1 /* $NetBSD: subr_pool.c,v 1.161 2008/05/31 13:31:25 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.161 2008/05/31 13:31:25 ad Exp $"); 35 36 #include "opt_ddb.h" 37 #include "opt_pool.h" 38 #include "opt_poollog.h" 39 #include "opt_lockdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bitops.h> 44 #include <sys/proc.h> 45 #include <sys/errno.h> 46 #include <sys/kernel.h> 47 #include <sys/malloc.h> 48 #include <sys/pool.h> 49 #include <sys/syslog.h> 50 #include <sys/debug.h> 51 #include <sys/lockdebug.h> 52 #include <sys/xcall.h> 53 #include <sys/cpu.h> 54 #include <sys/atomic.h> 55 56 #include <uvm/uvm.h> 57 58 /* 59 * Pool resource management utility. 60 * 61 * Memory is allocated in pages which are split into pieces according to 62 * the pool item size. Each page is kept on one of three lists in the 63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 64 * for empty, full and partially-full pages respectively. The individual 65 * pool items are on a linked list headed by `ph_itemlist' in each page 66 * header. The memory for building the page list is either taken from 67 * the allocated pages themselves (for small pool items) or taken from 68 * an internal pool of page headers (`phpool'). 69 */ 70 71 /* List of all pools */ 72 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 73 74 /* Private pool for page header structures */ 75 #define PHPOOL_MAX 8 76 static struct pool phpool[PHPOOL_MAX]; 77 #define PHPOOL_FREELIST_NELEM(idx) \ 78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 79 80 #ifdef POOL_SUBPAGE 81 /* Pool of subpages for use by normal pools. */ 82 static struct pool psppool; 83 #endif 84 85 static SLIST_HEAD(, pool_allocator) pa_deferinitq = 86 SLIST_HEAD_INITIALIZER(pa_deferinitq); 87 88 static void *pool_page_alloc_meta(struct pool *, int); 89 static void pool_page_free_meta(struct pool *, void *); 90 91 /* allocator for pool metadata */ 92 struct pool_allocator pool_allocator_meta = { 93 pool_page_alloc_meta, pool_page_free_meta, 94 .pa_backingmapptr = &kmem_map, 95 }; 96 97 /* # of seconds to retain page after last use */ 98 int pool_inactive_time = 10; 99 100 /* Next candidate for drainage (see pool_drain()) */ 101 static struct pool *drainpp; 102 103 /* This lock protects both pool_head and drainpp. */ 104 static kmutex_t pool_head_lock; 105 static kcondvar_t pool_busy; 106 107 typedef uint32_t pool_item_bitmap_t; 108 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 109 #define BITMAP_MASK (BITMAP_SIZE - 1) 110 111 struct pool_item_header { 112 /* Page headers */ 113 LIST_ENTRY(pool_item_header) 114 ph_pagelist; /* pool page list */ 115 SPLAY_ENTRY(pool_item_header) 116 ph_node; /* Off-page page headers */ 117 void * ph_page; /* this page's address */ 118 uint32_t ph_time; /* last referenced */ 119 uint16_t ph_nmissing; /* # of chunks in use */ 120 uint16_t ph_off; /* start offset in page */ 121 union { 122 /* !PR_NOTOUCH */ 123 struct { 124 LIST_HEAD(, pool_item) 125 phu_itemlist; /* chunk list for this page */ 126 } phu_normal; 127 /* PR_NOTOUCH */ 128 struct { 129 pool_item_bitmap_t phu_bitmap[1]; 130 } phu_notouch; 131 } ph_u; 132 }; 133 #define ph_itemlist ph_u.phu_normal.phu_itemlist 134 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 135 136 struct pool_item { 137 #ifdef DIAGNOSTIC 138 u_int pi_magic; 139 #endif 140 #define PI_MAGIC 0xdeaddeadU 141 /* Other entries use only this list entry */ 142 LIST_ENTRY(pool_item) pi_list; 143 }; 144 145 #define POOL_NEEDS_CATCHUP(pp) \ 146 ((pp)->pr_nitems < (pp)->pr_minitems) 147 148 /* 149 * Pool cache management. 150 * 151 * Pool caches provide a way for constructed objects to be cached by the 152 * pool subsystem. This can lead to performance improvements by avoiding 153 * needless object construction/destruction; it is deferred until absolutely 154 * necessary. 155 * 156 * Caches are grouped into cache groups. Each cache group references up 157 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 158 * object from the pool, it calls the object's constructor and places it 159 * into a cache group. When a cache group frees an object back to the 160 * pool, it first calls the object's destructor. This allows the object 161 * to persist in constructed form while freed to the cache. 162 * 163 * The pool references each cache, so that when a pool is drained by the 164 * pagedaemon, it can drain each individual cache as well. Each time a 165 * cache is drained, the most idle cache group is freed to the pool in 166 * its entirety. 167 * 168 * Pool caches are layed on top of pools. By layering them, we can avoid 169 * the complexity of cache management for pools which would not benefit 170 * from it. 171 */ 172 173 static struct pool pcg_normal_pool; 174 static struct pool pcg_large_pool; 175 static struct pool cache_pool; 176 static struct pool cache_cpu_pool; 177 178 /* List of all caches. */ 179 TAILQ_HEAD(,pool_cache) pool_cache_head = 180 TAILQ_HEAD_INITIALIZER(pool_cache_head); 181 182 int pool_cache_disable; 183 184 185 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *, 186 void *, paddr_t); 187 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *, 188 void **, paddr_t *, int); 189 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 190 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 191 static void pool_cache_xcall(pool_cache_t); 192 193 static int pool_catchup(struct pool *); 194 static void pool_prime_page(struct pool *, void *, 195 struct pool_item_header *); 196 static void pool_update_curpage(struct pool *); 197 198 static int pool_grow(struct pool *, int); 199 static void *pool_allocator_alloc(struct pool *, int); 200 static void pool_allocator_free(struct pool *, void *); 201 202 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 203 void (*)(const char *, ...)); 204 static void pool_print1(struct pool *, const char *, 205 void (*)(const char *, ...)); 206 207 static int pool_chk_page(struct pool *, const char *, 208 struct pool_item_header *); 209 210 /* 211 * Pool log entry. An array of these is allocated in pool_init(). 212 */ 213 struct pool_log { 214 const char *pl_file; 215 long pl_line; 216 int pl_action; 217 #define PRLOG_GET 1 218 #define PRLOG_PUT 2 219 void *pl_addr; 220 }; 221 222 #ifdef POOL_DIAGNOSTIC 223 /* Number of entries in pool log buffers */ 224 #ifndef POOL_LOGSIZE 225 #define POOL_LOGSIZE 10 226 #endif 227 228 int pool_logsize = POOL_LOGSIZE; 229 230 static inline void 231 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 232 { 233 int n = pp->pr_curlogentry; 234 struct pool_log *pl; 235 236 if ((pp->pr_roflags & PR_LOGGING) == 0) 237 return; 238 239 /* 240 * Fill in the current entry. Wrap around and overwrite 241 * the oldest entry if necessary. 242 */ 243 pl = &pp->pr_log[n]; 244 pl->pl_file = file; 245 pl->pl_line = line; 246 pl->pl_action = action; 247 pl->pl_addr = v; 248 if (++n >= pp->pr_logsize) 249 n = 0; 250 pp->pr_curlogentry = n; 251 } 252 253 static void 254 pr_printlog(struct pool *pp, struct pool_item *pi, 255 void (*pr)(const char *, ...)) 256 { 257 int i = pp->pr_logsize; 258 int n = pp->pr_curlogentry; 259 260 if ((pp->pr_roflags & PR_LOGGING) == 0) 261 return; 262 263 /* 264 * Print all entries in this pool's log. 265 */ 266 while (i-- > 0) { 267 struct pool_log *pl = &pp->pr_log[n]; 268 if (pl->pl_action != 0) { 269 if (pi == NULL || pi == pl->pl_addr) { 270 (*pr)("\tlog entry %d:\n", i); 271 (*pr)("\t\taction = %s, addr = %p\n", 272 pl->pl_action == PRLOG_GET ? "get" : "put", 273 pl->pl_addr); 274 (*pr)("\t\tfile: %s at line %lu\n", 275 pl->pl_file, pl->pl_line); 276 } 277 } 278 if (++n >= pp->pr_logsize) 279 n = 0; 280 } 281 } 282 283 static inline void 284 pr_enter(struct pool *pp, const char *file, long line) 285 { 286 287 if (__predict_false(pp->pr_entered_file != NULL)) { 288 printf("pool %s: reentrancy at file %s line %ld\n", 289 pp->pr_wchan, file, line); 290 printf(" previous entry at file %s line %ld\n", 291 pp->pr_entered_file, pp->pr_entered_line); 292 panic("pr_enter"); 293 } 294 295 pp->pr_entered_file = file; 296 pp->pr_entered_line = line; 297 } 298 299 static inline void 300 pr_leave(struct pool *pp) 301 { 302 303 if (__predict_false(pp->pr_entered_file == NULL)) { 304 printf("pool %s not entered?\n", pp->pr_wchan); 305 panic("pr_leave"); 306 } 307 308 pp->pr_entered_file = NULL; 309 pp->pr_entered_line = 0; 310 } 311 312 static inline void 313 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 314 { 315 316 if (pp->pr_entered_file != NULL) 317 (*pr)("\n\tcurrently entered from file %s line %ld\n", 318 pp->pr_entered_file, pp->pr_entered_line); 319 } 320 #else 321 #define pr_log(pp, v, action, file, line) 322 #define pr_printlog(pp, pi, pr) 323 #define pr_enter(pp, file, line) 324 #define pr_leave(pp) 325 #define pr_enter_check(pp, pr) 326 #endif /* POOL_DIAGNOSTIC */ 327 328 static inline unsigned int 329 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 330 const void *v) 331 { 332 const char *cp = v; 333 unsigned int idx; 334 335 KASSERT(pp->pr_roflags & PR_NOTOUCH); 336 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 337 KASSERT(idx < pp->pr_itemsperpage); 338 return idx; 339 } 340 341 static inline void 342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 343 void *obj) 344 { 345 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 346 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 347 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 348 349 KASSERT((*bitmap & mask) == 0); 350 *bitmap |= mask; 351 } 352 353 static inline void * 354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 355 { 356 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 357 unsigned int idx; 358 int i; 359 360 for (i = 0; ; i++) { 361 int bit; 362 363 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 364 bit = ffs32(bitmap[i]); 365 if (bit) { 366 pool_item_bitmap_t mask; 367 368 bit--; 369 idx = (i * BITMAP_SIZE) + bit; 370 mask = 1 << bit; 371 KASSERT((bitmap[i] & mask) != 0); 372 bitmap[i] &= ~mask; 373 break; 374 } 375 } 376 KASSERT(idx < pp->pr_itemsperpage); 377 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 378 } 379 380 static inline void 381 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 382 { 383 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 384 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 385 int i; 386 387 for (i = 0; i < n; i++) { 388 bitmap[i] = (pool_item_bitmap_t)-1; 389 } 390 } 391 392 static inline int 393 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 394 { 395 396 /* 397 * we consider pool_item_header with smaller ph_page bigger. 398 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 399 */ 400 401 if (a->ph_page < b->ph_page) 402 return (1); 403 else if (a->ph_page > b->ph_page) 404 return (-1); 405 else 406 return (0); 407 } 408 409 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 410 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 411 412 static inline struct pool_item_header * 413 pr_find_pagehead_noalign(struct pool *pp, void *v) 414 { 415 struct pool_item_header *ph, tmp; 416 417 tmp.ph_page = (void *)(uintptr_t)v; 418 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 419 if (ph == NULL) { 420 ph = SPLAY_ROOT(&pp->pr_phtree); 421 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 422 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 423 } 424 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 425 } 426 427 return ph; 428 } 429 430 /* 431 * Return the pool page header based on item address. 432 */ 433 static inline struct pool_item_header * 434 pr_find_pagehead(struct pool *pp, void *v) 435 { 436 struct pool_item_header *ph, tmp; 437 438 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 439 ph = pr_find_pagehead_noalign(pp, v); 440 } else { 441 void *page = 442 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 443 444 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 445 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 446 } else { 447 tmp.ph_page = page; 448 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 449 } 450 } 451 452 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 453 ((char *)ph->ph_page <= (char *)v && 454 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 455 return ph; 456 } 457 458 static void 459 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 460 { 461 struct pool_item_header *ph; 462 463 while ((ph = LIST_FIRST(pq)) != NULL) { 464 LIST_REMOVE(ph, ph_pagelist); 465 pool_allocator_free(pp, ph->ph_page); 466 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 467 pool_put(pp->pr_phpool, ph); 468 } 469 } 470 471 /* 472 * Remove a page from the pool. 473 */ 474 static inline void 475 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 476 struct pool_pagelist *pq) 477 { 478 479 KASSERT(mutex_owned(&pp->pr_lock)); 480 481 /* 482 * If the page was idle, decrement the idle page count. 483 */ 484 if (ph->ph_nmissing == 0) { 485 #ifdef DIAGNOSTIC 486 if (pp->pr_nidle == 0) 487 panic("pr_rmpage: nidle inconsistent"); 488 if (pp->pr_nitems < pp->pr_itemsperpage) 489 panic("pr_rmpage: nitems inconsistent"); 490 #endif 491 pp->pr_nidle--; 492 } 493 494 pp->pr_nitems -= pp->pr_itemsperpage; 495 496 /* 497 * Unlink the page from the pool and queue it for release. 498 */ 499 LIST_REMOVE(ph, ph_pagelist); 500 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 501 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 502 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 503 504 pp->pr_npages--; 505 pp->pr_npagefree++; 506 507 pool_update_curpage(pp); 508 } 509 510 static bool 511 pa_starved_p(struct pool_allocator *pa) 512 { 513 514 if (pa->pa_backingmap != NULL) { 515 return vm_map_starved_p(pa->pa_backingmap); 516 } 517 return false; 518 } 519 520 static int 521 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 522 { 523 struct pool *pp = obj; 524 struct pool_allocator *pa = pp->pr_alloc; 525 526 KASSERT(&pp->pr_reclaimerentry == ce); 527 pool_reclaim(pp); 528 if (!pa_starved_p(pa)) { 529 return CALLBACK_CHAIN_ABORT; 530 } 531 return CALLBACK_CHAIN_CONTINUE; 532 } 533 534 static void 535 pool_reclaim_register(struct pool *pp) 536 { 537 struct vm_map *map = pp->pr_alloc->pa_backingmap; 538 int s; 539 540 if (map == NULL) { 541 return; 542 } 543 544 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 545 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, 546 &pp->pr_reclaimerentry, pp, pool_reclaim_callback); 547 splx(s); 548 } 549 550 static void 551 pool_reclaim_unregister(struct pool *pp) 552 { 553 struct vm_map *map = pp->pr_alloc->pa_backingmap; 554 int s; 555 556 if (map == NULL) { 557 return; 558 } 559 560 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 561 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, 562 &pp->pr_reclaimerentry); 563 splx(s); 564 } 565 566 static void 567 pa_reclaim_register(struct pool_allocator *pa) 568 { 569 struct vm_map *map = *pa->pa_backingmapptr; 570 struct pool *pp; 571 572 KASSERT(pa->pa_backingmap == NULL); 573 if (map == NULL) { 574 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); 575 return; 576 } 577 pa->pa_backingmap = map; 578 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 579 pool_reclaim_register(pp); 580 } 581 } 582 583 /* 584 * Initialize all the pools listed in the "pools" link set. 585 */ 586 void 587 pool_subsystem_init(void) 588 { 589 struct pool_allocator *pa; 590 __link_set_decl(pools, struct link_pool_init); 591 struct link_pool_init * const *pi; 592 593 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 594 cv_init(&pool_busy, "poolbusy"); 595 596 __link_set_foreach(pi, pools) 597 pool_init((*pi)->pp, (*pi)->size, (*pi)->align, 598 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan, 599 (*pi)->palloc, (*pi)->ipl); 600 601 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { 602 KASSERT(pa->pa_backingmapptr != NULL); 603 KASSERT(*pa->pa_backingmapptr != NULL); 604 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); 605 pa_reclaim_register(pa); 606 } 607 608 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 609 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); 610 611 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 612 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); 613 } 614 615 /* 616 * Initialize the given pool resource structure. 617 * 618 * We export this routine to allow other kernel parts to declare 619 * static pools that must be initialized before malloc() is available. 620 */ 621 void 622 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 623 const char *wchan, struct pool_allocator *palloc, int ipl) 624 { 625 struct pool *pp1; 626 size_t trysize, phsize; 627 int off, slack; 628 629 #ifdef DEBUG 630 /* 631 * Check that the pool hasn't already been initialised and 632 * added to the list of all pools. 633 */ 634 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 635 if (pp == pp1) 636 panic("pool_init: pool %s already initialised", 637 wchan); 638 } 639 #endif 640 641 #ifdef POOL_DIAGNOSTIC 642 /* 643 * Always log if POOL_DIAGNOSTIC is defined. 644 */ 645 if (pool_logsize != 0) 646 flags |= PR_LOGGING; 647 #endif 648 649 if (palloc == NULL) 650 palloc = &pool_allocator_kmem; 651 #ifdef POOL_SUBPAGE 652 if (size > palloc->pa_pagesz) { 653 if (palloc == &pool_allocator_kmem) 654 palloc = &pool_allocator_kmem_fullpage; 655 else if (palloc == &pool_allocator_nointr) 656 palloc = &pool_allocator_nointr_fullpage; 657 } 658 #endif /* POOL_SUBPAGE */ 659 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 660 if (palloc->pa_pagesz == 0) 661 palloc->pa_pagesz = PAGE_SIZE; 662 663 TAILQ_INIT(&palloc->pa_list); 664 665 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 666 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 667 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 668 669 if (palloc->pa_backingmapptr != NULL) { 670 pa_reclaim_register(palloc); 671 } 672 palloc->pa_flags |= PA_INITIALIZED; 673 } 674 675 if (align == 0) 676 align = ALIGN(1); 677 678 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 679 size = sizeof(struct pool_item); 680 681 size = roundup(size, align); 682 #ifdef DIAGNOSTIC 683 if (size > palloc->pa_pagesz) 684 panic("pool_init: pool item size (%zu) too large", size); 685 #endif 686 687 /* 688 * Initialize the pool structure. 689 */ 690 LIST_INIT(&pp->pr_emptypages); 691 LIST_INIT(&pp->pr_fullpages); 692 LIST_INIT(&pp->pr_partpages); 693 pp->pr_cache = NULL; 694 pp->pr_curpage = NULL; 695 pp->pr_npages = 0; 696 pp->pr_minitems = 0; 697 pp->pr_minpages = 0; 698 pp->pr_maxpages = UINT_MAX; 699 pp->pr_roflags = flags; 700 pp->pr_flags = 0; 701 pp->pr_size = size; 702 pp->pr_align = align; 703 pp->pr_wchan = wchan; 704 pp->pr_alloc = palloc; 705 pp->pr_nitems = 0; 706 pp->pr_nout = 0; 707 pp->pr_hardlimit = UINT_MAX; 708 pp->pr_hardlimit_warning = NULL; 709 pp->pr_hardlimit_ratecap.tv_sec = 0; 710 pp->pr_hardlimit_ratecap.tv_usec = 0; 711 pp->pr_hardlimit_warning_last.tv_sec = 0; 712 pp->pr_hardlimit_warning_last.tv_usec = 0; 713 pp->pr_drain_hook = NULL; 714 pp->pr_drain_hook_arg = NULL; 715 pp->pr_freecheck = NULL; 716 717 /* 718 * Decide whether to put the page header off page to avoid 719 * wasting too large a part of the page or too big item. 720 * Off-page page headers go on a hash table, so we can match 721 * a returned item with its header based on the page address. 722 * We use 1/16 of the page size and about 8 times of the item 723 * size as the threshold (XXX: tune) 724 * 725 * However, we'll put the header into the page if we can put 726 * it without wasting any items. 727 * 728 * Silently enforce `0 <= ioff < align'. 729 */ 730 pp->pr_itemoffset = ioff %= align; 731 /* See the comment below about reserved bytes. */ 732 trysize = palloc->pa_pagesz - ((align - ioff) % align); 733 phsize = ALIGN(sizeof(struct pool_item_header)); 734 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 735 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 736 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { 737 /* Use the end of the page for the page header */ 738 pp->pr_roflags |= PR_PHINPAGE; 739 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 740 } else { 741 /* The page header will be taken from our page header pool */ 742 pp->pr_phoffset = 0; 743 off = palloc->pa_pagesz; 744 SPLAY_INIT(&pp->pr_phtree); 745 } 746 747 /* 748 * Alignment is to take place at `ioff' within the item. This means 749 * we must reserve up to `align - 1' bytes on the page to allow 750 * appropriate positioning of each item. 751 */ 752 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 753 KASSERT(pp->pr_itemsperpage != 0); 754 if ((pp->pr_roflags & PR_NOTOUCH)) { 755 int idx; 756 757 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 758 idx++) { 759 /* nothing */ 760 } 761 if (idx >= PHPOOL_MAX) { 762 /* 763 * if you see this panic, consider to tweak 764 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 765 */ 766 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 767 pp->pr_wchan, pp->pr_itemsperpage); 768 } 769 pp->pr_phpool = &phpool[idx]; 770 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 771 pp->pr_phpool = &phpool[0]; 772 } 773 #if defined(DIAGNOSTIC) 774 else { 775 pp->pr_phpool = NULL; 776 } 777 #endif 778 779 /* 780 * Use the slack between the chunks and the page header 781 * for "cache coloring". 782 */ 783 slack = off - pp->pr_itemsperpage * pp->pr_size; 784 pp->pr_maxcolor = (slack / align) * align; 785 pp->pr_curcolor = 0; 786 787 pp->pr_nget = 0; 788 pp->pr_nfail = 0; 789 pp->pr_nput = 0; 790 pp->pr_npagealloc = 0; 791 pp->pr_npagefree = 0; 792 pp->pr_hiwat = 0; 793 pp->pr_nidle = 0; 794 pp->pr_refcnt = 0; 795 796 #ifdef POOL_DIAGNOSTIC 797 if (flags & PR_LOGGING) { 798 if (kmem_map == NULL || 799 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 800 M_TEMP, M_NOWAIT)) == NULL) 801 pp->pr_roflags &= ~PR_LOGGING; 802 pp->pr_curlogentry = 0; 803 pp->pr_logsize = pool_logsize; 804 } 805 #endif 806 807 pp->pr_entered_file = NULL; 808 pp->pr_entered_line = 0; 809 810 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 811 cv_init(&pp->pr_cv, wchan); 812 pp->pr_ipl = ipl; 813 814 /* 815 * Initialize private page header pool and cache magazine pool if we 816 * haven't done so yet. 817 * XXX LOCKING. 818 */ 819 if (phpool[0].pr_size == 0) { 820 int idx; 821 for (idx = 0; idx < PHPOOL_MAX; idx++) { 822 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 823 int nelem; 824 size_t sz; 825 826 nelem = PHPOOL_FREELIST_NELEM(idx); 827 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 828 "phpool-%d", nelem); 829 sz = sizeof(struct pool_item_header); 830 if (nelem) { 831 sz = offsetof(struct pool_item_header, 832 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 833 } 834 pool_init(&phpool[idx], sz, 0, 0, 0, 835 phpool_names[idx], &pool_allocator_meta, IPL_VM); 836 } 837 #ifdef POOL_SUBPAGE 838 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 839 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 840 #endif 841 842 size = sizeof(pcg_t) + 843 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 844 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 845 "pcgnormal", &pool_allocator_meta, IPL_VM); 846 847 size = sizeof(pcg_t) + 848 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 849 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 850 "pcglarge", &pool_allocator_meta, IPL_VM); 851 } 852 853 /* Insert into the list of all pools. */ 854 if (__predict_true(!cold)) 855 mutex_enter(&pool_head_lock); 856 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 857 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 858 break; 859 } 860 if (pp1 == NULL) 861 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 862 else 863 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 864 if (__predict_true(!cold)) 865 mutex_exit(&pool_head_lock); 866 867 /* Insert this into the list of pools using this allocator. */ 868 if (__predict_true(!cold)) 869 mutex_enter(&palloc->pa_lock); 870 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 871 if (__predict_true(!cold)) 872 mutex_exit(&palloc->pa_lock); 873 874 pool_reclaim_register(pp); 875 } 876 877 /* 878 * De-commision a pool resource. 879 */ 880 void 881 pool_destroy(struct pool *pp) 882 { 883 struct pool_pagelist pq; 884 struct pool_item_header *ph; 885 886 /* Remove from global pool list */ 887 mutex_enter(&pool_head_lock); 888 while (pp->pr_refcnt != 0) 889 cv_wait(&pool_busy, &pool_head_lock); 890 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 891 if (drainpp == pp) 892 drainpp = NULL; 893 mutex_exit(&pool_head_lock); 894 895 /* Remove this pool from its allocator's list of pools. */ 896 pool_reclaim_unregister(pp); 897 mutex_enter(&pp->pr_alloc->pa_lock); 898 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 899 mutex_exit(&pp->pr_alloc->pa_lock); 900 901 mutex_enter(&pp->pr_lock); 902 903 KASSERT(pp->pr_cache == NULL); 904 905 #ifdef DIAGNOSTIC 906 if (pp->pr_nout != 0) { 907 pr_printlog(pp, NULL, printf); 908 panic("pool_destroy: pool busy: still out: %u", 909 pp->pr_nout); 910 } 911 #endif 912 913 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 914 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 915 916 /* Remove all pages */ 917 LIST_INIT(&pq); 918 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 919 pr_rmpage(pp, ph, &pq); 920 921 mutex_exit(&pp->pr_lock); 922 923 pr_pagelist_free(pp, &pq); 924 925 #ifdef POOL_DIAGNOSTIC 926 if ((pp->pr_roflags & PR_LOGGING) != 0) 927 free(pp->pr_log, M_TEMP); 928 #endif 929 930 cv_destroy(&pp->pr_cv); 931 mutex_destroy(&pp->pr_lock); 932 } 933 934 void 935 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 936 { 937 938 /* XXX no locking -- must be used just after pool_init() */ 939 #ifdef DIAGNOSTIC 940 if (pp->pr_drain_hook != NULL) 941 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 942 #endif 943 pp->pr_drain_hook = fn; 944 pp->pr_drain_hook_arg = arg; 945 } 946 947 static struct pool_item_header * 948 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 949 { 950 struct pool_item_header *ph; 951 952 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 953 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 954 else 955 ph = pool_get(pp->pr_phpool, flags); 956 957 return (ph); 958 } 959 960 /* 961 * Grab an item from the pool. 962 */ 963 void * 964 #ifdef POOL_DIAGNOSTIC 965 _pool_get(struct pool *pp, int flags, const char *file, long line) 966 #else 967 pool_get(struct pool *pp, int flags) 968 #endif 969 { 970 struct pool_item *pi; 971 struct pool_item_header *ph; 972 void *v; 973 974 #ifdef DIAGNOSTIC 975 if (__predict_false(pp->pr_itemsperpage == 0)) 976 panic("pool_get: pool %p: pr_itemsperpage is zero, " 977 "pool not initialized?", pp); 978 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 979 (flags & PR_WAITOK) != 0)) 980 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 981 982 #endif /* DIAGNOSTIC */ 983 #ifdef LOCKDEBUG 984 if (flags & PR_WAITOK) { 985 ASSERT_SLEEPABLE(); 986 } 987 #endif 988 989 mutex_enter(&pp->pr_lock); 990 pr_enter(pp, file, line); 991 992 startover: 993 /* 994 * Check to see if we've reached the hard limit. If we have, 995 * and we can wait, then wait until an item has been returned to 996 * the pool. 997 */ 998 #ifdef DIAGNOSTIC 999 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 1000 pr_leave(pp); 1001 mutex_exit(&pp->pr_lock); 1002 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 1003 } 1004 #endif 1005 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1006 if (pp->pr_drain_hook != NULL) { 1007 /* 1008 * Since the drain hook is going to free things 1009 * back to the pool, unlock, call the hook, re-lock, 1010 * and check the hardlimit condition again. 1011 */ 1012 pr_leave(pp); 1013 mutex_exit(&pp->pr_lock); 1014 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1015 mutex_enter(&pp->pr_lock); 1016 pr_enter(pp, file, line); 1017 if (pp->pr_nout < pp->pr_hardlimit) 1018 goto startover; 1019 } 1020 1021 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1022 /* 1023 * XXX: A warning isn't logged in this case. Should 1024 * it be? 1025 */ 1026 pp->pr_flags |= PR_WANTED; 1027 pr_leave(pp); 1028 cv_wait(&pp->pr_cv, &pp->pr_lock); 1029 pr_enter(pp, file, line); 1030 goto startover; 1031 } 1032 1033 /* 1034 * Log a message that the hard limit has been hit. 1035 */ 1036 if (pp->pr_hardlimit_warning != NULL && 1037 ratecheck(&pp->pr_hardlimit_warning_last, 1038 &pp->pr_hardlimit_ratecap)) 1039 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1040 1041 pp->pr_nfail++; 1042 1043 pr_leave(pp); 1044 mutex_exit(&pp->pr_lock); 1045 return (NULL); 1046 } 1047 1048 /* 1049 * The convention we use is that if `curpage' is not NULL, then 1050 * it points at a non-empty bucket. In particular, `curpage' 1051 * never points at a page header which has PR_PHINPAGE set and 1052 * has no items in its bucket. 1053 */ 1054 if ((ph = pp->pr_curpage) == NULL) { 1055 int error; 1056 1057 #ifdef DIAGNOSTIC 1058 if (pp->pr_nitems != 0) { 1059 mutex_exit(&pp->pr_lock); 1060 printf("pool_get: %s: curpage NULL, nitems %u\n", 1061 pp->pr_wchan, pp->pr_nitems); 1062 panic("pool_get: nitems inconsistent"); 1063 } 1064 #endif 1065 1066 /* 1067 * Call the back-end page allocator for more memory. 1068 * Release the pool lock, as the back-end page allocator 1069 * may block. 1070 */ 1071 pr_leave(pp); 1072 error = pool_grow(pp, flags); 1073 pr_enter(pp, file, line); 1074 if (error != 0) { 1075 /* 1076 * We were unable to allocate a page or item 1077 * header, but we released the lock during 1078 * allocation, so perhaps items were freed 1079 * back to the pool. Check for this case. 1080 */ 1081 if (pp->pr_curpage != NULL) 1082 goto startover; 1083 1084 pp->pr_nfail++; 1085 pr_leave(pp); 1086 mutex_exit(&pp->pr_lock); 1087 return (NULL); 1088 } 1089 1090 /* Start the allocation process over. */ 1091 goto startover; 1092 } 1093 if (pp->pr_roflags & PR_NOTOUCH) { 1094 #ifdef DIAGNOSTIC 1095 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 1096 pr_leave(pp); 1097 mutex_exit(&pp->pr_lock); 1098 panic("pool_get: %s: page empty", pp->pr_wchan); 1099 } 1100 #endif 1101 v = pr_item_notouch_get(pp, ph); 1102 #ifdef POOL_DIAGNOSTIC 1103 pr_log(pp, v, PRLOG_GET, file, line); 1104 #endif 1105 } else { 1106 v = pi = LIST_FIRST(&ph->ph_itemlist); 1107 if (__predict_false(v == NULL)) { 1108 pr_leave(pp); 1109 mutex_exit(&pp->pr_lock); 1110 panic("pool_get: %s: page empty", pp->pr_wchan); 1111 } 1112 #ifdef DIAGNOSTIC 1113 if (__predict_false(pp->pr_nitems == 0)) { 1114 pr_leave(pp); 1115 mutex_exit(&pp->pr_lock); 1116 printf("pool_get: %s: items on itemlist, nitems %u\n", 1117 pp->pr_wchan, pp->pr_nitems); 1118 panic("pool_get: nitems inconsistent"); 1119 } 1120 #endif 1121 1122 #ifdef POOL_DIAGNOSTIC 1123 pr_log(pp, v, PRLOG_GET, file, line); 1124 #endif 1125 1126 #ifdef DIAGNOSTIC 1127 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 1128 pr_printlog(pp, pi, printf); 1129 panic("pool_get(%s): free list modified: " 1130 "magic=%x; page %p; item addr %p\n", 1131 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 1132 } 1133 #endif 1134 1135 /* 1136 * Remove from item list. 1137 */ 1138 LIST_REMOVE(pi, pi_list); 1139 } 1140 pp->pr_nitems--; 1141 pp->pr_nout++; 1142 if (ph->ph_nmissing == 0) { 1143 #ifdef DIAGNOSTIC 1144 if (__predict_false(pp->pr_nidle == 0)) 1145 panic("pool_get: nidle inconsistent"); 1146 #endif 1147 pp->pr_nidle--; 1148 1149 /* 1150 * This page was previously empty. Move it to the list of 1151 * partially-full pages. This page is already curpage. 1152 */ 1153 LIST_REMOVE(ph, ph_pagelist); 1154 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1155 } 1156 ph->ph_nmissing++; 1157 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1158 #ifdef DIAGNOSTIC 1159 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 1160 !LIST_EMPTY(&ph->ph_itemlist))) { 1161 pr_leave(pp); 1162 mutex_exit(&pp->pr_lock); 1163 panic("pool_get: %s: nmissing inconsistent", 1164 pp->pr_wchan); 1165 } 1166 #endif 1167 /* 1168 * This page is now full. Move it to the full list 1169 * and select a new current page. 1170 */ 1171 LIST_REMOVE(ph, ph_pagelist); 1172 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1173 pool_update_curpage(pp); 1174 } 1175 1176 pp->pr_nget++; 1177 pr_leave(pp); 1178 1179 /* 1180 * If we have a low water mark and we are now below that low 1181 * water mark, add more items to the pool. 1182 */ 1183 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1184 /* 1185 * XXX: Should we log a warning? Should we set up a timeout 1186 * to try again in a second or so? The latter could break 1187 * a caller's assumptions about interrupt protection, etc. 1188 */ 1189 } 1190 1191 mutex_exit(&pp->pr_lock); 1192 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 1193 FREECHECK_OUT(&pp->pr_freecheck, v); 1194 return (v); 1195 } 1196 1197 /* 1198 * Internal version of pool_put(). Pool is already locked/entered. 1199 */ 1200 static void 1201 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1202 { 1203 struct pool_item *pi = v; 1204 struct pool_item_header *ph; 1205 1206 KASSERT(mutex_owned(&pp->pr_lock)); 1207 FREECHECK_IN(&pp->pr_freecheck, v); 1208 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1209 1210 #ifdef DIAGNOSTIC 1211 if (__predict_false(pp->pr_nout == 0)) { 1212 printf("pool %s: putting with none out\n", 1213 pp->pr_wchan); 1214 panic("pool_put"); 1215 } 1216 #endif 1217 1218 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1219 pr_printlog(pp, NULL, printf); 1220 panic("pool_put: %s: page header missing", pp->pr_wchan); 1221 } 1222 1223 /* 1224 * Return to item list. 1225 */ 1226 if (pp->pr_roflags & PR_NOTOUCH) { 1227 pr_item_notouch_put(pp, ph, v); 1228 } else { 1229 #ifdef DIAGNOSTIC 1230 pi->pi_magic = PI_MAGIC; 1231 #endif 1232 #ifdef DEBUG 1233 { 1234 int i, *ip = v; 1235 1236 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 1237 *ip++ = PI_MAGIC; 1238 } 1239 } 1240 #endif 1241 1242 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1243 } 1244 KDASSERT(ph->ph_nmissing != 0); 1245 ph->ph_nmissing--; 1246 pp->pr_nput++; 1247 pp->pr_nitems++; 1248 pp->pr_nout--; 1249 1250 /* Cancel "pool empty" condition if it exists */ 1251 if (pp->pr_curpage == NULL) 1252 pp->pr_curpage = ph; 1253 1254 if (pp->pr_flags & PR_WANTED) { 1255 pp->pr_flags &= ~PR_WANTED; 1256 if (ph->ph_nmissing == 0) 1257 pp->pr_nidle++; 1258 cv_broadcast(&pp->pr_cv); 1259 return; 1260 } 1261 1262 /* 1263 * If this page is now empty, do one of two things: 1264 * 1265 * (1) If we have more pages than the page high water mark, 1266 * free the page back to the system. ONLY CONSIDER 1267 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1268 * CLAIM. 1269 * 1270 * (2) Otherwise, move the page to the empty page list. 1271 * 1272 * Either way, select a new current page (so we use a partially-full 1273 * page if one is available). 1274 */ 1275 if (ph->ph_nmissing == 0) { 1276 pp->pr_nidle++; 1277 if (pp->pr_npages > pp->pr_minpages && 1278 pp->pr_npages > pp->pr_maxpages) { 1279 pr_rmpage(pp, ph, pq); 1280 } else { 1281 LIST_REMOVE(ph, ph_pagelist); 1282 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1283 1284 /* 1285 * Update the timestamp on the page. A page must 1286 * be idle for some period of time before it can 1287 * be reclaimed by the pagedaemon. This minimizes 1288 * ping-pong'ing for memory. 1289 * 1290 * note for 64-bit time_t: truncating to 32-bit is not 1291 * a problem for our usage. 1292 */ 1293 ph->ph_time = time_uptime; 1294 } 1295 pool_update_curpage(pp); 1296 } 1297 1298 /* 1299 * If the page was previously completely full, move it to the 1300 * partially-full list and make it the current page. The next 1301 * allocation will get the item from this page, instead of 1302 * further fragmenting the pool. 1303 */ 1304 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1305 LIST_REMOVE(ph, ph_pagelist); 1306 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1307 pp->pr_curpage = ph; 1308 } 1309 } 1310 1311 /* 1312 * Return resource to the pool. 1313 */ 1314 #ifdef POOL_DIAGNOSTIC 1315 void 1316 _pool_put(struct pool *pp, void *v, const char *file, long line) 1317 { 1318 struct pool_pagelist pq; 1319 1320 LIST_INIT(&pq); 1321 1322 mutex_enter(&pp->pr_lock); 1323 pr_enter(pp, file, line); 1324 1325 pr_log(pp, v, PRLOG_PUT, file, line); 1326 1327 pool_do_put(pp, v, &pq); 1328 1329 pr_leave(pp); 1330 mutex_exit(&pp->pr_lock); 1331 1332 pr_pagelist_free(pp, &pq); 1333 } 1334 #undef pool_put 1335 #endif /* POOL_DIAGNOSTIC */ 1336 1337 void 1338 pool_put(struct pool *pp, void *v) 1339 { 1340 struct pool_pagelist pq; 1341 1342 LIST_INIT(&pq); 1343 1344 mutex_enter(&pp->pr_lock); 1345 pool_do_put(pp, v, &pq); 1346 mutex_exit(&pp->pr_lock); 1347 1348 pr_pagelist_free(pp, &pq); 1349 } 1350 1351 #ifdef POOL_DIAGNOSTIC 1352 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1353 #endif 1354 1355 /* 1356 * pool_grow: grow a pool by a page. 1357 * 1358 * => called with pool locked. 1359 * => unlock and relock the pool. 1360 * => return with pool locked. 1361 */ 1362 1363 static int 1364 pool_grow(struct pool *pp, int flags) 1365 { 1366 struct pool_item_header *ph = NULL; 1367 char *cp; 1368 1369 mutex_exit(&pp->pr_lock); 1370 cp = pool_allocator_alloc(pp, flags); 1371 if (__predict_true(cp != NULL)) { 1372 ph = pool_alloc_item_header(pp, cp, flags); 1373 } 1374 if (__predict_false(cp == NULL || ph == NULL)) { 1375 if (cp != NULL) { 1376 pool_allocator_free(pp, cp); 1377 } 1378 mutex_enter(&pp->pr_lock); 1379 return ENOMEM; 1380 } 1381 1382 mutex_enter(&pp->pr_lock); 1383 pool_prime_page(pp, cp, ph); 1384 pp->pr_npagealloc++; 1385 return 0; 1386 } 1387 1388 /* 1389 * Add N items to the pool. 1390 */ 1391 int 1392 pool_prime(struct pool *pp, int n) 1393 { 1394 int newpages; 1395 int error = 0; 1396 1397 mutex_enter(&pp->pr_lock); 1398 1399 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1400 1401 while (newpages-- > 0) { 1402 error = pool_grow(pp, PR_NOWAIT); 1403 if (error) { 1404 break; 1405 } 1406 pp->pr_minpages++; 1407 } 1408 1409 if (pp->pr_minpages >= pp->pr_maxpages) 1410 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1411 1412 mutex_exit(&pp->pr_lock); 1413 return error; 1414 } 1415 1416 /* 1417 * Add a page worth of items to the pool. 1418 * 1419 * Note, we must be called with the pool descriptor LOCKED. 1420 */ 1421 static void 1422 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1423 { 1424 struct pool_item *pi; 1425 void *cp = storage; 1426 const unsigned int align = pp->pr_align; 1427 const unsigned int ioff = pp->pr_itemoffset; 1428 int n; 1429 1430 KASSERT(mutex_owned(&pp->pr_lock)); 1431 1432 #ifdef DIAGNOSTIC 1433 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1434 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1435 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1436 #endif 1437 1438 /* 1439 * Insert page header. 1440 */ 1441 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1442 LIST_INIT(&ph->ph_itemlist); 1443 ph->ph_page = storage; 1444 ph->ph_nmissing = 0; 1445 ph->ph_time = time_uptime; 1446 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1447 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1448 1449 pp->pr_nidle++; 1450 1451 /* 1452 * Color this page. 1453 */ 1454 ph->ph_off = pp->pr_curcolor; 1455 cp = (char *)cp + ph->ph_off; 1456 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1457 pp->pr_curcolor = 0; 1458 1459 /* 1460 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1461 */ 1462 if (ioff != 0) 1463 cp = (char *)cp + align - ioff; 1464 1465 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1466 1467 /* 1468 * Insert remaining chunks on the bucket list. 1469 */ 1470 n = pp->pr_itemsperpage; 1471 pp->pr_nitems += n; 1472 1473 if (pp->pr_roflags & PR_NOTOUCH) { 1474 pr_item_notouch_init(pp, ph); 1475 } else { 1476 while (n--) { 1477 pi = (struct pool_item *)cp; 1478 1479 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1480 1481 /* Insert on page list */ 1482 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1483 #ifdef DIAGNOSTIC 1484 pi->pi_magic = PI_MAGIC; 1485 #endif 1486 cp = (char *)cp + pp->pr_size; 1487 1488 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1489 } 1490 } 1491 1492 /* 1493 * If the pool was depleted, point at the new page. 1494 */ 1495 if (pp->pr_curpage == NULL) 1496 pp->pr_curpage = ph; 1497 1498 if (++pp->pr_npages > pp->pr_hiwat) 1499 pp->pr_hiwat = pp->pr_npages; 1500 } 1501 1502 /* 1503 * Used by pool_get() when nitems drops below the low water mark. This 1504 * is used to catch up pr_nitems with the low water mark. 1505 * 1506 * Note 1, we never wait for memory here, we let the caller decide what to do. 1507 * 1508 * Note 2, we must be called with the pool already locked, and we return 1509 * with it locked. 1510 */ 1511 static int 1512 pool_catchup(struct pool *pp) 1513 { 1514 int error = 0; 1515 1516 while (POOL_NEEDS_CATCHUP(pp)) { 1517 error = pool_grow(pp, PR_NOWAIT); 1518 if (error) { 1519 break; 1520 } 1521 } 1522 return error; 1523 } 1524 1525 static void 1526 pool_update_curpage(struct pool *pp) 1527 { 1528 1529 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1530 if (pp->pr_curpage == NULL) { 1531 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1532 } 1533 } 1534 1535 void 1536 pool_setlowat(struct pool *pp, int n) 1537 { 1538 1539 mutex_enter(&pp->pr_lock); 1540 1541 pp->pr_minitems = n; 1542 pp->pr_minpages = (n == 0) 1543 ? 0 1544 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1545 1546 /* Make sure we're caught up with the newly-set low water mark. */ 1547 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1548 /* 1549 * XXX: Should we log a warning? Should we set up a timeout 1550 * to try again in a second or so? The latter could break 1551 * a caller's assumptions about interrupt protection, etc. 1552 */ 1553 } 1554 1555 mutex_exit(&pp->pr_lock); 1556 } 1557 1558 void 1559 pool_sethiwat(struct pool *pp, int n) 1560 { 1561 1562 mutex_enter(&pp->pr_lock); 1563 1564 pp->pr_maxpages = (n == 0) 1565 ? 0 1566 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1567 1568 mutex_exit(&pp->pr_lock); 1569 } 1570 1571 void 1572 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1573 { 1574 1575 mutex_enter(&pp->pr_lock); 1576 1577 pp->pr_hardlimit = n; 1578 pp->pr_hardlimit_warning = warnmess; 1579 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1580 pp->pr_hardlimit_warning_last.tv_sec = 0; 1581 pp->pr_hardlimit_warning_last.tv_usec = 0; 1582 1583 /* 1584 * In-line version of pool_sethiwat(), because we don't want to 1585 * release the lock. 1586 */ 1587 pp->pr_maxpages = (n == 0) 1588 ? 0 1589 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1590 1591 mutex_exit(&pp->pr_lock); 1592 } 1593 1594 /* 1595 * Release all complete pages that have not been used recently. 1596 */ 1597 int 1598 #ifdef POOL_DIAGNOSTIC 1599 _pool_reclaim(struct pool *pp, const char *file, long line) 1600 #else 1601 pool_reclaim(struct pool *pp) 1602 #endif 1603 { 1604 struct pool_item_header *ph, *phnext; 1605 struct pool_pagelist pq; 1606 uint32_t curtime; 1607 bool klock; 1608 int rv; 1609 1610 if (pp->pr_drain_hook != NULL) { 1611 /* 1612 * The drain hook must be called with the pool unlocked. 1613 */ 1614 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1615 } 1616 1617 /* 1618 * XXXSMP Because we do not want to cause non-MPSAFE code 1619 * to block. 1620 */ 1621 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1622 pp->pr_ipl == IPL_SOFTSERIAL) { 1623 KERNEL_LOCK(1, NULL); 1624 klock = true; 1625 } else 1626 klock = false; 1627 1628 /* Reclaim items from the pool's cache (if any). */ 1629 if (pp->pr_cache != NULL) 1630 pool_cache_invalidate(pp->pr_cache); 1631 1632 if (mutex_tryenter(&pp->pr_lock) == 0) { 1633 if (klock) { 1634 KERNEL_UNLOCK_ONE(NULL); 1635 } 1636 return (0); 1637 } 1638 pr_enter(pp, file, line); 1639 1640 LIST_INIT(&pq); 1641 1642 curtime = time_uptime; 1643 1644 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1645 phnext = LIST_NEXT(ph, ph_pagelist); 1646 1647 /* Check our minimum page claim */ 1648 if (pp->pr_npages <= pp->pr_minpages) 1649 break; 1650 1651 KASSERT(ph->ph_nmissing == 0); 1652 if (curtime - ph->ph_time < pool_inactive_time 1653 && !pa_starved_p(pp->pr_alloc)) 1654 continue; 1655 1656 /* 1657 * If freeing this page would put us below 1658 * the low water mark, stop now. 1659 */ 1660 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1661 pp->pr_minitems) 1662 break; 1663 1664 pr_rmpage(pp, ph, &pq); 1665 } 1666 1667 pr_leave(pp); 1668 mutex_exit(&pp->pr_lock); 1669 1670 if (LIST_EMPTY(&pq)) 1671 rv = 0; 1672 else { 1673 pr_pagelist_free(pp, &pq); 1674 rv = 1; 1675 } 1676 1677 if (klock) { 1678 KERNEL_UNLOCK_ONE(NULL); 1679 } 1680 1681 return (rv); 1682 } 1683 1684 /* 1685 * Drain pools, one at a time. This is a two stage process; 1686 * drain_start kicks off a cross call to drain CPU-level caches 1687 * if the pool has an associated pool_cache. drain_end waits 1688 * for those cross calls to finish, and then drains the cache 1689 * (if any) and pool. 1690 * 1691 * Note, must never be called from interrupt context. 1692 */ 1693 void 1694 pool_drain_start(struct pool **ppp, uint64_t *wp) 1695 { 1696 struct pool *pp; 1697 1698 KASSERT(!TAILQ_EMPTY(&pool_head)); 1699 1700 pp = NULL; 1701 1702 /* Find next pool to drain, and add a reference. */ 1703 mutex_enter(&pool_head_lock); 1704 do { 1705 if (drainpp == NULL) { 1706 drainpp = TAILQ_FIRST(&pool_head); 1707 } 1708 if (drainpp != NULL) { 1709 pp = drainpp; 1710 drainpp = TAILQ_NEXT(pp, pr_poollist); 1711 } 1712 /* 1713 * Skip completely idle pools. We depend on at least 1714 * one pool in the system being active. 1715 */ 1716 } while (pp == NULL || pp->pr_npages == 0); 1717 pp->pr_refcnt++; 1718 mutex_exit(&pool_head_lock); 1719 1720 /* If there is a pool_cache, drain CPU level caches. */ 1721 *ppp = pp; 1722 if (pp->pr_cache != NULL) { 1723 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, 1724 pp->pr_cache, NULL); 1725 } 1726 } 1727 1728 void 1729 pool_drain_end(struct pool *pp, uint64_t where) 1730 { 1731 1732 if (pp == NULL) 1733 return; 1734 1735 KASSERT(pp->pr_refcnt > 0); 1736 1737 /* Wait for remote draining to complete. */ 1738 if (pp->pr_cache != NULL) 1739 xc_wait(where); 1740 1741 /* Drain the cache (if any) and pool.. */ 1742 pool_reclaim(pp); 1743 1744 /* Finally, unlock the pool. */ 1745 mutex_enter(&pool_head_lock); 1746 pp->pr_refcnt--; 1747 cv_broadcast(&pool_busy); 1748 mutex_exit(&pool_head_lock); 1749 } 1750 1751 /* 1752 * Diagnostic helpers. 1753 */ 1754 void 1755 pool_print(struct pool *pp, const char *modif) 1756 { 1757 1758 pool_print1(pp, modif, printf); 1759 } 1760 1761 void 1762 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1763 { 1764 struct pool *pp; 1765 1766 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1767 pool_printit(pp, modif, pr); 1768 } 1769 } 1770 1771 void 1772 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1773 { 1774 1775 if (pp == NULL) { 1776 (*pr)("Must specify a pool to print.\n"); 1777 return; 1778 } 1779 1780 pool_print1(pp, modif, pr); 1781 } 1782 1783 static void 1784 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1785 void (*pr)(const char *, ...)) 1786 { 1787 struct pool_item_header *ph; 1788 #ifdef DIAGNOSTIC 1789 struct pool_item *pi; 1790 #endif 1791 1792 LIST_FOREACH(ph, pl, ph_pagelist) { 1793 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1794 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1795 #ifdef DIAGNOSTIC 1796 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1797 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1798 if (pi->pi_magic != PI_MAGIC) { 1799 (*pr)("\t\t\titem %p, magic 0x%x\n", 1800 pi, pi->pi_magic); 1801 } 1802 } 1803 } 1804 #endif 1805 } 1806 } 1807 1808 static void 1809 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1810 { 1811 struct pool_item_header *ph; 1812 pool_cache_t pc; 1813 pcg_t *pcg; 1814 pool_cache_cpu_t *cc; 1815 uint64_t cpuhit, cpumiss; 1816 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1817 char c; 1818 1819 while ((c = *modif++) != '\0') { 1820 if (c == 'l') 1821 print_log = 1; 1822 if (c == 'p') 1823 print_pagelist = 1; 1824 if (c == 'c') 1825 print_cache = 1; 1826 } 1827 1828 if ((pc = pp->pr_cache) != NULL) { 1829 (*pr)("POOL CACHE"); 1830 } else { 1831 (*pr)("POOL"); 1832 } 1833 1834 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1835 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1836 pp->pr_roflags); 1837 (*pr)("\talloc %p\n", pp->pr_alloc); 1838 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1839 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1840 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1841 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1842 1843 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1844 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1845 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1846 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1847 1848 if (print_pagelist == 0) 1849 goto skip_pagelist; 1850 1851 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1852 (*pr)("\n\tempty page list:\n"); 1853 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1854 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1855 (*pr)("\n\tfull page list:\n"); 1856 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1857 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1858 (*pr)("\n\tpartial-page list:\n"); 1859 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1860 1861 if (pp->pr_curpage == NULL) 1862 (*pr)("\tno current page\n"); 1863 else 1864 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1865 1866 skip_pagelist: 1867 if (print_log == 0) 1868 goto skip_log; 1869 1870 (*pr)("\n"); 1871 if ((pp->pr_roflags & PR_LOGGING) == 0) 1872 (*pr)("\tno log\n"); 1873 else { 1874 pr_printlog(pp, NULL, pr); 1875 } 1876 1877 skip_log: 1878 1879 #define PR_GROUPLIST(pcg) \ 1880 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1881 for (i = 0; i < pcg->pcg_size; i++) { \ 1882 if (pcg->pcg_objects[i].pcgo_pa != \ 1883 POOL_PADDR_INVALID) { \ 1884 (*pr)("\t\t\t%p, 0x%llx\n", \ 1885 pcg->pcg_objects[i].pcgo_va, \ 1886 (unsigned long long) \ 1887 pcg->pcg_objects[i].pcgo_pa); \ 1888 } else { \ 1889 (*pr)("\t\t\t%p\n", \ 1890 pcg->pcg_objects[i].pcgo_va); \ 1891 } \ 1892 } 1893 1894 if (pc != NULL) { 1895 cpuhit = 0; 1896 cpumiss = 0; 1897 for (i = 0; i < MAXCPUS; i++) { 1898 if ((cc = pc->pc_cpus[i]) == NULL) 1899 continue; 1900 cpuhit += cc->cc_hits; 1901 cpumiss += cc->cc_misses; 1902 } 1903 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1904 (*pr)("\tcache layer hits %llu misses %llu\n", 1905 pc->pc_hits, pc->pc_misses); 1906 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1907 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1908 pc->pc_contended); 1909 (*pr)("\tcache layer empty groups %u full groups %u\n", 1910 pc->pc_nempty, pc->pc_nfull); 1911 if (print_cache) { 1912 (*pr)("\tfull cache groups:\n"); 1913 for (pcg = pc->pc_fullgroups; pcg != NULL; 1914 pcg = pcg->pcg_next) { 1915 PR_GROUPLIST(pcg); 1916 } 1917 (*pr)("\tempty cache groups:\n"); 1918 for (pcg = pc->pc_emptygroups; pcg != NULL; 1919 pcg = pcg->pcg_next) { 1920 PR_GROUPLIST(pcg); 1921 } 1922 } 1923 } 1924 #undef PR_GROUPLIST 1925 1926 pr_enter_check(pp, pr); 1927 } 1928 1929 static int 1930 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1931 { 1932 struct pool_item *pi; 1933 void *page; 1934 int n; 1935 1936 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1937 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1938 if (page != ph->ph_page && 1939 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1940 if (label != NULL) 1941 printf("%s: ", label); 1942 printf("pool(%p:%s): page inconsistency: page %p;" 1943 " at page head addr %p (p %p)\n", pp, 1944 pp->pr_wchan, ph->ph_page, 1945 ph, page); 1946 return 1; 1947 } 1948 } 1949 1950 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1951 return 0; 1952 1953 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1954 pi != NULL; 1955 pi = LIST_NEXT(pi,pi_list), n++) { 1956 1957 #ifdef DIAGNOSTIC 1958 if (pi->pi_magic != PI_MAGIC) { 1959 if (label != NULL) 1960 printf("%s: ", label); 1961 printf("pool(%s): free list modified: magic=%x;" 1962 " page %p; item ordinal %d; addr %p\n", 1963 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1964 n, pi); 1965 panic("pool"); 1966 } 1967 #endif 1968 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1969 continue; 1970 } 1971 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1972 if (page == ph->ph_page) 1973 continue; 1974 1975 if (label != NULL) 1976 printf("%s: ", label); 1977 printf("pool(%p:%s): page inconsistency: page %p;" 1978 " item ordinal %d; addr %p (p %p)\n", pp, 1979 pp->pr_wchan, ph->ph_page, 1980 n, pi, page); 1981 return 1; 1982 } 1983 return 0; 1984 } 1985 1986 1987 int 1988 pool_chk(struct pool *pp, const char *label) 1989 { 1990 struct pool_item_header *ph; 1991 int r = 0; 1992 1993 mutex_enter(&pp->pr_lock); 1994 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1995 r = pool_chk_page(pp, label, ph); 1996 if (r) { 1997 goto out; 1998 } 1999 } 2000 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2001 r = pool_chk_page(pp, label, ph); 2002 if (r) { 2003 goto out; 2004 } 2005 } 2006 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2007 r = pool_chk_page(pp, label, ph); 2008 if (r) { 2009 goto out; 2010 } 2011 } 2012 2013 out: 2014 mutex_exit(&pp->pr_lock); 2015 return (r); 2016 } 2017 2018 /* 2019 * pool_cache_init: 2020 * 2021 * Initialize a pool cache. 2022 */ 2023 pool_cache_t 2024 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2025 const char *wchan, struct pool_allocator *palloc, int ipl, 2026 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2027 { 2028 pool_cache_t pc; 2029 2030 pc = pool_get(&cache_pool, PR_WAITOK); 2031 if (pc == NULL) 2032 return NULL; 2033 2034 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2035 palloc, ipl, ctor, dtor, arg); 2036 2037 return pc; 2038 } 2039 2040 /* 2041 * pool_cache_bootstrap: 2042 * 2043 * Kernel-private version of pool_cache_init(). The caller 2044 * provides initial storage. 2045 */ 2046 void 2047 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2048 u_int align_offset, u_int flags, const char *wchan, 2049 struct pool_allocator *palloc, int ipl, 2050 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2051 void *arg) 2052 { 2053 CPU_INFO_ITERATOR cii; 2054 pool_cache_t pc1; 2055 struct cpu_info *ci; 2056 struct pool *pp; 2057 2058 pp = &pc->pc_pool; 2059 if (palloc == NULL && ipl == IPL_NONE) 2060 palloc = &pool_allocator_nointr; 2061 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2062 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 2063 2064 if (ctor == NULL) { 2065 ctor = (int (*)(void *, void *, int))nullop; 2066 } 2067 if (dtor == NULL) { 2068 dtor = (void (*)(void *, void *))nullop; 2069 } 2070 2071 pc->pc_emptygroups = NULL; 2072 pc->pc_fullgroups = NULL; 2073 pc->pc_partgroups = NULL; 2074 pc->pc_ctor = ctor; 2075 pc->pc_dtor = dtor; 2076 pc->pc_arg = arg; 2077 pc->pc_hits = 0; 2078 pc->pc_misses = 0; 2079 pc->pc_nempty = 0; 2080 pc->pc_npart = 0; 2081 pc->pc_nfull = 0; 2082 pc->pc_contended = 0; 2083 pc->pc_refcnt = 0; 2084 pc->pc_freecheck = NULL; 2085 2086 if ((flags & PR_LARGECACHE) != 0) { 2087 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2088 } else { 2089 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2090 } 2091 2092 /* Allocate per-CPU caches. */ 2093 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2094 pc->pc_ncpu = 0; 2095 if (ncpu < 2) { 2096 /* XXX For sparc: boot CPU is not attached yet. */ 2097 pool_cache_cpu_init1(curcpu(), pc); 2098 } else { 2099 for (CPU_INFO_FOREACH(cii, ci)) { 2100 pool_cache_cpu_init1(ci, pc); 2101 } 2102 } 2103 2104 /* Add to list of all pools. */ 2105 if (__predict_true(!cold)) 2106 mutex_enter(&pool_head_lock); 2107 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2108 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2109 break; 2110 } 2111 if (pc1 == NULL) 2112 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2113 else 2114 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2115 if (__predict_true(!cold)) 2116 mutex_exit(&pool_head_lock); 2117 2118 membar_sync(); 2119 pp->pr_cache = pc; 2120 } 2121 2122 /* 2123 * pool_cache_destroy: 2124 * 2125 * Destroy a pool cache. 2126 */ 2127 void 2128 pool_cache_destroy(pool_cache_t pc) 2129 { 2130 struct pool *pp = &pc->pc_pool; 2131 pool_cache_cpu_t *cc; 2132 pcg_t *pcg; 2133 int i; 2134 2135 /* Remove it from the global list. */ 2136 mutex_enter(&pool_head_lock); 2137 while (pc->pc_refcnt != 0) 2138 cv_wait(&pool_busy, &pool_head_lock); 2139 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2140 mutex_exit(&pool_head_lock); 2141 2142 /* First, invalidate the entire cache. */ 2143 pool_cache_invalidate(pc); 2144 2145 /* Disassociate it from the pool. */ 2146 mutex_enter(&pp->pr_lock); 2147 pp->pr_cache = NULL; 2148 mutex_exit(&pp->pr_lock); 2149 2150 /* Destroy per-CPU data */ 2151 for (i = 0; i < MAXCPUS; i++) { 2152 if ((cc = pc->pc_cpus[i]) == NULL) 2153 continue; 2154 if ((pcg = cc->cc_current) != NULL) { 2155 pcg->pcg_next = NULL; 2156 pool_cache_invalidate_groups(pc, pcg); 2157 } 2158 if ((pcg = cc->cc_previous) != NULL) { 2159 pcg->pcg_next = NULL; 2160 pool_cache_invalidate_groups(pc, pcg); 2161 } 2162 if (cc != &pc->pc_cpu0) 2163 pool_put(&cache_cpu_pool, cc); 2164 } 2165 2166 /* Finally, destroy it. */ 2167 mutex_destroy(&pc->pc_lock); 2168 pool_destroy(pp); 2169 pool_put(&cache_pool, pc); 2170 } 2171 2172 /* 2173 * pool_cache_cpu_init1: 2174 * 2175 * Called for each pool_cache whenever a new CPU is attached. 2176 */ 2177 static void 2178 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2179 { 2180 pool_cache_cpu_t *cc; 2181 int index; 2182 2183 index = ci->ci_index; 2184 2185 KASSERT(index < MAXCPUS); 2186 2187 if ((cc = pc->pc_cpus[index]) != NULL) { 2188 KASSERT(cc->cc_cpuindex == index); 2189 return; 2190 } 2191 2192 /* 2193 * The first CPU is 'free'. This needs to be the case for 2194 * bootstrap - we may not be able to allocate yet. 2195 */ 2196 if (pc->pc_ncpu == 0) { 2197 cc = &pc->pc_cpu0; 2198 pc->pc_ncpu = 1; 2199 } else { 2200 mutex_enter(&pc->pc_lock); 2201 pc->pc_ncpu++; 2202 mutex_exit(&pc->pc_lock); 2203 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2204 } 2205 2206 cc->cc_ipl = pc->pc_pool.pr_ipl; 2207 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2208 cc->cc_cache = pc; 2209 cc->cc_cpuindex = index; 2210 cc->cc_hits = 0; 2211 cc->cc_misses = 0; 2212 cc->cc_current = NULL; 2213 cc->cc_previous = NULL; 2214 2215 pc->pc_cpus[index] = cc; 2216 } 2217 2218 /* 2219 * pool_cache_cpu_init: 2220 * 2221 * Called whenever a new CPU is attached. 2222 */ 2223 void 2224 pool_cache_cpu_init(struct cpu_info *ci) 2225 { 2226 pool_cache_t pc; 2227 2228 mutex_enter(&pool_head_lock); 2229 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2230 pc->pc_refcnt++; 2231 mutex_exit(&pool_head_lock); 2232 2233 pool_cache_cpu_init1(ci, pc); 2234 2235 mutex_enter(&pool_head_lock); 2236 pc->pc_refcnt--; 2237 cv_broadcast(&pool_busy); 2238 } 2239 mutex_exit(&pool_head_lock); 2240 } 2241 2242 /* 2243 * pool_cache_reclaim: 2244 * 2245 * Reclaim memory from a pool cache. 2246 */ 2247 bool 2248 pool_cache_reclaim(pool_cache_t pc) 2249 { 2250 2251 return pool_reclaim(&pc->pc_pool); 2252 } 2253 2254 static void 2255 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2256 { 2257 2258 (*pc->pc_dtor)(pc->pc_arg, object); 2259 pool_put(&pc->pc_pool, object); 2260 } 2261 2262 /* 2263 * pool_cache_destruct_object: 2264 * 2265 * Force destruction of an object and its release back into 2266 * the pool. 2267 */ 2268 void 2269 pool_cache_destruct_object(pool_cache_t pc, void *object) 2270 { 2271 2272 FREECHECK_IN(&pc->pc_freecheck, object); 2273 2274 pool_cache_destruct_object1(pc, object); 2275 } 2276 2277 /* 2278 * pool_cache_invalidate_groups: 2279 * 2280 * Invalidate a chain of groups and destruct all objects. 2281 */ 2282 static void 2283 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2284 { 2285 void *object; 2286 pcg_t *next; 2287 int i; 2288 2289 for (; pcg != NULL; pcg = next) { 2290 next = pcg->pcg_next; 2291 2292 for (i = 0; i < pcg->pcg_avail; i++) { 2293 object = pcg->pcg_objects[i].pcgo_va; 2294 pool_cache_destruct_object1(pc, object); 2295 } 2296 2297 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2298 pool_put(&pcg_large_pool, pcg); 2299 } else { 2300 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2301 pool_put(&pcg_normal_pool, pcg); 2302 } 2303 } 2304 } 2305 2306 /* 2307 * pool_cache_invalidate: 2308 * 2309 * Invalidate a pool cache (destruct and release all of the 2310 * cached objects). Does not reclaim objects from the pool. 2311 */ 2312 void 2313 pool_cache_invalidate(pool_cache_t pc) 2314 { 2315 pcg_t *full, *empty, *part; 2316 2317 mutex_enter(&pc->pc_lock); 2318 full = pc->pc_fullgroups; 2319 empty = pc->pc_emptygroups; 2320 part = pc->pc_partgroups; 2321 pc->pc_fullgroups = NULL; 2322 pc->pc_emptygroups = NULL; 2323 pc->pc_partgroups = NULL; 2324 pc->pc_nfull = 0; 2325 pc->pc_nempty = 0; 2326 pc->pc_npart = 0; 2327 mutex_exit(&pc->pc_lock); 2328 2329 pool_cache_invalidate_groups(pc, full); 2330 pool_cache_invalidate_groups(pc, empty); 2331 pool_cache_invalidate_groups(pc, part); 2332 } 2333 2334 void 2335 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2336 { 2337 2338 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2339 } 2340 2341 void 2342 pool_cache_setlowat(pool_cache_t pc, int n) 2343 { 2344 2345 pool_setlowat(&pc->pc_pool, n); 2346 } 2347 2348 void 2349 pool_cache_sethiwat(pool_cache_t pc, int n) 2350 { 2351 2352 pool_sethiwat(&pc->pc_pool, n); 2353 } 2354 2355 void 2356 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2357 { 2358 2359 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2360 } 2361 2362 static inline pool_cache_cpu_t * 2363 pool_cache_cpu_enter(pool_cache_t pc, int *s) 2364 { 2365 pool_cache_cpu_t *cc; 2366 2367 /* 2368 * Prevent other users of the cache from accessing our 2369 * CPU-local data. To avoid touching shared state, we 2370 * pull the neccessary information from CPU local data. 2371 */ 2372 KPREEMPT_DISABLE(curlwp); 2373 cc = pc->pc_cpus[curcpu()->ci_index]; 2374 KASSERT(cc->cc_cache == pc); 2375 if (cc->cc_ipl != IPL_NONE) { 2376 *s = splraiseipl(cc->cc_iplcookie); 2377 } 2378 2379 return cc; 2380 } 2381 2382 static inline void 2383 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s) 2384 { 2385 2386 /* No longer need exclusive access to the per-CPU data. */ 2387 if (cc->cc_ipl != IPL_NONE) { 2388 splx(*s); 2389 } 2390 KPREEMPT_ENABLE(curlwp); 2391 } 2392 2393 pool_cache_cpu_t * __noinline 2394 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp, 2395 paddr_t *pap, int flags) 2396 { 2397 pcg_t *pcg, *cur; 2398 uint64_t ncsw; 2399 pool_cache_t pc; 2400 void *object; 2401 2402 pc = cc->cc_cache; 2403 cc->cc_misses++; 2404 2405 /* 2406 * Nothing was available locally. Try and grab a group 2407 * from the cache. 2408 */ 2409 if (!mutex_tryenter(&pc->pc_lock)) { 2410 ncsw = curlwp->l_ncsw; 2411 mutex_enter(&pc->pc_lock); 2412 pc->pc_contended++; 2413 2414 /* 2415 * If we context switched while locking, then 2416 * our view of the per-CPU data is invalid: 2417 * retry. 2418 */ 2419 if (curlwp->l_ncsw != ncsw) { 2420 mutex_exit(&pc->pc_lock); 2421 pool_cache_cpu_exit(cc, s); 2422 return pool_cache_cpu_enter(pc, s); 2423 } 2424 } 2425 2426 if ((pcg = pc->pc_fullgroups) != NULL) { 2427 /* 2428 * If there's a full group, release our empty 2429 * group back to the cache. Install the full 2430 * group as cc_current and return. 2431 */ 2432 if ((cur = cc->cc_current) != NULL) { 2433 KASSERT(cur->pcg_avail == 0); 2434 cur->pcg_next = pc->pc_emptygroups; 2435 pc->pc_emptygroups = cur; 2436 pc->pc_nempty++; 2437 } 2438 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2439 cc->cc_current = pcg; 2440 pc->pc_fullgroups = pcg->pcg_next; 2441 pc->pc_hits++; 2442 pc->pc_nfull--; 2443 mutex_exit(&pc->pc_lock); 2444 return cc; 2445 } 2446 2447 /* 2448 * Nothing available locally or in cache. Take the slow 2449 * path: fetch a new object from the pool and construct 2450 * it. 2451 */ 2452 pc->pc_misses++; 2453 mutex_exit(&pc->pc_lock); 2454 pool_cache_cpu_exit(cc, s); 2455 2456 object = pool_get(&pc->pc_pool, flags); 2457 *objectp = object; 2458 if (object == NULL) 2459 return NULL; 2460 2461 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 2462 pool_put(&pc->pc_pool, object); 2463 *objectp = NULL; 2464 return NULL; 2465 } 2466 2467 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2468 (pc->pc_pool.pr_align - 1)) == 0); 2469 2470 if (pap != NULL) { 2471 #ifdef POOL_VTOPHYS 2472 *pap = POOL_VTOPHYS(object); 2473 #else 2474 *pap = POOL_PADDR_INVALID; 2475 #endif 2476 } 2477 2478 FREECHECK_OUT(&pc->pc_freecheck, object); 2479 return NULL; 2480 } 2481 2482 /* 2483 * pool_cache_get{,_paddr}: 2484 * 2485 * Get an object from a pool cache (optionally returning 2486 * the physical address of the object). 2487 */ 2488 void * 2489 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2490 { 2491 pool_cache_cpu_t *cc; 2492 pcg_t *pcg; 2493 void *object; 2494 int s; 2495 2496 #ifdef LOCKDEBUG 2497 if (flags & PR_WAITOK) { 2498 ASSERT_SLEEPABLE(); 2499 } 2500 #endif 2501 2502 cc = pool_cache_cpu_enter(pc, &s); 2503 do { 2504 /* Try and allocate an object from the current group. */ 2505 pcg = cc->cc_current; 2506 if (pcg != NULL && pcg->pcg_avail > 0) { 2507 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2508 if (pap != NULL) 2509 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2510 #if defined(DIAGNOSTIC) 2511 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2512 #endif /* defined(DIAGNOSTIC) */ 2513 KASSERT(pcg->pcg_avail <= pcg->pcg_size); 2514 KASSERT(object != NULL); 2515 cc->cc_hits++; 2516 pool_cache_cpu_exit(cc, &s); 2517 FREECHECK_OUT(&pc->pc_freecheck, object); 2518 return object; 2519 } 2520 2521 /* 2522 * That failed. If the previous group isn't empty, swap 2523 * it with the current group and allocate from there. 2524 */ 2525 pcg = cc->cc_previous; 2526 if (pcg != NULL && pcg->pcg_avail > 0) { 2527 cc->cc_previous = cc->cc_current; 2528 cc->cc_current = pcg; 2529 continue; 2530 } 2531 2532 /* 2533 * Can't allocate from either group: try the slow path. 2534 * If get_slow() allocated an object for us, or if 2535 * no more objects are available, it will return NULL. 2536 * Otherwise, we need to retry. 2537 */ 2538 cc = pool_cache_get_slow(cc, &s, &object, pap, flags); 2539 } while (cc != NULL); 2540 2541 return object; 2542 } 2543 2544 pool_cache_cpu_t * __noinline 2545 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa) 2546 { 2547 pcg_t *pcg, *cur; 2548 uint64_t ncsw; 2549 pool_cache_t pc; 2550 u_int nobj; 2551 2552 pc = cc->cc_cache; 2553 cc->cc_misses++; 2554 2555 /* 2556 * No free slots locally. Try to grab an empty, unused 2557 * group from the cache. 2558 */ 2559 if (!mutex_tryenter(&pc->pc_lock)) { 2560 ncsw = curlwp->l_ncsw; 2561 mutex_enter(&pc->pc_lock); 2562 pc->pc_contended++; 2563 2564 /* 2565 * If we context switched while locking, then 2566 * our view of the per-CPU data is invalid: 2567 * retry. 2568 */ 2569 if (curlwp->l_ncsw != ncsw) { 2570 mutex_exit(&pc->pc_lock); 2571 pool_cache_cpu_exit(cc, s); 2572 return pool_cache_cpu_enter(pc, s); 2573 } 2574 } 2575 2576 if ((pcg = pc->pc_emptygroups) != NULL) { 2577 /* 2578 * If there's a empty group, release our full 2579 * group back to the cache. Install the empty 2580 * group and return. 2581 */ 2582 KASSERT(pcg->pcg_avail == 0); 2583 pc->pc_emptygroups = pcg->pcg_next; 2584 if (cc->cc_previous == NULL) { 2585 cc->cc_previous = pcg; 2586 } else { 2587 if ((cur = cc->cc_current) != NULL) { 2588 KASSERT(cur->pcg_avail == pcg->pcg_size); 2589 cur->pcg_next = pc->pc_fullgroups; 2590 pc->pc_fullgroups = cur; 2591 pc->pc_nfull++; 2592 } 2593 cc->cc_current = pcg; 2594 } 2595 pc->pc_hits++; 2596 pc->pc_nempty--; 2597 mutex_exit(&pc->pc_lock); 2598 return cc; 2599 } 2600 2601 /* 2602 * Nothing available locally or in cache. Take the 2603 * slow path and try to allocate a new group that we 2604 * can release to. 2605 */ 2606 pc->pc_misses++; 2607 mutex_exit(&pc->pc_lock); 2608 pool_cache_cpu_exit(cc, s); 2609 2610 /* 2611 * If we can't allocate a new group, just throw the 2612 * object away. 2613 */ 2614 nobj = pc->pc_pcgsize; 2615 if (pool_cache_disable) { 2616 pcg = NULL; 2617 } else if (nobj == PCG_NOBJECTS_LARGE) { 2618 pcg = pool_get(&pcg_large_pool, PR_NOWAIT); 2619 } else { 2620 pcg = pool_get(&pcg_normal_pool, PR_NOWAIT); 2621 } 2622 if (pcg == NULL) { 2623 pool_cache_destruct_object(pc, object); 2624 return NULL; 2625 } 2626 pcg->pcg_avail = 0; 2627 pcg->pcg_size = nobj; 2628 2629 /* 2630 * Add the empty group to the cache and try again. 2631 */ 2632 mutex_enter(&pc->pc_lock); 2633 pcg->pcg_next = pc->pc_emptygroups; 2634 pc->pc_emptygroups = pcg; 2635 pc->pc_nempty++; 2636 mutex_exit(&pc->pc_lock); 2637 2638 return pool_cache_cpu_enter(pc, s); 2639 } 2640 2641 /* 2642 * pool_cache_put{,_paddr}: 2643 * 2644 * Put an object back to the pool cache (optionally caching the 2645 * physical address of the object). 2646 */ 2647 void 2648 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2649 { 2650 pool_cache_cpu_t *cc; 2651 pcg_t *pcg; 2652 int s; 2653 2654 FREECHECK_IN(&pc->pc_freecheck, object); 2655 2656 cc = pool_cache_cpu_enter(pc, &s); 2657 do { 2658 /* If the current group isn't full, release it there. */ 2659 pcg = cc->cc_current; 2660 if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) { 2661 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2662 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2663 pcg->pcg_avail++; 2664 cc->cc_hits++; 2665 pool_cache_cpu_exit(cc, &s); 2666 return; 2667 } 2668 2669 /* 2670 * That failed. If the previous group is empty, swap 2671 * it with the current group and try again. 2672 */ 2673 pcg = cc->cc_previous; 2674 if (pcg != NULL && pcg->pcg_avail == 0) { 2675 cc->cc_previous = cc->cc_current; 2676 cc->cc_current = pcg; 2677 continue; 2678 } 2679 2680 /* 2681 * Can't free to either group: try the slow path. 2682 * If put_slow() releases the object for us, it 2683 * will return NULL. Otherwise we need to retry. 2684 */ 2685 cc = pool_cache_put_slow(cc, &s, object, pa); 2686 } while (cc != NULL); 2687 } 2688 2689 /* 2690 * pool_cache_xcall: 2691 * 2692 * Transfer objects from the per-CPU cache to the global cache. 2693 * Run within a cross-call thread. 2694 */ 2695 static void 2696 pool_cache_xcall(pool_cache_t pc) 2697 { 2698 pool_cache_cpu_t *cc; 2699 pcg_t *prev, *cur, **list; 2700 int s = 0; /* XXXgcc */ 2701 2702 cc = pool_cache_cpu_enter(pc, &s); 2703 cur = cc->cc_current; 2704 cc->cc_current = NULL; 2705 prev = cc->cc_previous; 2706 cc->cc_previous = NULL; 2707 pool_cache_cpu_exit(cc, &s); 2708 2709 /* 2710 * XXXSMP Go to splvm to prevent kernel_lock from being taken, 2711 * because locks at IPL_SOFTXXX are still spinlocks. Does not 2712 * apply to IPL_SOFTBIO. Cross-call threads do not take the 2713 * kernel_lock. 2714 */ 2715 s = splvm(); 2716 mutex_enter(&pc->pc_lock); 2717 if (cur != NULL) { 2718 if (cur->pcg_avail == cur->pcg_size) { 2719 list = &pc->pc_fullgroups; 2720 pc->pc_nfull++; 2721 } else if (cur->pcg_avail == 0) { 2722 list = &pc->pc_emptygroups; 2723 pc->pc_nempty++; 2724 } else { 2725 list = &pc->pc_partgroups; 2726 pc->pc_npart++; 2727 } 2728 cur->pcg_next = *list; 2729 *list = cur; 2730 } 2731 if (prev != NULL) { 2732 if (prev->pcg_avail == prev->pcg_size) { 2733 list = &pc->pc_fullgroups; 2734 pc->pc_nfull++; 2735 } else if (prev->pcg_avail == 0) { 2736 list = &pc->pc_emptygroups; 2737 pc->pc_nempty++; 2738 } else { 2739 list = &pc->pc_partgroups; 2740 pc->pc_npart++; 2741 } 2742 prev->pcg_next = *list; 2743 *list = prev; 2744 } 2745 mutex_exit(&pc->pc_lock); 2746 splx(s); 2747 } 2748 2749 /* 2750 * Pool backend allocators. 2751 * 2752 * Each pool has a backend allocator that handles allocation, deallocation, 2753 * and any additional draining that might be needed. 2754 * 2755 * We provide two standard allocators: 2756 * 2757 * pool_allocator_kmem - the default when no allocator is specified 2758 * 2759 * pool_allocator_nointr - used for pools that will not be accessed 2760 * in interrupt context. 2761 */ 2762 void *pool_page_alloc(struct pool *, int); 2763 void pool_page_free(struct pool *, void *); 2764 2765 #ifdef POOL_SUBPAGE 2766 struct pool_allocator pool_allocator_kmem_fullpage = { 2767 pool_page_alloc, pool_page_free, 0, 2768 .pa_backingmapptr = &kmem_map, 2769 }; 2770 #else 2771 struct pool_allocator pool_allocator_kmem = { 2772 pool_page_alloc, pool_page_free, 0, 2773 .pa_backingmapptr = &kmem_map, 2774 }; 2775 #endif 2776 2777 void *pool_page_alloc_nointr(struct pool *, int); 2778 void pool_page_free_nointr(struct pool *, void *); 2779 2780 #ifdef POOL_SUBPAGE 2781 struct pool_allocator pool_allocator_nointr_fullpage = { 2782 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2783 .pa_backingmapptr = &kernel_map, 2784 }; 2785 #else 2786 struct pool_allocator pool_allocator_nointr = { 2787 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2788 .pa_backingmapptr = &kernel_map, 2789 }; 2790 #endif 2791 2792 #ifdef POOL_SUBPAGE 2793 void *pool_subpage_alloc(struct pool *, int); 2794 void pool_subpage_free(struct pool *, void *); 2795 2796 struct pool_allocator pool_allocator_kmem = { 2797 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2798 .pa_backingmapptr = &kmem_map, 2799 }; 2800 2801 void *pool_subpage_alloc_nointr(struct pool *, int); 2802 void pool_subpage_free_nointr(struct pool *, void *); 2803 2804 struct pool_allocator pool_allocator_nointr = { 2805 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2806 .pa_backingmapptr = &kmem_map, 2807 }; 2808 #endif /* POOL_SUBPAGE */ 2809 2810 static void * 2811 pool_allocator_alloc(struct pool *pp, int flags) 2812 { 2813 struct pool_allocator *pa = pp->pr_alloc; 2814 void *res; 2815 2816 res = (*pa->pa_alloc)(pp, flags); 2817 if (res == NULL && (flags & PR_WAITOK) == 0) { 2818 /* 2819 * We only run the drain hook here if PR_NOWAIT. 2820 * In other cases, the hook will be run in 2821 * pool_reclaim(). 2822 */ 2823 if (pp->pr_drain_hook != NULL) { 2824 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2825 res = (*pa->pa_alloc)(pp, flags); 2826 } 2827 } 2828 return res; 2829 } 2830 2831 static void 2832 pool_allocator_free(struct pool *pp, void *v) 2833 { 2834 struct pool_allocator *pa = pp->pr_alloc; 2835 2836 (*pa->pa_free)(pp, v); 2837 } 2838 2839 void * 2840 pool_page_alloc(struct pool *pp, int flags) 2841 { 2842 bool waitok = (flags & PR_WAITOK) ? true : false; 2843 2844 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); 2845 } 2846 2847 void 2848 pool_page_free(struct pool *pp, void *v) 2849 { 2850 2851 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); 2852 } 2853 2854 static void * 2855 pool_page_alloc_meta(struct pool *pp, int flags) 2856 { 2857 bool waitok = (flags & PR_WAITOK) ? true : false; 2858 2859 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); 2860 } 2861 2862 static void 2863 pool_page_free_meta(struct pool *pp, void *v) 2864 { 2865 2866 uvm_km_free_poolpage(kmem_map, (vaddr_t) v); 2867 } 2868 2869 #ifdef POOL_SUBPAGE 2870 /* Sub-page allocator, for machines with large hardware pages. */ 2871 void * 2872 pool_subpage_alloc(struct pool *pp, int flags) 2873 { 2874 return pool_get(&psppool, flags); 2875 } 2876 2877 void 2878 pool_subpage_free(struct pool *pp, void *v) 2879 { 2880 pool_put(&psppool, v); 2881 } 2882 2883 /* We don't provide a real nointr allocator. Maybe later. */ 2884 void * 2885 pool_subpage_alloc_nointr(struct pool *pp, int flags) 2886 { 2887 2888 return (pool_subpage_alloc(pp, flags)); 2889 } 2890 2891 void 2892 pool_subpage_free_nointr(struct pool *pp, void *v) 2893 { 2894 2895 pool_subpage_free(pp, v); 2896 } 2897 #endif /* POOL_SUBPAGE */ 2898 void * 2899 pool_page_alloc_nointr(struct pool *pp, int flags) 2900 { 2901 bool waitok = (flags & PR_WAITOK) ? true : false; 2902 2903 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); 2904 } 2905 2906 void 2907 pool_page_free_nointr(struct pool *pp, void *v) 2908 { 2909 2910 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); 2911 } 2912 2913 #if defined(DDB) 2914 static bool 2915 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2916 { 2917 2918 return (uintptr_t)ph->ph_page <= addr && 2919 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2920 } 2921 2922 static bool 2923 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2924 { 2925 2926 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2927 } 2928 2929 static bool 2930 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2931 { 2932 int i; 2933 2934 if (pcg == NULL) { 2935 return false; 2936 } 2937 for (i = 0; i < pcg->pcg_avail; i++) { 2938 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2939 return true; 2940 } 2941 } 2942 return false; 2943 } 2944 2945 static bool 2946 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2947 { 2948 2949 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2950 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2951 pool_item_bitmap_t *bitmap = 2952 ph->ph_bitmap + (idx / BITMAP_SIZE); 2953 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2954 2955 return (*bitmap & mask) == 0; 2956 } else { 2957 struct pool_item *pi; 2958 2959 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2960 if (pool_in_item(pp, pi, addr)) { 2961 return false; 2962 } 2963 } 2964 return true; 2965 } 2966 } 2967 2968 void 2969 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2970 { 2971 struct pool *pp; 2972 2973 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2974 struct pool_item_header *ph; 2975 uintptr_t item; 2976 bool allocated = true; 2977 bool incache = false; 2978 bool incpucache = false; 2979 char cpucachestr[32]; 2980 2981 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 2982 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2983 if (pool_in_page(pp, ph, addr)) { 2984 goto found; 2985 } 2986 } 2987 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2988 if (pool_in_page(pp, ph, addr)) { 2989 allocated = 2990 pool_allocated(pp, ph, addr); 2991 goto found; 2992 } 2993 } 2994 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2995 if (pool_in_page(pp, ph, addr)) { 2996 allocated = false; 2997 goto found; 2998 } 2999 } 3000 continue; 3001 } else { 3002 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3003 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3004 continue; 3005 } 3006 allocated = pool_allocated(pp, ph, addr); 3007 } 3008 found: 3009 if (allocated && pp->pr_cache) { 3010 pool_cache_t pc = pp->pr_cache; 3011 struct pool_cache_group *pcg; 3012 int i; 3013 3014 for (pcg = pc->pc_fullgroups; pcg != NULL; 3015 pcg = pcg->pcg_next) { 3016 if (pool_in_cg(pp, pcg, addr)) { 3017 incache = true; 3018 goto print; 3019 } 3020 } 3021 for (i = 0; i < MAXCPUS; i++) { 3022 pool_cache_cpu_t *cc; 3023 3024 if ((cc = pc->pc_cpus[i]) == NULL) { 3025 continue; 3026 } 3027 if (pool_in_cg(pp, cc->cc_current, addr) || 3028 pool_in_cg(pp, cc->cc_previous, addr)) { 3029 struct cpu_info *ci = 3030 cpu_lookup_byindex(i); 3031 3032 incpucache = true; 3033 snprintf(cpucachestr, 3034 sizeof(cpucachestr), 3035 "cached by CPU %u", 3036 ci->ci_index); 3037 goto print; 3038 } 3039 } 3040 } 3041 print: 3042 item = (uintptr_t)ph->ph_page + ph->ph_off; 3043 item = item + rounddown(addr - item, pp->pr_size); 3044 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3045 (void *)addr, item, (size_t)(addr - item), 3046 pp->pr_wchan, 3047 incpucache ? cpucachestr : 3048 incache ? "cached" : allocated ? "allocated" : "free"); 3049 } 3050 } 3051 #endif /* defined(DDB) */ 3052