1 /* $NetBSD: subr_pool.c,v 1.74 2002/03/09 18:06:55 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.74 2002/03/09 18:06:55 thorpej Exp $"); 42 43 #include "opt_pool.h" 44 #include "opt_poollog.h" 45 #include "opt_lockdebug.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/proc.h> 50 #include <sys/errno.h> 51 #include <sys/kernel.h> 52 #include <sys/malloc.h> 53 #include <sys/lock.h> 54 #include <sys/pool.h> 55 #include <sys/syslog.h> 56 57 #include <uvm/uvm.h> 58 59 /* 60 * Pool resource management utility. 61 * 62 * Memory is allocated in pages which are split into pieces according 63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist' 64 * in the pool structure and the individual pool items are on a linked list 65 * headed by `ph_itemlist' in each page header. The memory for building 66 * the page list is either taken from the allocated pages themselves (for 67 * small pool items) or taken from an internal pool of page headers (`phpool'). 68 */ 69 70 /* List of all pools */ 71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 72 73 /* Private pool for page header structures */ 74 static struct pool phpool; 75 76 #ifdef POOL_SUBPAGE 77 /* Pool of subpages for use by normal pools. */ 78 static struct pool psppool; 79 #endif 80 81 /* # of seconds to retain page after last use */ 82 int pool_inactive_time = 10; 83 84 /* Next candidate for drainage (see pool_drain()) */ 85 static struct pool *drainpp; 86 87 /* This spin lock protects both pool_head and drainpp. */ 88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 89 90 struct pool_item_header { 91 /* Page headers */ 92 TAILQ_ENTRY(pool_item_header) 93 ph_pagelist; /* pool page list */ 94 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 95 LIST_ENTRY(pool_item_header) 96 ph_hashlist; /* Off-page page headers */ 97 int ph_nmissing; /* # of chunks in use */ 98 caddr_t ph_page; /* this page's address */ 99 struct timeval ph_time; /* last referenced */ 100 }; 101 TAILQ_HEAD(pool_pagelist,pool_item_header); 102 103 struct pool_item { 104 #ifdef DIAGNOSTIC 105 int pi_magic; 106 #endif 107 #define PI_MAGIC 0xdeadbeef 108 /* Other entries use only this list entry */ 109 TAILQ_ENTRY(pool_item) pi_list; 110 }; 111 112 #define PR_HASH_INDEX(pp,addr) \ 113 (((u_long)(addr) >> (pp)->pr_alloc->pa_pageshift) & \ 114 (PR_HASHTABSIZE - 1)) 115 116 #define POOL_NEEDS_CATCHUP(pp) \ 117 ((pp)->pr_nitems < (pp)->pr_minitems) 118 119 /* 120 * Pool cache management. 121 * 122 * Pool caches provide a way for constructed objects to be cached by the 123 * pool subsystem. This can lead to performance improvements by avoiding 124 * needless object construction/destruction; it is deferred until absolutely 125 * necessary. 126 * 127 * Caches are grouped into cache groups. Each cache group references 128 * up to 16 constructed objects. When a cache allocates an object 129 * from the pool, it calls the object's constructor and places it into 130 * a cache group. When a cache group frees an object back to the pool, 131 * it first calls the object's destructor. This allows the object to 132 * persist in constructed form while freed to the cache. 133 * 134 * Multiple caches may exist for each pool. This allows a single 135 * object type to have multiple constructed forms. The pool references 136 * each cache, so that when a pool is drained by the pagedaemon, it can 137 * drain each individual cache as well. Each time a cache is drained, 138 * the most idle cache group is freed to the pool in its entirety. 139 * 140 * Pool caches are layed on top of pools. By layering them, we can avoid 141 * the complexity of cache management for pools which would not benefit 142 * from it. 143 */ 144 145 /* The cache group pool. */ 146 static struct pool pcgpool; 147 148 /* The pool cache group. */ 149 #define PCG_NOBJECTS 16 150 struct pool_cache_group { 151 TAILQ_ENTRY(pool_cache_group) 152 pcg_list; /* link in the pool cache's group list */ 153 u_int pcg_avail; /* # available objects */ 154 /* pointers to the objects */ 155 void *pcg_objects[PCG_NOBJECTS]; 156 }; 157 158 static void pool_cache_reclaim(struct pool_cache *); 159 160 static int pool_catchup(struct pool *); 161 static void pool_prime_page(struct pool *, caddr_t, 162 struct pool_item_header *); 163 164 void *pool_allocator_alloc(struct pool *, int); 165 void pool_allocator_free(struct pool *, void *); 166 167 static void pool_print1(struct pool *, const char *, 168 void (*)(const char *, ...)); 169 170 /* 171 * Pool log entry. An array of these is allocated in pool_init(). 172 */ 173 struct pool_log { 174 const char *pl_file; 175 long pl_line; 176 int pl_action; 177 #define PRLOG_GET 1 178 #define PRLOG_PUT 2 179 void *pl_addr; 180 }; 181 182 /* Number of entries in pool log buffers */ 183 #ifndef POOL_LOGSIZE 184 #define POOL_LOGSIZE 10 185 #endif 186 187 int pool_logsize = POOL_LOGSIZE; 188 189 #ifdef POOL_DIAGNOSTIC 190 static __inline void 191 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 192 { 193 int n = pp->pr_curlogentry; 194 struct pool_log *pl; 195 196 if ((pp->pr_roflags & PR_LOGGING) == 0) 197 return; 198 199 /* 200 * Fill in the current entry. Wrap around and overwrite 201 * the oldest entry if necessary. 202 */ 203 pl = &pp->pr_log[n]; 204 pl->pl_file = file; 205 pl->pl_line = line; 206 pl->pl_action = action; 207 pl->pl_addr = v; 208 if (++n >= pp->pr_logsize) 209 n = 0; 210 pp->pr_curlogentry = n; 211 } 212 213 static void 214 pr_printlog(struct pool *pp, struct pool_item *pi, 215 void (*pr)(const char *, ...)) 216 { 217 int i = pp->pr_logsize; 218 int n = pp->pr_curlogentry; 219 220 if ((pp->pr_roflags & PR_LOGGING) == 0) 221 return; 222 223 /* 224 * Print all entries in this pool's log. 225 */ 226 while (i-- > 0) { 227 struct pool_log *pl = &pp->pr_log[n]; 228 if (pl->pl_action != 0) { 229 if (pi == NULL || pi == pl->pl_addr) { 230 (*pr)("\tlog entry %d:\n", i); 231 (*pr)("\t\taction = %s, addr = %p\n", 232 pl->pl_action == PRLOG_GET ? "get" : "put", 233 pl->pl_addr); 234 (*pr)("\t\tfile: %s at line %lu\n", 235 pl->pl_file, pl->pl_line); 236 } 237 } 238 if (++n >= pp->pr_logsize) 239 n = 0; 240 } 241 } 242 243 static __inline void 244 pr_enter(struct pool *pp, const char *file, long line) 245 { 246 247 if (__predict_false(pp->pr_entered_file != NULL)) { 248 printf("pool %s: reentrancy at file %s line %ld\n", 249 pp->pr_wchan, file, line); 250 printf(" previous entry at file %s line %ld\n", 251 pp->pr_entered_file, pp->pr_entered_line); 252 panic("pr_enter"); 253 } 254 255 pp->pr_entered_file = file; 256 pp->pr_entered_line = line; 257 } 258 259 static __inline void 260 pr_leave(struct pool *pp) 261 { 262 263 if (__predict_false(pp->pr_entered_file == NULL)) { 264 printf("pool %s not entered?\n", pp->pr_wchan); 265 panic("pr_leave"); 266 } 267 268 pp->pr_entered_file = NULL; 269 pp->pr_entered_line = 0; 270 } 271 272 static __inline void 273 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 274 { 275 276 if (pp->pr_entered_file != NULL) 277 (*pr)("\n\tcurrently entered from file %s line %ld\n", 278 pp->pr_entered_file, pp->pr_entered_line); 279 } 280 #else 281 #define pr_log(pp, v, action, file, line) 282 #define pr_printlog(pp, pi, pr) 283 #define pr_enter(pp, file, line) 284 #define pr_leave(pp) 285 #define pr_enter_check(pp, pr) 286 #endif /* POOL_DIAGNOSTIC */ 287 288 /* 289 * Return the pool page header based on page address. 290 */ 291 static __inline struct pool_item_header * 292 pr_find_pagehead(struct pool *pp, caddr_t page) 293 { 294 struct pool_item_header *ph; 295 296 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 297 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 298 299 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]); 300 ph != NULL; 301 ph = LIST_NEXT(ph, ph_hashlist)) { 302 if (ph->ph_page == page) 303 return (ph); 304 } 305 return (NULL); 306 } 307 308 /* 309 * Remove a page from the pool. 310 */ 311 static __inline void 312 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 313 struct pool_pagelist *pq) 314 { 315 int s; 316 317 /* 318 * If the page was idle, decrement the idle page count. 319 */ 320 if (ph->ph_nmissing == 0) { 321 #ifdef DIAGNOSTIC 322 if (pp->pr_nidle == 0) 323 panic("pr_rmpage: nidle inconsistent"); 324 if (pp->pr_nitems < pp->pr_itemsperpage) 325 panic("pr_rmpage: nitems inconsistent"); 326 #endif 327 pp->pr_nidle--; 328 } 329 330 pp->pr_nitems -= pp->pr_itemsperpage; 331 332 /* 333 * Unlink a page from the pool and release it (or queue it for release). 334 */ 335 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 336 if (pq) { 337 TAILQ_INSERT_HEAD(pq, ph, ph_pagelist); 338 } else { 339 pool_allocator_free(pp, ph->ph_page); 340 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 341 LIST_REMOVE(ph, ph_hashlist); 342 s = splhigh(); 343 pool_put(&phpool, ph); 344 splx(s); 345 } 346 } 347 pp->pr_npages--; 348 pp->pr_npagefree++; 349 350 if (pp->pr_curpage == ph) { 351 /* 352 * Find a new non-empty page header, if any. 353 * Start search from the page head, to increase the 354 * chance for "high water" pages to be freed. 355 */ 356 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) 357 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 358 break; 359 360 pp->pr_curpage = ph; 361 } 362 } 363 364 /* 365 * Initialize the given pool resource structure. 366 * 367 * We export this routine to allow other kernel parts to declare 368 * static pools that must be initialized before malloc() is available. 369 */ 370 void 371 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 372 const char *wchan, struct pool_allocator *palloc) 373 { 374 int off, slack, i; 375 376 #ifdef POOL_DIAGNOSTIC 377 /* 378 * Always log if POOL_DIAGNOSTIC is defined. 379 */ 380 if (pool_logsize != 0) 381 flags |= PR_LOGGING; 382 #endif 383 384 #ifdef POOL_SUBPAGE 385 /* 386 * XXX We don't provide a real `nointr' back-end 387 * yet; all sub-pages come from a kmem back-end. 388 * maybe some day... 389 */ 390 if (palloc == NULL) { 391 extern struct pool_allocator pool_allocator_kmem_subpage; 392 palloc = &pool_allocator_kmem_subpage; 393 } 394 /* 395 * We'll assume any user-specified back-end allocator 396 * will deal with sub-pages, or simply don't care. 397 */ 398 #else 399 if (palloc == NULL) 400 palloc = &pool_allocator_kmem; 401 #endif /* POOL_SUBPAGE */ 402 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 403 if (palloc->pa_pagesz == 0) { 404 #ifdef POOL_SUBPAGE 405 if (palloc == &pool_allocator_kmem) 406 palloc->pa_pagesz = PAGE_SIZE; 407 else 408 palloc->pa_pagesz = POOL_SUBPAGE; 409 #else 410 palloc->pa_pagesz = PAGE_SIZE; 411 #endif /* POOL_SUBPAGE */ 412 } 413 414 TAILQ_INIT(&palloc->pa_list); 415 416 simple_lock_init(&palloc->pa_slock); 417 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 418 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 419 palloc->pa_flags |= PA_INITIALIZED; 420 } 421 422 if (align == 0) 423 align = ALIGN(1); 424 425 if (size < sizeof(struct pool_item)) 426 size = sizeof(struct pool_item); 427 428 size = ALIGN(size); 429 #ifdef DIAGNOSTIC 430 if (size > palloc->pa_pagesz) 431 panic("pool_init: pool item size (%lu) too large", 432 (u_long)size); 433 #endif 434 435 /* 436 * Initialize the pool structure. 437 */ 438 TAILQ_INIT(&pp->pr_pagelist); 439 TAILQ_INIT(&pp->pr_cachelist); 440 pp->pr_curpage = NULL; 441 pp->pr_npages = 0; 442 pp->pr_minitems = 0; 443 pp->pr_minpages = 0; 444 pp->pr_maxpages = UINT_MAX; 445 pp->pr_roflags = flags; 446 pp->pr_flags = 0; 447 pp->pr_size = size; 448 pp->pr_align = align; 449 pp->pr_wchan = wchan; 450 pp->pr_alloc = palloc; 451 pp->pr_nitems = 0; 452 pp->pr_nout = 0; 453 pp->pr_hardlimit = UINT_MAX; 454 pp->pr_hardlimit_warning = NULL; 455 pp->pr_hardlimit_ratecap.tv_sec = 0; 456 pp->pr_hardlimit_ratecap.tv_usec = 0; 457 pp->pr_hardlimit_warning_last.tv_sec = 0; 458 pp->pr_hardlimit_warning_last.tv_usec = 0; 459 pp->pr_drain_hook = NULL; 460 pp->pr_drain_hook_arg = NULL; 461 462 /* 463 * Decide whether to put the page header off page to avoid 464 * wasting too large a part of the page. Off-page page headers 465 * go on a hash table, so we can match a returned item 466 * with its header based on the page address. 467 * We use 1/16 of the page size as the threshold (XXX: tune) 468 */ 469 if (pp->pr_size < palloc->pa_pagesz/16) { 470 /* Use the end of the page for the page header */ 471 pp->pr_roflags |= PR_PHINPAGE; 472 pp->pr_phoffset = off = palloc->pa_pagesz - 473 ALIGN(sizeof(struct pool_item_header)); 474 } else { 475 /* The page header will be taken from our page header pool */ 476 pp->pr_phoffset = 0; 477 off = palloc->pa_pagesz; 478 for (i = 0; i < PR_HASHTABSIZE; i++) { 479 LIST_INIT(&pp->pr_hashtab[i]); 480 } 481 } 482 483 /* 484 * Alignment is to take place at `ioff' within the item. This means 485 * we must reserve up to `align - 1' bytes on the page to allow 486 * appropriate positioning of each item. 487 * 488 * Silently enforce `0 <= ioff < align'. 489 */ 490 pp->pr_itemoffset = ioff = ioff % align; 491 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 492 KASSERT(pp->pr_itemsperpage != 0); 493 494 /* 495 * Use the slack between the chunks and the page header 496 * for "cache coloring". 497 */ 498 slack = off - pp->pr_itemsperpage * pp->pr_size; 499 pp->pr_maxcolor = (slack / align) * align; 500 pp->pr_curcolor = 0; 501 502 pp->pr_nget = 0; 503 pp->pr_nfail = 0; 504 pp->pr_nput = 0; 505 pp->pr_npagealloc = 0; 506 pp->pr_npagefree = 0; 507 pp->pr_hiwat = 0; 508 pp->pr_nidle = 0; 509 510 #ifdef POOL_DIAGNOSTIC 511 if (flags & PR_LOGGING) { 512 if (kmem_map == NULL || 513 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 514 M_TEMP, M_NOWAIT)) == NULL) 515 pp->pr_roflags &= ~PR_LOGGING; 516 pp->pr_curlogentry = 0; 517 pp->pr_logsize = pool_logsize; 518 } 519 #endif 520 521 pp->pr_entered_file = NULL; 522 pp->pr_entered_line = 0; 523 524 simple_lock_init(&pp->pr_slock); 525 526 /* 527 * Initialize private page header pool and cache magazine pool if we 528 * haven't done so yet. 529 * XXX LOCKING. 530 */ 531 if (phpool.pr_size == 0) { 532 #ifdef POOL_SUBPAGE 533 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0, 534 "phpool", &pool_allocator_kmem); 535 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 536 PR_RECURSIVE, "psppool", &pool_allocator_kmem); 537 #else 538 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 539 0, "phpool", NULL); 540 #endif 541 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0, 542 0, "pcgpool", NULL); 543 } 544 545 /* Insert into the list of all pools. */ 546 simple_lock(&pool_head_slock); 547 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 548 simple_unlock(&pool_head_slock); 549 550 /* Insert this into the list of pools using this allocator. */ 551 simple_lock(&palloc->pa_slock); 552 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 553 simple_unlock(&palloc->pa_slock); 554 } 555 556 /* 557 * De-commision a pool resource. 558 */ 559 void 560 pool_destroy(struct pool *pp) 561 { 562 struct pool_item_header *ph; 563 struct pool_cache *pc; 564 565 /* Locking order: pool_allocator -> pool */ 566 simple_lock(&pp->pr_alloc->pa_slock); 567 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 568 simple_unlock(&pp->pr_alloc->pa_slock); 569 570 /* Destroy all caches for this pool. */ 571 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL) 572 pool_cache_destroy(pc); 573 574 #ifdef DIAGNOSTIC 575 if (pp->pr_nout != 0) { 576 pr_printlog(pp, NULL, printf); 577 panic("pool_destroy: pool busy: still out: %u\n", 578 pp->pr_nout); 579 } 580 #endif 581 582 /* Remove all pages */ 583 while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 584 pr_rmpage(pp, ph, NULL); 585 586 /* Remove from global pool list */ 587 simple_lock(&pool_head_slock); 588 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 589 if (drainpp == pp) { 590 drainpp = NULL; 591 } 592 simple_unlock(&pool_head_slock); 593 594 #ifdef POOL_DIAGNOSTIC 595 if ((pp->pr_roflags & PR_LOGGING) != 0) 596 free(pp->pr_log, M_TEMP); 597 #endif 598 } 599 600 void 601 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 602 { 603 604 /* XXX no locking -- must be used just after pool_init() */ 605 #ifdef DIAGNOSTIC 606 if (pp->pr_drain_hook != NULL) 607 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 608 #endif 609 pp->pr_drain_hook = fn; 610 pp->pr_drain_hook_arg = arg; 611 } 612 613 static __inline struct pool_item_header * 614 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags) 615 { 616 struct pool_item_header *ph; 617 int s; 618 619 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0); 620 621 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 622 ph = (struct pool_item_header *) (storage + pp->pr_phoffset); 623 else { 624 s = splhigh(); 625 ph = pool_get(&phpool, flags); 626 splx(s); 627 } 628 629 return (ph); 630 } 631 632 /* 633 * Grab an item from the pool; must be called at appropriate spl level 634 */ 635 void * 636 #ifdef POOL_DIAGNOSTIC 637 _pool_get(struct pool *pp, int flags, const char *file, long line) 638 #else 639 pool_get(struct pool *pp, int flags) 640 #endif 641 { 642 struct pool_item *pi; 643 struct pool_item_header *ph; 644 void *v; 645 646 #ifdef DIAGNOSTIC 647 if (__predict_false(curproc == NULL && doing_shutdown == 0 && 648 (flags & PR_WAITOK) != 0)) 649 panic("pool_get: must have NOWAIT"); 650 651 #ifdef LOCKDEBUG 652 if (flags & PR_WAITOK) 653 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)"); 654 #endif 655 #endif /* DIAGNOSTIC */ 656 657 simple_lock(&pp->pr_slock); 658 pr_enter(pp, file, line); 659 660 startover: 661 /* 662 * Check to see if we've reached the hard limit. If we have, 663 * and we can wait, then wait until an item has been returned to 664 * the pool. 665 */ 666 #ifdef DIAGNOSTIC 667 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 668 pr_leave(pp); 669 simple_unlock(&pp->pr_slock); 670 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 671 } 672 #endif 673 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 674 if (pp->pr_drain_hook != NULL) { 675 /* 676 * Since the drain hook is going to free things 677 * back to the pool, unlock, call the hook, re-lock, 678 * and check the hardlimit condition again. 679 */ 680 pr_leave(pp); 681 simple_unlock(&pp->pr_slock); 682 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 683 simple_lock(&pp->pr_slock); 684 pr_enter(pp, file, line); 685 if (pp->pr_nout < pp->pr_hardlimit) 686 goto startover; 687 } 688 689 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 690 /* 691 * XXX: A warning isn't logged in this case. Should 692 * it be? 693 */ 694 pp->pr_flags |= PR_WANTED; 695 pr_leave(pp); 696 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 697 pr_enter(pp, file, line); 698 goto startover; 699 } 700 701 /* 702 * Log a message that the hard limit has been hit. 703 */ 704 if (pp->pr_hardlimit_warning != NULL && 705 ratecheck(&pp->pr_hardlimit_warning_last, 706 &pp->pr_hardlimit_ratecap)) 707 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 708 709 pp->pr_nfail++; 710 711 pr_leave(pp); 712 simple_unlock(&pp->pr_slock); 713 return (NULL); 714 } 715 716 /* 717 * The convention we use is that if `curpage' is not NULL, then 718 * it points at a non-empty bucket. In particular, `curpage' 719 * never points at a page header which has PR_PHINPAGE set and 720 * has no items in its bucket. 721 */ 722 if ((ph = pp->pr_curpage) == NULL) { 723 #ifdef DIAGNOSTIC 724 if (pp->pr_nitems != 0) { 725 simple_unlock(&pp->pr_slock); 726 printf("pool_get: %s: curpage NULL, nitems %u\n", 727 pp->pr_wchan, pp->pr_nitems); 728 panic("pool_get: nitems inconsistent\n"); 729 } 730 #endif 731 732 /* 733 * Call the back-end page allocator for more memory. 734 * Release the pool lock, as the back-end page allocator 735 * may block. 736 */ 737 pr_leave(pp); 738 simple_unlock(&pp->pr_slock); 739 v = pool_allocator_alloc(pp, flags); 740 if (__predict_true(v != NULL)) 741 ph = pool_alloc_item_header(pp, v, flags); 742 simple_lock(&pp->pr_slock); 743 pr_enter(pp, file, line); 744 745 if (__predict_false(v == NULL || ph == NULL)) { 746 if (v != NULL) 747 pool_allocator_free(pp, v); 748 749 /* 750 * We were unable to allocate a page or item 751 * header, but we released the lock during 752 * allocation, so perhaps items were freed 753 * back to the pool. Check for this case. 754 */ 755 if (pp->pr_curpage != NULL) 756 goto startover; 757 758 if ((flags & PR_WAITOK) == 0) { 759 pp->pr_nfail++; 760 pr_leave(pp); 761 simple_unlock(&pp->pr_slock); 762 return (NULL); 763 } 764 765 /* 766 * Wait for items to be returned to this pool. 767 * 768 * XXX: maybe we should wake up once a second and 769 * try again? 770 */ 771 pp->pr_flags |= PR_WANTED; 772 /* PA_WANTED is already set on the allocator. */ 773 pr_leave(pp); 774 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 775 pr_enter(pp, file, line); 776 goto startover; 777 } 778 779 /* We have more memory; add it to the pool */ 780 pool_prime_page(pp, v, ph); 781 pp->pr_npagealloc++; 782 783 /* Start the allocation process over. */ 784 goto startover; 785 } 786 787 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 788 pr_leave(pp); 789 simple_unlock(&pp->pr_slock); 790 panic("pool_get: %s: page empty", pp->pr_wchan); 791 } 792 #ifdef DIAGNOSTIC 793 if (__predict_false(pp->pr_nitems == 0)) { 794 pr_leave(pp); 795 simple_unlock(&pp->pr_slock); 796 printf("pool_get: %s: items on itemlist, nitems %u\n", 797 pp->pr_wchan, pp->pr_nitems); 798 panic("pool_get: nitems inconsistent\n"); 799 } 800 #endif 801 802 #ifdef POOL_DIAGNOSTIC 803 pr_log(pp, v, PRLOG_GET, file, line); 804 #endif 805 806 #ifdef DIAGNOSTIC 807 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 808 pr_printlog(pp, pi, printf); 809 panic("pool_get(%s): free list modified: magic=%x; page %p;" 810 " item addr %p\n", 811 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 812 } 813 #endif 814 815 /* 816 * Remove from item list. 817 */ 818 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 819 pp->pr_nitems--; 820 pp->pr_nout++; 821 if (ph->ph_nmissing == 0) { 822 #ifdef DIAGNOSTIC 823 if (__predict_false(pp->pr_nidle == 0)) 824 panic("pool_get: nidle inconsistent"); 825 #endif 826 pp->pr_nidle--; 827 } 828 ph->ph_nmissing++; 829 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) { 830 #ifdef DIAGNOSTIC 831 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 832 pr_leave(pp); 833 simple_unlock(&pp->pr_slock); 834 panic("pool_get: %s: nmissing inconsistent", 835 pp->pr_wchan); 836 } 837 #endif 838 /* 839 * Find a new non-empty page header, if any. 840 * Start search from the page head, to increase 841 * the chance for "high water" pages to be freed. 842 * 843 * Migrate empty pages to the end of the list. This 844 * will speed the update of curpage as pages become 845 * idle. Empty pages intermingled with idle pages 846 * is no big deal. As soon as a page becomes un-empty, 847 * it will move back to the head of the list. 848 */ 849 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 850 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 851 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) 852 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 853 break; 854 855 pp->pr_curpage = ph; 856 } 857 858 pp->pr_nget++; 859 860 /* 861 * If we have a low water mark and we are now below that low 862 * water mark, add more items to the pool. 863 */ 864 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 865 /* 866 * XXX: Should we log a warning? Should we set up a timeout 867 * to try again in a second or so? The latter could break 868 * a caller's assumptions about interrupt protection, etc. 869 */ 870 } 871 872 pr_leave(pp); 873 simple_unlock(&pp->pr_slock); 874 return (v); 875 } 876 877 /* 878 * Internal version of pool_put(). Pool is already locked/entered. 879 */ 880 static void 881 pool_do_put(struct pool *pp, void *v) 882 { 883 struct pool_item *pi = v; 884 struct pool_item_header *ph; 885 caddr_t page; 886 int s; 887 888 LOCK_ASSERT(simple_lock_held(&pp->pr_slock)); 889 890 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask); 891 892 #ifdef DIAGNOSTIC 893 if (__predict_false(pp->pr_nout == 0)) { 894 printf("pool %s: putting with none out\n", 895 pp->pr_wchan); 896 panic("pool_put"); 897 } 898 #endif 899 900 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 901 pr_printlog(pp, NULL, printf); 902 panic("pool_put: %s: page header missing", pp->pr_wchan); 903 } 904 905 #ifdef LOCKDEBUG 906 /* 907 * Check if we're freeing a locked simple lock. 908 */ 909 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 910 #endif 911 912 /* 913 * Return to item list. 914 */ 915 #ifdef DIAGNOSTIC 916 pi->pi_magic = PI_MAGIC; 917 #endif 918 #ifdef DEBUG 919 { 920 int i, *ip = v; 921 922 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 923 *ip++ = PI_MAGIC; 924 } 925 } 926 #endif 927 928 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 929 ph->ph_nmissing--; 930 pp->pr_nput++; 931 pp->pr_nitems++; 932 pp->pr_nout--; 933 934 /* Cancel "pool empty" condition if it exists */ 935 if (pp->pr_curpage == NULL) 936 pp->pr_curpage = ph; 937 938 if (pp->pr_flags & PR_WANTED) { 939 pp->pr_flags &= ~PR_WANTED; 940 if (ph->ph_nmissing == 0) 941 pp->pr_nidle++; 942 wakeup((caddr_t)pp); 943 return; 944 } 945 946 /* 947 * If this page is now complete, do one of two things: 948 * 949 * (1) If we have more pages than the page high water 950 * mark, free the page back to the system. 951 * 952 * (2) Move it to the end of the page list, so that 953 * we minimize our chances of fragmenting the 954 * pool. Idle pages migrate to the end (along with 955 * completely empty pages, so that we find un-empty 956 * pages more quickly when we update curpage) of the 957 * list so they can be more easily swept up by 958 * the pagedaemon when pages are scarce. 959 */ 960 if (ph->ph_nmissing == 0) { 961 pp->pr_nidle++; 962 if (pp->pr_npages > pp->pr_maxpages || 963 (pp->pr_alloc->pa_flags & PA_WANT) != 0) { 964 pr_rmpage(pp, ph, NULL); 965 } else { 966 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 967 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist); 968 969 /* 970 * Update the timestamp on the page. A page must 971 * be idle for some period of time before it can 972 * be reclaimed by the pagedaemon. This minimizes 973 * ping-pong'ing for memory. 974 */ 975 s = splclock(); 976 ph->ph_time = mono_time; 977 splx(s); 978 979 /* 980 * Update the current page pointer. Just look for 981 * the first page with any free items. 982 * 983 * XXX: Maybe we want an option to look for the 984 * page with the fewest available items, to minimize 985 * fragmentation? 986 */ 987 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) 988 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL) 989 break; 990 991 pp->pr_curpage = ph; 992 } 993 } 994 /* 995 * If the page has just become un-empty, move it to the head of 996 * the list, and make it the current page. The next allocation 997 * will get the item from this page, instead of further fragmenting 998 * the pool. 999 */ 1000 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1001 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist); 1002 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 1003 pp->pr_curpage = ph; 1004 } 1005 } 1006 1007 /* 1008 * Return resource to the pool; must be called at appropriate spl level 1009 */ 1010 #ifdef POOL_DIAGNOSTIC 1011 void 1012 _pool_put(struct pool *pp, void *v, const char *file, long line) 1013 { 1014 1015 simple_lock(&pp->pr_slock); 1016 pr_enter(pp, file, line); 1017 1018 pr_log(pp, v, PRLOG_PUT, file, line); 1019 1020 pool_do_put(pp, v); 1021 1022 pr_leave(pp); 1023 simple_unlock(&pp->pr_slock); 1024 } 1025 #undef pool_put 1026 #endif /* POOL_DIAGNOSTIC */ 1027 1028 void 1029 pool_put(struct pool *pp, void *v) 1030 { 1031 1032 simple_lock(&pp->pr_slock); 1033 1034 pool_do_put(pp, v); 1035 1036 simple_unlock(&pp->pr_slock); 1037 } 1038 1039 #ifdef POOL_DIAGNOSTIC 1040 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1041 #endif 1042 1043 /* 1044 * Add N items to the pool. 1045 */ 1046 int 1047 pool_prime(struct pool *pp, int n) 1048 { 1049 struct pool_item_header *ph; 1050 caddr_t cp; 1051 int newpages, error = 0; 1052 1053 simple_lock(&pp->pr_slock); 1054 1055 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1056 1057 while (newpages-- > 0) { 1058 simple_unlock(&pp->pr_slock); 1059 cp = pool_allocator_alloc(pp, PR_NOWAIT); 1060 if (__predict_true(cp != NULL)) 1061 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1062 simple_lock(&pp->pr_slock); 1063 1064 if (__predict_false(cp == NULL || ph == NULL)) { 1065 error = ENOMEM; 1066 if (cp != NULL) 1067 pool_allocator_free(pp, cp); 1068 break; 1069 } 1070 1071 pool_prime_page(pp, cp, ph); 1072 pp->pr_npagealloc++; 1073 pp->pr_minpages++; 1074 } 1075 1076 if (pp->pr_minpages >= pp->pr_maxpages) 1077 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1078 1079 simple_unlock(&pp->pr_slock); 1080 return (0); 1081 } 1082 1083 /* 1084 * Add a page worth of items to the pool. 1085 * 1086 * Note, we must be called with the pool descriptor LOCKED. 1087 */ 1088 static void 1089 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph) 1090 { 1091 struct pool_item *pi; 1092 caddr_t cp = storage; 1093 unsigned int align = pp->pr_align; 1094 unsigned int ioff = pp->pr_itemoffset; 1095 int n; 1096 1097 #ifdef DIAGNOSTIC 1098 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1099 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1100 #endif 1101 1102 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1103 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)], 1104 ph, ph_hashlist); 1105 1106 /* 1107 * Insert page header. 1108 */ 1109 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist); 1110 TAILQ_INIT(&ph->ph_itemlist); 1111 ph->ph_page = storage; 1112 ph->ph_nmissing = 0; 1113 memset(&ph->ph_time, 0, sizeof(ph->ph_time)); 1114 1115 pp->pr_nidle++; 1116 1117 /* 1118 * Color this page. 1119 */ 1120 cp = (caddr_t)(cp + pp->pr_curcolor); 1121 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1122 pp->pr_curcolor = 0; 1123 1124 /* 1125 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1126 */ 1127 if (ioff != 0) 1128 cp = (caddr_t)(cp + (align - ioff)); 1129 1130 /* 1131 * Insert remaining chunks on the bucket list. 1132 */ 1133 n = pp->pr_itemsperpage; 1134 pp->pr_nitems += n; 1135 1136 while (n--) { 1137 pi = (struct pool_item *)cp; 1138 1139 /* Insert on page list */ 1140 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1141 #ifdef DIAGNOSTIC 1142 pi->pi_magic = PI_MAGIC; 1143 #endif 1144 cp = (caddr_t)(cp + pp->pr_size); 1145 } 1146 1147 /* 1148 * If the pool was depleted, point at the new page. 1149 */ 1150 if (pp->pr_curpage == NULL) 1151 pp->pr_curpage = ph; 1152 1153 if (++pp->pr_npages > pp->pr_hiwat) 1154 pp->pr_hiwat = pp->pr_npages; 1155 } 1156 1157 /* 1158 * Used by pool_get() when nitems drops below the low water mark. This 1159 * is used to catch up nitmes with the low water mark. 1160 * 1161 * Note 1, we never wait for memory here, we let the caller decide what to do. 1162 * 1163 * Note 2, we must be called with the pool already locked, and we return 1164 * with it locked. 1165 */ 1166 static int 1167 pool_catchup(struct pool *pp) 1168 { 1169 struct pool_item_header *ph; 1170 caddr_t cp; 1171 int error = 0; 1172 1173 while (POOL_NEEDS_CATCHUP(pp)) { 1174 /* 1175 * Call the page back-end allocator for more memory. 1176 * 1177 * XXX: We never wait, so should we bother unlocking 1178 * the pool descriptor? 1179 */ 1180 simple_unlock(&pp->pr_slock); 1181 cp = pool_allocator_alloc(pp, PR_NOWAIT); 1182 if (__predict_true(cp != NULL)) 1183 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1184 simple_lock(&pp->pr_slock); 1185 if (__predict_false(cp == NULL || ph == NULL)) { 1186 if (cp != NULL) 1187 pool_allocator_free(pp, cp); 1188 error = ENOMEM; 1189 break; 1190 } 1191 pool_prime_page(pp, cp, ph); 1192 pp->pr_npagealloc++; 1193 } 1194 1195 return (error); 1196 } 1197 1198 void 1199 pool_setlowat(struct pool *pp, int n) 1200 { 1201 int error; 1202 1203 simple_lock(&pp->pr_slock); 1204 1205 pp->pr_minitems = n; 1206 pp->pr_minpages = (n == 0) 1207 ? 0 1208 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1209 1210 /* Make sure we're caught up with the newly-set low water mark. */ 1211 if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) { 1212 /* 1213 * XXX: Should we log a warning? Should we set up a timeout 1214 * to try again in a second or so? The latter could break 1215 * a caller's assumptions about interrupt protection, etc. 1216 */ 1217 } 1218 1219 simple_unlock(&pp->pr_slock); 1220 } 1221 1222 void 1223 pool_sethiwat(struct pool *pp, int n) 1224 { 1225 1226 simple_lock(&pp->pr_slock); 1227 1228 pp->pr_maxpages = (n == 0) 1229 ? 0 1230 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1231 1232 simple_unlock(&pp->pr_slock); 1233 } 1234 1235 void 1236 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1237 { 1238 1239 simple_lock(&pp->pr_slock); 1240 1241 pp->pr_hardlimit = n; 1242 pp->pr_hardlimit_warning = warnmess; 1243 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1244 pp->pr_hardlimit_warning_last.tv_sec = 0; 1245 pp->pr_hardlimit_warning_last.tv_usec = 0; 1246 1247 /* 1248 * In-line version of pool_sethiwat(), because we don't want to 1249 * release the lock. 1250 */ 1251 pp->pr_maxpages = (n == 0) 1252 ? 0 1253 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1254 1255 simple_unlock(&pp->pr_slock); 1256 } 1257 1258 /* 1259 * Release all complete pages that have not been used recently. 1260 */ 1261 int 1262 #ifdef POOL_DIAGNOSTIC 1263 _pool_reclaim(struct pool *pp, const char *file, long line) 1264 #else 1265 pool_reclaim(struct pool *pp) 1266 #endif 1267 { 1268 struct pool_item_header *ph, *phnext; 1269 struct pool_cache *pc; 1270 struct timeval curtime; 1271 struct pool_pagelist pq; 1272 int s; 1273 1274 if (pp->pr_drain_hook != NULL) { 1275 /* 1276 * The drain hook must be called with the pool unlocked. 1277 */ 1278 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1279 } 1280 1281 if (simple_lock_try(&pp->pr_slock) == 0) 1282 return (0); 1283 pr_enter(pp, file, line); 1284 1285 TAILQ_INIT(&pq); 1286 1287 /* 1288 * Reclaim items from the pool's caches. 1289 */ 1290 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) 1291 pool_cache_reclaim(pc); 1292 1293 s = splclock(); 1294 curtime = mono_time; 1295 splx(s); 1296 1297 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) { 1298 phnext = TAILQ_NEXT(ph, ph_pagelist); 1299 1300 /* Check our minimum page claim */ 1301 if (pp->pr_npages <= pp->pr_minpages) 1302 break; 1303 1304 if (ph->ph_nmissing == 0) { 1305 struct timeval diff; 1306 timersub(&curtime, &ph->ph_time, &diff); 1307 if (diff.tv_sec < pool_inactive_time) 1308 continue; 1309 1310 /* 1311 * If freeing this page would put us below 1312 * the low water mark, stop now. 1313 */ 1314 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1315 pp->pr_minitems) 1316 break; 1317 1318 pr_rmpage(pp, ph, &pq); 1319 } 1320 } 1321 1322 pr_leave(pp); 1323 simple_unlock(&pp->pr_slock); 1324 if (TAILQ_EMPTY(&pq)) 1325 return (0); 1326 1327 while ((ph = TAILQ_FIRST(&pq)) != NULL) { 1328 TAILQ_REMOVE(&pq, ph, ph_pagelist); 1329 pool_allocator_free(pp, ph->ph_page); 1330 if (pp->pr_roflags & PR_PHINPAGE) { 1331 continue; 1332 } 1333 LIST_REMOVE(ph, ph_hashlist); 1334 s = splhigh(); 1335 pool_put(&phpool, ph); 1336 splx(s); 1337 } 1338 1339 return (1); 1340 } 1341 1342 /* 1343 * Drain pools, one at a time. 1344 * 1345 * Note, we must never be called from an interrupt context. 1346 */ 1347 void 1348 pool_drain(void *arg) 1349 { 1350 struct pool *pp; 1351 int s; 1352 1353 pp = NULL; 1354 s = splvm(); 1355 simple_lock(&pool_head_slock); 1356 if (drainpp == NULL) { 1357 drainpp = TAILQ_FIRST(&pool_head); 1358 } 1359 if (drainpp) { 1360 pp = drainpp; 1361 drainpp = TAILQ_NEXT(pp, pr_poollist); 1362 } 1363 simple_unlock(&pool_head_slock); 1364 pool_reclaim(pp); 1365 splx(s); 1366 } 1367 1368 /* 1369 * Diagnostic helpers. 1370 */ 1371 void 1372 pool_print(struct pool *pp, const char *modif) 1373 { 1374 int s; 1375 1376 s = splvm(); 1377 if (simple_lock_try(&pp->pr_slock) == 0) { 1378 printf("pool %s is locked; try again later\n", 1379 pp->pr_wchan); 1380 splx(s); 1381 return; 1382 } 1383 pool_print1(pp, modif, printf); 1384 simple_unlock(&pp->pr_slock); 1385 splx(s); 1386 } 1387 1388 void 1389 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1390 { 1391 int didlock = 0; 1392 1393 if (pp == NULL) { 1394 (*pr)("Must specify a pool to print.\n"); 1395 return; 1396 } 1397 1398 /* 1399 * Called from DDB; interrupts should be blocked, and all 1400 * other processors should be paused. We can skip locking 1401 * the pool in this case. 1402 * 1403 * We do a simple_lock_try() just to print the lock 1404 * status, however. 1405 */ 1406 1407 if (simple_lock_try(&pp->pr_slock) == 0) 1408 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1409 else 1410 didlock = 1; 1411 1412 pool_print1(pp, modif, pr); 1413 1414 if (didlock) 1415 simple_unlock(&pp->pr_slock); 1416 } 1417 1418 static void 1419 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1420 { 1421 struct pool_item_header *ph; 1422 struct pool_cache *pc; 1423 struct pool_cache_group *pcg; 1424 #ifdef DIAGNOSTIC 1425 struct pool_item *pi; 1426 #endif 1427 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1428 char c; 1429 1430 while ((c = *modif++) != '\0') { 1431 if (c == 'l') 1432 print_log = 1; 1433 if (c == 'p') 1434 print_pagelist = 1; 1435 if (c == 'c') 1436 print_cache = 1; 1437 modif++; 1438 } 1439 1440 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1441 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1442 pp->pr_roflags); 1443 (*pr)("\talloc %p\n", pp->pr_alloc); 1444 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1445 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1446 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1447 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1448 1449 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1450 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1451 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1452 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1453 1454 if (print_pagelist == 0) 1455 goto skip_pagelist; 1456 1457 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL) 1458 (*pr)("\n\tpage list:\n"); 1459 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) { 1460 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1461 ph->ph_page, ph->ph_nmissing, 1462 (u_long)ph->ph_time.tv_sec, 1463 (u_long)ph->ph_time.tv_usec); 1464 #ifdef DIAGNOSTIC 1465 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1466 if (pi->pi_magic != PI_MAGIC) { 1467 (*pr)("\t\t\titem %p, magic 0x%x\n", 1468 pi, pi->pi_magic); 1469 } 1470 } 1471 #endif 1472 } 1473 if (pp->pr_curpage == NULL) 1474 (*pr)("\tno current page\n"); 1475 else 1476 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1477 1478 skip_pagelist: 1479 1480 if (print_log == 0) 1481 goto skip_log; 1482 1483 (*pr)("\n"); 1484 if ((pp->pr_roflags & PR_LOGGING) == 0) 1485 (*pr)("\tno log\n"); 1486 else 1487 pr_printlog(pp, NULL, pr); 1488 1489 skip_log: 1490 1491 if (print_cache == 0) 1492 goto skip_cache; 1493 1494 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) { 1495 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc, 1496 pc->pc_allocfrom, pc->pc_freeto); 1497 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n", 1498 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems); 1499 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1500 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); 1501 for (i = 0; i < PCG_NOBJECTS; i++) 1502 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]); 1503 } 1504 } 1505 1506 skip_cache: 1507 1508 pr_enter_check(pp, pr); 1509 } 1510 1511 int 1512 pool_chk(struct pool *pp, const char *label) 1513 { 1514 struct pool_item_header *ph; 1515 int r = 0; 1516 1517 simple_lock(&pp->pr_slock); 1518 1519 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) { 1520 struct pool_item *pi; 1521 int n; 1522 caddr_t page; 1523 1524 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask); 1525 if (page != ph->ph_page && 1526 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1527 if (label != NULL) 1528 printf("%s: ", label); 1529 printf("pool(%p:%s): page inconsistency: page %p;" 1530 " at page head addr %p (p %p)\n", pp, 1531 pp->pr_wchan, ph->ph_page, 1532 ph, page); 1533 r++; 1534 goto out; 1535 } 1536 1537 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1538 pi != NULL; 1539 pi = TAILQ_NEXT(pi,pi_list), n++) { 1540 1541 #ifdef DIAGNOSTIC 1542 if (pi->pi_magic != PI_MAGIC) { 1543 if (label != NULL) 1544 printf("%s: ", label); 1545 printf("pool(%s): free list modified: magic=%x;" 1546 " page %p; item ordinal %d;" 1547 " addr %p (p %p)\n", 1548 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1549 n, pi, page); 1550 panic("pool"); 1551 } 1552 #endif 1553 page = 1554 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask); 1555 if (page == ph->ph_page) 1556 continue; 1557 1558 if (label != NULL) 1559 printf("%s: ", label); 1560 printf("pool(%p:%s): page inconsistency: page %p;" 1561 " item ordinal %d; addr %p (p %p)\n", pp, 1562 pp->pr_wchan, ph->ph_page, 1563 n, pi, page); 1564 r++; 1565 goto out; 1566 } 1567 } 1568 out: 1569 simple_unlock(&pp->pr_slock); 1570 return (r); 1571 } 1572 1573 /* 1574 * pool_cache_init: 1575 * 1576 * Initialize a pool cache. 1577 * 1578 * NOTE: If the pool must be protected from interrupts, we expect 1579 * to be called at the appropriate interrupt priority level. 1580 */ 1581 void 1582 pool_cache_init(struct pool_cache *pc, struct pool *pp, 1583 int (*ctor)(void *, void *, int), 1584 void (*dtor)(void *, void *), 1585 void *arg) 1586 { 1587 1588 TAILQ_INIT(&pc->pc_grouplist); 1589 simple_lock_init(&pc->pc_slock); 1590 1591 pc->pc_allocfrom = NULL; 1592 pc->pc_freeto = NULL; 1593 pc->pc_pool = pp; 1594 1595 pc->pc_ctor = ctor; 1596 pc->pc_dtor = dtor; 1597 pc->pc_arg = arg; 1598 1599 pc->pc_hits = 0; 1600 pc->pc_misses = 0; 1601 1602 pc->pc_ngroups = 0; 1603 1604 pc->pc_nitems = 0; 1605 1606 simple_lock(&pp->pr_slock); 1607 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist); 1608 simple_unlock(&pp->pr_slock); 1609 } 1610 1611 /* 1612 * pool_cache_destroy: 1613 * 1614 * Destroy a pool cache. 1615 */ 1616 void 1617 pool_cache_destroy(struct pool_cache *pc) 1618 { 1619 struct pool *pp = pc->pc_pool; 1620 1621 /* First, invalidate the entire cache. */ 1622 pool_cache_invalidate(pc); 1623 1624 /* ...and remove it from the pool's cache list. */ 1625 simple_lock(&pp->pr_slock); 1626 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist); 1627 simple_unlock(&pp->pr_slock); 1628 } 1629 1630 static __inline void * 1631 pcg_get(struct pool_cache_group *pcg) 1632 { 1633 void *object; 1634 u_int idx; 1635 1636 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS); 1637 KASSERT(pcg->pcg_avail != 0); 1638 idx = --pcg->pcg_avail; 1639 1640 KASSERT(pcg->pcg_objects[idx] != NULL); 1641 object = pcg->pcg_objects[idx]; 1642 pcg->pcg_objects[idx] = NULL; 1643 1644 return (object); 1645 } 1646 1647 static __inline void 1648 pcg_put(struct pool_cache_group *pcg, void *object) 1649 { 1650 u_int idx; 1651 1652 KASSERT(pcg->pcg_avail < PCG_NOBJECTS); 1653 idx = pcg->pcg_avail++; 1654 1655 KASSERT(pcg->pcg_objects[idx] == NULL); 1656 pcg->pcg_objects[idx] = object; 1657 } 1658 1659 /* 1660 * pool_cache_get: 1661 * 1662 * Get an object from a pool cache. 1663 */ 1664 void * 1665 pool_cache_get(struct pool_cache *pc, int flags) 1666 { 1667 struct pool_cache_group *pcg; 1668 void *object; 1669 1670 #ifdef LOCKDEBUG 1671 if (flags & PR_WAITOK) 1672 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)"); 1673 #endif 1674 1675 simple_lock(&pc->pc_slock); 1676 1677 if ((pcg = pc->pc_allocfrom) == NULL) { 1678 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1679 if (pcg->pcg_avail != 0) { 1680 pc->pc_allocfrom = pcg; 1681 goto have_group; 1682 } 1683 } 1684 1685 /* 1686 * No groups with any available objects. Allocate 1687 * a new object, construct it, and return it to 1688 * the caller. We will allocate a group, if necessary, 1689 * when the object is freed back to the cache. 1690 */ 1691 pc->pc_misses++; 1692 simple_unlock(&pc->pc_slock); 1693 object = pool_get(pc->pc_pool, flags); 1694 if (object != NULL && pc->pc_ctor != NULL) { 1695 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 1696 pool_put(pc->pc_pool, object); 1697 return (NULL); 1698 } 1699 } 1700 return (object); 1701 } 1702 1703 have_group: 1704 pc->pc_hits++; 1705 pc->pc_nitems--; 1706 object = pcg_get(pcg); 1707 1708 if (pcg->pcg_avail == 0) 1709 pc->pc_allocfrom = NULL; 1710 1711 simple_unlock(&pc->pc_slock); 1712 1713 return (object); 1714 } 1715 1716 /* 1717 * pool_cache_put: 1718 * 1719 * Put an object back to the pool cache. 1720 */ 1721 void 1722 pool_cache_put(struct pool_cache *pc, void *object) 1723 { 1724 struct pool_cache_group *pcg; 1725 int s; 1726 1727 simple_lock(&pc->pc_slock); 1728 1729 if ((pcg = pc->pc_freeto) == NULL) { 1730 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1731 if (pcg->pcg_avail != PCG_NOBJECTS) { 1732 pc->pc_freeto = pcg; 1733 goto have_group; 1734 } 1735 } 1736 1737 /* 1738 * No empty groups to free the object to. Attempt to 1739 * allocate one. 1740 */ 1741 simple_unlock(&pc->pc_slock); 1742 s = splvm(); 1743 pcg = pool_get(&pcgpool, PR_NOWAIT); 1744 splx(s); 1745 if (pcg != NULL) { 1746 memset(pcg, 0, sizeof(*pcg)); 1747 simple_lock(&pc->pc_slock); 1748 pc->pc_ngroups++; 1749 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list); 1750 if (pc->pc_freeto == NULL) 1751 pc->pc_freeto = pcg; 1752 goto have_group; 1753 } 1754 1755 /* 1756 * Unable to allocate a cache group; destruct the object 1757 * and free it back to the pool. 1758 */ 1759 pool_cache_destruct_object(pc, object); 1760 return; 1761 } 1762 1763 have_group: 1764 pc->pc_nitems++; 1765 pcg_put(pcg, object); 1766 1767 if (pcg->pcg_avail == PCG_NOBJECTS) 1768 pc->pc_freeto = NULL; 1769 1770 simple_unlock(&pc->pc_slock); 1771 } 1772 1773 /* 1774 * pool_cache_destruct_object: 1775 * 1776 * Force destruction of an object and its release back into 1777 * the pool. 1778 */ 1779 void 1780 pool_cache_destruct_object(struct pool_cache *pc, void *object) 1781 { 1782 1783 if (pc->pc_dtor != NULL) 1784 (*pc->pc_dtor)(pc->pc_arg, object); 1785 pool_put(pc->pc_pool, object); 1786 } 1787 1788 /* 1789 * pool_cache_do_invalidate: 1790 * 1791 * This internal function implements pool_cache_invalidate() and 1792 * pool_cache_reclaim(). 1793 */ 1794 static void 1795 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups, 1796 void (*putit)(struct pool *, void *)) 1797 { 1798 struct pool_cache_group *pcg, *npcg; 1799 void *object; 1800 int s; 1801 1802 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1803 pcg = npcg) { 1804 npcg = TAILQ_NEXT(pcg, pcg_list); 1805 while (pcg->pcg_avail != 0) { 1806 pc->pc_nitems--; 1807 object = pcg_get(pcg); 1808 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg) 1809 pc->pc_allocfrom = NULL; 1810 if (pc->pc_dtor != NULL) 1811 (*pc->pc_dtor)(pc->pc_arg, object); 1812 (*putit)(pc->pc_pool, object); 1813 } 1814 if (free_groups) { 1815 pc->pc_ngroups--; 1816 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list); 1817 if (pc->pc_freeto == pcg) 1818 pc->pc_freeto = NULL; 1819 s = splvm(); 1820 pool_put(&pcgpool, pcg); 1821 splx(s); 1822 } 1823 } 1824 } 1825 1826 /* 1827 * pool_cache_invalidate: 1828 * 1829 * Invalidate a pool cache (destruct and release all of the 1830 * cached objects). 1831 */ 1832 void 1833 pool_cache_invalidate(struct pool_cache *pc) 1834 { 1835 1836 simple_lock(&pc->pc_slock); 1837 pool_cache_do_invalidate(pc, 0, pool_put); 1838 simple_unlock(&pc->pc_slock); 1839 } 1840 1841 /* 1842 * pool_cache_reclaim: 1843 * 1844 * Reclaim a pool cache for pool_reclaim(). 1845 */ 1846 static void 1847 pool_cache_reclaim(struct pool_cache *pc) 1848 { 1849 1850 simple_lock(&pc->pc_slock); 1851 pool_cache_do_invalidate(pc, 1, pool_do_put); 1852 simple_unlock(&pc->pc_slock); 1853 } 1854 1855 /* 1856 * Pool backend allocators. 1857 * 1858 * Each pool has a backend allocator that handles allocation, deallocation, 1859 * and any additional draining that might be needed. 1860 * 1861 * We provide two standard allocators: 1862 * 1863 * pool_allocator_kmem - the default when no allocator is specified 1864 * 1865 * pool_allocator_nointr - used for pools that will not be accessed 1866 * in interrupt context. 1867 */ 1868 void *pool_page_alloc(struct pool *, int); 1869 void pool_page_free(struct pool *, void *); 1870 1871 struct pool_allocator pool_allocator_kmem = { 1872 pool_page_alloc, pool_page_free, 0, 1873 }; 1874 1875 void *pool_page_alloc_nointr(struct pool *, int); 1876 void pool_page_free_nointr(struct pool *, void *); 1877 1878 struct pool_allocator pool_allocator_nointr = { 1879 pool_page_alloc_nointr, pool_page_free_nointr, 0, 1880 }; 1881 1882 #ifdef POOL_SUBPAGE 1883 void *pool_subpage_alloc(struct pool *, int); 1884 void pool_subpage_free(struct pool *, void *); 1885 1886 struct pool_allocator pool_allocator_kmem_subpage = { 1887 pool_subpage_alloc, pool_subpage_free, 0, 1888 }; 1889 #endif /* POOL_SUBPAGE */ 1890 1891 /* 1892 * We have at least three different resources for the same allocation and 1893 * each resource can be depleted. First, we have the ready elements in the 1894 * pool. Then we have the resource (typically a vm_map) for this allocator. 1895 * Finally, we have physical memory. Waiting for any of these can be 1896 * unnecessary when any other is freed, but the kernel doesn't support 1897 * sleeping on multiple wait channels, so we have to employ another strategy. 1898 * 1899 * The caller sleeps on the pool (so that it can be awakened when an item 1900 * is returned to the pool), but we set PA_WANT on the allocator. When a 1901 * page is returned to the allocator and PA_WANT is set, pool_allocator_free 1902 * will wake up all sleeping pools belonging to this allocator. 1903 * 1904 * XXX Thundering herd. 1905 */ 1906 void * 1907 pool_allocator_alloc(struct pool *org, int flags) 1908 { 1909 struct pool_allocator *pa = org->pr_alloc; 1910 struct pool *pp, *start; 1911 int s, freed; 1912 void *res; 1913 1914 do { 1915 if ((res = (*pa->pa_alloc)(org, flags)) != NULL) 1916 return (res); 1917 if ((flags & PR_WAITOK) == 0) { 1918 /* 1919 * We only run the drain hookhere if PR_NOWAIT. 1920 * In other cases, the hook will be run in 1921 * pool_reclaim(). 1922 */ 1923 if (org->pr_drain_hook != NULL) { 1924 (*org->pr_drain_hook)(org->pr_drain_hook_arg, 1925 flags); 1926 if ((res = (*pa->pa_alloc)(org, flags)) != NULL) 1927 return (res); 1928 } 1929 break; 1930 } 1931 1932 /* 1933 * Drain all pools, except "org", that use this 1934 * allocator. We do this to reclaim VA space. 1935 * pa_alloc is responsible for waiting for 1936 * physical memory. 1937 * 1938 * XXX We risk looping forever if start if someone 1939 * calls pool_destroy on "start". But there is no 1940 * other way to have potentially sleeping pool_reclaim, 1941 * non-sleeping locks on pool_allocator, and some 1942 * stirring of drained pools in the allocator. 1943 * 1944 * XXX Maybe we should use pool_head_slock for locking 1945 * the allocators? 1946 */ 1947 freed = 0; 1948 1949 s = splvm(); 1950 simple_lock(&pa->pa_slock); 1951 pp = start = TAILQ_FIRST(&pa->pa_list); 1952 do { 1953 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list); 1954 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list); 1955 if (pp == org) 1956 continue; 1957 simple_unlock(&pa->pa_slock); 1958 freed = pool_reclaim(pp); 1959 simple_lock(&pa->pa_slock); 1960 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start && 1961 freed == 0); 1962 1963 if (freed == 0) { 1964 /* 1965 * We set PA_WANT here, the caller will most likely 1966 * sleep waiting for pages (if not, this won't hurt 1967 * that much), and there is no way to set this in 1968 * the caller without violating locking order. 1969 */ 1970 pa->pa_flags |= PA_WANT; 1971 } 1972 simple_unlock(&pa->pa_slock); 1973 splx(s); 1974 } while (freed); 1975 return (NULL); 1976 } 1977 1978 void 1979 pool_allocator_free(struct pool *pp, void *v) 1980 { 1981 struct pool_allocator *pa = pp->pr_alloc; 1982 int s; 1983 1984 (*pa->pa_free)(pp, v); 1985 1986 s = splvm(); 1987 simple_lock(&pa->pa_slock); 1988 if ((pa->pa_flags & PA_WANT) == 0) { 1989 simple_unlock(&pa->pa_slock); 1990 splx(s); 1991 return; 1992 } 1993 1994 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 1995 simple_lock(&pp->pr_slock); 1996 if ((pp->pr_flags & PR_WANTED) != 0) { 1997 pp->pr_flags &= ~PR_WANTED; 1998 wakeup(pp); 1999 } 2000 simple_unlock(&pp->pr_slock); 2001 } 2002 pa->pa_flags &= ~PA_WANT; 2003 simple_unlock(&pa->pa_slock); 2004 splx(s); 2005 } 2006 2007 void * 2008 pool_page_alloc(struct pool *pp, int flags) 2009 { 2010 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 2011 2012 return ((void *) uvm_km_alloc_poolpage(waitok)); 2013 } 2014 2015 void 2016 pool_page_free(struct pool *pp, void *v) 2017 { 2018 2019 uvm_km_free_poolpage((vaddr_t) v); 2020 } 2021 2022 #ifdef POOL_SUBPAGE 2023 /* Sub-page allocator, for machines with large hardware pages. */ 2024 void * 2025 pool_subpage_alloc(struct pool *pp, int flags) 2026 { 2027 2028 return (pool_get(&psppool, flags)); 2029 } 2030 2031 void 2032 pool_subpage_free(struct pool *pp, void *v) 2033 { 2034 2035 pool_put(&psppool, v); 2036 } 2037 2038 /* We don't provide a real nointr allocator. Maybe later. */ 2039 void * 2040 pool_page_alloc_nointr(struct pool *pp, int flags) 2041 { 2042 2043 return (pool_subpage_alloc(pp, flags)); 2044 } 2045 2046 void 2047 pool_page_free_nointr(struct pool *pp, void *v) 2048 { 2049 2050 pool_subpage_free(pp, v); 2051 } 2052 #else 2053 void * 2054 pool_page_alloc_nointr(struct pool *pp, int flags) 2055 { 2056 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 2057 2058 return ((void *) uvm_km_alloc_poolpage1(kernel_map, 2059 uvm.kernel_object, waitok)); 2060 } 2061 2062 void 2063 pool_page_free_nointr(struct pool *pp, void *v) 2064 { 2065 2066 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v); 2067 } 2068 #endif /* POOL_SUBPAGE */ 2069