xref: /netbsd-src/sys/kern/subr_thmap.c (revision 0e552da7216834a96e91ad098e59272b41087480)
1 /*	$NetBSD: subr_thmap.c,v 1.6 2020/05/23 19:52:12 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Upstream: https://github.com/rmind/thmap/
29  */
30 
31 /*
32  * Concurrent trie-hash map.
33  *
34  * The data structure is conceptually a radix trie on hashed keys.
35  * Keys are hashed using a 32-bit function.  The root level is a special
36  * case: it is managed using the compare-and-swap (CAS) atomic operation
37  * and has a fanout of 64.  The subsequent levels are constructed using
38  * intermediate nodes with a fanout of 16 (using 4 bits).  As more levels
39  * are created, more blocks of the 32-bit hash value might be generated
40  * by incrementing the seed parameter of the hash function.
41  *
42  * Concurrency
43  *
44  * - READERS: Descending is simply walking through the slot values of
45  *   the intermediate nodes.  It is lock-free as there is no intermediate
46  *   state: the slot is either empty or has a pointer to the child node.
47  *   The main assumptions here are the following:
48  *
49  *   i) modifications must preserve consistency with the respect to the
50  *   readers i.e. the readers can only see the valid node values;
51  *
52  *   ii) any invalid view must "fail" the reads, e.g. by making them
53  *   re-try from the root; this is a case for deletions and is achieved
54  *   using the NODE_DELETED flag.
55  *
56  *   iii) the node destruction must be synchronized with the readers,
57  *   e.g. by using the Epoch-based reclamation or other techniques.
58  *
59  * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
60  *   is implemented using the NODE_LOCKED bit) -- it provides mutual
61  *   exclusion amongst concurrent writers.  The lock order for the nodes
62  *   is "bottom-up" i.e. they are locked as we ascend the trie.  A key
63  *   constraint here is that parent pointer never changes.
64  *
65  * - DELETES: In addition to writer's locking, the deletion keeps the
66  *   intermediate nodes in a valid state and sets the NODE_DELETED flag,
67  *   to indicate that the readers must re-start the walk from the root.
68  *   As the levels are collapsed, NODE_DELETED gets propagated up-tree.
69  *   The leaf nodes just stay as-is until they are reclaimed.
70  *
71  * - ROOT LEVEL: The root level is a special case, as it is implemented
72  *   as an array (rather than intermediate node).  The root-level slot can
73  *   only be set using CAS and it can only be set to a valid intermediate
74  *   node.  The root-level slot can only be cleared when the node it points
75  *   at becomes empty, is locked and marked as NODE_DELETED (this causes
76  *   the insert/delete operations to re-try until the slot is set to NULL).
77  *
78  * References:
79  *
80  *	W. Litwin, 1981, Trie Hashing.
81  *	Proceedings of the 1981 ACM SIGMOD, p. 19-29
82  *	https://dl.acm.org/citation.cfm?id=582322
83  *
84  *	P. L. Lehman and S. B. Yao.
85  *	Efficient locking for concurrent operations on B-trees.
86  *	ACM TODS, 6(4):650-670, 1981
87  *	https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
88  */
89 
90 #ifdef _KERNEL
91 #include <sys/cdefs.h>
92 #include <sys/param.h>
93 #include <sys/types.h>
94 #include <sys/thmap.h>
95 #include <sys/kmem.h>
96 #include <sys/lock.h>
97 #include <sys/atomic.h>
98 #include <sys/hash.h>
99 #define THMAP_RCSID(a) __KERNEL_RCSID(0, a)
100 #else
101 #include <stdio.h>
102 #include <stdlib.h>
103 #include <stdbool.h>
104 #include <stddef.h>
105 #include <inttypes.h>
106 #include <string.h>
107 #include <limits.h>
108 #define THMAP_RCSID(a) __RCSID(a)
109 
110 #include "thmap.h"
111 #include "utils.h"
112 #endif
113 
114 THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.6 2020/05/23 19:52:12 rmind Exp $");
115 
116 /*
117  * NetBSD kernel wrappers
118  */
119 #ifdef _KERNEL
120 #define	ASSERT KASSERT
121 #define	atomic_thread_fence(x) membar_sync()
122 #define	atomic_compare_exchange_weak_explicit_32(p, e, n, m1, m2) \
123     (atomic_cas_32((p), *(e), (n)) == *(e))
124 #define	atomic_compare_exchange_weak_explicit_ptr(p, e, n, m1, m2) \
125     (atomic_cas_ptr((p), *(void **)(e), (void *)(n)) == *(void **)(e))
126 #define	atomic_exchange_explicit(o, n, m1) atomic_swap_ptr((o), (n))
127 #define	murmurhash3 murmurhash2
128 #endif
129 
130 /*
131  * The root level fanout is 64 (indexed by the last 6 bits of the hash
132  * value XORed with the length).  Each subsequent level, represented by
133  * intermediate nodes, has a fanout of 16 (using 4 bits).
134  *
135  * The hash function produces 32-bit values.
136  */
137 
138 #define	HASHVAL_BITS	(32)
139 #define	HASHVAL_MOD	(HASHVAL_BITS - 1)
140 #define	HASHVAL_SHIFT	(5)
141 
142 #define	ROOT_BITS	(6)
143 #define	ROOT_SIZE	(1 << ROOT_BITS)
144 #define	ROOT_MASK	(ROOT_SIZE - 1)
145 #define	ROOT_MSBITS	(HASHVAL_BITS - ROOT_BITS)
146 
147 #define	LEVEL_BITS	(4)
148 #define	LEVEL_SIZE	(1 << LEVEL_BITS)
149 #define	LEVEL_MASK	(LEVEL_SIZE - 1)
150 
151 /*
152  * Instead of raw pointers, we use offsets from the base address.
153  * This accommodates the use of this data structure in shared memory,
154  * where mappings can be in different address spaces.
155  *
156  * The pointers must be aligned, since pointer tagging is used to
157  * differentiate the intermediate nodes from leaves.  We reserve the
158  * least significant bit.
159  */
160 typedef uintptr_t thmap_ptr_t;
161 typedef uintptr_t atomic_thmap_ptr_t;			// C11 _Atomic
162 
163 #define	THMAP_NULL		((thmap_ptr_t)0)
164 
165 #define	THMAP_LEAF_BIT		(0x1)
166 
167 #define	THMAP_ALIGNED_P(p)	(((uintptr_t)(p) & 3) == 0)
168 #define	THMAP_ALIGN(p)		((uintptr_t)(p) & ~(uintptr_t)3)
169 #define	THMAP_INODE_P(p)	(((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)
170 
171 #define	THMAP_GETPTR(th, p)	((void *)((th)->baseptr + (uintptr_t)(p)))
172 #define	THMAP_GETOFF(th, p)	((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
173 #define	THMAP_NODE(th, p)	THMAP_GETPTR(th, THMAP_ALIGN(p))
174 
175 /*
176  * State field.
177  */
178 
179 #define	NODE_LOCKED		(1U << 31)		// lock (writers)
180 #define	NODE_DELETED		(1U << 30)		// node deleted
181 #define	NODE_COUNT(s)		((s) & 0x3fffffff)	// slot count mask
182 
183 /*
184  * There are two types of nodes:
185  * - Intermediate nodes -- arrays pointing to another level or a leaf;
186  * - Leaves, which store a key-value pair.
187  */
188 
189 typedef struct {
190 	uint32_t		state;			// C11 _Atomic
191 	thmap_ptr_t		parent;
192 	atomic_thmap_ptr_t	slots[LEVEL_SIZE];
193 } thmap_inode_t;
194 
195 #define	THMAP_INODE_LEN	sizeof(thmap_inode_t)
196 
197 typedef struct {
198 	thmap_ptr_t	key;
199 	size_t		len;
200 	void *		val;
201 } thmap_leaf_t;
202 
203 typedef struct {
204 	unsigned	rslot;		// root-level slot index
205 	unsigned	level;		// current level in the tree
206 	unsigned	hashidx;	// current hash index (block of bits)
207 	uint32_t	hashval;	// current hash value
208 } thmap_query_t;
209 
210 typedef struct {
211 	uintptr_t	addr;
212 	size_t		len;
213 	void *		next;
214 } thmap_gc_t;
215 
216 #define	THMAP_ROOT_LEN	(sizeof(thmap_ptr_t) * ROOT_SIZE)
217 
218 struct thmap {
219 	uintptr_t		baseptr;
220 	atomic_thmap_ptr_t *	root;
221 	unsigned		flags;
222 	const thmap_ops_t *	ops;
223 	thmap_gc_t *		gc_list;		// C11 _Atomic
224 };
225 
226 static void	stage_mem_gc(thmap_t *, uintptr_t, size_t);
227 
228 /*
229  * A few low-level helper routines.
230  */
231 
232 static uintptr_t
233 alloc_wrapper(size_t len)
234 {
235 	return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP);
236 }
237 
238 static void
239 free_wrapper(uintptr_t addr, size_t len)
240 {
241 	kmem_intr_free((void *)addr, len);
242 }
243 
244 static const thmap_ops_t thmap_default_ops = {
245 	.alloc = alloc_wrapper,
246 	.free = free_wrapper
247 };
248 
249 /*
250  * NODE LOCKING.
251  */
252 
253 #ifdef DIAGNOSTIC
254 static inline bool
255 node_locked_p(thmap_inode_t *node)
256 {
257 	return (atomic_load_relaxed(&node->state) & NODE_LOCKED) != 0;
258 }
259 #endif
260 
261 static void
262 lock_node(thmap_inode_t *node)
263 {
264 	unsigned bcount = SPINLOCK_BACKOFF_MIN;
265 	uint32_t s;
266 again:
267 	s = atomic_load_relaxed(&node->state);
268 	if (s & NODE_LOCKED) {
269 		SPINLOCK_BACKOFF(bcount);
270 		goto again;
271 	}
272 	/* Acquire from prior release in unlock_node.() */
273 	if (!atomic_compare_exchange_weak_explicit_32(&node->state,
274 	    &s, s | NODE_LOCKED, memory_order_acquire, memory_order_relaxed)) {
275 		bcount = SPINLOCK_BACKOFF_MIN;
276 		goto again;
277 	}
278 }
279 
280 static void
281 unlock_node(thmap_inode_t *node)
282 {
283 	uint32_t s = atomic_load_relaxed(&node->state) & ~NODE_LOCKED;
284 
285 	ASSERT(node_locked_p(node));
286 	/* Release to subsequent acquire in lock_node(). */
287 	atomic_store_release(&node->state, s);
288 }
289 
290 /*
291  * HASH VALUE AND KEY OPERATIONS.
292  */
293 
294 static inline void
295 hashval_init(thmap_query_t *query, const void * restrict key, size_t len)
296 {
297 	const uint32_t hashval = murmurhash3(key, len, 0);
298 
299 	query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
300 	query->level = 0;
301 	query->hashval = hashval;
302 	query->hashidx = 0;
303 }
304 
305 /*
306  * hashval_getslot: given the key, compute the hash (if not already cached)
307  * and return the offset for the current level.
308  */
309 static unsigned
310 hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
311 {
312 	const unsigned offset = query->level * LEVEL_BITS;
313 	const unsigned shift = offset & HASHVAL_MOD;
314 	const unsigned i = offset >> HASHVAL_SHIFT;
315 
316 	if (query->hashidx != i) {
317 		/* Generate a hash value for a required range. */
318 		query->hashval = murmurhash3(key, len, i);
319 		query->hashidx = i;
320 	}
321 	return (query->hashval >> shift) & LEVEL_MASK;
322 }
323 
324 static unsigned
325 hashval_getleafslot(const thmap_t *thmap,
326     const thmap_leaf_t *leaf, unsigned level)
327 {
328 	const void *key = THMAP_GETPTR(thmap, leaf->key);
329 	const unsigned offset = level * LEVEL_BITS;
330 	const unsigned shift = offset & HASHVAL_MOD;
331 	const unsigned i = offset >> HASHVAL_SHIFT;
332 
333 	return (murmurhash3(key, leaf->len, i) >> shift) & LEVEL_MASK;
334 }
335 
336 static inline unsigned
337 hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
338     const thmap_leaf_t *leaf)
339 {
340 	if (__predict_true(query->hashidx == 0)) {
341 		return query->hashval & LEVEL_MASK;
342 	}
343 	return hashval_getleafslot(thmap, leaf, 0);
344 }
345 
346 static bool
347 key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
348     const void * restrict key, size_t len)
349 {
350 	const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
351 	return len == leaf->len && memcmp(key, leafkey, len) == 0;
352 }
353 
354 /*
355  * INTER-NODE OPERATIONS.
356  */
357 
358 static thmap_inode_t *
359 node_create(thmap_t *thmap, thmap_inode_t *parent)
360 {
361 	thmap_inode_t *node;
362 	uintptr_t p;
363 
364 	p = thmap->ops->alloc(THMAP_INODE_LEN);
365 	if (!p) {
366 		return NULL;
367 	}
368 	node = THMAP_GETPTR(thmap, p);
369 	ASSERT(THMAP_ALIGNED_P(node));
370 
371 	memset(node, 0, THMAP_INODE_LEN);
372 	if (parent) {
373 		/* Not yet published, no need for ordering. */
374 		atomic_store_relaxed(&node->state, NODE_LOCKED);
375 		node->parent = THMAP_GETOFF(thmap, parent);
376 	}
377 	return node;
378 }
379 
380 static void
381 node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
382 {
383 	ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
384 	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
385 	ASSERT(atomic_load_relaxed(&node->slots[slot]) == THMAP_NULL);
386 
387 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) < LEVEL_SIZE);
388 
389 	/*
390 	 * If node is public already, caller is responsible for issuing
391 	 * release fence; if node is not public, no ordering is needed.
392 	 * Hence relaxed ordering.
393 	 */
394 	atomic_store_relaxed(&node->slots[slot], child);
395 	atomic_store_relaxed(&node->state,
396 	    atomic_load_relaxed(&node->state) + 1);
397 }
398 
399 static void
400 node_remove(thmap_inode_t *node, unsigned slot)
401 {
402 	ASSERT(node_locked_p(node));
403 	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
404 	ASSERT(atomic_load_relaxed(&node->slots[slot]) != THMAP_NULL);
405 
406 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) > 0);
407 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) <= LEVEL_SIZE);
408 
409 	/* Element will be GC-ed later; no need for ordering here. */
410 	atomic_store_relaxed(&node->slots[slot], THMAP_NULL);
411 	atomic_store_relaxed(&node->state,
412 	    atomic_load_relaxed(&node->state) - 1);
413 }
414 
415 /*
416  * LEAF OPERATIONS.
417  */
418 
419 static thmap_leaf_t *
420 leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
421 {
422 	thmap_leaf_t *leaf;
423 	uintptr_t leaf_off, key_off;
424 
425 	leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t));
426 	if (!leaf_off) {
427 		return NULL;
428 	}
429 	leaf = THMAP_GETPTR(thmap, leaf_off);
430 	ASSERT(THMAP_ALIGNED_P(leaf));
431 
432 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
433 		/*
434 		 * Copy the key.
435 		 */
436 		key_off = thmap->ops->alloc(len);
437 		if (!key_off) {
438 			thmap->ops->free(leaf_off, sizeof(thmap_leaf_t));
439 			return NULL;
440 		}
441 		memcpy(THMAP_GETPTR(thmap, key_off), key, len);
442 		leaf->key = key_off;
443 	} else {
444 		/* Otherwise, we use a reference. */
445 		leaf->key = (uintptr_t)key;
446 	}
447 	leaf->len = len;
448 	leaf->val = val;
449 	return leaf;
450 }
451 
452 static void
453 leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
454 {
455 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
456 		thmap->ops->free(leaf->key, leaf->len);
457 	}
458 	thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
459 }
460 
461 static thmap_leaf_t *
462 get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
463 {
464 	thmap_ptr_t node;
465 
466 	/* Consume from prior release in thmap_put(). */
467 	node = atomic_load_consume(&parent->slots[slot]);
468 	if (THMAP_INODE_P(node)) {
469 		return NULL;
470 	}
471 	return THMAP_NODE(thmap, node);
472 }
473 
474 /*
475  * ROOT OPERATIONS.
476  */
477 
478 /*
479  * root_try_put: Try to set a root pointer at query->rslot.
480  *
481  * => Implies release operation on success.
482  * => Implies no ordering on failure.
483  */
484 static inline bool
485 root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
486 {
487 	thmap_ptr_t expected;
488 	const unsigned i = query->rslot;
489 	thmap_inode_t *node;
490 	thmap_ptr_t nptr;
491 	unsigned slot;
492 
493 	/*
494 	 * Must pre-check first.  No ordering required because we will
495 	 * check again before taking any actions, and start over if
496 	 * this changes from null.
497 	 */
498 	if (atomic_load_relaxed(&thmap->root[i])) {
499 		return false;
500 	}
501 
502 	/*
503 	 * Create an intermediate node.  Since there is no parent set,
504 	 * it will be created unlocked and the CAS operation will
505 	 * release it to readers.
506 	 */
507 	node = node_create(thmap, NULL);
508 	slot = hashval_getl0slot(thmap, query, leaf);
509 	node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
510 	nptr = THMAP_GETOFF(thmap, node);
511 again:
512 	if (atomic_load_relaxed(&thmap->root[i])) {
513 		thmap->ops->free(nptr, THMAP_INODE_LEN);
514 		return false;
515 	}
516 	/* Release to subsequent consume in find_edge_node(). */
517 	expected = THMAP_NULL;
518 	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->root[i], &expected,
519 	    nptr, memory_order_release, memory_order_relaxed)) {
520 		goto again;
521 	}
522 	return true;
523 }
524 
525 /*
526  * find_edge_node: given the hash, traverse the tree to find the edge node.
527  *
528  * => Returns an aligned (clean) pointer to the parent node.
529  * => Returns the slot number and sets current level.
530  */
531 static thmap_inode_t *
532 find_edge_node(const thmap_t *thmap, thmap_query_t *query,
533     const void * restrict key, size_t len, unsigned *slot)
534 {
535 	thmap_ptr_t root_slot;
536 	thmap_inode_t *parent;
537 	thmap_ptr_t node;
538 	unsigned off;
539 
540 	ASSERT(query->level == 0);
541 
542 	/* Consume from prior release in root_try_put(). */
543 	root_slot = atomic_load_consume(&thmap->root[query->rslot]);
544 	parent = THMAP_NODE(thmap, root_slot);
545 	if (!parent) {
546 		return NULL;
547 	}
548 descend:
549 	off = hashval_getslot(query, key, len);
550 	/* Consume from prior release in thmap_put(). */
551 	node = atomic_load_consume(&parent->slots[off]);
552 
553 	/* Descend the tree until we find a leaf or empty slot. */
554 	if (node && THMAP_INODE_P(node)) {
555 		parent = THMAP_NODE(thmap, node);
556 		query->level++;
557 		goto descend;
558 	}
559 	/*
560 	 * NODE_DELETED does not become stale until GC runs, which
561 	 * cannot happen while we are in the middle of an operation,
562 	 * hence relaxed ordering.
563 	 */
564 	if (atomic_load_relaxed(&parent->state) & NODE_DELETED) {
565 		return NULL;
566 	}
567 	*slot = off;
568 	return parent;
569 }
570 
571 /*
572  * find_edge_node_locked: traverse the tree, like find_edge_node(),
573  * but attempt to lock the edge node.
574  *
575  * => Returns NULL if the deleted node is found.  This indicates that
576  *    the caller must re-try from the root, as the root slot might have
577  *    changed too.
578  */
579 static thmap_inode_t *
580 find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
581     const void * restrict key, size_t len, unsigned *slot)
582 {
583 	thmap_inode_t *node;
584 	thmap_ptr_t target;
585 retry:
586 	/*
587 	 * Find the edge node and lock it!  Re-check the state since
588 	 * the tree might change by the time we acquire the lock.
589 	 */
590 	node = find_edge_node(thmap, query, key, len, slot);
591 	if (!node) {
592 		/* The root slot is empty -- let the caller decide. */
593 		query->level = 0;
594 		return NULL;
595 	}
596 	lock_node(node);
597 	if (__predict_false(atomic_load_relaxed(&node->state) & NODE_DELETED)) {
598 		/*
599 		 * The node has been deleted.  The tree might have a new
600 		 * shape now, therefore we must re-start from the root.
601 		 */
602 		unlock_node(node);
603 		query->level = 0;
604 		return NULL;
605 	}
606 	target = atomic_load_relaxed(&node->slots[*slot]);
607 	if (__predict_false(target && THMAP_INODE_P(target))) {
608 		/*
609 		 * The target slot has been changed and it is now an
610 		 * intermediate node.  Re-start from the top internode.
611 		 */
612 		unlock_node(node);
613 		query->level = 0;
614 		goto retry;
615 	}
616 	return node;
617 }
618 
619 /*
620  * thmap_get: lookup a value given the key.
621  */
622 void *
623 thmap_get(thmap_t *thmap, const void *key, size_t len)
624 {
625 	thmap_query_t query;
626 	thmap_inode_t *parent;
627 	thmap_leaf_t *leaf;
628 	unsigned slot;
629 
630 	hashval_init(&query, key, len);
631 	parent = find_edge_node(thmap, &query, key, len, &slot);
632 	if (!parent) {
633 		return NULL;
634 	}
635 	leaf = get_leaf(thmap, parent, slot);
636 	if (!leaf) {
637 		return NULL;
638 	}
639 	if (!key_cmp_p(thmap, leaf, key, len)) {
640 		return NULL;
641 	}
642 	return leaf->val;
643 }
644 
645 /*
646  * thmap_put: insert a value given the key.
647  *
648  * => If the key is already present, return the associated value.
649  * => Otherwise, on successful insert, return the given value.
650  */
651 void *
652 thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
653 {
654 	thmap_query_t query;
655 	thmap_leaf_t *leaf, *other;
656 	thmap_inode_t *parent, *child;
657 	unsigned slot, other_slot;
658 	thmap_ptr_t target;
659 
660 	/*
661 	 * First, pre-allocate and initialize the leaf node.
662 	 */
663 	leaf = leaf_create(thmap, key, len, val);
664 	if (__predict_false(!leaf)) {
665 		return NULL;
666 	}
667 	hashval_init(&query, key, len);
668 retry:
669 	/*
670 	 * Try to insert into the root first, if its slot is empty.
671 	 */
672 	if (root_try_put(thmap, &query, leaf)) {
673 		/* Success: the leaf was inserted; no locking involved. */
674 		return val;
675 	}
676 
677 	/*
678 	 * Release node via store in node_insert (*) to subsequent
679 	 * consume in get_leaf() or find_edge_node().
680 	 */
681 	atomic_thread_fence(memory_order_release);
682 
683 	/*
684 	 * Find the edge node and the target slot.
685 	 */
686 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
687 	if (!parent) {
688 		goto retry;
689 	}
690 	target = atomic_load_relaxed(&parent->slots[slot]); // tagged offset
691 	if (THMAP_INODE_P(target)) {
692 		/*
693 		 * Empty slot: simply insert the new leaf.  The release
694 		 * fence is already issued for us.
695 		 */
696 		target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
697 		node_insert(parent, slot, target); /* (*) */
698 		goto out;
699 	}
700 
701 	/*
702 	 * Collision or duplicate.
703 	 */
704 	other = THMAP_NODE(thmap, target);
705 	if (key_cmp_p(thmap, other, key, len)) {
706 		/*
707 		 * Duplicate.  Free the pre-allocated leaf and
708 		 * return the present value.
709 		 */
710 		leaf_free(thmap, leaf);
711 		val = other->val;
712 		goto out;
713 	}
714 descend:
715 	/*
716 	 * Collision -- expand the tree.  Create an intermediate node
717 	 * which will be locked (NODE_LOCKED) for us.  At this point,
718 	 * we advance to the next level.
719 	 */
720 	child = node_create(thmap, parent);
721 	if (__predict_false(!child)) {
722 		leaf_free(thmap, leaf);
723 		val = NULL;
724 		goto out;
725 	}
726 	query.level++;
727 
728 	/*
729 	 * Insert the other (colliding) leaf first.  The new child is
730 	 * not yet published, so memory order is relaxed.
731 	 */
732 	other_slot = hashval_getleafslot(thmap, other, query.level);
733 	target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
734 	node_insert(child, other_slot, target);
735 
736 	/*
737 	 * Insert the intermediate node into the parent node.
738 	 * It becomes the new parent for the our new leaf.
739 	 *
740 	 * Ensure that stores to the child (and leaf) reach global
741 	 * visibility before it gets inserted to the parent, as
742 	 * consumed by get_leaf() or find_edge_node().
743 	 */
744 	atomic_store_release(&parent->slots[slot], THMAP_GETOFF(thmap, child));
745 
746 	unlock_node(parent);
747 	ASSERT(node_locked_p(child));
748 	parent = child;
749 
750 	/*
751 	 * Get the new slot and check for another collision
752 	 * at the next level.
753 	 */
754 	slot = hashval_getslot(&query, key, len);
755 	if (slot == other_slot) {
756 		/* Another collision -- descend and expand again. */
757 		goto descend;
758 	}
759 
760 	/*
761 	 * Insert our new leaf once we expanded enough.  The release
762 	 * fence is already issued for us.
763 	 */
764 	target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
765 	node_insert(parent, slot, target); /* (*) */
766 out:
767 	unlock_node(parent);
768 	return val;
769 }
770 
771 /*
772  * thmap_del: remove the entry given the key.
773  */
774 void *
775 thmap_del(thmap_t *thmap, const void *key, size_t len)
776 {
777 	thmap_query_t query;
778 	thmap_leaf_t *leaf;
779 	thmap_inode_t *parent;
780 	unsigned slot;
781 	void *val;
782 
783 	hashval_init(&query, key, len);
784 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
785 	if (!parent) {
786 		/* Root slot empty: not found. */
787 		return NULL;
788 	}
789 	leaf = get_leaf(thmap, parent, slot);
790 	if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
791 		/* Not found. */
792 		unlock_node(parent);
793 		return NULL;
794 	}
795 
796 	/* Remove the leaf. */
797 	ASSERT(THMAP_NODE(thmap, atomic_load_relaxed(&parent->slots[slot]))
798 	    == leaf);
799 	node_remove(parent, slot);
800 
801 	/*
802 	 * Collapse the levels if removing the last item.
803 	 */
804 	while (query.level &&
805 	    NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
806 		thmap_inode_t *node = parent;
807 
808 		ASSERT(atomic_load_relaxed(&node->state) == NODE_LOCKED);
809 
810 		/*
811 		 * Ascend one level up.
812 		 * => Mark our current parent as deleted.
813 		 * => Lock the parent one level up.
814 		 */
815 		query.level--;
816 		slot = hashval_getslot(&query, key, len);
817 		parent = THMAP_NODE(thmap, node->parent);
818 		ASSERT(parent != NULL);
819 
820 		lock_node(parent);
821 		ASSERT((atomic_load_relaxed(&parent->state) & NODE_DELETED)
822 		    == 0);
823 
824 		/*
825 		 * Lock is exclusive, so nobody else can be writing at
826 		 * the same time, and no need for atomic R/M/W, but
827 		 * readers may read without the lock and so need atomic
828 		 * load/store.  No ordering here needed because the
829 		 * entry itself stays valid until GC.
830 		 */
831 		atomic_store_relaxed(&node->state,
832 		    atomic_load_relaxed(&node->state) | NODE_DELETED);
833 		unlock_node(node); // memory_order_release
834 
835 		ASSERT(THMAP_NODE(thmap,
836 		    atomic_load_relaxed(&parent->slots[slot])) == node);
837 		node_remove(parent, slot);
838 
839 		/* Stage the removed node for G/C. */
840 		stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
841 	}
842 
843 	/*
844 	 * If the top node is empty, then we need to remove it from the
845 	 * root level.  Mark the node as deleted and clear the slot.
846 	 *
847 	 * Note: acquiring the lock on the top node effectively prevents
848 	 * the root slot from changing.
849 	 */
850 	if (NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
851 		const unsigned rslot = query.rslot;
852 		const thmap_ptr_t nptr =
853 		    atomic_load_relaxed(&thmap->root[rslot]);
854 
855 		ASSERT(query.level == 0);
856 		ASSERT(parent->parent == THMAP_NULL);
857 		ASSERT(THMAP_GETOFF(thmap, parent) == nptr);
858 
859 		/* Mark as deleted and remove from the root-level slot. */
860 		atomic_store_relaxed(&parent->state,
861 		    atomic_load_relaxed(&parent->state) | NODE_DELETED);
862 		atomic_store_relaxed(&thmap->root[rslot], THMAP_NULL);
863 
864 		stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
865 	}
866 	unlock_node(parent);
867 
868 	/*
869 	 * Save the value and stage the leaf for G/C.
870 	 */
871 	val = leaf->val;
872 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
873 		stage_mem_gc(thmap, leaf->key, leaf->len);
874 	}
875 	stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
876 	return val;
877 }
878 
879 /*
880  * G/C routines.
881  */
882 
883 static void
884 stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
885 {
886 	thmap_gc_t *head, *gc;
887 
888 	gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_NOSLEEP);
889 	gc->addr = addr;
890 	gc->len = len;
891 retry:
892 	head = atomic_load_relaxed(&thmap->gc_list);
893 	gc->next = head; // not yet published
894 
895 	/* Release to subsequent acquire in thmap_stage_gc(). */
896 	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->gc_list, &head, gc,
897 	    memory_order_release, memory_order_relaxed)) {
898 		goto retry;
899 	}
900 }
901 
902 void *
903 thmap_stage_gc(thmap_t *thmap)
904 {
905 	/* Acquire from prior release in stage_mem_gc(). */
906 	return atomic_exchange_explicit(&thmap->gc_list, NULL,
907 	    memory_order_acquire);
908 }
909 
910 void
911 thmap_gc(thmap_t *thmap, void *ref)
912 {
913 	thmap_gc_t *gc = ref;
914 
915 	while (gc) {
916 		thmap_gc_t *next = gc->next;
917 		thmap->ops->free(gc->addr, gc->len);
918 		kmem_intr_free(gc, sizeof(thmap_gc_t));
919 		gc = next;
920 	}
921 }
922 
923 /*
924  * thmap_create: construct a new trie-hash map object.
925  */
926 thmap_t *
927 thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
928 {
929 	thmap_t *thmap;
930 	uintptr_t root;
931 
932 	/*
933 	 * Setup the map object.
934 	 */
935 	if (!THMAP_ALIGNED_P(baseptr)) {
936 		return NULL;
937 	}
938 	thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
939 	if (!thmap) {
940 		return NULL;
941 	}
942 	thmap->baseptr = baseptr;
943 	thmap->ops = ops ? ops : &thmap_default_ops;
944 	thmap->flags = flags;
945 
946 	if ((thmap->flags & THMAP_SETROOT) == 0) {
947 		/* Allocate the root level. */
948 		root = thmap->ops->alloc(THMAP_ROOT_LEN);
949 		thmap->root = THMAP_GETPTR(thmap, root);
950 		if (!thmap->root) {
951 			kmem_free(thmap, sizeof(thmap_t));
952 			return NULL;
953 		}
954 		memset(thmap->root, 0, THMAP_ROOT_LEN);
955 		atomic_thread_fence(memory_order_release); /* XXX */
956 	}
957 	return thmap;
958 }
959 
960 int
961 thmap_setroot(thmap_t *thmap, uintptr_t root_off)
962 {
963 	if (thmap->root) {
964 		return -1;
965 	}
966 	thmap->root = THMAP_GETPTR(thmap, root_off);
967 	atomic_thread_fence(memory_order_release); /* XXX */
968 	return 0;
969 }
970 
971 uintptr_t
972 thmap_getroot(const thmap_t *thmap)
973 {
974 	return THMAP_GETOFF(thmap, thmap->root);
975 }
976 
977 void
978 thmap_destroy(thmap_t *thmap)
979 {
980 	uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
981 	void *ref;
982 
983 	ref = thmap_stage_gc(thmap);
984 	thmap_gc(thmap, ref);
985 
986 	if ((thmap->flags & THMAP_SETROOT) == 0) {
987 		thmap->ops->free(root, THMAP_ROOT_LEN);
988 	}
989 	kmem_free(thmap, sizeof(thmap_t));
990 }
991