1 /* $NetBSD: subr_thmap.c,v 1.7 2020/08/31 20:22:57 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Upstream: https://github.com/rmind/thmap/ 29 */ 30 31 /* 32 * Concurrent trie-hash map. 33 * 34 * The data structure is conceptually a radix trie on hashed keys. 35 * Keys are hashed using a 32-bit function. The root level is a special 36 * case: it is managed using the compare-and-swap (CAS) atomic operation 37 * and has a fanout of 64. The subsequent levels are constructed using 38 * intermediate nodes with a fanout of 16 (using 4 bits). As more levels 39 * are created, more blocks of the 32-bit hash value might be generated 40 * by incrementing the seed parameter of the hash function. 41 * 42 * Concurrency 43 * 44 * - READERS: Descending is simply walking through the slot values of 45 * the intermediate nodes. It is lock-free as there is no intermediate 46 * state: the slot is either empty or has a pointer to the child node. 47 * The main assumptions here are the following: 48 * 49 * i) modifications must preserve consistency with the respect to the 50 * readers i.e. the readers can only see the valid node values; 51 * 52 * ii) any invalid view must "fail" the reads, e.g. by making them 53 * re-try from the root; this is a case for deletions and is achieved 54 * using the NODE_DELETED flag. 55 * 56 * iii) the node destruction must be synchronized with the readers, 57 * e.g. by using the Epoch-based reclamation or other techniques. 58 * 59 * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which 60 * is implemented using the NODE_LOCKED bit) -- it provides mutual 61 * exclusion amongst concurrent writers. The lock order for the nodes 62 * is "bottom-up" i.e. they are locked as we ascend the trie. A key 63 * constraint here is that parent pointer never changes. 64 * 65 * - DELETES: In addition to writer's locking, the deletion keeps the 66 * intermediate nodes in a valid state and sets the NODE_DELETED flag, 67 * to indicate that the readers must re-start the walk from the root. 68 * As the levels are collapsed, NODE_DELETED gets propagated up-tree. 69 * The leaf nodes just stay as-is until they are reclaimed. 70 * 71 * - ROOT LEVEL: The root level is a special case, as it is implemented 72 * as an array (rather than intermediate node). The root-level slot can 73 * only be set using CAS and it can only be set to a valid intermediate 74 * node. The root-level slot can only be cleared when the node it points 75 * at becomes empty, is locked and marked as NODE_DELETED (this causes 76 * the insert/delete operations to re-try until the slot is set to NULL). 77 * 78 * References: 79 * 80 * W. Litwin, 1981, Trie Hashing. 81 * Proceedings of the 1981 ACM SIGMOD, p. 19-29 82 * https://dl.acm.org/citation.cfm?id=582322 83 * 84 * P. L. Lehman and S. B. Yao. 85 * Efficient locking for concurrent operations on B-trees. 86 * ACM TODS, 6(4):650-670, 1981 87 * https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf 88 */ 89 90 #ifdef _KERNEL 91 #include <sys/cdefs.h> 92 #include <sys/param.h> 93 #include <sys/types.h> 94 #include <sys/thmap.h> 95 #include <sys/kmem.h> 96 #include <sys/lock.h> 97 #include <sys/atomic.h> 98 #include <sys/hash.h> 99 #include <sys/cprng.h> 100 #define THMAP_RCSID(a) __KERNEL_RCSID(0, a) 101 #else 102 #include <stdio.h> 103 #include <stdlib.h> 104 #include <stdbool.h> 105 #include <stddef.h> 106 #include <inttypes.h> 107 #include <string.h> 108 #include <limits.h> 109 #define THMAP_RCSID(a) __RCSID(a) 110 111 #include "thmap.h" 112 #include "utils.h" 113 #endif 114 115 THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.7 2020/08/31 20:22:57 riastradh Exp $"); 116 117 #include <crypto/blake2/blake2s.h> 118 119 /* 120 * NetBSD kernel wrappers 121 */ 122 #ifdef _KERNEL 123 #define ASSERT KASSERT 124 #define atomic_thread_fence(x) membar_sync() 125 #define atomic_compare_exchange_weak_explicit_32(p, e, n, m1, m2) \ 126 (atomic_cas_32((p), *(e), (n)) == *(e)) 127 #define atomic_compare_exchange_weak_explicit_ptr(p, e, n, m1, m2) \ 128 (atomic_cas_ptr((p), *(void **)(e), (void *)(n)) == *(void **)(e)) 129 #define atomic_exchange_explicit(o, n, m1) atomic_swap_ptr((o), (n)) 130 #define murmurhash3 murmurhash2 131 #endif 132 133 /* 134 * The root level fanout is 64 (indexed by the last 6 bits of the hash 135 * value XORed with the length). Each subsequent level, represented by 136 * intermediate nodes, has a fanout of 16 (using 4 bits). 137 * 138 * The hash function produces 32-bit values. 139 */ 140 141 #define HASHVAL_SEEDLEN (16) 142 #define HASHVAL_BITS (32) 143 #define HASHVAL_MOD (HASHVAL_BITS - 1) 144 #define HASHVAL_SHIFT (5) 145 146 #define ROOT_BITS (6) 147 #define ROOT_SIZE (1 << ROOT_BITS) 148 #define ROOT_MASK (ROOT_SIZE - 1) 149 #define ROOT_MSBITS (HASHVAL_BITS - ROOT_BITS) 150 151 #define LEVEL_BITS (4) 152 #define LEVEL_SIZE (1 << LEVEL_BITS) 153 #define LEVEL_MASK (LEVEL_SIZE - 1) 154 155 /* 156 * Instead of raw pointers, we use offsets from the base address. 157 * This accommodates the use of this data structure in shared memory, 158 * where mappings can be in different address spaces. 159 * 160 * The pointers must be aligned, since pointer tagging is used to 161 * differentiate the intermediate nodes from leaves. We reserve the 162 * least significant bit. 163 */ 164 typedef uintptr_t thmap_ptr_t; 165 typedef uintptr_t atomic_thmap_ptr_t; // C11 _Atomic 166 167 #define THMAP_NULL ((thmap_ptr_t)0) 168 169 #define THMAP_LEAF_BIT (0x1) 170 171 #define THMAP_ALIGNED_P(p) (((uintptr_t)(p) & 3) == 0) 172 #define THMAP_ALIGN(p) ((uintptr_t)(p) & ~(uintptr_t)3) 173 #define THMAP_INODE_P(p) (((uintptr_t)(p) & THMAP_LEAF_BIT) == 0) 174 175 #define THMAP_GETPTR(th, p) ((void *)((th)->baseptr + (uintptr_t)(p))) 176 #define THMAP_GETOFF(th, p) ((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr)) 177 #define THMAP_NODE(th, p) THMAP_GETPTR(th, THMAP_ALIGN(p)) 178 179 /* 180 * State field. 181 */ 182 183 #define NODE_LOCKED (1U << 31) // lock (writers) 184 #define NODE_DELETED (1U << 30) // node deleted 185 #define NODE_COUNT(s) ((s) & 0x3fffffff) // slot count mask 186 187 /* 188 * There are two types of nodes: 189 * - Intermediate nodes -- arrays pointing to another level or a leaf; 190 * - Leaves, which store a key-value pair. 191 */ 192 193 typedef struct { 194 uint32_t state; // C11 _Atomic 195 thmap_ptr_t parent; 196 atomic_thmap_ptr_t slots[LEVEL_SIZE]; 197 } thmap_inode_t; 198 199 #define THMAP_INODE_LEN sizeof(thmap_inode_t) 200 201 typedef struct { 202 thmap_ptr_t key; 203 size_t len; 204 void * val; 205 } thmap_leaf_t; 206 207 typedef struct { 208 const uint8_t * seed; // secret seed 209 unsigned rslot; // root-level slot index 210 unsigned level; // current level in the tree 211 unsigned hashidx; // current hash index (block of bits) 212 uint32_t hashval; // current hash value 213 } thmap_query_t; 214 215 typedef struct { 216 uintptr_t addr; 217 size_t len; 218 void * next; 219 } thmap_gc_t; 220 221 #define THMAP_ROOT_LEN (sizeof(thmap_ptr_t) * ROOT_SIZE) 222 223 struct thmap { 224 uintptr_t baseptr; 225 atomic_thmap_ptr_t * root; 226 unsigned flags; 227 const thmap_ops_t * ops; 228 thmap_gc_t * gc_list; // C11 _Atomic 229 uint8_t seed[HASHVAL_SEEDLEN]; 230 }; 231 232 static void stage_mem_gc(thmap_t *, uintptr_t, size_t); 233 234 /* 235 * A few low-level helper routines. 236 */ 237 238 static uintptr_t 239 alloc_wrapper(size_t len) 240 { 241 return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP); 242 } 243 244 static void 245 free_wrapper(uintptr_t addr, size_t len) 246 { 247 kmem_intr_free((void *)addr, len); 248 } 249 250 static const thmap_ops_t thmap_default_ops = { 251 .alloc = alloc_wrapper, 252 .free = free_wrapper 253 }; 254 255 /* 256 * NODE LOCKING. 257 */ 258 259 #ifdef DIAGNOSTIC 260 static inline bool 261 node_locked_p(thmap_inode_t *node) 262 { 263 return (atomic_load_relaxed(&node->state) & NODE_LOCKED) != 0; 264 } 265 #endif 266 267 static void 268 lock_node(thmap_inode_t *node) 269 { 270 unsigned bcount = SPINLOCK_BACKOFF_MIN; 271 uint32_t s; 272 again: 273 s = atomic_load_relaxed(&node->state); 274 if (s & NODE_LOCKED) { 275 SPINLOCK_BACKOFF(bcount); 276 goto again; 277 } 278 /* Acquire from prior release in unlock_node.() */ 279 if (!atomic_compare_exchange_weak_explicit_32(&node->state, 280 &s, s | NODE_LOCKED, memory_order_acquire, memory_order_relaxed)) { 281 bcount = SPINLOCK_BACKOFF_MIN; 282 goto again; 283 } 284 } 285 286 static void 287 unlock_node(thmap_inode_t *node) 288 { 289 uint32_t s = atomic_load_relaxed(&node->state) & ~NODE_LOCKED; 290 291 ASSERT(node_locked_p(node)); 292 /* Release to subsequent acquire in lock_node(). */ 293 atomic_store_release(&node->state, s); 294 } 295 296 /* 297 * HASH VALUE AND KEY OPERATIONS. 298 */ 299 300 static inline uint32_t 301 hash(const uint8_t seed[static HASHVAL_SEEDLEN], const void *key, size_t len, 302 uint32_t level) 303 { 304 struct blake2s B; 305 uint32_t h; 306 307 if (level == 0) 308 return murmurhash3(key, len, 0); 309 310 /* 311 * Byte order is not significant here because this is 312 * intentionally secret and independent for each thmap. 313 * 314 * XXX We get 32 bytes of output at a time; we could march 315 * through them sequentially rather than throwing away 28 bytes 316 * and recomputing BLAKE2 each time. But the number of 317 * iterations ought to be geometric in the collision 318 * probability at each level which should be very small anyway. 319 */ 320 blake2s_init(&B, sizeof h, seed, HASHVAL_SEEDLEN); 321 blake2s_update(&B, &level, sizeof level); 322 blake2s_update(&B, key, len); 323 blake2s_final(&B, &h); 324 325 return h; 326 } 327 328 static inline void 329 hashval_init(thmap_query_t *query, const uint8_t seed[static HASHVAL_SEEDLEN], 330 const void * restrict key, size_t len) 331 { 332 const uint32_t hashval = hash(seed, key, len, 0); 333 334 query->seed = seed; 335 query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK; 336 query->level = 0; 337 query->hashval = hashval; 338 query->hashidx = 0; 339 } 340 341 /* 342 * hashval_getslot: given the key, compute the hash (if not already cached) 343 * and return the offset for the current level. 344 */ 345 static unsigned 346 hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len) 347 { 348 const unsigned offset = query->level * LEVEL_BITS; 349 const unsigned shift = offset & HASHVAL_MOD; 350 const unsigned i = offset >> HASHVAL_SHIFT; 351 352 if (query->hashidx != i) { 353 /* Generate a hash value for a required range. */ 354 query->hashval = hash(query->seed, key, len, i); 355 query->hashidx = i; 356 } 357 return (query->hashval >> shift) & LEVEL_MASK; 358 } 359 360 static unsigned 361 hashval_getleafslot(const thmap_t *thmap, 362 const thmap_leaf_t *leaf, unsigned level) 363 { 364 const void *key = THMAP_GETPTR(thmap, leaf->key); 365 const unsigned offset = level * LEVEL_BITS; 366 const unsigned shift = offset & HASHVAL_MOD; 367 const unsigned i = offset >> HASHVAL_SHIFT; 368 369 return (hash(thmap->seed, key, leaf->len, i) >> shift) & LEVEL_MASK; 370 } 371 372 static inline unsigned 373 hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query, 374 const thmap_leaf_t *leaf) 375 { 376 if (__predict_true(query->hashidx == 0)) { 377 return query->hashval & LEVEL_MASK; 378 } 379 return hashval_getleafslot(thmap, leaf, 0); 380 } 381 382 static bool 383 key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf, 384 const void * restrict key, size_t len) 385 { 386 const void *leafkey = THMAP_GETPTR(thmap, leaf->key); 387 return len == leaf->len && memcmp(key, leafkey, len) == 0; 388 } 389 390 /* 391 * INTER-NODE OPERATIONS. 392 */ 393 394 static thmap_inode_t * 395 node_create(thmap_t *thmap, thmap_inode_t *parent) 396 { 397 thmap_inode_t *node; 398 uintptr_t p; 399 400 p = thmap->ops->alloc(THMAP_INODE_LEN); 401 if (!p) { 402 return NULL; 403 } 404 node = THMAP_GETPTR(thmap, p); 405 ASSERT(THMAP_ALIGNED_P(node)); 406 407 memset(node, 0, THMAP_INODE_LEN); 408 if (parent) { 409 /* Not yet published, no need for ordering. */ 410 atomic_store_relaxed(&node->state, NODE_LOCKED); 411 node->parent = THMAP_GETOFF(thmap, parent); 412 } 413 return node; 414 } 415 416 static void 417 node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child) 418 { 419 ASSERT(node_locked_p(node) || node->parent == THMAP_NULL); 420 ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0); 421 ASSERT(atomic_load_relaxed(&node->slots[slot]) == THMAP_NULL); 422 423 ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) < LEVEL_SIZE); 424 425 /* 426 * If node is public already, caller is responsible for issuing 427 * release fence; if node is not public, no ordering is needed. 428 * Hence relaxed ordering. 429 */ 430 atomic_store_relaxed(&node->slots[slot], child); 431 atomic_store_relaxed(&node->state, 432 atomic_load_relaxed(&node->state) + 1); 433 } 434 435 static void 436 node_remove(thmap_inode_t *node, unsigned slot) 437 { 438 ASSERT(node_locked_p(node)); 439 ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0); 440 ASSERT(atomic_load_relaxed(&node->slots[slot]) != THMAP_NULL); 441 442 ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) > 0); 443 ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) <= LEVEL_SIZE); 444 445 /* Element will be GC-ed later; no need for ordering here. */ 446 atomic_store_relaxed(&node->slots[slot], THMAP_NULL); 447 atomic_store_relaxed(&node->state, 448 atomic_load_relaxed(&node->state) - 1); 449 } 450 451 /* 452 * LEAF OPERATIONS. 453 */ 454 455 static thmap_leaf_t * 456 leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val) 457 { 458 thmap_leaf_t *leaf; 459 uintptr_t leaf_off, key_off; 460 461 leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t)); 462 if (!leaf_off) { 463 return NULL; 464 } 465 leaf = THMAP_GETPTR(thmap, leaf_off); 466 ASSERT(THMAP_ALIGNED_P(leaf)); 467 468 if ((thmap->flags & THMAP_NOCOPY) == 0) { 469 /* 470 * Copy the key. 471 */ 472 key_off = thmap->ops->alloc(len); 473 if (!key_off) { 474 thmap->ops->free(leaf_off, sizeof(thmap_leaf_t)); 475 return NULL; 476 } 477 memcpy(THMAP_GETPTR(thmap, key_off), key, len); 478 leaf->key = key_off; 479 } else { 480 /* Otherwise, we use a reference. */ 481 leaf->key = (uintptr_t)key; 482 } 483 leaf->len = len; 484 leaf->val = val; 485 return leaf; 486 } 487 488 static void 489 leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf) 490 { 491 if ((thmap->flags & THMAP_NOCOPY) == 0) { 492 thmap->ops->free(leaf->key, leaf->len); 493 } 494 thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t)); 495 } 496 497 static thmap_leaf_t * 498 get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot) 499 { 500 thmap_ptr_t node; 501 502 /* Consume from prior release in thmap_put(). */ 503 node = atomic_load_consume(&parent->slots[slot]); 504 if (THMAP_INODE_P(node)) { 505 return NULL; 506 } 507 return THMAP_NODE(thmap, node); 508 } 509 510 /* 511 * ROOT OPERATIONS. 512 */ 513 514 /* 515 * root_try_put: Try to set a root pointer at query->rslot. 516 * 517 * => Implies release operation on success. 518 * => Implies no ordering on failure. 519 */ 520 static inline bool 521 root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf) 522 { 523 thmap_ptr_t expected; 524 const unsigned i = query->rslot; 525 thmap_inode_t *node; 526 thmap_ptr_t nptr; 527 unsigned slot; 528 529 /* 530 * Must pre-check first. No ordering required because we will 531 * check again before taking any actions, and start over if 532 * this changes from null. 533 */ 534 if (atomic_load_relaxed(&thmap->root[i])) { 535 return false; 536 } 537 538 /* 539 * Create an intermediate node. Since there is no parent set, 540 * it will be created unlocked and the CAS operation will 541 * release it to readers. 542 */ 543 node = node_create(thmap, NULL); 544 slot = hashval_getl0slot(thmap, query, leaf); 545 node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT); 546 nptr = THMAP_GETOFF(thmap, node); 547 again: 548 if (atomic_load_relaxed(&thmap->root[i])) { 549 thmap->ops->free(nptr, THMAP_INODE_LEN); 550 return false; 551 } 552 /* Release to subsequent consume in find_edge_node(). */ 553 expected = THMAP_NULL; 554 if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->root[i], &expected, 555 nptr, memory_order_release, memory_order_relaxed)) { 556 goto again; 557 } 558 return true; 559 } 560 561 /* 562 * find_edge_node: given the hash, traverse the tree to find the edge node. 563 * 564 * => Returns an aligned (clean) pointer to the parent node. 565 * => Returns the slot number and sets current level. 566 */ 567 static thmap_inode_t * 568 find_edge_node(const thmap_t *thmap, thmap_query_t *query, 569 const void * restrict key, size_t len, unsigned *slot) 570 { 571 thmap_ptr_t root_slot; 572 thmap_inode_t *parent; 573 thmap_ptr_t node; 574 unsigned off; 575 576 ASSERT(query->level == 0); 577 578 /* Consume from prior release in root_try_put(). */ 579 root_slot = atomic_load_consume(&thmap->root[query->rslot]); 580 parent = THMAP_NODE(thmap, root_slot); 581 if (!parent) { 582 return NULL; 583 } 584 descend: 585 off = hashval_getslot(query, key, len); 586 /* Consume from prior release in thmap_put(). */ 587 node = atomic_load_consume(&parent->slots[off]); 588 589 /* Descend the tree until we find a leaf or empty slot. */ 590 if (node && THMAP_INODE_P(node)) { 591 parent = THMAP_NODE(thmap, node); 592 query->level++; 593 goto descend; 594 } 595 /* 596 * NODE_DELETED does not become stale until GC runs, which 597 * cannot happen while we are in the middle of an operation, 598 * hence relaxed ordering. 599 */ 600 if (atomic_load_relaxed(&parent->state) & NODE_DELETED) { 601 return NULL; 602 } 603 *slot = off; 604 return parent; 605 } 606 607 /* 608 * find_edge_node_locked: traverse the tree, like find_edge_node(), 609 * but attempt to lock the edge node. 610 * 611 * => Returns NULL if the deleted node is found. This indicates that 612 * the caller must re-try from the root, as the root slot might have 613 * changed too. 614 */ 615 static thmap_inode_t * 616 find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query, 617 const void * restrict key, size_t len, unsigned *slot) 618 { 619 thmap_inode_t *node; 620 thmap_ptr_t target; 621 retry: 622 /* 623 * Find the edge node and lock it! Re-check the state since 624 * the tree might change by the time we acquire the lock. 625 */ 626 node = find_edge_node(thmap, query, key, len, slot); 627 if (!node) { 628 /* The root slot is empty -- let the caller decide. */ 629 query->level = 0; 630 return NULL; 631 } 632 lock_node(node); 633 if (__predict_false(atomic_load_relaxed(&node->state) & NODE_DELETED)) { 634 /* 635 * The node has been deleted. The tree might have a new 636 * shape now, therefore we must re-start from the root. 637 */ 638 unlock_node(node); 639 query->level = 0; 640 return NULL; 641 } 642 target = atomic_load_relaxed(&node->slots[*slot]); 643 if (__predict_false(target && THMAP_INODE_P(target))) { 644 /* 645 * The target slot has been changed and it is now an 646 * intermediate node. Re-start from the top internode. 647 */ 648 unlock_node(node); 649 query->level = 0; 650 goto retry; 651 } 652 return node; 653 } 654 655 /* 656 * thmap_get: lookup a value given the key. 657 */ 658 void * 659 thmap_get(thmap_t *thmap, const void *key, size_t len) 660 { 661 thmap_query_t query; 662 thmap_inode_t *parent; 663 thmap_leaf_t *leaf; 664 unsigned slot; 665 666 hashval_init(&query, thmap->seed, key, len); 667 parent = find_edge_node(thmap, &query, key, len, &slot); 668 if (!parent) { 669 return NULL; 670 } 671 leaf = get_leaf(thmap, parent, slot); 672 if (!leaf) { 673 return NULL; 674 } 675 if (!key_cmp_p(thmap, leaf, key, len)) { 676 return NULL; 677 } 678 return leaf->val; 679 } 680 681 /* 682 * thmap_put: insert a value given the key. 683 * 684 * => If the key is already present, return the associated value. 685 * => Otherwise, on successful insert, return the given value. 686 */ 687 void * 688 thmap_put(thmap_t *thmap, const void *key, size_t len, void *val) 689 { 690 thmap_query_t query; 691 thmap_leaf_t *leaf, *other; 692 thmap_inode_t *parent, *child; 693 unsigned slot, other_slot; 694 thmap_ptr_t target; 695 696 /* 697 * First, pre-allocate and initialize the leaf node. 698 */ 699 leaf = leaf_create(thmap, key, len, val); 700 if (__predict_false(!leaf)) { 701 return NULL; 702 } 703 hashval_init(&query, thmap->seed, key, len); 704 retry: 705 /* 706 * Try to insert into the root first, if its slot is empty. 707 */ 708 if (root_try_put(thmap, &query, leaf)) { 709 /* Success: the leaf was inserted; no locking involved. */ 710 return val; 711 } 712 713 /* 714 * Release node via store in node_insert (*) to subsequent 715 * consume in get_leaf() or find_edge_node(). 716 */ 717 atomic_thread_fence(memory_order_release); 718 719 /* 720 * Find the edge node and the target slot. 721 */ 722 parent = find_edge_node_locked(thmap, &query, key, len, &slot); 723 if (!parent) { 724 goto retry; 725 } 726 target = atomic_load_relaxed(&parent->slots[slot]); // tagged offset 727 if (THMAP_INODE_P(target)) { 728 /* 729 * Empty slot: simply insert the new leaf. The release 730 * fence is already issued for us. 731 */ 732 target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT; 733 node_insert(parent, slot, target); /* (*) */ 734 goto out; 735 } 736 737 /* 738 * Collision or duplicate. 739 */ 740 other = THMAP_NODE(thmap, target); 741 if (key_cmp_p(thmap, other, key, len)) { 742 /* 743 * Duplicate. Free the pre-allocated leaf and 744 * return the present value. 745 */ 746 leaf_free(thmap, leaf); 747 val = other->val; 748 goto out; 749 } 750 descend: 751 /* 752 * Collision -- expand the tree. Create an intermediate node 753 * which will be locked (NODE_LOCKED) for us. At this point, 754 * we advance to the next level. 755 */ 756 child = node_create(thmap, parent); 757 if (__predict_false(!child)) { 758 leaf_free(thmap, leaf); 759 val = NULL; 760 goto out; 761 } 762 query.level++; 763 764 /* 765 * Insert the other (colliding) leaf first. The new child is 766 * not yet published, so memory order is relaxed. 767 */ 768 other_slot = hashval_getleafslot(thmap, other, query.level); 769 target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT; 770 node_insert(child, other_slot, target); 771 772 /* 773 * Insert the intermediate node into the parent node. 774 * It becomes the new parent for the our new leaf. 775 * 776 * Ensure that stores to the child (and leaf) reach global 777 * visibility before it gets inserted to the parent, as 778 * consumed by get_leaf() or find_edge_node(). 779 */ 780 atomic_store_release(&parent->slots[slot], THMAP_GETOFF(thmap, child)); 781 782 unlock_node(parent); 783 ASSERT(node_locked_p(child)); 784 parent = child; 785 786 /* 787 * Get the new slot and check for another collision 788 * at the next level. 789 */ 790 slot = hashval_getslot(&query, key, len); 791 if (slot == other_slot) { 792 /* Another collision -- descend and expand again. */ 793 goto descend; 794 } 795 796 /* 797 * Insert our new leaf once we expanded enough. The release 798 * fence is already issued for us. 799 */ 800 target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT; 801 node_insert(parent, slot, target); /* (*) */ 802 out: 803 unlock_node(parent); 804 return val; 805 } 806 807 /* 808 * thmap_del: remove the entry given the key. 809 */ 810 void * 811 thmap_del(thmap_t *thmap, const void *key, size_t len) 812 { 813 thmap_query_t query; 814 thmap_leaf_t *leaf; 815 thmap_inode_t *parent; 816 unsigned slot; 817 void *val; 818 819 hashval_init(&query, thmap->seed, key, len); 820 parent = find_edge_node_locked(thmap, &query, key, len, &slot); 821 if (!parent) { 822 /* Root slot empty: not found. */ 823 return NULL; 824 } 825 leaf = get_leaf(thmap, parent, slot); 826 if (!leaf || !key_cmp_p(thmap, leaf, key, len)) { 827 /* Not found. */ 828 unlock_node(parent); 829 return NULL; 830 } 831 832 /* Remove the leaf. */ 833 ASSERT(THMAP_NODE(thmap, atomic_load_relaxed(&parent->slots[slot])) 834 == leaf); 835 node_remove(parent, slot); 836 837 /* 838 * Collapse the levels if removing the last item. 839 */ 840 while (query.level && 841 NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) { 842 thmap_inode_t *node = parent; 843 844 ASSERT(atomic_load_relaxed(&node->state) == NODE_LOCKED); 845 846 /* 847 * Ascend one level up. 848 * => Mark our current parent as deleted. 849 * => Lock the parent one level up. 850 */ 851 query.level--; 852 slot = hashval_getslot(&query, key, len); 853 parent = THMAP_NODE(thmap, node->parent); 854 ASSERT(parent != NULL); 855 856 lock_node(parent); 857 ASSERT((atomic_load_relaxed(&parent->state) & NODE_DELETED) 858 == 0); 859 860 /* 861 * Lock is exclusive, so nobody else can be writing at 862 * the same time, and no need for atomic R/M/W, but 863 * readers may read without the lock and so need atomic 864 * load/store. No ordering here needed because the 865 * entry itself stays valid until GC. 866 */ 867 atomic_store_relaxed(&node->state, 868 atomic_load_relaxed(&node->state) | NODE_DELETED); 869 unlock_node(node); // memory_order_release 870 871 ASSERT(THMAP_NODE(thmap, 872 atomic_load_relaxed(&parent->slots[slot])) == node); 873 node_remove(parent, slot); 874 875 /* Stage the removed node for G/C. */ 876 stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN); 877 } 878 879 /* 880 * If the top node is empty, then we need to remove it from the 881 * root level. Mark the node as deleted and clear the slot. 882 * 883 * Note: acquiring the lock on the top node effectively prevents 884 * the root slot from changing. 885 */ 886 if (NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) { 887 const unsigned rslot = query.rslot; 888 const thmap_ptr_t nptr = 889 atomic_load_relaxed(&thmap->root[rslot]); 890 891 ASSERT(query.level == 0); 892 ASSERT(parent->parent == THMAP_NULL); 893 ASSERT(THMAP_GETOFF(thmap, parent) == nptr); 894 895 /* Mark as deleted and remove from the root-level slot. */ 896 atomic_store_relaxed(&parent->state, 897 atomic_load_relaxed(&parent->state) | NODE_DELETED); 898 atomic_store_relaxed(&thmap->root[rslot], THMAP_NULL); 899 900 stage_mem_gc(thmap, nptr, THMAP_INODE_LEN); 901 } 902 unlock_node(parent); 903 904 /* 905 * Save the value and stage the leaf for G/C. 906 */ 907 val = leaf->val; 908 if ((thmap->flags & THMAP_NOCOPY) == 0) { 909 stage_mem_gc(thmap, leaf->key, leaf->len); 910 } 911 stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t)); 912 return val; 913 } 914 915 /* 916 * G/C routines. 917 */ 918 919 static void 920 stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len) 921 { 922 thmap_gc_t *head, *gc; 923 924 gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_NOSLEEP); 925 gc->addr = addr; 926 gc->len = len; 927 retry: 928 head = atomic_load_relaxed(&thmap->gc_list); 929 gc->next = head; // not yet published 930 931 /* Release to subsequent acquire in thmap_stage_gc(). */ 932 if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->gc_list, &head, gc, 933 memory_order_release, memory_order_relaxed)) { 934 goto retry; 935 } 936 } 937 938 void * 939 thmap_stage_gc(thmap_t *thmap) 940 { 941 /* Acquire from prior release in stage_mem_gc(). */ 942 return atomic_exchange_explicit(&thmap->gc_list, NULL, 943 memory_order_acquire); 944 } 945 946 void 947 thmap_gc(thmap_t *thmap, void *ref) 948 { 949 thmap_gc_t *gc = ref; 950 951 while (gc) { 952 thmap_gc_t *next = gc->next; 953 thmap->ops->free(gc->addr, gc->len); 954 kmem_intr_free(gc, sizeof(thmap_gc_t)); 955 gc = next; 956 } 957 } 958 959 /* 960 * thmap_create: construct a new trie-hash map object. 961 */ 962 thmap_t * 963 thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags) 964 { 965 thmap_t *thmap; 966 uintptr_t root; 967 968 /* 969 * Setup the map object. 970 */ 971 if (!THMAP_ALIGNED_P(baseptr)) { 972 return NULL; 973 } 974 thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP); 975 if (!thmap) { 976 return NULL; 977 } 978 thmap->baseptr = baseptr; 979 thmap->ops = ops ? ops : &thmap_default_ops; 980 thmap->flags = flags; 981 982 if ((thmap->flags & THMAP_SETROOT) == 0) { 983 /* Allocate the root level. */ 984 root = thmap->ops->alloc(THMAP_ROOT_LEN); 985 thmap->root = THMAP_GETPTR(thmap, root); 986 if (!thmap->root) { 987 kmem_free(thmap, sizeof(thmap_t)); 988 return NULL; 989 } 990 memset(thmap->root, 0, THMAP_ROOT_LEN); 991 atomic_thread_fence(memory_order_release); /* XXX */ 992 } 993 994 cprng_strong(kern_cprng, thmap->seed, sizeof thmap->seed, 0); 995 996 return thmap; 997 } 998 999 int 1000 thmap_setroot(thmap_t *thmap, uintptr_t root_off) 1001 { 1002 if (thmap->root) { 1003 return -1; 1004 } 1005 thmap->root = THMAP_GETPTR(thmap, root_off); 1006 atomic_thread_fence(memory_order_release); /* XXX */ 1007 return 0; 1008 } 1009 1010 uintptr_t 1011 thmap_getroot(const thmap_t *thmap) 1012 { 1013 return THMAP_GETOFF(thmap, thmap->root); 1014 } 1015 1016 void 1017 thmap_destroy(thmap_t *thmap) 1018 { 1019 uintptr_t root = THMAP_GETOFF(thmap, thmap->root); 1020 void *ref; 1021 1022 ref = thmap_stage_gc(thmap); 1023 thmap_gc(thmap, ref); 1024 1025 if ((thmap->flags & THMAP_SETROOT) == 0) { 1026 thmap->ops->free(root, THMAP_ROOT_LEN); 1027 } 1028 kmem_free(thmap, sizeof(thmap_t)); 1029 } 1030