false(target && THMAP_INODE_P(target))) { 586 /* 587 * The target slot has been changed and it is now an 588 * intermediate node. Re-start from the top internode. 589 */ 590 unlock_node(node); 591 query->level = 0; 592 goto retry; 593 } 594 return node; 595 } 596 597 /* 598 * thmap_get: lookup a value given the key. 599 */ 600 void * 601 thmap_get(thmap_t *thmap, const void *key, size_t len) 602 { 603 thmap_query_t query; 604 thmap_inode_t *parent; 605 thmap_leaf_t *leaf; 606 unsigned slot; 607 608 hashval_init(&query, key, len); 609 parent = find_edge_node(thmap, &query, key, len, &slot); 610 if (!parent) { 611 return NULL; 612 } 613 leaf = get_leaf(thmap, parent, slot); 614 if (!leaf) { 615 return NULL; 616 } 617 if (!key_cmp_p(thmap, leaf, key, len)) { 618 return NULL; 619 } 620 return leaf->val; 621 } 622 623 /* 624 * thmap_put: insert a value given the key. 625 * 626 * => If the key is already present, return the associated value. 627 * => Otherwise, on successful insert, return the given value. 628 */ 629 void * 630 thmap_put(thmap_t *thmap, const void *key, size_t len, void *val) 631 { 632 thmap_query_t query; 633 thmap_leaf_t *leaf, *other; 634 thmap_inode_t *parent, *child; 635 unsigned slot, other_slot; 636 thmap_ptr_t target; 637 638 /* 639 * First, pre-allocate and initialise the leaf node. 640 * 641 * NOTE: locking of the edge node below will issue the 642 * store fence for us. 643 */ 644 leaf = leaf_create(thmap, key, len, val); 645 if (__predict_false(!leaf)) { 646 return NULL; 647 } 648 hashval_init(&query, key, len); 649 retry: 650 /* 651 * Try to insert into the root first, if its slot is empty. 652 */ 653 if (root_try_put(thmap, &query, leaf)) { 654 /* Success: the leaf was inserted; no locking involved. */ 655 return val; 656 } 657 658 /* 659 * Find the edge node and the target slot. 660 */ 661 parent = find_edge_node_locked(thmap, &query, key, len, &slot); 662 if (!parent) { 663 goto retry; 664 } 665 target = parent->slots[slot]; // tagged offset 666 if (THMAP_INODE_P(target)) { 667 /* 668 * Empty slot: simply insert the new leaf. The store 669 * fence is already issued for us. 670 */ 671 target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT; 672 node_insert(parent, slot, target); 673 goto out; 674 } 675 676 /* 677 * Collision or duplicate. 678 */ 679 other = THMAP_NODE(thmap, target); 680 if (key_cmp_p(thmap, other, key, len)) { 681 /* 682 * Duplicate. Free the pre-allocated leaf and 683 * return the present value. 684 */ 685 leaf_free(thmap, leaf); 686 val = other->val; 687 goto out; 688 } 689 descend: 690 /* 691 * Collision -- expand the tree. Create an intermediate node 692 * which will be locked (NODE_LOCKED) for us. At this point, 693 * we advance to the next level. 694 */ 695 child = node_create(thmap, parent); 696 if (__predict_false(!child)) { 697 leaf_free(thmap, leaf); 698 val = NULL; 699 goto out; 700 } 701 query.level++; 702 703 /* 704 * Insert the other (colliding) leaf first. 705 */ 706 other_slot = hashval_getleafslot(thmap, other, query.level); 707 target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT; 708 node_insert(child, other_slot, target); 709 710 /* 711 * Insert the intermediate node into the parent node. 712 * It becomes the new parent for the our new leaf. 713 * 714 * Ensure that stores to the child (and leaf) reach the 715 * global visibility before it gets inserted to the parent. 716 */ 717 atomic_thread_fence(memory_order_stores); 718 parent->slots[slot] = THMAP_GETOFF(thmap, child); 719 720 unlock_node(parent); 721 ASSERT(node_locked_p(child)); 722 parent = child; 723 724 /* 725 * Get the new slot and check for another collision 726 * at the next level. 727 */ 728 slot = hashval_getslot(&query, key, len); 729 if (slot == other_slot) { 730 /* Another collision -- descend and expand again. */ 731 goto descend; 732 } 733 734 /* Insert our new leaf once we expanded enough. */ 735 target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT; 736 node_insert(parent, slot, target); 737 out: 738 unlock_node(parent); 739 return val; 740 } 741 742 /* 743 * thmap_del: remove the entry given the key. 744 */ 745 void * 746 thmap_del(thmap_t *thmap, const void *key, size_t len) 747 { 748 thmap_query_t query; 749 thmap_leaf_t *leaf; 750 thmap_inode_t *parent; 751 unsigned slot; 752 void *val; 753 754 hashval_init(&query, key, len); 755 parent = find_edge_node_locked(thmap, &query, key, len, &slot); 756 if (!parent) { 757 /* Root slot empty: not found. */ 758 return NULL; 759 } 760 leaf = get_leaf(thmap, parent, slot); 761 if (!leaf || !key_cmp_p(thmap, leaf, key, len)) { 762 /* Not found. */ 763 unlock_node(parent); 764 return NULL; 765 } 766 767 /* Remove the leaf. */ 768 ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == leaf); 769 node_remove(parent, slot); 770 771 /* 772 * Collapse the levels if removing the last item. 773 */ 774 while (query.level && NODE_COUNT(parent->state) == 0) { 775 thmap_inode_t *node = parent; 776 777 ASSERT(node->state == NODE_LOCKED); 778 779 /* 780 * Ascend one level up. 781 * => Mark our current parent as deleted. 782 * => Lock the parent one level up. 783 */ 784 query.level--; 785 slot = hashval_getslot(&query, key, len); 786 parent = THMAP_NODE(thmap, node->parent); 787 ASSERT(parent != NULL); 788 789 lock_node(parent); 790 ASSERT((parent->state & NODE_DELETED) == 0); 791 792 node->state |= NODE_DELETED; 793 unlock_node(node); // memory_order_stores 794 795 ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == node); 796 node_remove(parent, slot); 797 798 /* Stage the removed node for G/C. */ 799 stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN); 800 } 801 802 /* 803 * If the top node is empty, then we need to remove it from the 804 * root level. Mark the node as deleted and clear the slot. 805 * 806 * Note: acquiring the lock on the top node effectively prevents 807 * the root slot from changing. 808 */ 809 if (NODE_COUNT(parent->state) == 0) { 810 const unsigned rslot = query.rslot; 811 const thmap_ptr_t nptr = thmap->root[rslot]; 812 813 ASSERT(query.level == 0); 814 ASSERT(parent->parent == THMAP_NULL); 815 ASSERT(THMAP_GETOFF(thmap, parent) == nptr); 816 817 /* Mark as deleted and remove from the root-level slot. */ 818 parent->state |= NODE_DELETED; 819 atomic_thread_fence(memory_order_stores); 820 thmap->root[rslot] = THMAP_NULL; 821 822 stage_mem_gc(thmap, nptr, THMAP_INODE_LEN); 823 } 824 unlock_node(parent); 825 826 /* 827 * Save the value and stage the leaf for G/C. 828 */ 829 val = leaf->val; 830 if ((thmap->flags & THMAP_NOCOPY) == 0) { 831 stage_mem_gc(thmap, leaf->key, leaf->len); 832 } 833 stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t)); 834 return val; 835 } 836 837 /* 838 * G/C routines. 839 */ 840 841 static void 842 stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len) 843 { 844 thmap_gc_t *head, *gc; 845 846 gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_NOSLEEP); 847 gc->addr = addr; 848 gc->len = len; 849 retry: 850 gc->next = head = thmap->gc_list; 851 if (!atomic_cas_ptr_p(&thmap->gc_list, head, gc)) { 852 goto retry; 853 } 854 } 855 856 void * 857 thmap_stage_gc(thmap_t *thmap) 858 { 859 return atomic_exchange(&thmap->gc_list, NULL); 860 } 861 862 void 863 thmap_gc(thmap_t *thmap, void *ref) 864 { 865 thmap_gc_t *gc = ref; 866 867 while (gc) { 868 thmap_gc_t *next = gc->next; 869 thmap->ops->free(gc->addr, gc->len); 870 kmem_intr_free(gc, sizeof(thmap_gc_t)); 871 gc = next; 872 } 873 } 874 875 /* 876 * thmap_create: construct a new trie-hash map object. 877 */ 878 thmap_t * 879 thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags) 880 { 881 thmap_t *thmap; 882 uintptr_t root; 883 884 /* 885 * Setup the map object. 886 */ 887 if (!THMAP_ALIGNED_P(baseptr)) { 888 return NULL; 889 } 890 thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP); 891 if (!thmap) { 892 return NULL; 893 } 894 thmap->baseptr = baseptr; 895 thmap->ops = ops ? ops : &thmap_default_ops; 896 thmap->flags = flags; 897 898 if ((thmap->flags & THMAP_SETROOT) == 0) { 899 /* Allocate the root level. */ 900 root = thmap->ops->alloc(THMAP_ROOT_LEN); 901 thmap->root = THMAP_GETPTR(thmap, root); 902 if (!thmap->root) { 903 kmem_free(thmap, sizeof(thmap_t)); 904 return NULL; 905 } 906 memset(thmap->root, 0, THMAP_ROOT_LEN); 907 } 908 return thmap; 909 } 910 911 int 912 thmap_setroot(thmap_t *thmap, uintptr_t root_off) 913 { 914 if (thmap->root) { 915 return -1; 916 } 917 thmap->root = THMAP_GETPTR(thmap, root_off); 918 return 0; 919 } 920 921 uintptr_t 922 thmap_getroot(const thmap_t *thmap) 923 { 924 return THMAP_GETOFF(thmap, thmap->root); 925 } 926 927 void 928 thmap_destroy(thmap_t *thmap) 929 { 930 uintptr_t root = THMAP_GETOFF(thmap, thmap->root); 931 void *ref; 932 933 ref = thmap_stage_gc(thmap); 934 thmap_gc(thmap, ref); 935 936 if ((thmap->flags & THMAP_SETROOT) == 0) { 937 thmap->ops->free(root, THMAP_ROOT_LEN); 938 } 939 kmem_free(thmap, sizeof(thmap_t)); 940 } 941