1 /* $NetBSD: subr_prf.c,v 1.170 2018/04/14 01:53:38 kre Exp $ */ 2 3 /*- 4 * Copyright (c) 1986, 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)subr_prf.c 8.4 (Berkeley) 5/4/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: subr_prf.c,v 1.170 2018/04/14 01:53:38 kre Exp $"); 41 42 #ifdef _KERNEL_OPT 43 #include "opt_ddb.h" 44 #include "opt_ipkdb.h" 45 #include "opt_kgdb.h" 46 #include "opt_dump.h" 47 #include "opt_rnd_printf.h" 48 #endif 49 50 #include <sys/param.h> 51 #include <sys/stdint.h> 52 #include <sys/systm.h> 53 #include <sys/buf.h> 54 #include <sys/device.h> 55 #include <sys/reboot.h> 56 #include <sys/msgbuf.h> 57 #include <sys/proc.h> 58 #include <sys/ioctl.h> 59 #include <sys/vnode.h> 60 #include <sys/file.h> 61 #include <sys/tty.h> 62 #include <sys/tprintf.h> 63 #include <sys/spldebug.h> 64 #include <sys/syslog.h> 65 #include <sys/kprintf.h> 66 #include <sys/atomic.h> 67 #include <sys/kernel.h> 68 #include <sys/cpu.h> 69 #include <sys/sha2.h> 70 #include <sys/rndsource.h> 71 72 #include <dev/cons.h> 73 74 #include <net/if.h> 75 76 #ifdef IPKDB 77 #include <ipkdb/ipkdb.h> 78 #endif 79 80 static kmutex_t kprintf_mtx; 81 static bool kprintf_inited = false; 82 83 #ifdef KGDB 84 #include <sys/kgdb.h> 85 #endif 86 87 #ifdef DDB 88 #include <ddb/ddbvar.h> /* db_panic */ 89 #include <ddb/db_output.h> /* db_printf, db_putchar prototypes */ 90 #endif 91 92 93 /* 94 * defines 95 */ 96 #define KLOG_PRI 0x80000000 97 98 99 /* 100 * local prototypes 101 */ 102 103 static void putchar(int, int, struct tty *); 104 105 106 /* 107 * globals 108 */ 109 110 extern struct tty *constty; /* pointer to console "window" tty */ 111 extern int log_open; /* subr_log: is /dev/klog open? */ 112 extern krndsource_t rnd_printf_source; 113 const char *panicstr; /* arg to first call to panic (used as a flag 114 to indicate that panic has already been called). */ 115 struct cpu_info *paniccpu; /* cpu that first paniced */ 116 long panicstart, panicend; /* position in the msgbuf of the start and 117 end of the formatted panicstr. */ 118 int doing_shutdown; /* set to indicate shutdown in progress */ 119 120 #ifdef RND_PRINTF 121 static bool kprintf_inited_callout = false; 122 static SHA512_CTX kprnd_sha; 123 static uint8_t kprnd_accum[SHA512_DIGEST_LENGTH]; 124 static int kprnd_added; 125 126 static struct callout kprnd_callout; 127 #endif 128 129 #ifndef DUMP_ON_PANIC 130 #define DUMP_ON_PANIC 1 131 #endif 132 int dumponpanic = DUMP_ON_PANIC; 133 134 /* 135 * v_putc: routine to putc on virtual console 136 * 137 * the v_putc pointer can be used to redirect the console cnputc elsewhere 138 * [e.g. to a "virtual console"]. 139 */ 140 141 void (*v_putc)(int) = cnputc; /* start with cnputc (normal cons) */ 142 void (*v_flush)(void) = cnflush; /* start with cnflush (normal cons) */ 143 144 const char hexdigits[] = "0123456789abcdef"; 145 const char HEXDIGITS[] = "0123456789ABCDEF"; 146 147 148 /* 149 * functions 150 */ 151 152 #ifdef RND_PRINTF 153 static void kprintf_rnd_get(size_t bytes, void *priv) 154 { 155 if (kprnd_added) { 156 KASSERT(kprintf_inited); 157 if (mutex_tryenter(&kprintf_mtx)) { 158 SHA512_Final(kprnd_accum, &kprnd_sha); 159 rnd_add_data(&rnd_printf_source, 160 kprnd_accum, sizeof(kprnd_accum), 0); 161 kprnd_added = 0; 162 /* This, we must do, since we called _Final. */ 163 SHA512_Init(&kprnd_sha); 164 /* This is optional but seems useful. */ 165 SHA512_Update(&kprnd_sha, kprnd_accum, 166 sizeof(kprnd_accum)); 167 mutex_exit(&kprintf_mtx); 168 } 169 } 170 } 171 172 static void kprintf_rnd_callout(void *arg) 173 { 174 kprintf_rnd_get(0, NULL); 175 callout_schedule(&kprnd_callout, hz); 176 } 177 178 #endif 179 180 /* 181 * Locking is inited fairly early in MI bootstrap. Before that 182 * prints are done unlocked. But that doesn't really matter, 183 * since nothing can preempt us before interrupts are enabled. 184 */ 185 void 186 kprintf_init(void) 187 { 188 189 KASSERT(!kprintf_inited && cold); /* not foolproof, but ... */ 190 #ifdef RND_PRINTF 191 SHA512_Init(&kprnd_sha); 192 #endif 193 mutex_init(&kprintf_mtx, MUTEX_DEFAULT, IPL_HIGH); 194 kprintf_inited = true; 195 } 196 197 #ifdef RND_PRINTF 198 void 199 kprintf_init_callout(void) 200 { 201 KASSERT(!kprintf_inited_callout); 202 callout_init(&kprnd_callout, CALLOUT_MPSAFE); 203 callout_setfunc(&kprnd_callout, kprintf_rnd_callout, NULL); 204 callout_schedule(&kprnd_callout, hz); 205 kprintf_inited_callout = true; 206 } 207 #endif 208 209 void 210 kprintf_lock(void) 211 { 212 213 if (__predict_true(kprintf_inited)) 214 mutex_enter(&kprintf_mtx); 215 } 216 217 void 218 kprintf_unlock(void) 219 { 220 221 if (__predict_true(kprintf_inited)) { 222 /* assert kprintf wasn't somehow inited while we were in */ 223 KASSERT(mutex_owned(&kprintf_mtx)); 224 mutex_exit(&kprintf_mtx); 225 } 226 } 227 228 /* 229 * twiddle: spin a little propellor on the console. 230 */ 231 232 void 233 twiddle(void) 234 { 235 static const char twiddle_chars[] = "|/-\\"; 236 static int pos; 237 238 kprintf_lock(); 239 240 putchar(twiddle_chars[pos++ & 3], TOCONS, NULL); 241 putchar('\b', TOCONS, NULL); 242 243 kprintf_unlock(); 244 } 245 246 /* 247 * panic: handle an unresolvable fatal error 248 * 249 * prints "panic: <message>" and reboots. if called twice (i.e. recursive 250 * call) we avoid trying to dump and just reboot (to avoid recursive panics). 251 */ 252 253 void 254 panic(const char *fmt, ...) 255 { 256 va_list ap; 257 258 va_start(ap, fmt); 259 vpanic(fmt, ap); 260 va_end(ap); 261 } 262 263 void 264 vpanic(const char *fmt, va_list ap) 265 { 266 CPU_INFO_ITERATOR cii; 267 struct cpu_info *ci, *oci; 268 int bootopt; 269 static char scratchstr[384]; /* stores panic message */ 270 271 spldebug_stop(); 272 273 if (lwp0.l_cpu && curlwp) { 274 /* 275 * Disable preemption. If already panicing on another CPU, sit 276 * here and spin until the system is rebooted. Allow the CPU that 277 * first paniced to panic again. 278 */ 279 kpreempt_disable(); 280 ci = curcpu(); 281 oci = atomic_cas_ptr((void *)&paniccpu, NULL, ci); 282 if (oci != NULL && oci != ci) { 283 /* Give interrupts a chance to try and prevent deadlock. */ 284 for (;;) { 285 #ifndef _RUMPKERNEL /* XXXpooka: temporary build fix, see kern/40505 */ 286 DELAY(10); 287 #endif /* _RUMPKERNEL */ 288 } 289 } 290 291 /* 292 * Convert the current thread to a bound thread and prevent all 293 * CPUs from scheduling unbound jobs. Do so without taking any 294 * locks. 295 */ 296 curlwp->l_pflag |= LP_BOUND; 297 for (CPU_INFO_FOREACH(cii, ci)) { 298 ci->ci_schedstate.spc_flags |= SPCF_OFFLINE; 299 } 300 } 301 302 bootopt = RB_AUTOBOOT | RB_NOSYNC; 303 if (!doing_shutdown) { 304 if (dumponpanic) 305 bootopt |= RB_DUMP; 306 } else 307 printf("Skipping crash dump on recursive panic\n"); 308 309 doing_shutdown = 1; 310 311 if (logenabled(msgbufp)) 312 panicstart = msgbufp->msg_bufx; 313 314 printf("panic: "); 315 if (panicstr == NULL) { 316 /* first time in panic - store fmt first for precaution */ 317 panicstr = fmt; 318 319 vsnprintf(scratchstr, sizeof(scratchstr), fmt, ap); 320 printf("%s", scratchstr); 321 panicstr = scratchstr; 322 } else { 323 vprintf(fmt, ap); 324 } 325 printf("\n"); 326 327 if (logenabled(msgbufp)) 328 panicend = msgbufp->msg_bufx; 329 330 #ifdef IPKDB 331 ipkdb_panic(); 332 #endif 333 #ifdef KGDB 334 kgdb_panic(); 335 #endif 336 #ifdef KADB 337 if (boothowto & RB_KDB) 338 kdbpanic(); 339 #endif 340 #ifdef DDB 341 db_panic(); 342 #endif 343 cpu_reboot(bootopt, NULL); 344 } 345 346 /* 347 * kernel logging functions: log, logpri, addlog 348 */ 349 350 /* 351 * log: write to the log buffer 352 * 353 * => will not sleep [so safe to call from interrupt] 354 * => will log to console if /dev/klog isn't open 355 */ 356 357 void 358 log(int level, const char *fmt, ...) 359 { 360 va_list ap; 361 362 kprintf_lock(); 363 364 klogpri(level); /* log the level first */ 365 va_start(ap, fmt); 366 kprintf(fmt, TOLOG, NULL, NULL, ap); 367 va_end(ap); 368 if (!log_open) { 369 va_start(ap, fmt); 370 kprintf(fmt, TOCONS, NULL, NULL, ap); 371 va_end(ap); 372 } 373 374 kprintf_unlock(); 375 376 logwakeup(); /* wake up anyone waiting for log msgs */ 377 } 378 379 /* 380 * vlog: write to the log buffer [already have va_list] 381 */ 382 383 void 384 vlog(int level, const char *fmt, va_list ap) 385 { 386 va_list cap; 387 388 va_copy(cap, ap); 389 kprintf_lock(); 390 391 klogpri(level); /* log the level first */ 392 kprintf(fmt, TOLOG, NULL, NULL, ap); 393 if (!log_open) 394 kprintf(fmt, TOCONS, NULL, NULL, cap); 395 396 kprintf_unlock(); 397 va_end(cap); 398 399 logwakeup(); /* wake up anyone waiting for log msgs */ 400 } 401 402 /* 403 * logpri: log the priority level to the klog 404 */ 405 406 void 407 logpri(int level) 408 { 409 410 kprintf_lock(); 411 klogpri(level); 412 kprintf_unlock(); 413 } 414 415 /* 416 * Note: we must be in the mutex here! 417 */ 418 void 419 klogpri(int level) 420 { 421 KASSERT((level & KLOG_PRI) == 0); 422 423 putchar(level | KLOG_PRI, TOLOG, NULL); 424 } 425 426 /* 427 * addlog: add info to previous log message 428 */ 429 430 void 431 addlog(const char *fmt, ...) 432 { 433 va_list ap; 434 435 kprintf_lock(); 436 437 va_start(ap, fmt); 438 kprintf(fmt, TOLOG, NULL, NULL, ap); 439 va_end(ap); 440 if (!log_open) { 441 va_start(ap, fmt); 442 kprintf(fmt, TOCONS, NULL, NULL, ap); 443 va_end(ap); 444 } 445 446 kprintf_unlock(); 447 448 logwakeup(); 449 } 450 451 static void 452 putone(int c, int flags, struct tty *tp) 453 { 454 if (panicstr) 455 constty = NULL; 456 457 if ((flags & TOCONS) && tp == NULL && constty) { 458 tp = constty; 459 flags |= TOTTY; 460 } 461 if ((flags & TOTTY) && tp && 462 tputchar(c, flags, tp) < 0 && 463 (flags & TOCONS) && tp == constty) 464 constty = NULL; 465 if ((flags & TOLOG) && 466 c != '\0' && c != '\r' && c != 0177) 467 logputchar(c); 468 if ((flags & TOCONS) && constty == NULL && c != '\0') 469 (*v_putc)(c); 470 } 471 472 static void 473 putlogpri(int level) 474 { 475 char *p; 476 char snbuf[KPRINTF_BUFSIZE]; 477 478 putone('<', TOLOG, NULL); 479 snprintf(snbuf, sizeof(snbuf), "%d", level); 480 for (p = snbuf ; *p ; p++) 481 putone(*p, TOLOG, NULL); 482 putone('>', TOLOG, NULL); 483 } 484 485 #ifndef KLOG_NOTIMESTAMP 486 static int needtstamp = 1; 487 int log_ts_prec = 7; 488 489 static void 490 addtstamp(int flags, struct tty *tp) 491 { 492 char buf[64]; 493 struct timespec ts; 494 int n, prec; 495 long fsec; 496 497 prec = log_ts_prec; 498 if (prec < 0) { 499 prec = 0; 500 log_ts_prec = prec; 501 } else if (prec > 9) { 502 prec = 9; 503 log_ts_prec = prec; 504 } 505 506 getnanouptime(&ts); 507 508 for (n = prec, fsec = ts.tv_nsec; n < 8; n++) 509 fsec /= 10; 510 if (n < 9) 511 fsec = (fsec / 10) + ((fsec % 10) >= 5); 512 513 n = snprintf(buf, sizeof(buf), "[% 4jd.%.*ld] ", 514 (intmax_t)ts.tv_sec, prec, fsec); 515 516 for (int i = 0; i < n; i++) 517 putone(buf[i], flags, tp); 518 } 519 #endif 520 521 /* 522 * putchar: print a single character on console or user terminal. 523 * 524 * => if console, then the last MSGBUFS chars are saved in msgbuf 525 * for inspection later (e.g. dmesg/syslog) 526 * => we must already be in the mutex! 527 */ 528 static void 529 putchar(int c, int flags, struct tty *tp) 530 { 531 if (c & KLOG_PRI) { 532 putlogpri(c & ~KLOG_PRI); 533 return; 534 } 535 536 #ifndef KLOG_NOTIMESTAMP 537 if (c != '\0' && c != '\n' && needtstamp) { 538 addtstamp(flags, tp); 539 needtstamp = 0; 540 } 541 542 if (c == '\n') 543 needtstamp = 1; 544 #endif 545 putone(c, flags, tp); 546 547 #ifdef DDB 548 if (flags & TODDB) { 549 db_putchar(c); 550 return; 551 } 552 #endif 553 554 #ifdef RND_PRINTF 555 if (__predict_true(kprintf_inited)) { 556 static uint8_t rbuf[SHA512_BLOCK_LENGTH]; 557 static int cursor; 558 559 rbuf[cursor] = c; 560 if (cursor == sizeof(rbuf) - 1) { 561 SHA512_Update(&kprnd_sha, rbuf, sizeof(rbuf)); 562 kprnd_added++; 563 cursor = 0; 564 } else { 565 cursor++; 566 } 567 } 568 #endif 569 } 570 571 /* 572 * tablefull: warn that a system table is full 573 */ 574 575 void 576 tablefull(const char *tab, const char *hint) 577 { 578 if (hint) 579 log(LOG_ERR, "%s: table is full - %s\n", tab, hint); 580 else 581 log(LOG_ERR, "%s: table is full\n", tab); 582 } 583 584 585 /* 586 * uprintf: print to the controlling tty of the current process 587 * 588 * => we may block if the tty queue is full 589 * => no message is printed if the queue doesn't clear in a reasonable 590 * time 591 */ 592 593 void 594 uprintf(const char *fmt, ...) 595 { 596 struct proc *p = curproc; 597 va_list ap; 598 599 /* mutex_enter(proc_lock); XXXSMP */ 600 601 if (p->p_lflag & PL_CONTROLT && p->p_session->s_ttyvp) { 602 /* No mutex needed; going to process TTY. */ 603 va_start(ap, fmt); 604 kprintf(fmt, TOTTY, p->p_session->s_ttyp, NULL, ap); 605 va_end(ap); 606 } 607 608 /* mutex_exit(proc_lock); XXXSMP */ 609 } 610 611 void 612 uprintf_locked(const char *fmt, ...) 613 { 614 struct proc *p = curproc; 615 va_list ap; 616 617 if (p->p_lflag & PL_CONTROLT && p->p_session->s_ttyvp) { 618 /* No mutex needed; going to process TTY. */ 619 va_start(ap, fmt); 620 kprintf(fmt, TOTTY, p->p_session->s_ttyp, NULL, ap); 621 va_end(ap); 622 } 623 } 624 625 /* 626 * tprintf functions: used to send messages to a specific process 627 * 628 * usage: 629 * get a tpr_t handle on a process "p" by using "tprintf_open(p)" 630 * use the handle when calling "tprintf" 631 * when done, do a "tprintf_close" to drop the handle 632 */ 633 634 /* 635 * tprintf_open: get a tprintf handle on a process "p" 636 * 637 * => returns NULL if process can't be printed to 638 */ 639 640 tpr_t 641 tprintf_open(struct proc *p) 642 { 643 tpr_t cookie; 644 645 cookie = NULL; 646 647 mutex_enter(proc_lock); 648 if (p->p_lflag & PL_CONTROLT && p->p_session->s_ttyvp) { 649 proc_sesshold(p->p_session); 650 cookie = (tpr_t)p->p_session; 651 } 652 mutex_exit(proc_lock); 653 654 return cookie; 655 } 656 657 /* 658 * tprintf_close: dispose of a tprintf handle obtained with tprintf_open 659 */ 660 661 void 662 tprintf_close(tpr_t sess) 663 { 664 665 if (sess) { 666 mutex_enter(proc_lock); 667 /* Releases proc_lock. */ 668 proc_sessrele((struct session *)sess); 669 } 670 } 671 672 /* 673 * tprintf: given tprintf handle to a process [obtained with tprintf_open], 674 * send a message to the controlling tty for that process. 675 * 676 * => also sends message to /dev/klog 677 */ 678 void 679 tprintf(tpr_t tpr, const char *fmt, ...) 680 { 681 struct session *sess = (struct session *)tpr; 682 struct tty *tp = NULL; 683 int flags = TOLOG; 684 va_list ap; 685 686 /* mutex_enter(proc_lock); XXXSMP */ 687 if (sess && sess->s_ttyvp && ttycheckoutq(sess->s_ttyp, 0)) { 688 flags |= TOTTY; 689 tp = sess->s_ttyp; 690 } 691 692 kprintf_lock(); 693 694 klogpri(LOG_INFO); 695 va_start(ap, fmt); 696 kprintf(fmt, flags, tp, NULL, ap); 697 va_end(ap); 698 699 kprintf_unlock(); 700 /* mutex_exit(proc_lock); XXXSMP */ 701 702 logwakeup(); 703 } 704 705 706 /* 707 * ttyprintf: send a message to a specific tty 708 * 709 * => should be used only by tty driver or anything that knows the 710 * underlying tty will not be revoked(2)'d away. [otherwise, 711 * use tprintf] 712 */ 713 void 714 ttyprintf(struct tty *tp, const char *fmt, ...) 715 { 716 va_list ap; 717 718 /* No mutex needed; going to process TTY. */ 719 va_start(ap, fmt); 720 kprintf(fmt, TOTTY, tp, NULL, ap); 721 va_end(ap); 722 } 723 724 #ifdef DDB 725 726 /* 727 * db_printf: printf for DDB (via db_putchar) 728 */ 729 730 void 731 db_printf(const char *fmt, ...) 732 { 733 va_list ap; 734 735 /* No mutex needed; DDB pauses all processors. */ 736 va_start(ap, fmt); 737 kprintf(fmt, TODDB, NULL, NULL, ap); 738 va_end(ap); 739 740 if (db_tee_msgbuf) { 741 va_start(ap, fmt); 742 kprintf(fmt, TOLOG, NULL, NULL, ap); 743 va_end(ap); 744 } 745 } 746 747 void 748 db_vprintf(const char *fmt, va_list ap) 749 { 750 va_list cap; 751 752 va_copy(cap, ap); 753 /* No mutex needed; DDB pauses all processors. */ 754 kprintf(fmt, TODDB, NULL, NULL, ap); 755 if (db_tee_msgbuf) 756 kprintf(fmt, TOLOG, NULL, NULL, cap); 757 va_end(cap); 758 } 759 760 #endif /* DDB */ 761 762 static void 763 kprintf_internal(const char *fmt, int oflags, void *vp, char *sbuf, ...) 764 { 765 va_list ap; 766 767 va_start(ap, sbuf); 768 (void)kprintf(fmt, oflags, vp, sbuf, ap); 769 va_end(ap); 770 } 771 772 /* 773 * Device autoconfiguration printf routines. These change their 774 * behavior based on the AB_* flags in boothowto. If AB_SILENT 775 * is set, messages never go to the console (but they still always 776 * go to the log). AB_VERBOSE overrides AB_SILENT. 777 */ 778 779 /* 780 * aprint_normal: Send to console unless AB_QUIET. Always goes 781 * to the log. 782 */ 783 static void 784 aprint_normal_internal(const char *prefix, const char *fmt, va_list ap) 785 { 786 int flags = TOLOG; 787 788 if ((boothowto & (AB_SILENT|AB_QUIET)) == 0 || 789 (boothowto & AB_VERBOSE) != 0) 790 flags |= TOCONS; 791 792 kprintf_lock(); 793 794 if (prefix) 795 kprintf_internal("%s: ", flags, NULL, NULL, prefix); 796 kprintf(fmt, flags, NULL, NULL, ap); 797 798 kprintf_unlock(); 799 800 if (!panicstr) 801 logwakeup(); 802 } 803 804 void 805 aprint_normal(const char *fmt, ...) 806 { 807 va_list ap; 808 809 va_start(ap, fmt); 810 aprint_normal_internal(NULL, fmt, ap); 811 va_end(ap); 812 } 813 814 void 815 aprint_normal_dev(device_t dv, const char *fmt, ...) 816 { 817 va_list ap; 818 819 va_start(ap, fmt); 820 aprint_normal_internal(device_xname(dv), fmt, ap); 821 va_end(ap); 822 } 823 824 void 825 aprint_normal_ifnet(struct ifnet *ifp, const char *fmt, ...) 826 { 827 va_list ap; 828 829 va_start(ap, fmt); 830 aprint_normal_internal(ifp->if_xname, fmt, ap); 831 va_end(ap); 832 } 833 834 /* 835 * aprint_error: Send to console unless AB_QUIET. Always goes 836 * to the log. Also counts the number of times called so other 837 * parts of the kernel can report the number of errors during a 838 * given phase of system startup. 839 */ 840 static int aprint_error_count; 841 842 int 843 aprint_get_error_count(void) 844 { 845 int count; 846 847 kprintf_lock(); 848 849 count = aprint_error_count; 850 aprint_error_count = 0; 851 852 kprintf_unlock(); 853 854 return (count); 855 } 856 857 static void 858 aprint_error_internal(const char *prefix, const char *fmt, va_list ap) 859 { 860 int flags = TOLOG; 861 862 if ((boothowto & (AB_SILENT|AB_QUIET)) == 0 || 863 (boothowto & AB_VERBOSE) != 0) 864 flags |= TOCONS; 865 866 kprintf_lock(); 867 868 aprint_error_count++; 869 870 if (prefix) 871 kprintf_internal("%s: ", flags, NULL, NULL, prefix); 872 kprintf(fmt, flags, NULL, NULL, ap); 873 874 kprintf_unlock(); 875 876 if (!panicstr) 877 logwakeup(); 878 } 879 880 void 881 aprint_error(const char *fmt, ...) 882 { 883 va_list ap; 884 885 va_start(ap, fmt); 886 aprint_error_internal(NULL, fmt, ap); 887 va_end(ap); 888 } 889 890 void 891 aprint_error_dev(device_t dv, const char *fmt, ...) 892 { 893 va_list ap; 894 895 va_start(ap, fmt); 896 aprint_error_internal(device_xname(dv), fmt, ap); 897 va_end(ap); 898 } 899 900 void 901 aprint_error_ifnet(struct ifnet *ifp, const char *fmt, ...) 902 { 903 va_list ap; 904 905 va_start(ap, fmt); 906 aprint_error_internal(ifp->if_xname, fmt, ap); 907 va_end(ap); 908 } 909 910 /* 911 * aprint_naive: Send to console only if AB_QUIET. Never goes 912 * to the log. 913 */ 914 static void 915 aprint_naive_internal(const char *prefix, const char *fmt, va_list ap) 916 { 917 if ((boothowto & (AB_QUIET|AB_SILENT|AB_VERBOSE)) != AB_QUIET) 918 return; 919 920 kprintf_lock(); 921 922 if (prefix) 923 kprintf_internal("%s: ", TOCONS, NULL, NULL, prefix); 924 kprintf(fmt, TOCONS, NULL, NULL, ap); 925 926 kprintf_unlock(); 927 } 928 929 void 930 aprint_naive(const char *fmt, ...) 931 { 932 va_list ap; 933 934 va_start(ap, fmt); 935 aprint_naive_internal(NULL, fmt, ap); 936 va_end(ap); 937 } 938 939 void 940 aprint_naive_dev(device_t dv, const char *fmt, ...) 941 { 942 va_list ap; 943 944 va_start(ap, fmt); 945 aprint_naive_internal(device_xname(dv), fmt, ap); 946 va_end(ap); 947 } 948 949 void 950 aprint_naive_ifnet(struct ifnet *ifp, const char *fmt, ...) 951 { 952 va_list ap; 953 954 va_start(ap, fmt); 955 aprint_naive_internal(ifp->if_xname, fmt, ap); 956 va_end(ap); 957 } 958 959 /* 960 * aprint_verbose: Send to console only if AB_VERBOSE. Always 961 * goes to the log. 962 */ 963 static void 964 aprint_verbose_internal(const char *prefix, const char *fmt, va_list ap) 965 { 966 int flags = TOLOG; 967 968 if (boothowto & AB_VERBOSE) 969 flags |= TOCONS; 970 971 kprintf_lock(); 972 973 if (prefix) 974 kprintf_internal("%s: ", flags, NULL, NULL, prefix); 975 kprintf(fmt, flags, NULL, NULL, ap); 976 977 kprintf_unlock(); 978 979 if (!panicstr) 980 logwakeup(); 981 } 982 983 void 984 aprint_verbose(const char *fmt, ...) 985 { 986 va_list ap; 987 988 va_start(ap, fmt); 989 aprint_verbose_internal(NULL, fmt, ap); 990 va_end(ap); 991 } 992 993 void 994 aprint_verbose_dev(device_t dv, const char *fmt, ...) 995 { 996 va_list ap; 997 998 va_start(ap, fmt); 999 aprint_verbose_internal(device_xname(dv), fmt, ap); 1000 va_end(ap); 1001 } 1002 1003 void 1004 aprint_verbose_ifnet(struct ifnet *ifp, const char *fmt, ...) 1005 { 1006 va_list ap; 1007 1008 va_start(ap, fmt); 1009 aprint_verbose_internal(ifp->if_xname, fmt, ap); 1010 va_end(ap); 1011 } 1012 1013 /* 1014 * aprint_debug: Send to console and log only if AB_DEBUG. 1015 */ 1016 static void 1017 aprint_debug_internal(const char *prefix, const char *fmt, va_list ap) 1018 { 1019 if ((boothowto & AB_DEBUG) == 0) 1020 return; 1021 1022 kprintf_lock(); 1023 1024 if (prefix) 1025 kprintf_internal("%s: ", TOCONS | TOLOG, NULL, NULL, prefix); 1026 kprintf(fmt, TOCONS | TOLOG, NULL, NULL, ap); 1027 1028 kprintf_unlock(); 1029 } 1030 1031 void 1032 aprint_debug(const char *fmt, ...) 1033 { 1034 va_list ap; 1035 1036 va_start(ap, fmt); 1037 aprint_debug_internal(NULL, fmt, ap); 1038 va_end(ap); 1039 } 1040 1041 void 1042 aprint_debug_dev(device_t dv, const char *fmt, ...) 1043 { 1044 va_list ap; 1045 1046 va_start(ap, fmt); 1047 aprint_debug_internal(device_xname(dv), fmt, ap); 1048 va_end(ap); 1049 } 1050 1051 void 1052 aprint_debug_ifnet(struct ifnet *ifp, const char *fmt, ...) 1053 { 1054 va_list ap; 1055 1056 va_start(ap, fmt); 1057 aprint_debug_internal(ifp->if_xname, fmt, ap); 1058 va_end(ap); 1059 } 1060 1061 void 1062 printf_tolog(const char *fmt, ...) 1063 { 1064 va_list ap; 1065 1066 kprintf_lock(); 1067 1068 va_start(ap, fmt); 1069 kprintf(fmt, TOLOG, NULL, NULL, ap); 1070 va_end(ap); 1071 1072 kprintf_unlock(); 1073 } 1074 1075 /* 1076 * printf_nolog: Like printf(), but does not send message to the log. 1077 */ 1078 1079 void 1080 printf_nolog(const char *fmt, ...) 1081 { 1082 va_list ap; 1083 1084 kprintf_lock(); 1085 1086 va_start(ap, fmt); 1087 kprintf(fmt, TOCONS, NULL, NULL, ap); 1088 va_end(ap); 1089 1090 kprintf_unlock(); 1091 } 1092 1093 /* 1094 * normal kernel printf functions: printf, vprintf, snprintf, vsnprintf 1095 */ 1096 1097 /* 1098 * printf: print a message to the console and the log 1099 */ 1100 void 1101 printf(const char *fmt, ...) 1102 { 1103 va_list ap; 1104 1105 kprintf_lock(); 1106 1107 va_start(ap, fmt); 1108 kprintf(fmt, TOCONS | TOLOG, NULL, NULL, ap); 1109 va_end(ap); 1110 1111 kprintf_unlock(); 1112 1113 if (!panicstr) 1114 logwakeup(); 1115 } 1116 1117 /* 1118 * vprintf: print a message to the console and the log [already have 1119 * va_list] 1120 */ 1121 1122 void 1123 vprintf(const char *fmt, va_list ap) 1124 { 1125 kprintf_lock(); 1126 1127 kprintf(fmt, TOCONS | TOLOG, NULL, NULL, ap); 1128 1129 kprintf_unlock(); 1130 1131 if (!panicstr) 1132 logwakeup(); 1133 } 1134 1135 /* 1136 * snprintf: print a message to a buffer 1137 */ 1138 int 1139 snprintf(char *bf, size_t size, const char *fmt, ...) 1140 { 1141 int retval; 1142 va_list ap; 1143 1144 va_start(ap, fmt); 1145 retval = vsnprintf(bf, size, fmt, ap); 1146 va_end(ap); 1147 1148 return retval; 1149 } 1150 1151 /* 1152 * vsnprintf: print a message to a buffer [already have va_list] 1153 */ 1154 int 1155 vsnprintf(char *bf, size_t size, const char *fmt, va_list ap) 1156 { 1157 int retval; 1158 char *p; 1159 1160 p = bf + size; 1161 retval = kprintf(fmt, TOBUFONLY, &p, bf, ap); 1162 if (bf && size > 0) { 1163 /* nul terminate */ 1164 if (size <= (size_t)retval) 1165 bf[size - 1] = '\0'; 1166 else 1167 bf[retval] = '\0'; 1168 } 1169 return retval; 1170 } 1171 1172 /* 1173 * kprintf: scaled down version of printf(3). 1174 * 1175 * this version based on vfprintf() from libc which was derived from 1176 * software contributed to Berkeley by Chris Torek. 1177 * 1178 * NOTE: The kprintf mutex must be held if we're going TOBUF or TOCONS! 1179 */ 1180 1181 /* 1182 * macros for converting digits to letters and vice versa 1183 */ 1184 #define to_digit(c) ((c) - '0') 1185 #define is_digit(c) ((unsigned)to_digit(c) <= 9) 1186 #define to_char(n) ((n) + '0') 1187 1188 /* 1189 * flags used during conversion. 1190 */ 1191 #define ALT 0x001 /* alternate form */ 1192 #define HEXPREFIX 0x002 /* add 0x or 0X prefix */ 1193 #define LADJUST 0x004 /* left adjustment */ 1194 #define LONGDBL 0x008 /* long double; unimplemented */ 1195 #define LONGINT 0x010 /* long integer */ 1196 #define QUADINT 0x020 /* quad integer */ 1197 #define SHORTINT 0x040 /* short integer */ 1198 #define MAXINT 0x080 /* intmax_t */ 1199 #define PTRINT 0x100 /* intptr_t */ 1200 #define SIZEINT 0x200 /* size_t */ 1201 #define ZEROPAD 0x400 /* zero (as opposed to blank) pad */ 1202 #define FPT 0x800 /* Floating point number */ 1203 1204 /* 1205 * To extend shorts properly, we need both signed and unsigned 1206 * argument extraction methods. 1207 */ 1208 #define SARG() \ 1209 (flags&MAXINT ? va_arg(ap, intmax_t) : \ 1210 flags&PTRINT ? va_arg(ap, intptr_t) : \ 1211 flags&SIZEINT ? va_arg(ap, ssize_t) : /* XXX */ \ 1212 flags&QUADINT ? va_arg(ap, quad_t) : \ 1213 flags&LONGINT ? va_arg(ap, long) : \ 1214 flags&SHORTINT ? (long)(short)va_arg(ap, int) : \ 1215 (long)va_arg(ap, int)) 1216 #define UARG() \ 1217 (flags&MAXINT ? va_arg(ap, uintmax_t) : \ 1218 flags&PTRINT ? va_arg(ap, uintptr_t) : \ 1219 flags&SIZEINT ? va_arg(ap, size_t) : \ 1220 flags&QUADINT ? va_arg(ap, u_quad_t) : \ 1221 flags&LONGINT ? va_arg(ap, u_long) : \ 1222 flags&SHORTINT ? (u_long)(u_short)va_arg(ap, int) : \ 1223 (u_long)va_arg(ap, u_int)) 1224 1225 #define KPRINTF_PUTCHAR(C) { \ 1226 if (oflags == TOBUFONLY) { \ 1227 if (sbuf && ((vp == NULL) || (sbuf < tailp))) \ 1228 *sbuf++ = (C); \ 1229 } else { \ 1230 putchar((C), oflags, vp); \ 1231 } \ 1232 } 1233 1234 void 1235 device_printf(device_t dev, const char *fmt, ...) 1236 { 1237 va_list ap; 1238 1239 va_start(ap, fmt); 1240 printf("%s: ", device_xname(dev)); 1241 vprintf(fmt, ap); 1242 va_end(ap); 1243 return; 1244 } 1245 1246 /* 1247 * Guts of kernel printf. Note, we already expect to be in a mutex! 1248 */ 1249 int 1250 kprintf(const char *fmt0, int oflags, void *vp, char *sbuf, va_list ap) 1251 { 1252 const char *fmt; /* format string */ 1253 int ch; /* character from fmt */ 1254 int n; /* handy integer (short term usage) */ 1255 char *cp; /* handy char pointer (short term usage) */ 1256 int flags; /* flags as above */ 1257 int ret; /* return value accumulator */ 1258 int width; /* width from format (%8d), or 0 */ 1259 int prec; /* precision from format (%.3d), or -1 */ 1260 char sign; /* sign prefix (' ', '+', '-', or \0) */ 1261 1262 u_quad_t _uquad; /* integer arguments %[diouxX] */ 1263 enum { OCT, DEC, HEX } base;/* base for [diouxX] conversion */ 1264 int dprec; /* a copy of prec if [diouxX], 0 otherwise */ 1265 int realsz; /* field size expanded by dprec */ 1266 int size; /* size of converted field or string */ 1267 const char *xdigs; /* digits for [xX] conversion */ 1268 char bf[KPRINTF_BUFSIZE]; /* space for %c, %[diouxX] */ 1269 char *tailp; /* tail pointer for snprintf */ 1270 1271 if (oflags == TOBUFONLY && (vp != NULL)) 1272 tailp = *(char **)vp; 1273 else 1274 tailp = NULL; 1275 1276 cp = NULL; /* XXX: shutup gcc */ 1277 size = 0; /* XXX: shutup gcc */ 1278 1279 fmt = fmt0; 1280 ret = 0; 1281 1282 xdigs = NULL; /* XXX: shut up gcc warning */ 1283 1284 /* 1285 * Scan the format for conversions (`%' character). 1286 */ 1287 for (;;) { 1288 for (; *fmt != '%' && *fmt; fmt++) { 1289 ret++; 1290 KPRINTF_PUTCHAR(*fmt); 1291 } 1292 if (*fmt == 0) 1293 goto done; 1294 1295 fmt++; /* skip over '%' */ 1296 1297 flags = 0; 1298 dprec = 0; 1299 width = 0; 1300 prec = -1; 1301 sign = '\0'; 1302 1303 rflag: ch = *fmt++; 1304 reswitch: switch (ch) { 1305 case ' ': 1306 /* 1307 * ``If the space and + flags both appear, the space 1308 * flag will be ignored.'' 1309 * -- ANSI X3J11 1310 */ 1311 if (!sign) 1312 sign = ' '; 1313 goto rflag; 1314 case '#': 1315 flags |= ALT; 1316 goto rflag; 1317 case '*': 1318 /* 1319 * ``A negative field width argument is taken as a 1320 * - flag followed by a positive field width.'' 1321 * -- ANSI X3J11 1322 * They don't exclude field widths read from args. 1323 */ 1324 if ((width = va_arg(ap, int)) >= 0) 1325 goto rflag; 1326 width = -width; 1327 /* FALLTHROUGH */ 1328 case '-': 1329 flags |= LADJUST; 1330 goto rflag; 1331 case '+': 1332 sign = '+'; 1333 goto rflag; 1334 case '.': 1335 if ((ch = *fmt++) == '*') { 1336 n = va_arg(ap, int); 1337 prec = n < 0 ? -1 : n; 1338 goto rflag; 1339 } 1340 n = 0; 1341 while (is_digit(ch)) { 1342 n = 10 * n + to_digit(ch); 1343 ch = *fmt++; 1344 } 1345 prec = n < 0 ? -1 : n; 1346 goto reswitch; 1347 case '0': 1348 /* 1349 * ``Note that 0 is taken as a flag, not as the 1350 * beginning of a field width.'' 1351 * -- ANSI X3J11 1352 */ 1353 flags |= ZEROPAD; 1354 goto rflag; 1355 case '1': case '2': case '3': case '4': 1356 case '5': case '6': case '7': case '8': case '9': 1357 n = 0; 1358 do { 1359 n = 10 * n + to_digit(ch); 1360 ch = *fmt++; 1361 } while (is_digit(ch)); 1362 width = n; 1363 goto reswitch; 1364 case 'h': 1365 flags |= SHORTINT; 1366 goto rflag; 1367 case 'j': 1368 flags |= MAXINT; 1369 goto rflag; 1370 case 'l': 1371 if (*fmt == 'l') { 1372 fmt++; 1373 flags |= QUADINT; 1374 } else { 1375 flags |= LONGINT; 1376 } 1377 goto rflag; 1378 case 'q': 1379 flags |= QUADINT; 1380 goto rflag; 1381 case 't': 1382 flags |= PTRINT; 1383 goto rflag; 1384 case 'z': 1385 flags |= SIZEINT; 1386 goto rflag; 1387 case 'c': 1388 *(cp = bf) = va_arg(ap, int); 1389 size = 1; 1390 sign = '\0'; 1391 break; 1392 case 'D': 1393 flags |= LONGINT; 1394 /*FALLTHROUGH*/ 1395 case 'd': 1396 case 'i': 1397 _uquad = SARG(); 1398 if ((quad_t)_uquad < 0) { 1399 _uquad = -_uquad; 1400 sign = '-'; 1401 } 1402 base = DEC; 1403 goto number; 1404 case 'n': 1405 if (flags & MAXINT) 1406 *va_arg(ap, intmax_t *) = ret; 1407 else if (flags & PTRINT) 1408 *va_arg(ap, intptr_t *) = ret; 1409 else if (flags & SIZEINT) 1410 *va_arg(ap, ssize_t *) = ret; 1411 else if (flags & QUADINT) 1412 *va_arg(ap, quad_t *) = ret; 1413 else if (flags & LONGINT) 1414 *va_arg(ap, long *) = ret; 1415 else if (flags & SHORTINT) 1416 *va_arg(ap, short *) = ret; 1417 else 1418 *va_arg(ap, int *) = ret; 1419 continue; /* no output */ 1420 case 'O': 1421 flags |= LONGINT; 1422 /*FALLTHROUGH*/ 1423 case 'o': 1424 _uquad = UARG(); 1425 base = OCT; 1426 goto nosign; 1427 case 'p': 1428 /* 1429 * ``The argument shall be a pointer to void. The 1430 * value of the pointer is converted to a sequence 1431 * of printable characters, in an implementation- 1432 * defined manner.'' 1433 * -- ANSI X3J11 1434 */ 1435 /* NOSTRICT */ 1436 _uquad = (u_long)va_arg(ap, void *); 1437 base = HEX; 1438 xdigs = hexdigits; 1439 flags |= HEXPREFIX; 1440 ch = 'x'; 1441 goto nosign; 1442 case 's': 1443 if ((cp = va_arg(ap, char *)) == NULL) 1444 /*XXXUNCONST*/ 1445 cp = __UNCONST("(null)"); 1446 if (prec >= 0) { 1447 /* 1448 * can't use strlen; can only look for the 1449 * NUL in the first `prec' characters, and 1450 * strlen() will go further. 1451 */ 1452 char *p = memchr(cp, 0, prec); 1453 1454 if (p != NULL) { 1455 size = p - cp; 1456 if (size > prec) 1457 size = prec; 1458 } else 1459 size = prec; 1460 } else 1461 size = strlen(cp); 1462 sign = '\0'; 1463 break; 1464 case 'U': 1465 flags |= LONGINT; 1466 /*FALLTHROUGH*/ 1467 case 'u': 1468 _uquad = UARG(); 1469 base = DEC; 1470 goto nosign; 1471 case 'X': 1472 xdigs = HEXDIGITS; 1473 goto hex; 1474 case 'x': 1475 xdigs = hexdigits; 1476 hex: _uquad = UARG(); 1477 base = HEX; 1478 /* leading 0x/X only if non-zero */ 1479 if (flags & ALT && _uquad != 0) 1480 flags |= HEXPREFIX; 1481 1482 /* unsigned conversions */ 1483 nosign: sign = '\0'; 1484 /* 1485 * ``... diouXx conversions ... if a precision is 1486 * specified, the 0 flag will be ignored.'' 1487 * -- ANSI X3J11 1488 */ 1489 number: if ((dprec = prec) >= 0) 1490 flags &= ~ZEROPAD; 1491 1492 /* 1493 * ``The result of converting a zero value with an 1494 * explicit precision of zero is no characters.'' 1495 * -- ANSI X3J11 1496 */ 1497 cp = bf + KPRINTF_BUFSIZE; 1498 if (_uquad != 0 || prec != 0) { 1499 /* 1500 * Unsigned mod is hard, and unsigned mod 1501 * by a constant is easier than that by 1502 * a variable; hence this switch. 1503 */ 1504 switch (base) { 1505 case OCT: 1506 do { 1507 *--cp = to_char(_uquad & 7); 1508 _uquad >>= 3; 1509 } while (_uquad); 1510 /* handle octal leading 0 */ 1511 if (flags & ALT && *cp != '0') 1512 *--cp = '0'; 1513 break; 1514 1515 case DEC: 1516 /* many numbers are 1 digit */ 1517 while (_uquad >= 10) { 1518 *--cp = to_char(_uquad % 10); 1519 _uquad /= 10; 1520 } 1521 *--cp = to_char(_uquad); 1522 break; 1523 1524 case HEX: 1525 do { 1526 *--cp = xdigs[_uquad & 15]; 1527 _uquad >>= 4; 1528 } while (_uquad); 1529 break; 1530 1531 default: 1532 /*XXXUNCONST*/ 1533 cp = __UNCONST("bug in kprintf: bad base"); 1534 size = strlen(cp); 1535 goto skipsize; 1536 } 1537 } 1538 size = bf + KPRINTF_BUFSIZE - cp; 1539 skipsize: 1540 break; 1541 default: /* "%?" prints ?, unless ? is NUL */ 1542 if (ch == '\0') 1543 goto done; 1544 /* pretend it was %c with argument ch */ 1545 cp = bf; 1546 *cp = ch; 1547 size = 1; 1548 sign = '\0'; 1549 break; 1550 } 1551 1552 /* 1553 * All reasonable formats wind up here. At this point, `cp' 1554 * points to a string which (if not flags&LADJUST) should be 1555 * padded out to `width' places. If flags&ZEROPAD, it should 1556 * first be prefixed by any sign or other prefix; otherwise, 1557 * it should be blank padded before the prefix is emitted. 1558 * After any left-hand padding and prefixing, emit zeroes 1559 * required by a decimal [diouxX] precision, then print the 1560 * string proper, then emit zeroes required by any leftover 1561 * floating precision; finally, if LADJUST, pad with blanks. 1562 * 1563 * Compute actual size, so we know how much to pad. 1564 * size excludes decimal prec; realsz includes it. 1565 */ 1566 realsz = dprec > size ? dprec : size; 1567 if (sign) 1568 realsz++; 1569 else if (flags & HEXPREFIX) 1570 realsz+= 2; 1571 1572 /* adjust ret */ 1573 ret += width > realsz ? width : realsz; 1574 1575 /* right-adjusting blank padding */ 1576 if ((flags & (LADJUST|ZEROPAD)) == 0) { 1577 n = width - realsz; 1578 while (n-- > 0) 1579 KPRINTF_PUTCHAR(' '); 1580 } 1581 1582 /* prefix */ 1583 if (sign) { 1584 KPRINTF_PUTCHAR(sign); 1585 } else if (flags & HEXPREFIX) { 1586 KPRINTF_PUTCHAR('0'); 1587 KPRINTF_PUTCHAR(ch); 1588 } 1589 1590 /* right-adjusting zero padding */ 1591 if ((flags & (LADJUST|ZEROPAD)) == ZEROPAD) { 1592 n = width - realsz; 1593 while (n-- > 0) 1594 KPRINTF_PUTCHAR('0'); 1595 } 1596 1597 /* leading zeroes from decimal precision */ 1598 n = dprec - size; 1599 while (n-- > 0) 1600 KPRINTF_PUTCHAR('0'); 1601 1602 /* the string or number proper */ 1603 for (; size--; cp++) 1604 KPRINTF_PUTCHAR(*cp); 1605 /* left-adjusting padding (always blank) */ 1606 if (flags & LADJUST) { 1607 n = width - realsz; 1608 while (n-- > 0) 1609 KPRINTF_PUTCHAR(' '); 1610 } 1611 } 1612 1613 done: 1614 if ((oflags == TOBUFONLY) && (vp != NULL)) 1615 *(char **)vp = sbuf; 1616 (*v_flush)(); 1617 1618 #ifdef RND_PRINTF 1619 if (!cold) { 1620 struct timespec ts; 1621 (void)nanotime(&ts); 1622 SHA512_Update(&kprnd_sha, (char *)&ts, sizeof(ts)); 1623 } 1624 #endif 1625 return ret; 1626 } 1627