xref: /netbsd-src/sys/kern/subr_pool.c (revision fff57c5525bbe431aee7bdb3983954f0627a42cb)
1 /*	$NetBSD: subr_pool.c,v 1.161 2008/05/31 13:31:25 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.161 2008/05/31 13:31:25 ad Exp $");
35 
36 #include "opt_ddb.h"
37 #include "opt_pool.h"
38 #include "opt_poollog.h"
39 #include "opt_lockdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bitops.h>
44 #include <sys/proc.h>
45 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/debug.h>
51 #include <sys/lockdebug.h>
52 #include <sys/xcall.h>
53 #include <sys/cpu.h>
54 #include <sys/atomic.h>
55 
56 #include <uvm/uvm.h>
57 
58 /*
59  * Pool resource management utility.
60  *
61  * Memory is allocated in pages which are split into pieces according to
62  * the pool item size. Each page is kept on one of three lists in the
63  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
64  * for empty, full and partially-full pages respectively. The individual
65  * pool items are on a linked list headed by `ph_itemlist' in each page
66  * header. The memory for building the page list is either taken from
67  * the allocated pages themselves (for small pool items) or taken from
68  * an internal pool of page headers (`phpool').
69  */
70 
71 /* List of all pools */
72 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
73 
74 /* Private pool for page header structures */
75 #define	PHPOOL_MAX	8
76 static struct pool phpool[PHPOOL_MAX];
77 #define	PHPOOL_FREELIST_NELEM(idx) \
78 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
79 
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84 
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
87 
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90 
91 /* allocator for pool metadata */
92 struct pool_allocator pool_allocator_meta = {
93 	pool_page_alloc_meta, pool_page_free_meta,
94 	.pa_backingmapptr = &kmem_map,
95 };
96 
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99 
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool	*drainpp;
102 
103 /* This lock protects both pool_head and drainpp. */
104 static kmutex_t pool_head_lock;
105 static kcondvar_t pool_busy;
106 
107 typedef uint32_t pool_item_bitmap_t;
108 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
109 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
110 
111 struct pool_item_header {
112 	/* Page headers */
113 	LIST_ENTRY(pool_item_header)
114 				ph_pagelist;	/* pool page list */
115 	SPLAY_ENTRY(pool_item_header)
116 				ph_node;	/* Off-page page headers */
117 	void *			ph_page;	/* this page's address */
118 	uint32_t		ph_time;	/* last referenced */
119 	uint16_t		ph_nmissing;	/* # of chunks in use */
120 	uint16_t		ph_off;		/* start offset in page */
121 	union {
122 		/* !PR_NOTOUCH */
123 		struct {
124 			LIST_HEAD(, pool_item)
125 				phu_itemlist;	/* chunk list for this page */
126 		} phu_normal;
127 		/* PR_NOTOUCH */
128 		struct {
129 			pool_item_bitmap_t phu_bitmap[1];
130 		} phu_notouch;
131 	} ph_u;
132 };
133 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
134 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
135 
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 	u_int pi_magic;
139 #endif
140 #define	PI_MAGIC 0xdeaddeadU
141 	/* Other entries use only this list entry */
142 	LIST_ENTRY(pool_item)	pi_list;
143 };
144 
145 #define	POOL_NEEDS_CATCHUP(pp)						\
146 	((pp)->pr_nitems < (pp)->pr_minitems)
147 
148 /*
149  * Pool cache management.
150  *
151  * Pool caches provide a way for constructed objects to be cached by the
152  * pool subsystem.  This can lead to performance improvements by avoiding
153  * needless object construction/destruction; it is deferred until absolutely
154  * necessary.
155  *
156  * Caches are grouped into cache groups.  Each cache group references up
157  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
158  * object from the pool, it calls the object's constructor and places it
159  * into a cache group.  When a cache group frees an object back to the
160  * pool, it first calls the object's destructor.  This allows the object
161  * to persist in constructed form while freed to the cache.
162  *
163  * The pool references each cache, so that when a pool is drained by the
164  * pagedaemon, it can drain each individual cache as well.  Each time a
165  * cache is drained, the most idle cache group is freed to the pool in
166  * its entirety.
167  *
168  * Pool caches are layed on top of pools.  By layering them, we can avoid
169  * the complexity of cache management for pools which would not benefit
170  * from it.
171  */
172 
173 static struct pool pcg_normal_pool;
174 static struct pool pcg_large_pool;
175 static struct pool cache_pool;
176 static struct pool cache_cpu_pool;
177 
178 /* List of all caches. */
179 TAILQ_HEAD(,pool_cache) pool_cache_head =
180     TAILQ_HEAD_INITIALIZER(pool_cache_head);
181 
182 int pool_cache_disable;
183 
184 
185 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
186 					     void *, paddr_t);
187 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
188 					     void **, paddr_t *, int);
189 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
190 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
191 static void	pool_cache_xcall(pool_cache_t);
192 
193 static int	pool_catchup(struct pool *);
194 static void	pool_prime_page(struct pool *, void *,
195 		    struct pool_item_header *);
196 static void	pool_update_curpage(struct pool *);
197 
198 static int	pool_grow(struct pool *, int);
199 static void	*pool_allocator_alloc(struct pool *, int);
200 static void	pool_allocator_free(struct pool *, void *);
201 
202 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
203 	void (*)(const char *, ...));
204 static void pool_print1(struct pool *, const char *,
205 	void (*)(const char *, ...));
206 
207 static int pool_chk_page(struct pool *, const char *,
208 			 struct pool_item_header *);
209 
210 /*
211  * Pool log entry. An array of these is allocated in pool_init().
212  */
213 struct pool_log {
214 	const char	*pl_file;
215 	long		pl_line;
216 	int		pl_action;
217 #define	PRLOG_GET	1
218 #define	PRLOG_PUT	2
219 	void		*pl_addr;
220 };
221 
222 #ifdef POOL_DIAGNOSTIC
223 /* Number of entries in pool log buffers */
224 #ifndef POOL_LOGSIZE
225 #define	POOL_LOGSIZE	10
226 #endif
227 
228 int pool_logsize = POOL_LOGSIZE;
229 
230 static inline void
231 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
232 {
233 	int n = pp->pr_curlogentry;
234 	struct pool_log *pl;
235 
236 	if ((pp->pr_roflags & PR_LOGGING) == 0)
237 		return;
238 
239 	/*
240 	 * Fill in the current entry. Wrap around and overwrite
241 	 * the oldest entry if necessary.
242 	 */
243 	pl = &pp->pr_log[n];
244 	pl->pl_file = file;
245 	pl->pl_line = line;
246 	pl->pl_action = action;
247 	pl->pl_addr = v;
248 	if (++n >= pp->pr_logsize)
249 		n = 0;
250 	pp->pr_curlogentry = n;
251 }
252 
253 static void
254 pr_printlog(struct pool *pp, struct pool_item *pi,
255     void (*pr)(const char *, ...))
256 {
257 	int i = pp->pr_logsize;
258 	int n = pp->pr_curlogentry;
259 
260 	if ((pp->pr_roflags & PR_LOGGING) == 0)
261 		return;
262 
263 	/*
264 	 * Print all entries in this pool's log.
265 	 */
266 	while (i-- > 0) {
267 		struct pool_log *pl = &pp->pr_log[n];
268 		if (pl->pl_action != 0) {
269 			if (pi == NULL || pi == pl->pl_addr) {
270 				(*pr)("\tlog entry %d:\n", i);
271 				(*pr)("\t\taction = %s, addr = %p\n",
272 				    pl->pl_action == PRLOG_GET ? "get" : "put",
273 				    pl->pl_addr);
274 				(*pr)("\t\tfile: %s at line %lu\n",
275 				    pl->pl_file, pl->pl_line);
276 			}
277 		}
278 		if (++n >= pp->pr_logsize)
279 			n = 0;
280 	}
281 }
282 
283 static inline void
284 pr_enter(struct pool *pp, const char *file, long line)
285 {
286 
287 	if (__predict_false(pp->pr_entered_file != NULL)) {
288 		printf("pool %s: reentrancy at file %s line %ld\n",
289 		    pp->pr_wchan, file, line);
290 		printf("         previous entry at file %s line %ld\n",
291 		    pp->pr_entered_file, pp->pr_entered_line);
292 		panic("pr_enter");
293 	}
294 
295 	pp->pr_entered_file = file;
296 	pp->pr_entered_line = line;
297 }
298 
299 static inline void
300 pr_leave(struct pool *pp)
301 {
302 
303 	if (__predict_false(pp->pr_entered_file == NULL)) {
304 		printf("pool %s not entered?\n", pp->pr_wchan);
305 		panic("pr_leave");
306 	}
307 
308 	pp->pr_entered_file = NULL;
309 	pp->pr_entered_line = 0;
310 }
311 
312 static inline void
313 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
314 {
315 
316 	if (pp->pr_entered_file != NULL)
317 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
318 		    pp->pr_entered_file, pp->pr_entered_line);
319 }
320 #else
321 #define	pr_log(pp, v, action, file, line)
322 #define	pr_printlog(pp, pi, pr)
323 #define	pr_enter(pp, file, line)
324 #define	pr_leave(pp)
325 #define	pr_enter_check(pp, pr)
326 #endif /* POOL_DIAGNOSTIC */
327 
328 static inline unsigned int
329 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
330     const void *v)
331 {
332 	const char *cp = v;
333 	unsigned int idx;
334 
335 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
336 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
337 	KASSERT(idx < pp->pr_itemsperpage);
338 	return idx;
339 }
340 
341 static inline void
342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
343     void *obj)
344 {
345 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
346 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
347 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
348 
349 	KASSERT((*bitmap & mask) == 0);
350 	*bitmap |= mask;
351 }
352 
353 static inline void *
354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
355 {
356 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
357 	unsigned int idx;
358 	int i;
359 
360 	for (i = 0; ; i++) {
361 		int bit;
362 
363 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
364 		bit = ffs32(bitmap[i]);
365 		if (bit) {
366 			pool_item_bitmap_t mask;
367 
368 			bit--;
369 			idx = (i * BITMAP_SIZE) + bit;
370 			mask = 1 << bit;
371 			KASSERT((bitmap[i] & mask) != 0);
372 			bitmap[i] &= ~mask;
373 			break;
374 		}
375 	}
376 	KASSERT(idx < pp->pr_itemsperpage);
377 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
378 }
379 
380 static inline void
381 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
382 {
383 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
384 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
385 	int i;
386 
387 	for (i = 0; i < n; i++) {
388 		bitmap[i] = (pool_item_bitmap_t)-1;
389 	}
390 }
391 
392 static inline int
393 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
394 {
395 
396 	/*
397 	 * we consider pool_item_header with smaller ph_page bigger.
398 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
399 	 */
400 
401 	if (a->ph_page < b->ph_page)
402 		return (1);
403 	else if (a->ph_page > b->ph_page)
404 		return (-1);
405 	else
406 		return (0);
407 }
408 
409 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
410 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
411 
412 static inline struct pool_item_header *
413 pr_find_pagehead_noalign(struct pool *pp, void *v)
414 {
415 	struct pool_item_header *ph, tmp;
416 
417 	tmp.ph_page = (void *)(uintptr_t)v;
418 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
419 	if (ph == NULL) {
420 		ph = SPLAY_ROOT(&pp->pr_phtree);
421 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
422 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
423 		}
424 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
425 	}
426 
427 	return ph;
428 }
429 
430 /*
431  * Return the pool page header based on item address.
432  */
433 static inline struct pool_item_header *
434 pr_find_pagehead(struct pool *pp, void *v)
435 {
436 	struct pool_item_header *ph, tmp;
437 
438 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
439 		ph = pr_find_pagehead_noalign(pp, v);
440 	} else {
441 		void *page =
442 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
443 
444 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
445 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
446 		} else {
447 			tmp.ph_page = page;
448 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
449 		}
450 	}
451 
452 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
453 	    ((char *)ph->ph_page <= (char *)v &&
454 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
455 	return ph;
456 }
457 
458 static void
459 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
460 {
461 	struct pool_item_header *ph;
462 
463 	while ((ph = LIST_FIRST(pq)) != NULL) {
464 		LIST_REMOVE(ph, ph_pagelist);
465 		pool_allocator_free(pp, ph->ph_page);
466 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
467 			pool_put(pp->pr_phpool, ph);
468 	}
469 }
470 
471 /*
472  * Remove a page from the pool.
473  */
474 static inline void
475 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
476      struct pool_pagelist *pq)
477 {
478 
479 	KASSERT(mutex_owned(&pp->pr_lock));
480 
481 	/*
482 	 * If the page was idle, decrement the idle page count.
483 	 */
484 	if (ph->ph_nmissing == 0) {
485 #ifdef DIAGNOSTIC
486 		if (pp->pr_nidle == 0)
487 			panic("pr_rmpage: nidle inconsistent");
488 		if (pp->pr_nitems < pp->pr_itemsperpage)
489 			panic("pr_rmpage: nitems inconsistent");
490 #endif
491 		pp->pr_nidle--;
492 	}
493 
494 	pp->pr_nitems -= pp->pr_itemsperpage;
495 
496 	/*
497 	 * Unlink the page from the pool and queue it for release.
498 	 */
499 	LIST_REMOVE(ph, ph_pagelist);
500 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
501 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
502 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
503 
504 	pp->pr_npages--;
505 	pp->pr_npagefree++;
506 
507 	pool_update_curpage(pp);
508 }
509 
510 static bool
511 pa_starved_p(struct pool_allocator *pa)
512 {
513 
514 	if (pa->pa_backingmap != NULL) {
515 		return vm_map_starved_p(pa->pa_backingmap);
516 	}
517 	return false;
518 }
519 
520 static int
521 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
522 {
523 	struct pool *pp = obj;
524 	struct pool_allocator *pa = pp->pr_alloc;
525 
526 	KASSERT(&pp->pr_reclaimerentry == ce);
527 	pool_reclaim(pp);
528 	if (!pa_starved_p(pa)) {
529 		return CALLBACK_CHAIN_ABORT;
530 	}
531 	return CALLBACK_CHAIN_CONTINUE;
532 }
533 
534 static void
535 pool_reclaim_register(struct pool *pp)
536 {
537 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
538 	int s;
539 
540 	if (map == NULL) {
541 		return;
542 	}
543 
544 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
545 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
546 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
547 	splx(s);
548 }
549 
550 static void
551 pool_reclaim_unregister(struct pool *pp)
552 {
553 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
554 	int s;
555 
556 	if (map == NULL) {
557 		return;
558 	}
559 
560 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
561 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
562 	    &pp->pr_reclaimerentry);
563 	splx(s);
564 }
565 
566 static void
567 pa_reclaim_register(struct pool_allocator *pa)
568 {
569 	struct vm_map *map = *pa->pa_backingmapptr;
570 	struct pool *pp;
571 
572 	KASSERT(pa->pa_backingmap == NULL);
573 	if (map == NULL) {
574 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
575 		return;
576 	}
577 	pa->pa_backingmap = map;
578 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
579 		pool_reclaim_register(pp);
580 	}
581 }
582 
583 /*
584  * Initialize all the pools listed in the "pools" link set.
585  */
586 void
587 pool_subsystem_init(void)
588 {
589 	struct pool_allocator *pa;
590 	__link_set_decl(pools, struct link_pool_init);
591 	struct link_pool_init * const *pi;
592 
593 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
594 	cv_init(&pool_busy, "poolbusy");
595 
596 	__link_set_foreach(pi, pools)
597 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
598 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
599 		    (*pi)->palloc, (*pi)->ipl);
600 
601 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
602 		KASSERT(pa->pa_backingmapptr != NULL);
603 		KASSERT(*pa->pa_backingmapptr != NULL);
604 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
605 		pa_reclaim_register(pa);
606 	}
607 
608 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
609 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
610 
611 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
612 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
613 }
614 
615 /*
616  * Initialize the given pool resource structure.
617  *
618  * We export this routine to allow other kernel parts to declare
619  * static pools that must be initialized before malloc() is available.
620  */
621 void
622 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
623     const char *wchan, struct pool_allocator *palloc, int ipl)
624 {
625 	struct pool *pp1;
626 	size_t trysize, phsize;
627 	int off, slack;
628 
629 #ifdef DEBUG
630 	/*
631 	 * Check that the pool hasn't already been initialised and
632 	 * added to the list of all pools.
633 	 */
634 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
635 		if (pp == pp1)
636 			panic("pool_init: pool %s already initialised",
637 			    wchan);
638 	}
639 #endif
640 
641 #ifdef POOL_DIAGNOSTIC
642 	/*
643 	 * Always log if POOL_DIAGNOSTIC is defined.
644 	 */
645 	if (pool_logsize != 0)
646 		flags |= PR_LOGGING;
647 #endif
648 
649 	if (palloc == NULL)
650 		palloc = &pool_allocator_kmem;
651 #ifdef POOL_SUBPAGE
652 	if (size > palloc->pa_pagesz) {
653 		if (palloc == &pool_allocator_kmem)
654 			palloc = &pool_allocator_kmem_fullpage;
655 		else if (palloc == &pool_allocator_nointr)
656 			palloc = &pool_allocator_nointr_fullpage;
657 	}
658 #endif /* POOL_SUBPAGE */
659 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
660 		if (palloc->pa_pagesz == 0)
661 			palloc->pa_pagesz = PAGE_SIZE;
662 
663 		TAILQ_INIT(&palloc->pa_list);
664 
665 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
666 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
667 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
668 
669 		if (palloc->pa_backingmapptr != NULL) {
670 			pa_reclaim_register(palloc);
671 		}
672 		palloc->pa_flags |= PA_INITIALIZED;
673 	}
674 
675 	if (align == 0)
676 		align = ALIGN(1);
677 
678 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
679 		size = sizeof(struct pool_item);
680 
681 	size = roundup(size, align);
682 #ifdef DIAGNOSTIC
683 	if (size > palloc->pa_pagesz)
684 		panic("pool_init: pool item size (%zu) too large", size);
685 #endif
686 
687 	/*
688 	 * Initialize the pool structure.
689 	 */
690 	LIST_INIT(&pp->pr_emptypages);
691 	LIST_INIT(&pp->pr_fullpages);
692 	LIST_INIT(&pp->pr_partpages);
693 	pp->pr_cache = NULL;
694 	pp->pr_curpage = NULL;
695 	pp->pr_npages = 0;
696 	pp->pr_minitems = 0;
697 	pp->pr_minpages = 0;
698 	pp->pr_maxpages = UINT_MAX;
699 	pp->pr_roflags = flags;
700 	pp->pr_flags = 0;
701 	pp->pr_size = size;
702 	pp->pr_align = align;
703 	pp->pr_wchan = wchan;
704 	pp->pr_alloc = palloc;
705 	pp->pr_nitems = 0;
706 	pp->pr_nout = 0;
707 	pp->pr_hardlimit = UINT_MAX;
708 	pp->pr_hardlimit_warning = NULL;
709 	pp->pr_hardlimit_ratecap.tv_sec = 0;
710 	pp->pr_hardlimit_ratecap.tv_usec = 0;
711 	pp->pr_hardlimit_warning_last.tv_sec = 0;
712 	pp->pr_hardlimit_warning_last.tv_usec = 0;
713 	pp->pr_drain_hook = NULL;
714 	pp->pr_drain_hook_arg = NULL;
715 	pp->pr_freecheck = NULL;
716 
717 	/*
718 	 * Decide whether to put the page header off page to avoid
719 	 * wasting too large a part of the page or too big item.
720 	 * Off-page page headers go on a hash table, so we can match
721 	 * a returned item with its header based on the page address.
722 	 * We use 1/16 of the page size and about 8 times of the item
723 	 * size as the threshold (XXX: tune)
724 	 *
725 	 * However, we'll put the header into the page if we can put
726 	 * it without wasting any items.
727 	 *
728 	 * Silently enforce `0 <= ioff < align'.
729 	 */
730 	pp->pr_itemoffset = ioff %= align;
731 	/* See the comment below about reserved bytes. */
732 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
733 	phsize = ALIGN(sizeof(struct pool_item_header));
734 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
735 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
736 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
737 		/* Use the end of the page for the page header */
738 		pp->pr_roflags |= PR_PHINPAGE;
739 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
740 	} else {
741 		/* The page header will be taken from our page header pool */
742 		pp->pr_phoffset = 0;
743 		off = palloc->pa_pagesz;
744 		SPLAY_INIT(&pp->pr_phtree);
745 	}
746 
747 	/*
748 	 * Alignment is to take place at `ioff' within the item. This means
749 	 * we must reserve up to `align - 1' bytes on the page to allow
750 	 * appropriate positioning of each item.
751 	 */
752 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
753 	KASSERT(pp->pr_itemsperpage != 0);
754 	if ((pp->pr_roflags & PR_NOTOUCH)) {
755 		int idx;
756 
757 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
758 		    idx++) {
759 			/* nothing */
760 		}
761 		if (idx >= PHPOOL_MAX) {
762 			/*
763 			 * if you see this panic, consider to tweak
764 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
765 			 */
766 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
767 			    pp->pr_wchan, pp->pr_itemsperpage);
768 		}
769 		pp->pr_phpool = &phpool[idx];
770 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
771 		pp->pr_phpool = &phpool[0];
772 	}
773 #if defined(DIAGNOSTIC)
774 	else {
775 		pp->pr_phpool = NULL;
776 	}
777 #endif
778 
779 	/*
780 	 * Use the slack between the chunks and the page header
781 	 * for "cache coloring".
782 	 */
783 	slack = off - pp->pr_itemsperpage * pp->pr_size;
784 	pp->pr_maxcolor = (slack / align) * align;
785 	pp->pr_curcolor = 0;
786 
787 	pp->pr_nget = 0;
788 	pp->pr_nfail = 0;
789 	pp->pr_nput = 0;
790 	pp->pr_npagealloc = 0;
791 	pp->pr_npagefree = 0;
792 	pp->pr_hiwat = 0;
793 	pp->pr_nidle = 0;
794 	pp->pr_refcnt = 0;
795 
796 #ifdef POOL_DIAGNOSTIC
797 	if (flags & PR_LOGGING) {
798 		if (kmem_map == NULL ||
799 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
800 		     M_TEMP, M_NOWAIT)) == NULL)
801 			pp->pr_roflags &= ~PR_LOGGING;
802 		pp->pr_curlogentry = 0;
803 		pp->pr_logsize = pool_logsize;
804 	}
805 #endif
806 
807 	pp->pr_entered_file = NULL;
808 	pp->pr_entered_line = 0;
809 
810 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
811 	cv_init(&pp->pr_cv, wchan);
812 	pp->pr_ipl = ipl;
813 
814 	/*
815 	 * Initialize private page header pool and cache magazine pool if we
816 	 * haven't done so yet.
817 	 * XXX LOCKING.
818 	 */
819 	if (phpool[0].pr_size == 0) {
820 		int idx;
821 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
822 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
823 			int nelem;
824 			size_t sz;
825 
826 			nelem = PHPOOL_FREELIST_NELEM(idx);
827 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
828 			    "phpool-%d", nelem);
829 			sz = sizeof(struct pool_item_header);
830 			if (nelem) {
831 				sz = offsetof(struct pool_item_header,
832 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
833 			}
834 			pool_init(&phpool[idx], sz, 0, 0, 0,
835 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
836 		}
837 #ifdef POOL_SUBPAGE
838 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
839 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
840 #endif
841 
842 		size = sizeof(pcg_t) +
843 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
844 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
845 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
846 
847 		size = sizeof(pcg_t) +
848 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
849 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
850 		    "pcglarge", &pool_allocator_meta, IPL_VM);
851 	}
852 
853 	/* Insert into the list of all pools. */
854 	if (__predict_true(!cold))
855 		mutex_enter(&pool_head_lock);
856 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
857 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
858 			break;
859 	}
860 	if (pp1 == NULL)
861 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
862 	else
863 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
864 	if (__predict_true(!cold))
865 		mutex_exit(&pool_head_lock);
866 
867 		/* Insert this into the list of pools using this allocator. */
868 	if (__predict_true(!cold))
869 		mutex_enter(&palloc->pa_lock);
870 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
871 	if (__predict_true(!cold))
872 		mutex_exit(&palloc->pa_lock);
873 
874 	pool_reclaim_register(pp);
875 }
876 
877 /*
878  * De-commision a pool resource.
879  */
880 void
881 pool_destroy(struct pool *pp)
882 {
883 	struct pool_pagelist pq;
884 	struct pool_item_header *ph;
885 
886 	/* Remove from global pool list */
887 	mutex_enter(&pool_head_lock);
888 	while (pp->pr_refcnt != 0)
889 		cv_wait(&pool_busy, &pool_head_lock);
890 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
891 	if (drainpp == pp)
892 		drainpp = NULL;
893 	mutex_exit(&pool_head_lock);
894 
895 	/* Remove this pool from its allocator's list of pools. */
896 	pool_reclaim_unregister(pp);
897 	mutex_enter(&pp->pr_alloc->pa_lock);
898 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
899 	mutex_exit(&pp->pr_alloc->pa_lock);
900 
901 	mutex_enter(&pp->pr_lock);
902 
903 	KASSERT(pp->pr_cache == NULL);
904 
905 #ifdef DIAGNOSTIC
906 	if (pp->pr_nout != 0) {
907 		pr_printlog(pp, NULL, printf);
908 		panic("pool_destroy: pool busy: still out: %u",
909 		    pp->pr_nout);
910 	}
911 #endif
912 
913 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
914 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
915 
916 	/* Remove all pages */
917 	LIST_INIT(&pq);
918 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
919 		pr_rmpage(pp, ph, &pq);
920 
921 	mutex_exit(&pp->pr_lock);
922 
923 	pr_pagelist_free(pp, &pq);
924 
925 #ifdef POOL_DIAGNOSTIC
926 	if ((pp->pr_roflags & PR_LOGGING) != 0)
927 		free(pp->pr_log, M_TEMP);
928 #endif
929 
930 	cv_destroy(&pp->pr_cv);
931 	mutex_destroy(&pp->pr_lock);
932 }
933 
934 void
935 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
936 {
937 
938 	/* XXX no locking -- must be used just after pool_init() */
939 #ifdef DIAGNOSTIC
940 	if (pp->pr_drain_hook != NULL)
941 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
942 #endif
943 	pp->pr_drain_hook = fn;
944 	pp->pr_drain_hook_arg = arg;
945 }
946 
947 static struct pool_item_header *
948 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
949 {
950 	struct pool_item_header *ph;
951 
952 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
953 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
954 	else
955 		ph = pool_get(pp->pr_phpool, flags);
956 
957 	return (ph);
958 }
959 
960 /*
961  * Grab an item from the pool.
962  */
963 void *
964 #ifdef POOL_DIAGNOSTIC
965 _pool_get(struct pool *pp, int flags, const char *file, long line)
966 #else
967 pool_get(struct pool *pp, int flags)
968 #endif
969 {
970 	struct pool_item *pi;
971 	struct pool_item_header *ph;
972 	void *v;
973 
974 #ifdef DIAGNOSTIC
975 	if (__predict_false(pp->pr_itemsperpage == 0))
976 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
977 		    "pool not initialized?", pp);
978 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
979 			    (flags & PR_WAITOK) != 0))
980 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
981 
982 #endif /* DIAGNOSTIC */
983 #ifdef LOCKDEBUG
984 	if (flags & PR_WAITOK) {
985 		ASSERT_SLEEPABLE();
986 	}
987 #endif
988 
989 	mutex_enter(&pp->pr_lock);
990 	pr_enter(pp, file, line);
991 
992  startover:
993 	/*
994 	 * Check to see if we've reached the hard limit.  If we have,
995 	 * and we can wait, then wait until an item has been returned to
996 	 * the pool.
997 	 */
998 #ifdef DIAGNOSTIC
999 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1000 		pr_leave(pp);
1001 		mutex_exit(&pp->pr_lock);
1002 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1003 	}
1004 #endif
1005 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1006 		if (pp->pr_drain_hook != NULL) {
1007 			/*
1008 			 * Since the drain hook is going to free things
1009 			 * back to the pool, unlock, call the hook, re-lock,
1010 			 * and check the hardlimit condition again.
1011 			 */
1012 			pr_leave(pp);
1013 			mutex_exit(&pp->pr_lock);
1014 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1015 			mutex_enter(&pp->pr_lock);
1016 			pr_enter(pp, file, line);
1017 			if (pp->pr_nout < pp->pr_hardlimit)
1018 				goto startover;
1019 		}
1020 
1021 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1022 			/*
1023 			 * XXX: A warning isn't logged in this case.  Should
1024 			 * it be?
1025 			 */
1026 			pp->pr_flags |= PR_WANTED;
1027 			pr_leave(pp);
1028 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1029 			pr_enter(pp, file, line);
1030 			goto startover;
1031 		}
1032 
1033 		/*
1034 		 * Log a message that the hard limit has been hit.
1035 		 */
1036 		if (pp->pr_hardlimit_warning != NULL &&
1037 		    ratecheck(&pp->pr_hardlimit_warning_last,
1038 			      &pp->pr_hardlimit_ratecap))
1039 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1040 
1041 		pp->pr_nfail++;
1042 
1043 		pr_leave(pp);
1044 		mutex_exit(&pp->pr_lock);
1045 		return (NULL);
1046 	}
1047 
1048 	/*
1049 	 * The convention we use is that if `curpage' is not NULL, then
1050 	 * it points at a non-empty bucket. In particular, `curpage'
1051 	 * never points at a page header which has PR_PHINPAGE set and
1052 	 * has no items in its bucket.
1053 	 */
1054 	if ((ph = pp->pr_curpage) == NULL) {
1055 		int error;
1056 
1057 #ifdef DIAGNOSTIC
1058 		if (pp->pr_nitems != 0) {
1059 			mutex_exit(&pp->pr_lock);
1060 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1061 			    pp->pr_wchan, pp->pr_nitems);
1062 			panic("pool_get: nitems inconsistent");
1063 		}
1064 #endif
1065 
1066 		/*
1067 		 * Call the back-end page allocator for more memory.
1068 		 * Release the pool lock, as the back-end page allocator
1069 		 * may block.
1070 		 */
1071 		pr_leave(pp);
1072 		error = pool_grow(pp, flags);
1073 		pr_enter(pp, file, line);
1074 		if (error != 0) {
1075 			/*
1076 			 * We were unable to allocate a page or item
1077 			 * header, but we released the lock during
1078 			 * allocation, so perhaps items were freed
1079 			 * back to the pool.  Check for this case.
1080 			 */
1081 			if (pp->pr_curpage != NULL)
1082 				goto startover;
1083 
1084 			pp->pr_nfail++;
1085 			pr_leave(pp);
1086 			mutex_exit(&pp->pr_lock);
1087 			return (NULL);
1088 		}
1089 
1090 		/* Start the allocation process over. */
1091 		goto startover;
1092 	}
1093 	if (pp->pr_roflags & PR_NOTOUCH) {
1094 #ifdef DIAGNOSTIC
1095 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1096 			pr_leave(pp);
1097 			mutex_exit(&pp->pr_lock);
1098 			panic("pool_get: %s: page empty", pp->pr_wchan);
1099 		}
1100 #endif
1101 		v = pr_item_notouch_get(pp, ph);
1102 #ifdef POOL_DIAGNOSTIC
1103 		pr_log(pp, v, PRLOG_GET, file, line);
1104 #endif
1105 	} else {
1106 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1107 		if (__predict_false(v == NULL)) {
1108 			pr_leave(pp);
1109 			mutex_exit(&pp->pr_lock);
1110 			panic("pool_get: %s: page empty", pp->pr_wchan);
1111 		}
1112 #ifdef DIAGNOSTIC
1113 		if (__predict_false(pp->pr_nitems == 0)) {
1114 			pr_leave(pp);
1115 			mutex_exit(&pp->pr_lock);
1116 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1117 			    pp->pr_wchan, pp->pr_nitems);
1118 			panic("pool_get: nitems inconsistent");
1119 		}
1120 #endif
1121 
1122 #ifdef POOL_DIAGNOSTIC
1123 		pr_log(pp, v, PRLOG_GET, file, line);
1124 #endif
1125 
1126 #ifdef DIAGNOSTIC
1127 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1128 			pr_printlog(pp, pi, printf);
1129 			panic("pool_get(%s): free list modified: "
1130 			    "magic=%x; page %p; item addr %p\n",
1131 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1132 		}
1133 #endif
1134 
1135 		/*
1136 		 * Remove from item list.
1137 		 */
1138 		LIST_REMOVE(pi, pi_list);
1139 	}
1140 	pp->pr_nitems--;
1141 	pp->pr_nout++;
1142 	if (ph->ph_nmissing == 0) {
1143 #ifdef DIAGNOSTIC
1144 		if (__predict_false(pp->pr_nidle == 0))
1145 			panic("pool_get: nidle inconsistent");
1146 #endif
1147 		pp->pr_nidle--;
1148 
1149 		/*
1150 		 * This page was previously empty.  Move it to the list of
1151 		 * partially-full pages.  This page is already curpage.
1152 		 */
1153 		LIST_REMOVE(ph, ph_pagelist);
1154 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1155 	}
1156 	ph->ph_nmissing++;
1157 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1158 #ifdef DIAGNOSTIC
1159 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1160 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1161 			pr_leave(pp);
1162 			mutex_exit(&pp->pr_lock);
1163 			panic("pool_get: %s: nmissing inconsistent",
1164 			    pp->pr_wchan);
1165 		}
1166 #endif
1167 		/*
1168 		 * This page is now full.  Move it to the full list
1169 		 * and select a new current page.
1170 		 */
1171 		LIST_REMOVE(ph, ph_pagelist);
1172 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1173 		pool_update_curpage(pp);
1174 	}
1175 
1176 	pp->pr_nget++;
1177 	pr_leave(pp);
1178 
1179 	/*
1180 	 * If we have a low water mark and we are now below that low
1181 	 * water mark, add more items to the pool.
1182 	 */
1183 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1184 		/*
1185 		 * XXX: Should we log a warning?  Should we set up a timeout
1186 		 * to try again in a second or so?  The latter could break
1187 		 * a caller's assumptions about interrupt protection, etc.
1188 		 */
1189 	}
1190 
1191 	mutex_exit(&pp->pr_lock);
1192 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1193 	FREECHECK_OUT(&pp->pr_freecheck, v);
1194 	return (v);
1195 }
1196 
1197 /*
1198  * Internal version of pool_put().  Pool is already locked/entered.
1199  */
1200 static void
1201 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1202 {
1203 	struct pool_item *pi = v;
1204 	struct pool_item_header *ph;
1205 
1206 	KASSERT(mutex_owned(&pp->pr_lock));
1207 	FREECHECK_IN(&pp->pr_freecheck, v);
1208 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1209 
1210 #ifdef DIAGNOSTIC
1211 	if (__predict_false(pp->pr_nout == 0)) {
1212 		printf("pool %s: putting with none out\n",
1213 		    pp->pr_wchan);
1214 		panic("pool_put");
1215 	}
1216 #endif
1217 
1218 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1219 		pr_printlog(pp, NULL, printf);
1220 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1221 	}
1222 
1223 	/*
1224 	 * Return to item list.
1225 	 */
1226 	if (pp->pr_roflags & PR_NOTOUCH) {
1227 		pr_item_notouch_put(pp, ph, v);
1228 	} else {
1229 #ifdef DIAGNOSTIC
1230 		pi->pi_magic = PI_MAGIC;
1231 #endif
1232 #ifdef DEBUG
1233 		{
1234 			int i, *ip = v;
1235 
1236 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1237 				*ip++ = PI_MAGIC;
1238 			}
1239 		}
1240 #endif
1241 
1242 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1243 	}
1244 	KDASSERT(ph->ph_nmissing != 0);
1245 	ph->ph_nmissing--;
1246 	pp->pr_nput++;
1247 	pp->pr_nitems++;
1248 	pp->pr_nout--;
1249 
1250 	/* Cancel "pool empty" condition if it exists */
1251 	if (pp->pr_curpage == NULL)
1252 		pp->pr_curpage = ph;
1253 
1254 	if (pp->pr_flags & PR_WANTED) {
1255 		pp->pr_flags &= ~PR_WANTED;
1256 		if (ph->ph_nmissing == 0)
1257 			pp->pr_nidle++;
1258 		cv_broadcast(&pp->pr_cv);
1259 		return;
1260 	}
1261 
1262 	/*
1263 	 * If this page is now empty, do one of two things:
1264 	 *
1265 	 *	(1) If we have more pages than the page high water mark,
1266 	 *	    free the page back to the system.  ONLY CONSIDER
1267 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1268 	 *	    CLAIM.
1269 	 *
1270 	 *	(2) Otherwise, move the page to the empty page list.
1271 	 *
1272 	 * Either way, select a new current page (so we use a partially-full
1273 	 * page if one is available).
1274 	 */
1275 	if (ph->ph_nmissing == 0) {
1276 		pp->pr_nidle++;
1277 		if (pp->pr_npages > pp->pr_minpages &&
1278 		    pp->pr_npages > pp->pr_maxpages) {
1279 			pr_rmpage(pp, ph, pq);
1280 		} else {
1281 			LIST_REMOVE(ph, ph_pagelist);
1282 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1283 
1284 			/*
1285 			 * Update the timestamp on the page.  A page must
1286 			 * be idle for some period of time before it can
1287 			 * be reclaimed by the pagedaemon.  This minimizes
1288 			 * ping-pong'ing for memory.
1289 			 *
1290 			 * note for 64-bit time_t: truncating to 32-bit is not
1291 			 * a problem for our usage.
1292 			 */
1293 			ph->ph_time = time_uptime;
1294 		}
1295 		pool_update_curpage(pp);
1296 	}
1297 
1298 	/*
1299 	 * If the page was previously completely full, move it to the
1300 	 * partially-full list and make it the current page.  The next
1301 	 * allocation will get the item from this page, instead of
1302 	 * further fragmenting the pool.
1303 	 */
1304 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1305 		LIST_REMOVE(ph, ph_pagelist);
1306 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1307 		pp->pr_curpage = ph;
1308 	}
1309 }
1310 
1311 /*
1312  * Return resource to the pool.
1313  */
1314 #ifdef POOL_DIAGNOSTIC
1315 void
1316 _pool_put(struct pool *pp, void *v, const char *file, long line)
1317 {
1318 	struct pool_pagelist pq;
1319 
1320 	LIST_INIT(&pq);
1321 
1322 	mutex_enter(&pp->pr_lock);
1323 	pr_enter(pp, file, line);
1324 
1325 	pr_log(pp, v, PRLOG_PUT, file, line);
1326 
1327 	pool_do_put(pp, v, &pq);
1328 
1329 	pr_leave(pp);
1330 	mutex_exit(&pp->pr_lock);
1331 
1332 	pr_pagelist_free(pp, &pq);
1333 }
1334 #undef pool_put
1335 #endif /* POOL_DIAGNOSTIC */
1336 
1337 void
1338 pool_put(struct pool *pp, void *v)
1339 {
1340 	struct pool_pagelist pq;
1341 
1342 	LIST_INIT(&pq);
1343 
1344 	mutex_enter(&pp->pr_lock);
1345 	pool_do_put(pp, v, &pq);
1346 	mutex_exit(&pp->pr_lock);
1347 
1348 	pr_pagelist_free(pp, &pq);
1349 }
1350 
1351 #ifdef POOL_DIAGNOSTIC
1352 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1353 #endif
1354 
1355 /*
1356  * pool_grow: grow a pool by a page.
1357  *
1358  * => called with pool locked.
1359  * => unlock and relock the pool.
1360  * => return with pool locked.
1361  */
1362 
1363 static int
1364 pool_grow(struct pool *pp, int flags)
1365 {
1366 	struct pool_item_header *ph = NULL;
1367 	char *cp;
1368 
1369 	mutex_exit(&pp->pr_lock);
1370 	cp = pool_allocator_alloc(pp, flags);
1371 	if (__predict_true(cp != NULL)) {
1372 		ph = pool_alloc_item_header(pp, cp, flags);
1373 	}
1374 	if (__predict_false(cp == NULL || ph == NULL)) {
1375 		if (cp != NULL) {
1376 			pool_allocator_free(pp, cp);
1377 		}
1378 		mutex_enter(&pp->pr_lock);
1379 		return ENOMEM;
1380 	}
1381 
1382 	mutex_enter(&pp->pr_lock);
1383 	pool_prime_page(pp, cp, ph);
1384 	pp->pr_npagealloc++;
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Add N items to the pool.
1390  */
1391 int
1392 pool_prime(struct pool *pp, int n)
1393 {
1394 	int newpages;
1395 	int error = 0;
1396 
1397 	mutex_enter(&pp->pr_lock);
1398 
1399 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1400 
1401 	while (newpages-- > 0) {
1402 		error = pool_grow(pp, PR_NOWAIT);
1403 		if (error) {
1404 			break;
1405 		}
1406 		pp->pr_minpages++;
1407 	}
1408 
1409 	if (pp->pr_minpages >= pp->pr_maxpages)
1410 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1411 
1412 	mutex_exit(&pp->pr_lock);
1413 	return error;
1414 }
1415 
1416 /*
1417  * Add a page worth of items to the pool.
1418  *
1419  * Note, we must be called with the pool descriptor LOCKED.
1420  */
1421 static void
1422 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1423 {
1424 	struct pool_item *pi;
1425 	void *cp = storage;
1426 	const unsigned int align = pp->pr_align;
1427 	const unsigned int ioff = pp->pr_itemoffset;
1428 	int n;
1429 
1430 	KASSERT(mutex_owned(&pp->pr_lock));
1431 
1432 #ifdef DIAGNOSTIC
1433 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1434 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1435 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1436 #endif
1437 
1438 	/*
1439 	 * Insert page header.
1440 	 */
1441 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1442 	LIST_INIT(&ph->ph_itemlist);
1443 	ph->ph_page = storage;
1444 	ph->ph_nmissing = 0;
1445 	ph->ph_time = time_uptime;
1446 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1447 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1448 
1449 	pp->pr_nidle++;
1450 
1451 	/*
1452 	 * Color this page.
1453 	 */
1454 	ph->ph_off = pp->pr_curcolor;
1455 	cp = (char *)cp + ph->ph_off;
1456 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1457 		pp->pr_curcolor = 0;
1458 
1459 	/*
1460 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1461 	 */
1462 	if (ioff != 0)
1463 		cp = (char *)cp + align - ioff;
1464 
1465 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1466 
1467 	/*
1468 	 * Insert remaining chunks on the bucket list.
1469 	 */
1470 	n = pp->pr_itemsperpage;
1471 	pp->pr_nitems += n;
1472 
1473 	if (pp->pr_roflags & PR_NOTOUCH) {
1474 		pr_item_notouch_init(pp, ph);
1475 	} else {
1476 		while (n--) {
1477 			pi = (struct pool_item *)cp;
1478 
1479 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1480 
1481 			/* Insert on page list */
1482 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1483 #ifdef DIAGNOSTIC
1484 			pi->pi_magic = PI_MAGIC;
1485 #endif
1486 			cp = (char *)cp + pp->pr_size;
1487 
1488 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1489 		}
1490 	}
1491 
1492 	/*
1493 	 * If the pool was depleted, point at the new page.
1494 	 */
1495 	if (pp->pr_curpage == NULL)
1496 		pp->pr_curpage = ph;
1497 
1498 	if (++pp->pr_npages > pp->pr_hiwat)
1499 		pp->pr_hiwat = pp->pr_npages;
1500 }
1501 
1502 /*
1503  * Used by pool_get() when nitems drops below the low water mark.  This
1504  * is used to catch up pr_nitems with the low water mark.
1505  *
1506  * Note 1, we never wait for memory here, we let the caller decide what to do.
1507  *
1508  * Note 2, we must be called with the pool already locked, and we return
1509  * with it locked.
1510  */
1511 static int
1512 pool_catchup(struct pool *pp)
1513 {
1514 	int error = 0;
1515 
1516 	while (POOL_NEEDS_CATCHUP(pp)) {
1517 		error = pool_grow(pp, PR_NOWAIT);
1518 		if (error) {
1519 			break;
1520 		}
1521 	}
1522 	return error;
1523 }
1524 
1525 static void
1526 pool_update_curpage(struct pool *pp)
1527 {
1528 
1529 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1530 	if (pp->pr_curpage == NULL) {
1531 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1532 	}
1533 }
1534 
1535 void
1536 pool_setlowat(struct pool *pp, int n)
1537 {
1538 
1539 	mutex_enter(&pp->pr_lock);
1540 
1541 	pp->pr_minitems = n;
1542 	pp->pr_minpages = (n == 0)
1543 		? 0
1544 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1545 
1546 	/* Make sure we're caught up with the newly-set low water mark. */
1547 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1548 		/*
1549 		 * XXX: Should we log a warning?  Should we set up a timeout
1550 		 * to try again in a second or so?  The latter could break
1551 		 * a caller's assumptions about interrupt protection, etc.
1552 		 */
1553 	}
1554 
1555 	mutex_exit(&pp->pr_lock);
1556 }
1557 
1558 void
1559 pool_sethiwat(struct pool *pp, int n)
1560 {
1561 
1562 	mutex_enter(&pp->pr_lock);
1563 
1564 	pp->pr_maxpages = (n == 0)
1565 		? 0
1566 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1567 
1568 	mutex_exit(&pp->pr_lock);
1569 }
1570 
1571 void
1572 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1573 {
1574 
1575 	mutex_enter(&pp->pr_lock);
1576 
1577 	pp->pr_hardlimit = n;
1578 	pp->pr_hardlimit_warning = warnmess;
1579 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1580 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1581 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1582 
1583 	/*
1584 	 * In-line version of pool_sethiwat(), because we don't want to
1585 	 * release the lock.
1586 	 */
1587 	pp->pr_maxpages = (n == 0)
1588 		? 0
1589 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1590 
1591 	mutex_exit(&pp->pr_lock);
1592 }
1593 
1594 /*
1595  * Release all complete pages that have not been used recently.
1596  */
1597 int
1598 #ifdef POOL_DIAGNOSTIC
1599 _pool_reclaim(struct pool *pp, const char *file, long line)
1600 #else
1601 pool_reclaim(struct pool *pp)
1602 #endif
1603 {
1604 	struct pool_item_header *ph, *phnext;
1605 	struct pool_pagelist pq;
1606 	uint32_t curtime;
1607 	bool klock;
1608 	int rv;
1609 
1610 	if (pp->pr_drain_hook != NULL) {
1611 		/*
1612 		 * The drain hook must be called with the pool unlocked.
1613 		 */
1614 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1615 	}
1616 
1617 	/*
1618 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1619 	 * to block.
1620 	 */
1621 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1622 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1623 		KERNEL_LOCK(1, NULL);
1624 		klock = true;
1625 	} else
1626 		klock = false;
1627 
1628 	/* Reclaim items from the pool's cache (if any). */
1629 	if (pp->pr_cache != NULL)
1630 		pool_cache_invalidate(pp->pr_cache);
1631 
1632 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1633 		if (klock) {
1634 			KERNEL_UNLOCK_ONE(NULL);
1635 		}
1636 		return (0);
1637 	}
1638 	pr_enter(pp, file, line);
1639 
1640 	LIST_INIT(&pq);
1641 
1642 	curtime = time_uptime;
1643 
1644 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1645 		phnext = LIST_NEXT(ph, ph_pagelist);
1646 
1647 		/* Check our minimum page claim */
1648 		if (pp->pr_npages <= pp->pr_minpages)
1649 			break;
1650 
1651 		KASSERT(ph->ph_nmissing == 0);
1652 		if (curtime - ph->ph_time < pool_inactive_time
1653 		    && !pa_starved_p(pp->pr_alloc))
1654 			continue;
1655 
1656 		/*
1657 		 * If freeing this page would put us below
1658 		 * the low water mark, stop now.
1659 		 */
1660 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1661 		    pp->pr_minitems)
1662 			break;
1663 
1664 		pr_rmpage(pp, ph, &pq);
1665 	}
1666 
1667 	pr_leave(pp);
1668 	mutex_exit(&pp->pr_lock);
1669 
1670 	if (LIST_EMPTY(&pq))
1671 		rv = 0;
1672 	else {
1673 		pr_pagelist_free(pp, &pq);
1674 		rv = 1;
1675 	}
1676 
1677 	if (klock) {
1678 		KERNEL_UNLOCK_ONE(NULL);
1679 	}
1680 
1681 	return (rv);
1682 }
1683 
1684 /*
1685  * Drain pools, one at a time.  This is a two stage process;
1686  * drain_start kicks off a cross call to drain CPU-level caches
1687  * if the pool has an associated pool_cache.  drain_end waits
1688  * for those cross calls to finish, and then drains the cache
1689  * (if any) and pool.
1690  *
1691  * Note, must never be called from interrupt context.
1692  */
1693 void
1694 pool_drain_start(struct pool **ppp, uint64_t *wp)
1695 {
1696 	struct pool *pp;
1697 
1698 	KASSERT(!TAILQ_EMPTY(&pool_head));
1699 
1700 	pp = NULL;
1701 
1702 	/* Find next pool to drain, and add a reference. */
1703 	mutex_enter(&pool_head_lock);
1704 	do {
1705 		if (drainpp == NULL) {
1706 			drainpp = TAILQ_FIRST(&pool_head);
1707 		}
1708 		if (drainpp != NULL) {
1709 			pp = drainpp;
1710 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1711 		}
1712 		/*
1713 		 * Skip completely idle pools.  We depend on at least
1714 		 * one pool in the system being active.
1715 		 */
1716 	} while (pp == NULL || pp->pr_npages == 0);
1717 	pp->pr_refcnt++;
1718 	mutex_exit(&pool_head_lock);
1719 
1720 	/* If there is a pool_cache, drain CPU level caches. */
1721 	*ppp = pp;
1722 	if (pp->pr_cache != NULL) {
1723 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1724 		    pp->pr_cache, NULL);
1725 	}
1726 }
1727 
1728 void
1729 pool_drain_end(struct pool *pp, uint64_t where)
1730 {
1731 
1732 	if (pp == NULL)
1733 		return;
1734 
1735 	KASSERT(pp->pr_refcnt > 0);
1736 
1737 	/* Wait for remote draining to complete. */
1738 	if (pp->pr_cache != NULL)
1739 		xc_wait(where);
1740 
1741 	/* Drain the cache (if any) and pool.. */
1742 	pool_reclaim(pp);
1743 
1744 	/* Finally, unlock the pool. */
1745 	mutex_enter(&pool_head_lock);
1746 	pp->pr_refcnt--;
1747 	cv_broadcast(&pool_busy);
1748 	mutex_exit(&pool_head_lock);
1749 }
1750 
1751 /*
1752  * Diagnostic helpers.
1753  */
1754 void
1755 pool_print(struct pool *pp, const char *modif)
1756 {
1757 
1758 	pool_print1(pp, modif, printf);
1759 }
1760 
1761 void
1762 pool_printall(const char *modif, void (*pr)(const char *, ...))
1763 {
1764 	struct pool *pp;
1765 
1766 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1767 		pool_printit(pp, modif, pr);
1768 	}
1769 }
1770 
1771 void
1772 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1773 {
1774 
1775 	if (pp == NULL) {
1776 		(*pr)("Must specify a pool to print.\n");
1777 		return;
1778 	}
1779 
1780 	pool_print1(pp, modif, pr);
1781 }
1782 
1783 static void
1784 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1785     void (*pr)(const char *, ...))
1786 {
1787 	struct pool_item_header *ph;
1788 #ifdef DIAGNOSTIC
1789 	struct pool_item *pi;
1790 #endif
1791 
1792 	LIST_FOREACH(ph, pl, ph_pagelist) {
1793 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1794 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1795 #ifdef DIAGNOSTIC
1796 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1797 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1798 				if (pi->pi_magic != PI_MAGIC) {
1799 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1800 					    pi, pi->pi_magic);
1801 				}
1802 			}
1803 		}
1804 #endif
1805 	}
1806 }
1807 
1808 static void
1809 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1810 {
1811 	struct pool_item_header *ph;
1812 	pool_cache_t pc;
1813 	pcg_t *pcg;
1814 	pool_cache_cpu_t *cc;
1815 	uint64_t cpuhit, cpumiss;
1816 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1817 	char c;
1818 
1819 	while ((c = *modif++) != '\0') {
1820 		if (c == 'l')
1821 			print_log = 1;
1822 		if (c == 'p')
1823 			print_pagelist = 1;
1824 		if (c == 'c')
1825 			print_cache = 1;
1826 	}
1827 
1828 	if ((pc = pp->pr_cache) != NULL) {
1829 		(*pr)("POOL CACHE");
1830 	} else {
1831 		(*pr)("POOL");
1832 	}
1833 
1834 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1835 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1836 	    pp->pr_roflags);
1837 	(*pr)("\talloc %p\n", pp->pr_alloc);
1838 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1839 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1840 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1841 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1842 
1843 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1844 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1845 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1846 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1847 
1848 	if (print_pagelist == 0)
1849 		goto skip_pagelist;
1850 
1851 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1852 		(*pr)("\n\tempty page list:\n");
1853 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1854 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1855 		(*pr)("\n\tfull page list:\n");
1856 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1857 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1858 		(*pr)("\n\tpartial-page list:\n");
1859 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1860 
1861 	if (pp->pr_curpage == NULL)
1862 		(*pr)("\tno current page\n");
1863 	else
1864 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1865 
1866  skip_pagelist:
1867 	if (print_log == 0)
1868 		goto skip_log;
1869 
1870 	(*pr)("\n");
1871 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1872 		(*pr)("\tno log\n");
1873 	else {
1874 		pr_printlog(pp, NULL, pr);
1875 	}
1876 
1877  skip_log:
1878 
1879 #define PR_GROUPLIST(pcg)						\
1880 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1881 	for (i = 0; i < pcg->pcg_size; i++) {				\
1882 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1883 		    POOL_PADDR_INVALID) {				\
1884 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1885 			    pcg->pcg_objects[i].pcgo_va,		\
1886 			    (unsigned long long)			\
1887 			    pcg->pcg_objects[i].pcgo_pa);		\
1888 		} else {						\
1889 			(*pr)("\t\t\t%p\n",				\
1890 			    pcg->pcg_objects[i].pcgo_va);		\
1891 		}							\
1892 	}
1893 
1894 	if (pc != NULL) {
1895 		cpuhit = 0;
1896 		cpumiss = 0;
1897 		for (i = 0; i < MAXCPUS; i++) {
1898 			if ((cc = pc->pc_cpus[i]) == NULL)
1899 				continue;
1900 			cpuhit += cc->cc_hits;
1901 			cpumiss += cc->cc_misses;
1902 		}
1903 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1904 		(*pr)("\tcache layer hits %llu misses %llu\n",
1905 		    pc->pc_hits, pc->pc_misses);
1906 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1907 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1908 		    pc->pc_contended);
1909 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1910 		    pc->pc_nempty, pc->pc_nfull);
1911 		if (print_cache) {
1912 			(*pr)("\tfull cache groups:\n");
1913 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1914 			    pcg = pcg->pcg_next) {
1915 				PR_GROUPLIST(pcg);
1916 			}
1917 			(*pr)("\tempty cache groups:\n");
1918 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1919 			    pcg = pcg->pcg_next) {
1920 				PR_GROUPLIST(pcg);
1921 			}
1922 		}
1923 	}
1924 #undef PR_GROUPLIST
1925 
1926 	pr_enter_check(pp, pr);
1927 }
1928 
1929 static int
1930 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1931 {
1932 	struct pool_item *pi;
1933 	void *page;
1934 	int n;
1935 
1936 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1937 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1938 		if (page != ph->ph_page &&
1939 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1940 			if (label != NULL)
1941 				printf("%s: ", label);
1942 			printf("pool(%p:%s): page inconsistency: page %p;"
1943 			       " at page head addr %p (p %p)\n", pp,
1944 				pp->pr_wchan, ph->ph_page,
1945 				ph, page);
1946 			return 1;
1947 		}
1948 	}
1949 
1950 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1951 		return 0;
1952 
1953 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1954 	     pi != NULL;
1955 	     pi = LIST_NEXT(pi,pi_list), n++) {
1956 
1957 #ifdef DIAGNOSTIC
1958 		if (pi->pi_magic != PI_MAGIC) {
1959 			if (label != NULL)
1960 				printf("%s: ", label);
1961 			printf("pool(%s): free list modified: magic=%x;"
1962 			       " page %p; item ordinal %d; addr %p\n",
1963 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1964 				n, pi);
1965 			panic("pool");
1966 		}
1967 #endif
1968 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1969 			continue;
1970 		}
1971 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1972 		if (page == ph->ph_page)
1973 			continue;
1974 
1975 		if (label != NULL)
1976 			printf("%s: ", label);
1977 		printf("pool(%p:%s): page inconsistency: page %p;"
1978 		       " item ordinal %d; addr %p (p %p)\n", pp,
1979 			pp->pr_wchan, ph->ph_page,
1980 			n, pi, page);
1981 		return 1;
1982 	}
1983 	return 0;
1984 }
1985 
1986 
1987 int
1988 pool_chk(struct pool *pp, const char *label)
1989 {
1990 	struct pool_item_header *ph;
1991 	int r = 0;
1992 
1993 	mutex_enter(&pp->pr_lock);
1994 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1995 		r = pool_chk_page(pp, label, ph);
1996 		if (r) {
1997 			goto out;
1998 		}
1999 	}
2000 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2001 		r = pool_chk_page(pp, label, ph);
2002 		if (r) {
2003 			goto out;
2004 		}
2005 	}
2006 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2007 		r = pool_chk_page(pp, label, ph);
2008 		if (r) {
2009 			goto out;
2010 		}
2011 	}
2012 
2013 out:
2014 	mutex_exit(&pp->pr_lock);
2015 	return (r);
2016 }
2017 
2018 /*
2019  * pool_cache_init:
2020  *
2021  *	Initialize a pool cache.
2022  */
2023 pool_cache_t
2024 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2025     const char *wchan, struct pool_allocator *palloc, int ipl,
2026     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2027 {
2028 	pool_cache_t pc;
2029 
2030 	pc = pool_get(&cache_pool, PR_WAITOK);
2031 	if (pc == NULL)
2032 		return NULL;
2033 
2034 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2035 	   palloc, ipl, ctor, dtor, arg);
2036 
2037 	return pc;
2038 }
2039 
2040 /*
2041  * pool_cache_bootstrap:
2042  *
2043  *	Kernel-private version of pool_cache_init().  The caller
2044  *	provides initial storage.
2045  */
2046 void
2047 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2048     u_int align_offset, u_int flags, const char *wchan,
2049     struct pool_allocator *palloc, int ipl,
2050     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2051     void *arg)
2052 {
2053 	CPU_INFO_ITERATOR cii;
2054 	pool_cache_t pc1;
2055 	struct cpu_info *ci;
2056 	struct pool *pp;
2057 
2058 	pp = &pc->pc_pool;
2059 	if (palloc == NULL && ipl == IPL_NONE)
2060 		palloc = &pool_allocator_nointr;
2061 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2062 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2063 
2064 	if (ctor == NULL) {
2065 		ctor = (int (*)(void *, void *, int))nullop;
2066 	}
2067 	if (dtor == NULL) {
2068 		dtor = (void (*)(void *, void *))nullop;
2069 	}
2070 
2071 	pc->pc_emptygroups = NULL;
2072 	pc->pc_fullgroups = NULL;
2073 	pc->pc_partgroups = NULL;
2074 	pc->pc_ctor = ctor;
2075 	pc->pc_dtor = dtor;
2076 	pc->pc_arg  = arg;
2077 	pc->pc_hits  = 0;
2078 	pc->pc_misses = 0;
2079 	pc->pc_nempty = 0;
2080 	pc->pc_npart = 0;
2081 	pc->pc_nfull = 0;
2082 	pc->pc_contended = 0;
2083 	pc->pc_refcnt = 0;
2084 	pc->pc_freecheck = NULL;
2085 
2086 	if ((flags & PR_LARGECACHE) != 0) {
2087 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2088 	} else {
2089 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2090 	}
2091 
2092 	/* Allocate per-CPU caches. */
2093 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2094 	pc->pc_ncpu = 0;
2095 	if (ncpu < 2) {
2096 		/* XXX For sparc: boot CPU is not attached yet. */
2097 		pool_cache_cpu_init1(curcpu(), pc);
2098 	} else {
2099 		for (CPU_INFO_FOREACH(cii, ci)) {
2100 			pool_cache_cpu_init1(ci, pc);
2101 		}
2102 	}
2103 
2104 	/* Add to list of all pools. */
2105 	if (__predict_true(!cold))
2106 		mutex_enter(&pool_head_lock);
2107 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2108 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2109 			break;
2110 	}
2111 	if (pc1 == NULL)
2112 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2113 	else
2114 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2115 	if (__predict_true(!cold))
2116 		mutex_exit(&pool_head_lock);
2117 
2118 	membar_sync();
2119 	pp->pr_cache = pc;
2120 }
2121 
2122 /*
2123  * pool_cache_destroy:
2124  *
2125  *	Destroy a pool cache.
2126  */
2127 void
2128 pool_cache_destroy(pool_cache_t pc)
2129 {
2130 	struct pool *pp = &pc->pc_pool;
2131 	pool_cache_cpu_t *cc;
2132 	pcg_t *pcg;
2133 	int i;
2134 
2135 	/* Remove it from the global list. */
2136 	mutex_enter(&pool_head_lock);
2137 	while (pc->pc_refcnt != 0)
2138 		cv_wait(&pool_busy, &pool_head_lock);
2139 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2140 	mutex_exit(&pool_head_lock);
2141 
2142 	/* First, invalidate the entire cache. */
2143 	pool_cache_invalidate(pc);
2144 
2145 	/* Disassociate it from the pool. */
2146 	mutex_enter(&pp->pr_lock);
2147 	pp->pr_cache = NULL;
2148 	mutex_exit(&pp->pr_lock);
2149 
2150 	/* Destroy per-CPU data */
2151 	for (i = 0; i < MAXCPUS; i++) {
2152 		if ((cc = pc->pc_cpus[i]) == NULL)
2153 			continue;
2154 		if ((pcg = cc->cc_current) != NULL) {
2155 			pcg->pcg_next = NULL;
2156 			pool_cache_invalidate_groups(pc, pcg);
2157 		}
2158 		if ((pcg = cc->cc_previous) != NULL) {
2159 			pcg->pcg_next = NULL;
2160 			pool_cache_invalidate_groups(pc, pcg);
2161 		}
2162 		if (cc != &pc->pc_cpu0)
2163 			pool_put(&cache_cpu_pool, cc);
2164 	}
2165 
2166 	/* Finally, destroy it. */
2167 	mutex_destroy(&pc->pc_lock);
2168 	pool_destroy(pp);
2169 	pool_put(&cache_pool, pc);
2170 }
2171 
2172 /*
2173  * pool_cache_cpu_init1:
2174  *
2175  *	Called for each pool_cache whenever a new CPU is attached.
2176  */
2177 static void
2178 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2179 {
2180 	pool_cache_cpu_t *cc;
2181 	int index;
2182 
2183 	index = ci->ci_index;
2184 
2185 	KASSERT(index < MAXCPUS);
2186 
2187 	if ((cc = pc->pc_cpus[index]) != NULL) {
2188 		KASSERT(cc->cc_cpuindex == index);
2189 		return;
2190 	}
2191 
2192 	/*
2193 	 * The first CPU is 'free'.  This needs to be the case for
2194 	 * bootstrap - we may not be able to allocate yet.
2195 	 */
2196 	if (pc->pc_ncpu == 0) {
2197 		cc = &pc->pc_cpu0;
2198 		pc->pc_ncpu = 1;
2199 	} else {
2200 		mutex_enter(&pc->pc_lock);
2201 		pc->pc_ncpu++;
2202 		mutex_exit(&pc->pc_lock);
2203 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2204 	}
2205 
2206 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2207 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2208 	cc->cc_cache = pc;
2209 	cc->cc_cpuindex = index;
2210 	cc->cc_hits = 0;
2211 	cc->cc_misses = 0;
2212 	cc->cc_current = NULL;
2213 	cc->cc_previous = NULL;
2214 
2215 	pc->pc_cpus[index] = cc;
2216 }
2217 
2218 /*
2219  * pool_cache_cpu_init:
2220  *
2221  *	Called whenever a new CPU is attached.
2222  */
2223 void
2224 pool_cache_cpu_init(struct cpu_info *ci)
2225 {
2226 	pool_cache_t pc;
2227 
2228 	mutex_enter(&pool_head_lock);
2229 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2230 		pc->pc_refcnt++;
2231 		mutex_exit(&pool_head_lock);
2232 
2233 		pool_cache_cpu_init1(ci, pc);
2234 
2235 		mutex_enter(&pool_head_lock);
2236 		pc->pc_refcnt--;
2237 		cv_broadcast(&pool_busy);
2238 	}
2239 	mutex_exit(&pool_head_lock);
2240 }
2241 
2242 /*
2243  * pool_cache_reclaim:
2244  *
2245  *	Reclaim memory from a pool cache.
2246  */
2247 bool
2248 pool_cache_reclaim(pool_cache_t pc)
2249 {
2250 
2251 	return pool_reclaim(&pc->pc_pool);
2252 }
2253 
2254 static void
2255 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2256 {
2257 
2258 	(*pc->pc_dtor)(pc->pc_arg, object);
2259 	pool_put(&pc->pc_pool, object);
2260 }
2261 
2262 /*
2263  * pool_cache_destruct_object:
2264  *
2265  *	Force destruction of an object and its release back into
2266  *	the pool.
2267  */
2268 void
2269 pool_cache_destruct_object(pool_cache_t pc, void *object)
2270 {
2271 
2272 	FREECHECK_IN(&pc->pc_freecheck, object);
2273 
2274 	pool_cache_destruct_object1(pc, object);
2275 }
2276 
2277 /*
2278  * pool_cache_invalidate_groups:
2279  *
2280  *	Invalidate a chain of groups and destruct all objects.
2281  */
2282 static void
2283 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2284 {
2285 	void *object;
2286 	pcg_t *next;
2287 	int i;
2288 
2289 	for (; pcg != NULL; pcg = next) {
2290 		next = pcg->pcg_next;
2291 
2292 		for (i = 0; i < pcg->pcg_avail; i++) {
2293 			object = pcg->pcg_objects[i].pcgo_va;
2294 			pool_cache_destruct_object1(pc, object);
2295 		}
2296 
2297 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2298 			pool_put(&pcg_large_pool, pcg);
2299 		} else {
2300 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2301 			pool_put(&pcg_normal_pool, pcg);
2302 		}
2303 	}
2304 }
2305 
2306 /*
2307  * pool_cache_invalidate:
2308  *
2309  *	Invalidate a pool cache (destruct and release all of the
2310  *	cached objects).  Does not reclaim objects from the pool.
2311  */
2312 void
2313 pool_cache_invalidate(pool_cache_t pc)
2314 {
2315 	pcg_t *full, *empty, *part;
2316 
2317 	mutex_enter(&pc->pc_lock);
2318 	full = pc->pc_fullgroups;
2319 	empty = pc->pc_emptygroups;
2320 	part = pc->pc_partgroups;
2321 	pc->pc_fullgroups = NULL;
2322 	pc->pc_emptygroups = NULL;
2323 	pc->pc_partgroups = NULL;
2324 	pc->pc_nfull = 0;
2325 	pc->pc_nempty = 0;
2326 	pc->pc_npart = 0;
2327 	mutex_exit(&pc->pc_lock);
2328 
2329 	pool_cache_invalidate_groups(pc, full);
2330 	pool_cache_invalidate_groups(pc, empty);
2331 	pool_cache_invalidate_groups(pc, part);
2332 }
2333 
2334 void
2335 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2336 {
2337 
2338 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2339 }
2340 
2341 void
2342 pool_cache_setlowat(pool_cache_t pc, int n)
2343 {
2344 
2345 	pool_setlowat(&pc->pc_pool, n);
2346 }
2347 
2348 void
2349 pool_cache_sethiwat(pool_cache_t pc, int n)
2350 {
2351 
2352 	pool_sethiwat(&pc->pc_pool, n);
2353 }
2354 
2355 void
2356 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2357 {
2358 
2359 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2360 }
2361 
2362 static inline pool_cache_cpu_t *
2363 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2364 {
2365 	pool_cache_cpu_t *cc;
2366 
2367 	/*
2368 	 * Prevent other users of the cache from accessing our
2369 	 * CPU-local data.  To avoid touching shared state, we
2370 	 * pull the neccessary information from CPU local data.
2371 	 */
2372 	KPREEMPT_DISABLE(curlwp);
2373 	cc = pc->pc_cpus[curcpu()->ci_index];
2374 	KASSERT(cc->cc_cache == pc);
2375 	if (cc->cc_ipl != IPL_NONE) {
2376 		*s = splraiseipl(cc->cc_iplcookie);
2377 	}
2378 
2379 	return cc;
2380 }
2381 
2382 static inline void
2383 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2384 {
2385 
2386 	/* No longer need exclusive access to the per-CPU data. */
2387 	if (cc->cc_ipl != IPL_NONE) {
2388 		splx(*s);
2389 	}
2390 	KPREEMPT_ENABLE(curlwp);
2391 }
2392 
2393 pool_cache_cpu_t * __noinline
2394 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2395 		    paddr_t *pap, int flags)
2396 {
2397 	pcg_t *pcg, *cur;
2398 	uint64_t ncsw;
2399 	pool_cache_t pc;
2400 	void *object;
2401 
2402 	pc = cc->cc_cache;
2403 	cc->cc_misses++;
2404 
2405 	/*
2406 	 * Nothing was available locally.  Try and grab a group
2407 	 * from the cache.
2408 	 */
2409 	if (!mutex_tryenter(&pc->pc_lock)) {
2410 		ncsw = curlwp->l_ncsw;
2411 		mutex_enter(&pc->pc_lock);
2412 		pc->pc_contended++;
2413 
2414 		/*
2415 		 * If we context switched while locking, then
2416 		 * our view of the per-CPU data is invalid:
2417 		 * retry.
2418 		 */
2419 		if (curlwp->l_ncsw != ncsw) {
2420 			mutex_exit(&pc->pc_lock);
2421 			pool_cache_cpu_exit(cc, s);
2422 			return pool_cache_cpu_enter(pc, s);
2423 		}
2424 	}
2425 
2426 	if ((pcg = pc->pc_fullgroups) != NULL) {
2427 		/*
2428 		 * If there's a full group, release our empty
2429 		 * group back to the cache.  Install the full
2430 		 * group as cc_current and return.
2431 		 */
2432 		if ((cur = cc->cc_current) != NULL) {
2433 			KASSERT(cur->pcg_avail == 0);
2434 			cur->pcg_next = pc->pc_emptygroups;
2435 			pc->pc_emptygroups = cur;
2436 			pc->pc_nempty++;
2437 		}
2438 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2439 		cc->cc_current = pcg;
2440 		pc->pc_fullgroups = pcg->pcg_next;
2441 		pc->pc_hits++;
2442 		pc->pc_nfull--;
2443 		mutex_exit(&pc->pc_lock);
2444 		return cc;
2445 	}
2446 
2447 	/*
2448 	 * Nothing available locally or in cache.  Take the slow
2449 	 * path: fetch a new object from the pool and construct
2450 	 * it.
2451 	 */
2452 	pc->pc_misses++;
2453 	mutex_exit(&pc->pc_lock);
2454 	pool_cache_cpu_exit(cc, s);
2455 
2456 	object = pool_get(&pc->pc_pool, flags);
2457 	*objectp = object;
2458 	if (object == NULL)
2459 		return NULL;
2460 
2461 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2462 		pool_put(&pc->pc_pool, object);
2463 		*objectp = NULL;
2464 		return NULL;
2465 	}
2466 
2467 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2468 	    (pc->pc_pool.pr_align - 1)) == 0);
2469 
2470 	if (pap != NULL) {
2471 #ifdef POOL_VTOPHYS
2472 		*pap = POOL_VTOPHYS(object);
2473 #else
2474 		*pap = POOL_PADDR_INVALID;
2475 #endif
2476 	}
2477 
2478 	FREECHECK_OUT(&pc->pc_freecheck, object);
2479 	return NULL;
2480 }
2481 
2482 /*
2483  * pool_cache_get{,_paddr}:
2484  *
2485  *	Get an object from a pool cache (optionally returning
2486  *	the physical address of the object).
2487  */
2488 void *
2489 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2490 {
2491 	pool_cache_cpu_t *cc;
2492 	pcg_t *pcg;
2493 	void *object;
2494 	int s;
2495 
2496 #ifdef LOCKDEBUG
2497 	if (flags & PR_WAITOK) {
2498 		ASSERT_SLEEPABLE();
2499 	}
2500 #endif
2501 
2502 	cc = pool_cache_cpu_enter(pc, &s);
2503 	do {
2504 		/* Try and allocate an object from the current group. */
2505 	 	pcg = cc->cc_current;
2506 		if (pcg != NULL && pcg->pcg_avail > 0) {
2507 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2508 			if (pap != NULL)
2509 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2510 #if defined(DIAGNOSTIC)
2511 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2512 #endif /* defined(DIAGNOSTIC) */
2513 			KASSERT(pcg->pcg_avail <= pcg->pcg_size);
2514 			KASSERT(object != NULL);
2515 			cc->cc_hits++;
2516 			pool_cache_cpu_exit(cc, &s);
2517 			FREECHECK_OUT(&pc->pc_freecheck, object);
2518 			return object;
2519 		}
2520 
2521 		/*
2522 		 * That failed.  If the previous group isn't empty, swap
2523 		 * it with the current group and allocate from there.
2524 		 */
2525 		pcg = cc->cc_previous;
2526 		if (pcg != NULL && pcg->pcg_avail > 0) {
2527 			cc->cc_previous = cc->cc_current;
2528 			cc->cc_current = pcg;
2529 			continue;
2530 		}
2531 
2532 		/*
2533 		 * Can't allocate from either group: try the slow path.
2534 		 * If get_slow() allocated an object for us, or if
2535 		 * no more objects are available, it will return NULL.
2536 		 * Otherwise, we need to retry.
2537 		 */
2538 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2539 	} while (cc != NULL);
2540 
2541 	return object;
2542 }
2543 
2544 pool_cache_cpu_t * __noinline
2545 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2546 {
2547 	pcg_t *pcg, *cur;
2548 	uint64_t ncsw;
2549 	pool_cache_t pc;
2550 	u_int nobj;
2551 
2552 	pc = cc->cc_cache;
2553 	cc->cc_misses++;
2554 
2555 	/*
2556 	 * No free slots locally.  Try to grab an empty, unused
2557 	 * group from the cache.
2558 	 */
2559 	if (!mutex_tryenter(&pc->pc_lock)) {
2560 		ncsw = curlwp->l_ncsw;
2561 		mutex_enter(&pc->pc_lock);
2562 		pc->pc_contended++;
2563 
2564 		/*
2565 		 * If we context switched while locking, then
2566 		 * our view of the per-CPU data is invalid:
2567 		 * retry.
2568 		 */
2569 		if (curlwp->l_ncsw != ncsw) {
2570 			mutex_exit(&pc->pc_lock);
2571 			pool_cache_cpu_exit(cc, s);
2572 			return pool_cache_cpu_enter(pc, s);
2573 		}
2574 	}
2575 
2576 	if ((pcg = pc->pc_emptygroups) != NULL) {
2577 		/*
2578 		 * If there's a empty group, release our full
2579 		 * group back to the cache.  Install the empty
2580 		 * group and return.
2581 		 */
2582 		KASSERT(pcg->pcg_avail == 0);
2583 		pc->pc_emptygroups = pcg->pcg_next;
2584 		if (cc->cc_previous == NULL) {
2585 			cc->cc_previous = pcg;
2586 		} else {
2587 			if ((cur = cc->cc_current) != NULL) {
2588 				KASSERT(cur->pcg_avail == pcg->pcg_size);
2589 				cur->pcg_next = pc->pc_fullgroups;
2590 				pc->pc_fullgroups = cur;
2591 				pc->pc_nfull++;
2592 			}
2593 			cc->cc_current = pcg;
2594 		}
2595 		pc->pc_hits++;
2596 		pc->pc_nempty--;
2597 		mutex_exit(&pc->pc_lock);
2598 		return cc;
2599 	}
2600 
2601 	/*
2602 	 * Nothing available locally or in cache.  Take the
2603 	 * slow path and try to allocate a new group that we
2604 	 * can release to.
2605 	 */
2606 	pc->pc_misses++;
2607 	mutex_exit(&pc->pc_lock);
2608 	pool_cache_cpu_exit(cc, s);
2609 
2610 	/*
2611 	 * If we can't allocate a new group, just throw the
2612 	 * object away.
2613 	 */
2614 	nobj = pc->pc_pcgsize;
2615 	if (pool_cache_disable) {
2616 		pcg = NULL;
2617 	} else if (nobj == PCG_NOBJECTS_LARGE) {
2618 		pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
2619 	} else {
2620 		pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
2621 	}
2622 	if (pcg == NULL) {
2623 		pool_cache_destruct_object(pc, object);
2624 		return NULL;
2625 	}
2626 	pcg->pcg_avail = 0;
2627 	pcg->pcg_size = nobj;
2628 
2629 	/*
2630 	 * Add the empty group to the cache and try again.
2631 	 */
2632 	mutex_enter(&pc->pc_lock);
2633 	pcg->pcg_next = pc->pc_emptygroups;
2634 	pc->pc_emptygroups = pcg;
2635 	pc->pc_nempty++;
2636 	mutex_exit(&pc->pc_lock);
2637 
2638 	return pool_cache_cpu_enter(pc, s);
2639 }
2640 
2641 /*
2642  * pool_cache_put{,_paddr}:
2643  *
2644  *	Put an object back to the pool cache (optionally caching the
2645  *	physical address of the object).
2646  */
2647 void
2648 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2649 {
2650 	pool_cache_cpu_t *cc;
2651 	pcg_t *pcg;
2652 	int s;
2653 
2654 	FREECHECK_IN(&pc->pc_freecheck, object);
2655 
2656 	cc = pool_cache_cpu_enter(pc, &s);
2657 	do {
2658 		/* If the current group isn't full, release it there. */
2659 	 	pcg = cc->cc_current;
2660 		if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
2661 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2662 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2663 			pcg->pcg_avail++;
2664 			cc->cc_hits++;
2665 			pool_cache_cpu_exit(cc, &s);
2666 			return;
2667 		}
2668 
2669 		/*
2670 		 * That failed.  If the previous group is empty, swap
2671 		 * it with the current group and try again.
2672 		 */
2673 		pcg = cc->cc_previous;
2674 		if (pcg != NULL && pcg->pcg_avail == 0) {
2675 			cc->cc_previous = cc->cc_current;
2676 			cc->cc_current = pcg;
2677 			continue;
2678 		}
2679 
2680 		/*
2681 		 * Can't free to either group: try the slow path.
2682 		 * If put_slow() releases the object for us, it
2683 		 * will return NULL.  Otherwise we need to retry.
2684 		 */
2685 		cc = pool_cache_put_slow(cc, &s, object, pa);
2686 	} while (cc != NULL);
2687 }
2688 
2689 /*
2690  * pool_cache_xcall:
2691  *
2692  *	Transfer objects from the per-CPU cache to the global cache.
2693  *	Run within a cross-call thread.
2694  */
2695 static void
2696 pool_cache_xcall(pool_cache_t pc)
2697 {
2698 	pool_cache_cpu_t *cc;
2699 	pcg_t *prev, *cur, **list;
2700 	int s = 0; /* XXXgcc */
2701 
2702 	cc = pool_cache_cpu_enter(pc, &s);
2703 	cur = cc->cc_current;
2704 	cc->cc_current = NULL;
2705 	prev = cc->cc_previous;
2706 	cc->cc_previous = NULL;
2707 	pool_cache_cpu_exit(cc, &s);
2708 
2709 	/*
2710 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2711 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
2712 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
2713 	 * kernel_lock.
2714 	 */
2715 	s = splvm();
2716 	mutex_enter(&pc->pc_lock);
2717 	if (cur != NULL) {
2718 		if (cur->pcg_avail == cur->pcg_size) {
2719 			list = &pc->pc_fullgroups;
2720 			pc->pc_nfull++;
2721 		} else if (cur->pcg_avail == 0) {
2722 			list = &pc->pc_emptygroups;
2723 			pc->pc_nempty++;
2724 		} else {
2725 			list = &pc->pc_partgroups;
2726 			pc->pc_npart++;
2727 		}
2728 		cur->pcg_next = *list;
2729 		*list = cur;
2730 	}
2731 	if (prev != NULL) {
2732 		if (prev->pcg_avail == prev->pcg_size) {
2733 			list = &pc->pc_fullgroups;
2734 			pc->pc_nfull++;
2735 		} else if (prev->pcg_avail == 0) {
2736 			list = &pc->pc_emptygroups;
2737 			pc->pc_nempty++;
2738 		} else {
2739 			list = &pc->pc_partgroups;
2740 			pc->pc_npart++;
2741 		}
2742 		prev->pcg_next = *list;
2743 		*list = prev;
2744 	}
2745 	mutex_exit(&pc->pc_lock);
2746 	splx(s);
2747 }
2748 
2749 /*
2750  * Pool backend allocators.
2751  *
2752  * Each pool has a backend allocator that handles allocation, deallocation,
2753  * and any additional draining that might be needed.
2754  *
2755  * We provide two standard allocators:
2756  *
2757  *	pool_allocator_kmem - the default when no allocator is specified
2758  *
2759  *	pool_allocator_nointr - used for pools that will not be accessed
2760  *	in interrupt context.
2761  */
2762 void	*pool_page_alloc(struct pool *, int);
2763 void	pool_page_free(struct pool *, void *);
2764 
2765 #ifdef POOL_SUBPAGE
2766 struct pool_allocator pool_allocator_kmem_fullpage = {
2767 	pool_page_alloc, pool_page_free, 0,
2768 	.pa_backingmapptr = &kmem_map,
2769 };
2770 #else
2771 struct pool_allocator pool_allocator_kmem = {
2772 	pool_page_alloc, pool_page_free, 0,
2773 	.pa_backingmapptr = &kmem_map,
2774 };
2775 #endif
2776 
2777 void	*pool_page_alloc_nointr(struct pool *, int);
2778 void	pool_page_free_nointr(struct pool *, void *);
2779 
2780 #ifdef POOL_SUBPAGE
2781 struct pool_allocator pool_allocator_nointr_fullpage = {
2782 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2783 	.pa_backingmapptr = &kernel_map,
2784 };
2785 #else
2786 struct pool_allocator pool_allocator_nointr = {
2787 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2788 	.pa_backingmapptr = &kernel_map,
2789 };
2790 #endif
2791 
2792 #ifdef POOL_SUBPAGE
2793 void	*pool_subpage_alloc(struct pool *, int);
2794 void	pool_subpage_free(struct pool *, void *);
2795 
2796 struct pool_allocator pool_allocator_kmem = {
2797 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2798 	.pa_backingmapptr = &kmem_map,
2799 };
2800 
2801 void	*pool_subpage_alloc_nointr(struct pool *, int);
2802 void	pool_subpage_free_nointr(struct pool *, void *);
2803 
2804 struct pool_allocator pool_allocator_nointr = {
2805 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2806 	.pa_backingmapptr = &kmem_map,
2807 };
2808 #endif /* POOL_SUBPAGE */
2809 
2810 static void *
2811 pool_allocator_alloc(struct pool *pp, int flags)
2812 {
2813 	struct pool_allocator *pa = pp->pr_alloc;
2814 	void *res;
2815 
2816 	res = (*pa->pa_alloc)(pp, flags);
2817 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2818 		/*
2819 		 * We only run the drain hook here if PR_NOWAIT.
2820 		 * In other cases, the hook will be run in
2821 		 * pool_reclaim().
2822 		 */
2823 		if (pp->pr_drain_hook != NULL) {
2824 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2825 			res = (*pa->pa_alloc)(pp, flags);
2826 		}
2827 	}
2828 	return res;
2829 }
2830 
2831 static void
2832 pool_allocator_free(struct pool *pp, void *v)
2833 {
2834 	struct pool_allocator *pa = pp->pr_alloc;
2835 
2836 	(*pa->pa_free)(pp, v);
2837 }
2838 
2839 void *
2840 pool_page_alloc(struct pool *pp, int flags)
2841 {
2842 	bool waitok = (flags & PR_WAITOK) ? true : false;
2843 
2844 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2845 }
2846 
2847 void
2848 pool_page_free(struct pool *pp, void *v)
2849 {
2850 
2851 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2852 }
2853 
2854 static void *
2855 pool_page_alloc_meta(struct pool *pp, int flags)
2856 {
2857 	bool waitok = (flags & PR_WAITOK) ? true : false;
2858 
2859 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2860 }
2861 
2862 static void
2863 pool_page_free_meta(struct pool *pp, void *v)
2864 {
2865 
2866 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2867 }
2868 
2869 #ifdef POOL_SUBPAGE
2870 /* Sub-page allocator, for machines with large hardware pages. */
2871 void *
2872 pool_subpage_alloc(struct pool *pp, int flags)
2873 {
2874 	return pool_get(&psppool, flags);
2875 }
2876 
2877 void
2878 pool_subpage_free(struct pool *pp, void *v)
2879 {
2880 	pool_put(&psppool, v);
2881 }
2882 
2883 /* We don't provide a real nointr allocator.  Maybe later. */
2884 void *
2885 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2886 {
2887 
2888 	return (pool_subpage_alloc(pp, flags));
2889 }
2890 
2891 void
2892 pool_subpage_free_nointr(struct pool *pp, void *v)
2893 {
2894 
2895 	pool_subpage_free(pp, v);
2896 }
2897 #endif /* POOL_SUBPAGE */
2898 void *
2899 pool_page_alloc_nointr(struct pool *pp, int flags)
2900 {
2901 	bool waitok = (flags & PR_WAITOK) ? true : false;
2902 
2903 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2904 }
2905 
2906 void
2907 pool_page_free_nointr(struct pool *pp, void *v)
2908 {
2909 
2910 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2911 }
2912 
2913 #if defined(DDB)
2914 static bool
2915 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2916 {
2917 
2918 	return (uintptr_t)ph->ph_page <= addr &&
2919 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2920 }
2921 
2922 static bool
2923 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2924 {
2925 
2926 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2927 }
2928 
2929 static bool
2930 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2931 {
2932 	int i;
2933 
2934 	if (pcg == NULL) {
2935 		return false;
2936 	}
2937 	for (i = 0; i < pcg->pcg_avail; i++) {
2938 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2939 			return true;
2940 		}
2941 	}
2942 	return false;
2943 }
2944 
2945 static bool
2946 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2947 {
2948 
2949 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2950 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2951 		pool_item_bitmap_t *bitmap =
2952 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2953 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2954 
2955 		return (*bitmap & mask) == 0;
2956 	} else {
2957 		struct pool_item *pi;
2958 
2959 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2960 			if (pool_in_item(pp, pi, addr)) {
2961 				return false;
2962 			}
2963 		}
2964 		return true;
2965 	}
2966 }
2967 
2968 void
2969 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2970 {
2971 	struct pool *pp;
2972 
2973 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2974 		struct pool_item_header *ph;
2975 		uintptr_t item;
2976 		bool allocated = true;
2977 		bool incache = false;
2978 		bool incpucache = false;
2979 		char cpucachestr[32];
2980 
2981 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2982 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2983 				if (pool_in_page(pp, ph, addr)) {
2984 					goto found;
2985 				}
2986 			}
2987 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2988 				if (pool_in_page(pp, ph, addr)) {
2989 					allocated =
2990 					    pool_allocated(pp, ph, addr);
2991 					goto found;
2992 				}
2993 			}
2994 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2995 				if (pool_in_page(pp, ph, addr)) {
2996 					allocated = false;
2997 					goto found;
2998 				}
2999 			}
3000 			continue;
3001 		} else {
3002 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3003 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3004 				continue;
3005 			}
3006 			allocated = pool_allocated(pp, ph, addr);
3007 		}
3008 found:
3009 		if (allocated && pp->pr_cache) {
3010 			pool_cache_t pc = pp->pr_cache;
3011 			struct pool_cache_group *pcg;
3012 			int i;
3013 
3014 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3015 			    pcg = pcg->pcg_next) {
3016 				if (pool_in_cg(pp, pcg, addr)) {
3017 					incache = true;
3018 					goto print;
3019 				}
3020 			}
3021 			for (i = 0; i < MAXCPUS; i++) {
3022 				pool_cache_cpu_t *cc;
3023 
3024 				if ((cc = pc->pc_cpus[i]) == NULL) {
3025 					continue;
3026 				}
3027 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3028 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3029 					struct cpu_info *ci =
3030 					    cpu_lookup_byindex(i);
3031 
3032 					incpucache = true;
3033 					snprintf(cpucachestr,
3034 					    sizeof(cpucachestr),
3035 					    "cached by CPU %u",
3036 					    ci->ci_index);
3037 					goto print;
3038 				}
3039 			}
3040 		}
3041 print:
3042 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3043 		item = item + rounddown(addr - item, pp->pr_size);
3044 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3045 		    (void *)addr, item, (size_t)(addr - item),
3046 		    pp->pr_wchan,
3047 		    incpucache ? cpucachestr :
3048 		    incache ? "cached" : allocated ? "allocated" : "free");
3049 	}
3050 }
3051 #endif /* defined(DDB) */
3052