xref: /netbsd-src/sys/kern/subr_pool.c (revision fb5eed702691094bd687fbf1ded189c87457cd35)
1 /*	$NetBSD: subr_pool.c,v 1.277 2021/07/25 06:00:31 simonb Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5  *     2020 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11  * Maxime Villard.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.277 2021/07/25 06:00:31 simonb Exp $");
37 
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lock.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 #include <sys/msan.h>
62 #include <sys/fault.h>
63 
64 #include <uvm/uvm_extern.h>
65 
66 /*
67  * Pool resource management utility.
68  *
69  * Memory is allocated in pages which are split into pieces according to
70  * the pool item size. Each page is kept on one of three lists in the
71  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72  * for empty, full and partially-full pages respectively. The individual
73  * pool items are on a linked list headed by `ph_itemlist' in each page
74  * header. The memory for building the page list is either taken from
75  * the allocated pages themselves (for small pool items) or taken from
76  * an internal pool of page headers (`phpool').
77  */
78 
79 /* List of all pools. Non static as needed by 'vmstat -m' */
80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81 
82 /* Private pool for page header structures */
83 #define	PHPOOL_MAX	8
84 static struct pool phpool[PHPOOL_MAX];
85 #define	PHPOOL_FREELIST_NELEM(idx) \
86 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87 
88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 #define POOL_REDZONE
90 #endif
91 
92 #if defined(POOL_QUARANTINE)
93 #define POOL_NOCACHE
94 #endif
95 
96 #ifdef POOL_REDZONE
97 # ifdef KASAN
98 #  define POOL_REDZONE_SIZE 8
99 # else
100 #  define POOL_REDZONE_SIZE 2
101 # endif
102 static void pool_redzone_init(struct pool *, size_t);
103 static void pool_redzone_fill(struct pool *, void *);
104 static void pool_redzone_check(struct pool *, void *);
105 static void pool_cache_redzone_check(pool_cache_t, void *);
106 #else
107 # define pool_redzone_init(pp, sz)		__nothing
108 # define pool_redzone_fill(pp, ptr)		__nothing
109 # define pool_redzone_check(pp, ptr)		__nothing
110 # define pool_cache_redzone_check(pc, ptr)	__nothing
111 #endif
112 
113 #ifdef KMSAN
114 static inline void pool_get_kmsan(struct pool *, void *);
115 static inline void pool_put_kmsan(struct pool *, void *);
116 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 #else
119 #define pool_get_kmsan(pp, ptr)		__nothing
120 #define pool_put_kmsan(pp, ptr)		__nothing
121 #define pool_cache_get_kmsan(pc, ptr)	__nothing
122 #define pool_cache_put_kmsan(pc, ptr)	__nothing
123 #endif
124 
125 #ifdef POOL_QUARANTINE
126 static void pool_quarantine_init(struct pool *);
127 static void pool_quarantine_flush(struct pool *);
128 static bool pool_put_quarantine(struct pool *, void *,
129     struct pool_pagelist *);
130 #else
131 #define pool_quarantine_init(a)			__nothing
132 #define pool_quarantine_flush(a)		__nothing
133 #define pool_put_quarantine(a, b, c)		false
134 #endif
135 
136 #ifdef POOL_NOCACHE
137 static bool pool_cache_put_nocache(pool_cache_t, void *);
138 #else
139 #define pool_cache_put_nocache(a, b)		false
140 #endif
141 
142 #define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
143 #define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
144 
145 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
146 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
147 
148 /*
149  * Pool backend allocators.
150  *
151  * Each pool has a backend allocator that handles allocation, deallocation,
152  * and any additional draining that might be needed.
153  *
154  * We provide two standard allocators:
155  *
156  *	pool_allocator_kmem - the default when no allocator is specified
157  *
158  *	pool_allocator_nointr - used for pools that will not be accessed
159  *	in interrupt context.
160  */
161 void *pool_page_alloc(struct pool *, int);
162 void pool_page_free(struct pool *, void *);
163 
164 static void *pool_page_alloc_meta(struct pool *, int);
165 static void pool_page_free_meta(struct pool *, void *);
166 
167 struct pool_allocator pool_allocator_kmem = {
168 	.pa_alloc = pool_page_alloc,
169 	.pa_free = pool_page_free,
170 	.pa_pagesz = 0
171 };
172 
173 struct pool_allocator pool_allocator_nointr = {
174 	.pa_alloc = pool_page_alloc,
175 	.pa_free = pool_page_free,
176 	.pa_pagesz = 0
177 };
178 
179 struct pool_allocator pool_allocator_meta = {
180 	.pa_alloc = pool_page_alloc_meta,
181 	.pa_free = pool_page_free_meta,
182 	.pa_pagesz = 0
183 };
184 
185 #define POOL_ALLOCATOR_BIG_BASE 13
186 static struct pool_allocator pool_allocator_big[] = {
187 	{
188 		.pa_alloc = pool_page_alloc,
189 		.pa_free = pool_page_free,
190 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
191 	},
192 	{
193 		.pa_alloc = pool_page_alloc,
194 		.pa_free = pool_page_free,
195 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
196 	},
197 	{
198 		.pa_alloc = pool_page_alloc,
199 		.pa_free = pool_page_free,
200 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
201 	},
202 	{
203 		.pa_alloc = pool_page_alloc,
204 		.pa_free = pool_page_free,
205 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
206 	},
207 	{
208 		.pa_alloc = pool_page_alloc,
209 		.pa_free = pool_page_free,
210 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
211 	},
212 	{
213 		.pa_alloc = pool_page_alloc,
214 		.pa_free = pool_page_free,
215 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
216 	},
217 	{
218 		.pa_alloc = pool_page_alloc,
219 		.pa_free = pool_page_free,
220 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
221 	},
222 	{
223 		.pa_alloc = pool_page_alloc,
224 		.pa_free = pool_page_free,
225 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
226 	},
227 	{
228 		.pa_alloc = pool_page_alloc,
229 		.pa_free = pool_page_free,
230 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
231 	},
232 	{
233 		.pa_alloc = pool_page_alloc,
234 		.pa_free = pool_page_free,
235 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
236 	},
237 	{
238 		.pa_alloc = pool_page_alloc,
239 		.pa_free = pool_page_free,
240 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
241 	},
242 	{
243 		.pa_alloc = pool_page_alloc,
244 		.pa_free = pool_page_free,
245 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
246 	}
247 };
248 
249 static int pool_bigidx(size_t);
250 
251 /* # of seconds to retain page after last use */
252 int pool_inactive_time = 10;
253 
254 /* Next candidate for drainage (see pool_drain()) */
255 static struct pool *drainpp;
256 
257 /* This lock protects both pool_head and drainpp. */
258 static kmutex_t pool_head_lock;
259 static kcondvar_t pool_busy;
260 
261 /* This lock protects initialization of a potentially shared pool allocator */
262 static kmutex_t pool_allocator_lock;
263 
264 static unsigned int poolid_counter = 0;
265 
266 typedef uint32_t pool_item_bitmap_t;
267 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
268 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
269 #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
270 
271 struct pool_item_header {
272 	/* Page headers */
273 	LIST_ENTRY(pool_item_header)
274 				ph_pagelist;	/* pool page list */
275 	union {
276 		/* !PR_PHINPAGE */
277 		struct {
278 			SPLAY_ENTRY(pool_item_header)
279 				phu_node;	/* off-page page headers */
280 		} phu_offpage;
281 		/* PR_PHINPAGE */
282 		struct {
283 			unsigned int phu_poolid;
284 		} phu_onpage;
285 	} ph_u1;
286 	void *			ph_page;	/* this page's address */
287 	uint32_t		ph_time;	/* last referenced */
288 	uint16_t		ph_nmissing;	/* # of chunks in use */
289 	uint16_t		ph_off;		/* start offset in page */
290 	union {
291 		/* !PR_USEBMAP */
292 		struct {
293 			LIST_HEAD(, pool_item)
294 				phu_itemlist;	/* chunk list for this page */
295 		} phu_normal;
296 		/* PR_USEBMAP */
297 		struct {
298 			pool_item_bitmap_t phu_bitmap[1];
299 		} phu_notouch;
300 	} ph_u2;
301 };
302 #define ph_node		ph_u1.phu_offpage.phu_node
303 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
304 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
305 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
306 
307 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
308 
309 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
310     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
311 
312 #if defined(DIAGNOSTIC) && !defined(KASAN)
313 #define POOL_CHECK_MAGIC
314 #endif
315 
316 struct pool_item {
317 #ifdef POOL_CHECK_MAGIC
318 	u_int pi_magic;
319 #endif
320 #define	PI_MAGIC 0xdeaddeadU
321 	/* Other entries use only this list entry */
322 	LIST_ENTRY(pool_item)	pi_list;
323 };
324 
325 #define	POOL_NEEDS_CATCHUP(pp)						\
326 	((pp)->pr_nitems < (pp)->pr_minitems ||				\
327 	 (pp)->pr_npages < (pp)->pr_minpages)
328 #define	POOL_OBJ_TO_PAGE(pp, v)						\
329 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
330 
331 /*
332  * Pool cache management.
333  *
334  * Pool caches provide a way for constructed objects to be cached by the
335  * pool subsystem.  This can lead to performance improvements by avoiding
336  * needless object construction/destruction; it is deferred until absolutely
337  * necessary.
338  *
339  * Caches are grouped into cache groups.  Each cache group references up
340  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
341  * object from the pool, it calls the object's constructor and places it
342  * into a cache group.  When a cache group frees an object back to the
343  * pool, it first calls the object's destructor.  This allows the object
344  * to persist in constructed form while freed to the cache.
345  *
346  * The pool references each cache, so that when a pool is drained by the
347  * pagedaemon, it can drain each individual cache as well.  Each time a
348  * cache is drained, the most idle cache group is freed to the pool in
349  * its entirety.
350  *
351  * Pool caches are layed on top of pools.  By layering them, we can avoid
352  * the complexity of cache management for pools which would not benefit
353  * from it.
354  */
355 
356 static struct pool pcg_normal_pool;
357 static struct pool pcg_large_pool;
358 static struct pool cache_pool;
359 static struct pool cache_cpu_pool;
360 
361 static pcg_t *volatile pcg_large_cache __cacheline_aligned;
362 static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
363 
364 /* List of all caches. */
365 TAILQ_HEAD(,pool_cache) pool_cache_head =
366     TAILQ_HEAD_INITIALIZER(pool_cache_head);
367 
368 int pool_cache_disable;		/* global disable for caching */
369 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
370 
371 static bool	pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
372 				    void *);
373 static bool	pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
374 				    void **, paddr_t *, int);
375 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
376 static int	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
377 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
378 static void	pool_cache_transfer(pool_cache_t);
379 static int	pool_pcg_get(pcg_t *volatile *, pcg_t **);
380 static int	pool_pcg_put(pcg_t *volatile *, pcg_t *);
381 static pcg_t *	pool_pcg_trunc(pcg_t *volatile *);
382 
383 static int	pool_catchup(struct pool *);
384 static void	pool_prime_page(struct pool *, void *,
385 		    struct pool_item_header *);
386 static void	pool_update_curpage(struct pool *);
387 
388 static int	pool_grow(struct pool *, int);
389 static void	*pool_allocator_alloc(struct pool *, int);
390 static void	pool_allocator_free(struct pool *, void *);
391 
392 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
393 	void (*)(const char *, ...) __printflike(1, 2));
394 static void pool_print1(struct pool *, const char *,
395 	void (*)(const char *, ...) __printflike(1, 2));
396 
397 static int pool_chk_page(struct pool *, const char *,
398 			 struct pool_item_header *);
399 
400 /* -------------------------------------------------------------------------- */
401 
402 static inline unsigned int
403 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
404     const void *v)
405 {
406 	const char *cp = v;
407 	unsigned int idx;
408 
409 	KASSERT(pp->pr_roflags & PR_USEBMAP);
410 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
411 
412 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
413 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
414 		    pp->pr_itemsperpage);
415 	}
416 
417 	return idx;
418 }
419 
420 static inline void
421 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
422     void *obj)
423 {
424 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
425 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
426 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
427 
428 	if (__predict_false((*bitmap & mask) != 0)) {
429 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
430 	}
431 
432 	*bitmap |= mask;
433 }
434 
435 static inline void *
436 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
437 {
438 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
439 	unsigned int idx;
440 	int i;
441 
442 	for (i = 0; ; i++) {
443 		int bit;
444 
445 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
446 		bit = ffs32(bitmap[i]);
447 		if (bit) {
448 			pool_item_bitmap_t mask;
449 
450 			bit--;
451 			idx = (i * BITMAP_SIZE) + bit;
452 			mask = 1U << bit;
453 			KASSERT((bitmap[i] & mask) != 0);
454 			bitmap[i] &= ~mask;
455 			break;
456 		}
457 	}
458 	KASSERT(idx < pp->pr_itemsperpage);
459 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
460 }
461 
462 static inline void
463 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
464 {
465 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
466 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
467 	int i;
468 
469 	for (i = 0; i < n; i++) {
470 		bitmap[i] = (pool_item_bitmap_t)-1;
471 	}
472 }
473 
474 /* -------------------------------------------------------------------------- */
475 
476 static inline void
477 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
478     void *obj)
479 {
480 	struct pool_item *pi = obj;
481 
482 #ifdef POOL_CHECK_MAGIC
483 	pi->pi_magic = PI_MAGIC;
484 #endif
485 
486 	if (pp->pr_redzone) {
487 		/*
488 		 * Mark the pool_item as valid. The rest is already
489 		 * invalid.
490 		 */
491 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
492 	}
493 
494 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
495 }
496 
497 static inline void *
498 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
499 {
500 	struct pool_item *pi;
501 	void *v;
502 
503 	v = pi = LIST_FIRST(&ph->ph_itemlist);
504 	if (__predict_false(v == NULL)) {
505 		mutex_exit(&pp->pr_lock);
506 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
507 	}
508 	KASSERTMSG((pp->pr_nitems > 0),
509 	    "%s: [%s] nitems %u inconsistent on itemlist",
510 	    __func__, pp->pr_wchan, pp->pr_nitems);
511 #ifdef POOL_CHECK_MAGIC
512 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
513 	    "%s: [%s] free list modified: "
514 	    "magic=%x; page %p; item addr %p", __func__,
515 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
516 #endif
517 
518 	/*
519 	 * Remove from item list.
520 	 */
521 	LIST_REMOVE(pi, pi_list);
522 
523 	return v;
524 }
525 
526 /* -------------------------------------------------------------------------- */
527 
528 static inline void
529 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
530     void *object)
531 {
532 	if (__predict_false((void *)ph->ph_page != page)) {
533 		panic("%s: [%s] item %p not part of pool", __func__,
534 		    pp->pr_wchan, object);
535 	}
536 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
537 		panic("%s: [%s] item %p below item space", __func__,
538 		    pp->pr_wchan, object);
539 	}
540 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
541 		panic("%s: [%s] item %p poolid %u != %u", __func__,
542 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
543 	}
544 }
545 
546 static inline void
547 pc_phinpage_check(pool_cache_t pc, void *object)
548 {
549 	struct pool_item_header *ph;
550 	struct pool *pp;
551 	void *page;
552 
553 	pp = &pc->pc_pool;
554 	page = POOL_OBJ_TO_PAGE(pp, object);
555 	ph = (struct pool_item_header *)page;
556 
557 	pr_phinpage_check(pp, ph, page, object);
558 }
559 
560 /* -------------------------------------------------------------------------- */
561 
562 static inline int
563 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
564 {
565 
566 	/*
567 	 * We consider pool_item_header with smaller ph_page bigger. This
568 	 * unnatural ordering is for the benefit of pr_find_pagehead.
569 	 */
570 	if (a->ph_page < b->ph_page)
571 		return 1;
572 	else if (a->ph_page > b->ph_page)
573 		return -1;
574 	else
575 		return 0;
576 }
577 
578 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
579 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
580 
581 static inline struct pool_item_header *
582 pr_find_pagehead_noalign(struct pool *pp, void *v)
583 {
584 	struct pool_item_header *ph, tmp;
585 
586 	tmp.ph_page = (void *)(uintptr_t)v;
587 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
588 	if (ph == NULL) {
589 		ph = SPLAY_ROOT(&pp->pr_phtree);
590 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
591 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
592 		}
593 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
594 	}
595 
596 	return ph;
597 }
598 
599 /*
600  * Return the pool page header based on item address.
601  */
602 static inline struct pool_item_header *
603 pr_find_pagehead(struct pool *pp, void *v)
604 {
605 	struct pool_item_header *ph, tmp;
606 
607 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
608 		ph = pr_find_pagehead_noalign(pp, v);
609 	} else {
610 		void *page = POOL_OBJ_TO_PAGE(pp, v);
611 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
612 			ph = (struct pool_item_header *)page;
613 			pr_phinpage_check(pp, ph, page, v);
614 		} else {
615 			tmp.ph_page = page;
616 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
617 		}
618 	}
619 
620 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
621 	    ((char *)ph->ph_page <= (char *)v &&
622 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
623 	return ph;
624 }
625 
626 static void
627 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
628 {
629 	struct pool_item_header *ph;
630 
631 	while ((ph = LIST_FIRST(pq)) != NULL) {
632 		LIST_REMOVE(ph, ph_pagelist);
633 		pool_allocator_free(pp, ph->ph_page);
634 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
635 			pool_put(pp->pr_phpool, ph);
636 	}
637 }
638 
639 /*
640  * Remove a page from the pool.
641  */
642 static inline void
643 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
644      struct pool_pagelist *pq)
645 {
646 
647 	KASSERT(mutex_owned(&pp->pr_lock));
648 
649 	/*
650 	 * If the page was idle, decrement the idle page count.
651 	 */
652 	if (ph->ph_nmissing == 0) {
653 		KASSERT(pp->pr_nidle != 0);
654 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
655 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
656 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
657 		pp->pr_nidle--;
658 	}
659 
660 	pp->pr_nitems -= pp->pr_itemsperpage;
661 
662 	/*
663 	 * Unlink the page from the pool and queue it for release.
664 	 */
665 	LIST_REMOVE(ph, ph_pagelist);
666 	if (pp->pr_roflags & PR_PHINPAGE) {
667 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
668 			panic("%s: [%s] ph %p poolid %u != %u",
669 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
670 			    pp->pr_poolid);
671 		}
672 	} else {
673 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
674 	}
675 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
676 
677 	pp->pr_npages--;
678 	pp->pr_npagefree++;
679 
680 	pool_update_curpage(pp);
681 }
682 
683 /*
684  * Initialize all the pools listed in the "pools" link set.
685  */
686 void
687 pool_subsystem_init(void)
688 {
689 	size_t size;
690 	int idx;
691 
692 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
693 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
694 	cv_init(&pool_busy, "poolbusy");
695 
696 	/*
697 	 * Initialize private page header pool and cache magazine pool if we
698 	 * haven't done so yet.
699 	 */
700 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
701 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
702 		int nelem;
703 		size_t sz;
704 
705 		nelem = PHPOOL_FREELIST_NELEM(idx);
706 		KASSERT(nelem != 0);
707 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
708 		    "phpool-%d", nelem);
709 		sz = offsetof(struct pool_item_header,
710 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
711 		pool_init(&phpool[idx], sz, 0, 0, 0,
712 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
713 	}
714 
715 	size = sizeof(pcg_t) +
716 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
717 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
718 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
719 
720 	size = sizeof(pcg_t) +
721 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
722 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
723 	    "pcglarge", &pool_allocator_meta, IPL_VM);
724 
725 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
726 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
727 
728 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
729 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
730 }
731 
732 static inline bool
733 pool_init_is_phinpage(const struct pool *pp)
734 {
735 	size_t pagesize;
736 
737 	if (pp->pr_roflags & PR_PHINPAGE) {
738 		return true;
739 	}
740 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
741 		return false;
742 	}
743 
744 	pagesize = pp->pr_alloc->pa_pagesz;
745 
746 	/*
747 	 * Threshold: the item size is below 1/16 of a page size, and below
748 	 * 8 times the page header size. The latter ensures we go off-page
749 	 * if the page header would make us waste a rather big item.
750 	 */
751 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
752 		return true;
753 	}
754 
755 	/* Put the header into the page if it doesn't waste any items. */
756 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
757 		return true;
758 	}
759 
760 	return false;
761 }
762 
763 static inline bool
764 pool_init_is_usebmap(const struct pool *pp)
765 {
766 	size_t bmapsize;
767 
768 	if (pp->pr_roflags & PR_NOTOUCH) {
769 		return true;
770 	}
771 
772 	/*
773 	 * If we're off-page, go with a bitmap.
774 	 */
775 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
776 		return true;
777 	}
778 
779 	/*
780 	 * If we're on-page, and the page header can already contain a bitmap
781 	 * big enough to cover all the items of the page, go with a bitmap.
782 	 */
783 	bmapsize = roundup(PHSIZE, pp->pr_align) -
784 	    offsetof(struct pool_item_header, ph_bitmap[0]);
785 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
786 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
787 		return true;
788 	}
789 
790 	return false;
791 }
792 
793 /*
794  * Initialize the given pool resource structure.
795  *
796  * We export this routine to allow other kernel parts to declare
797  * static pools that must be initialized before kmem(9) is available.
798  */
799 void
800 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
801     const char *wchan, struct pool_allocator *palloc, int ipl)
802 {
803 	struct pool *pp1;
804 	size_t prsize;
805 	int itemspace, slack;
806 
807 	/* XXX ioff will be removed. */
808 	KASSERT(ioff == 0);
809 
810 #ifdef DEBUG
811 	if (__predict_true(!cold))
812 		mutex_enter(&pool_head_lock);
813 	/*
814 	 * Check that the pool hasn't already been initialised and
815 	 * added to the list of all pools.
816 	 */
817 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
818 		if (pp == pp1)
819 			panic("%s: [%s] already initialised", __func__,
820 			    wchan);
821 	}
822 	if (__predict_true(!cold))
823 		mutex_exit(&pool_head_lock);
824 #endif
825 
826 	if (palloc == NULL)
827 		palloc = &pool_allocator_kmem;
828 
829 	if (!cold)
830 		mutex_enter(&pool_allocator_lock);
831 	if (palloc->pa_refcnt++ == 0) {
832 		if (palloc->pa_pagesz == 0)
833 			palloc->pa_pagesz = PAGE_SIZE;
834 
835 		TAILQ_INIT(&palloc->pa_list);
836 
837 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
838 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
839 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
840 	}
841 	if (!cold)
842 		mutex_exit(&pool_allocator_lock);
843 
844 	if (align == 0)
845 		align = ALIGN(1);
846 
847 	prsize = size;
848 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
849 		prsize = sizeof(struct pool_item);
850 
851 	prsize = roundup(prsize, align);
852 	KASSERTMSG((prsize <= palloc->pa_pagesz),
853 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
854 	    __func__, wchan, prsize, palloc->pa_pagesz);
855 
856 	/*
857 	 * Initialize the pool structure.
858 	 */
859 	LIST_INIT(&pp->pr_emptypages);
860 	LIST_INIT(&pp->pr_fullpages);
861 	LIST_INIT(&pp->pr_partpages);
862 	pp->pr_cache = NULL;
863 	pp->pr_curpage = NULL;
864 	pp->pr_npages = 0;
865 	pp->pr_minitems = 0;
866 	pp->pr_minpages = 0;
867 	pp->pr_maxpages = UINT_MAX;
868 	pp->pr_roflags = flags;
869 	pp->pr_flags = 0;
870 	pp->pr_size = prsize;
871 	pp->pr_reqsize = size;
872 	pp->pr_align = align;
873 	pp->pr_wchan = wchan;
874 	pp->pr_alloc = palloc;
875 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
876 	pp->pr_nitems = 0;
877 	pp->pr_nout = 0;
878 	pp->pr_hardlimit = UINT_MAX;
879 	pp->pr_hardlimit_warning = NULL;
880 	pp->pr_hardlimit_ratecap.tv_sec = 0;
881 	pp->pr_hardlimit_ratecap.tv_usec = 0;
882 	pp->pr_hardlimit_warning_last.tv_sec = 0;
883 	pp->pr_hardlimit_warning_last.tv_usec = 0;
884 	pp->pr_drain_hook = NULL;
885 	pp->pr_drain_hook_arg = NULL;
886 	pp->pr_freecheck = NULL;
887 	pp->pr_redzone = false;
888 	pool_redzone_init(pp, size);
889 	pool_quarantine_init(pp);
890 
891 	/*
892 	 * Decide whether to put the page header off-page to avoid wasting too
893 	 * large a part of the page or too big an item. Off-page page headers
894 	 * go on a hash table, so we can match a returned item with its header
895 	 * based on the page address.
896 	 */
897 	if (pool_init_is_phinpage(pp)) {
898 		/* Use the beginning of the page for the page header */
899 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
900 		pp->pr_itemoffset = roundup(PHSIZE, align);
901 		pp->pr_roflags |= PR_PHINPAGE;
902 	} else {
903 		/* The page header will be taken from our page header pool */
904 		itemspace = palloc->pa_pagesz;
905 		pp->pr_itemoffset = 0;
906 		SPLAY_INIT(&pp->pr_phtree);
907 	}
908 
909 	pp->pr_itemsperpage = itemspace / pp->pr_size;
910 	KASSERT(pp->pr_itemsperpage != 0);
911 
912 	/*
913 	 * Decide whether to use a bitmap or a linked list to manage freed
914 	 * items.
915 	 */
916 	if (pool_init_is_usebmap(pp)) {
917 		pp->pr_roflags |= PR_USEBMAP;
918 	}
919 
920 	/*
921 	 * If we're off-page, then we're using a bitmap; choose the appropriate
922 	 * pool to allocate page headers, whose size varies depending on the
923 	 * bitmap. If we're on-page, nothing to do.
924 	 */
925 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
926 		int idx;
927 
928 		KASSERT(pp->pr_roflags & PR_USEBMAP);
929 
930 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
931 		    idx++) {
932 			/* nothing */
933 		}
934 		if (idx >= PHPOOL_MAX) {
935 			/*
936 			 * if you see this panic, consider to tweak
937 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
938 			 */
939 			panic("%s: [%s] too large itemsperpage(%d) for "
940 			    "PR_USEBMAP", __func__,
941 			    pp->pr_wchan, pp->pr_itemsperpage);
942 		}
943 		pp->pr_phpool = &phpool[idx];
944 	} else {
945 		pp->pr_phpool = NULL;
946 	}
947 
948 	/*
949 	 * Use the slack between the chunks and the page header
950 	 * for "cache coloring".
951 	 */
952 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
953 	pp->pr_maxcolor = rounddown(slack, align);
954 	pp->pr_curcolor = 0;
955 
956 	pp->pr_nget = 0;
957 	pp->pr_nfail = 0;
958 	pp->pr_nput = 0;
959 	pp->pr_npagealloc = 0;
960 	pp->pr_npagefree = 0;
961 	pp->pr_hiwat = 0;
962 	pp->pr_nidle = 0;
963 	pp->pr_refcnt = 0;
964 
965 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
966 	cv_init(&pp->pr_cv, wchan);
967 	pp->pr_ipl = ipl;
968 
969 	/* Insert into the list of all pools. */
970 	if (!cold)
971 		mutex_enter(&pool_head_lock);
972 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
973 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
974 			break;
975 	}
976 	if (pp1 == NULL)
977 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
978 	else
979 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
980 	if (!cold)
981 		mutex_exit(&pool_head_lock);
982 
983 	/* Insert this into the list of pools using this allocator. */
984 	if (!cold)
985 		mutex_enter(&palloc->pa_lock);
986 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
987 	if (!cold)
988 		mutex_exit(&palloc->pa_lock);
989 }
990 
991 /*
992  * De-commision a pool resource.
993  */
994 void
995 pool_destroy(struct pool *pp)
996 {
997 	struct pool_pagelist pq;
998 	struct pool_item_header *ph;
999 
1000 	pool_quarantine_flush(pp);
1001 
1002 	/* Remove from global pool list */
1003 	mutex_enter(&pool_head_lock);
1004 	while (pp->pr_refcnt != 0)
1005 		cv_wait(&pool_busy, &pool_head_lock);
1006 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1007 	if (drainpp == pp)
1008 		drainpp = NULL;
1009 	mutex_exit(&pool_head_lock);
1010 
1011 	/* Remove this pool from its allocator's list of pools. */
1012 	mutex_enter(&pp->pr_alloc->pa_lock);
1013 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1014 	mutex_exit(&pp->pr_alloc->pa_lock);
1015 
1016 	mutex_enter(&pool_allocator_lock);
1017 	if (--pp->pr_alloc->pa_refcnt == 0)
1018 		mutex_destroy(&pp->pr_alloc->pa_lock);
1019 	mutex_exit(&pool_allocator_lock);
1020 
1021 	mutex_enter(&pp->pr_lock);
1022 
1023 	KASSERT(pp->pr_cache == NULL);
1024 	KASSERTMSG((pp->pr_nout == 0),
1025 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1026 	    pp->pr_nout);
1027 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1028 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
1029 
1030 	/* Remove all pages */
1031 	LIST_INIT(&pq);
1032 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1033 		pr_rmpage(pp, ph, &pq);
1034 
1035 	mutex_exit(&pp->pr_lock);
1036 
1037 	pr_pagelist_free(pp, &pq);
1038 	cv_destroy(&pp->pr_cv);
1039 	mutex_destroy(&pp->pr_lock);
1040 }
1041 
1042 void
1043 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1044 {
1045 
1046 	/* XXX no locking -- must be used just after pool_init() */
1047 	KASSERTMSG((pp->pr_drain_hook == NULL),
1048 	    "%s: [%s] already set", __func__, pp->pr_wchan);
1049 	pp->pr_drain_hook = fn;
1050 	pp->pr_drain_hook_arg = arg;
1051 }
1052 
1053 static struct pool_item_header *
1054 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1055 {
1056 	struct pool_item_header *ph;
1057 
1058 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1059 		ph = storage;
1060 	else
1061 		ph = pool_get(pp->pr_phpool, flags);
1062 
1063 	return ph;
1064 }
1065 
1066 /*
1067  * Grab an item from the pool.
1068  */
1069 void *
1070 pool_get(struct pool *pp, int flags)
1071 {
1072 	struct pool_item_header *ph;
1073 	void *v;
1074 
1075 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1076 	KASSERTMSG((pp->pr_itemsperpage != 0),
1077 	    "%s: [%s] pr_itemsperpage is zero, "
1078 	    "pool not initialized?", __func__, pp->pr_wchan);
1079 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1080 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1081 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
1082 	    __func__, pp->pr_wchan);
1083 	if (flags & PR_WAITOK) {
1084 		ASSERT_SLEEPABLE();
1085 	}
1086 
1087 	if (flags & PR_NOWAIT) {
1088 		if (fault_inject())
1089 			return NULL;
1090 	}
1091 
1092 	mutex_enter(&pp->pr_lock);
1093  startover:
1094 	/*
1095 	 * Check to see if we've reached the hard limit.  If we have,
1096 	 * and we can wait, then wait until an item has been returned to
1097 	 * the pool.
1098 	 */
1099 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1100 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1101 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1102 		if (pp->pr_drain_hook != NULL) {
1103 			/*
1104 			 * Since the drain hook is going to free things
1105 			 * back to the pool, unlock, call the hook, re-lock,
1106 			 * and check the hardlimit condition again.
1107 			 */
1108 			mutex_exit(&pp->pr_lock);
1109 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1110 			mutex_enter(&pp->pr_lock);
1111 			if (pp->pr_nout < pp->pr_hardlimit)
1112 				goto startover;
1113 		}
1114 
1115 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1116 			/*
1117 			 * XXX: A warning isn't logged in this case.  Should
1118 			 * it be?
1119 			 */
1120 			pp->pr_flags |= PR_WANTED;
1121 			do {
1122 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1123 			} while (pp->pr_flags & PR_WANTED);
1124 			goto startover;
1125 		}
1126 
1127 		/*
1128 		 * Log a message that the hard limit has been hit.
1129 		 */
1130 		if (pp->pr_hardlimit_warning != NULL &&
1131 		    ratecheck(&pp->pr_hardlimit_warning_last,
1132 			      &pp->pr_hardlimit_ratecap))
1133 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1134 
1135 		pp->pr_nfail++;
1136 
1137 		mutex_exit(&pp->pr_lock);
1138 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1139 		return NULL;
1140 	}
1141 
1142 	/*
1143 	 * The convention we use is that if `curpage' is not NULL, then
1144 	 * it points at a non-empty bucket. In particular, `curpage'
1145 	 * never points at a page header which has PR_PHINPAGE set and
1146 	 * has no items in its bucket.
1147 	 */
1148 	if ((ph = pp->pr_curpage) == NULL) {
1149 		int error;
1150 
1151 		KASSERTMSG((pp->pr_nitems == 0),
1152 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
1153 		    __func__, pp->pr_wchan, pp->pr_nitems);
1154 
1155 		/*
1156 		 * Call the back-end page allocator for more memory.
1157 		 * Release the pool lock, as the back-end page allocator
1158 		 * may block.
1159 		 */
1160 		error = pool_grow(pp, flags);
1161 		if (error != 0) {
1162 			/*
1163 			 * pool_grow aborts when another thread
1164 			 * is allocating a new page. Retry if it
1165 			 * waited for it.
1166 			 */
1167 			if (error == ERESTART)
1168 				goto startover;
1169 
1170 			/*
1171 			 * We were unable to allocate a page or item
1172 			 * header, but we released the lock during
1173 			 * allocation, so perhaps items were freed
1174 			 * back to the pool.  Check for this case.
1175 			 */
1176 			if (pp->pr_curpage != NULL)
1177 				goto startover;
1178 
1179 			pp->pr_nfail++;
1180 			mutex_exit(&pp->pr_lock);
1181 			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1182 			return NULL;
1183 		}
1184 
1185 		/* Start the allocation process over. */
1186 		goto startover;
1187 	}
1188 	if (pp->pr_roflags & PR_USEBMAP) {
1189 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1190 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1191 		v = pr_item_bitmap_get(pp, ph);
1192 	} else {
1193 		v = pr_item_linkedlist_get(pp, ph);
1194 	}
1195 	pp->pr_nitems--;
1196 	pp->pr_nout++;
1197 	if (ph->ph_nmissing == 0) {
1198 		KASSERT(pp->pr_nidle > 0);
1199 		pp->pr_nidle--;
1200 
1201 		/*
1202 		 * This page was previously empty.  Move it to the list of
1203 		 * partially-full pages.  This page is already curpage.
1204 		 */
1205 		LIST_REMOVE(ph, ph_pagelist);
1206 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1207 	}
1208 	ph->ph_nmissing++;
1209 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1210 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1211 			LIST_EMPTY(&ph->ph_itemlist)),
1212 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
1213 			pp->pr_wchan, ph->ph_nmissing);
1214 		/*
1215 		 * This page is now full.  Move it to the full list
1216 		 * and select a new current page.
1217 		 */
1218 		LIST_REMOVE(ph, ph_pagelist);
1219 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1220 		pool_update_curpage(pp);
1221 	}
1222 
1223 	pp->pr_nget++;
1224 
1225 	/*
1226 	 * If we have a low water mark and we are now below that low
1227 	 * water mark, add more items to the pool.
1228 	 */
1229 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1230 		/*
1231 		 * XXX: Should we log a warning?  Should we set up a timeout
1232 		 * to try again in a second or so?  The latter could break
1233 		 * a caller's assumptions about interrupt protection, etc.
1234 		 */
1235 	}
1236 
1237 	mutex_exit(&pp->pr_lock);
1238 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1239 	FREECHECK_OUT(&pp->pr_freecheck, v);
1240 	pool_redzone_fill(pp, v);
1241 	pool_get_kmsan(pp, v);
1242 	if (flags & PR_ZERO)
1243 		memset(v, 0, pp->pr_reqsize);
1244 	return v;
1245 }
1246 
1247 /*
1248  * Internal version of pool_put().  Pool is already locked/entered.
1249  */
1250 static void
1251 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1252 {
1253 	struct pool_item_header *ph;
1254 
1255 	KASSERT(mutex_owned(&pp->pr_lock));
1256 	pool_redzone_check(pp, v);
1257 	pool_put_kmsan(pp, v);
1258 	FREECHECK_IN(&pp->pr_freecheck, v);
1259 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1260 
1261 	KASSERTMSG((pp->pr_nout > 0),
1262 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1263 
1264 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1265 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
1266 	}
1267 
1268 	/*
1269 	 * Return to item list.
1270 	 */
1271 	if (pp->pr_roflags & PR_USEBMAP) {
1272 		pr_item_bitmap_put(pp, ph, v);
1273 	} else {
1274 		pr_item_linkedlist_put(pp, ph, v);
1275 	}
1276 	KDASSERT(ph->ph_nmissing != 0);
1277 	ph->ph_nmissing--;
1278 	pp->pr_nput++;
1279 	pp->pr_nitems++;
1280 	pp->pr_nout--;
1281 
1282 	/* Cancel "pool empty" condition if it exists */
1283 	if (pp->pr_curpage == NULL)
1284 		pp->pr_curpage = ph;
1285 
1286 	if (pp->pr_flags & PR_WANTED) {
1287 		pp->pr_flags &= ~PR_WANTED;
1288 		cv_broadcast(&pp->pr_cv);
1289 	}
1290 
1291 	/*
1292 	 * If this page is now empty, do one of two things:
1293 	 *
1294 	 *	(1) If we have more pages than the page high water mark,
1295 	 *	    free the page back to the system.  ONLY CONSIDER
1296 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1297 	 *	    CLAIM.
1298 	 *
1299 	 *	(2) Otherwise, move the page to the empty page list.
1300 	 *
1301 	 * Either way, select a new current page (so we use a partially-full
1302 	 * page if one is available).
1303 	 */
1304 	if (ph->ph_nmissing == 0) {
1305 		pp->pr_nidle++;
1306 		if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1307 		    pp->pr_npages > pp->pr_minpages &&
1308 		    pp->pr_npages > pp->pr_maxpages) {
1309 			pr_rmpage(pp, ph, pq);
1310 		} else {
1311 			LIST_REMOVE(ph, ph_pagelist);
1312 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1313 
1314 			/*
1315 			 * Update the timestamp on the page.  A page must
1316 			 * be idle for some period of time before it can
1317 			 * be reclaimed by the pagedaemon.  This minimizes
1318 			 * ping-pong'ing for memory.
1319 			 *
1320 			 * note for 64-bit time_t: truncating to 32-bit is not
1321 			 * a problem for our usage.
1322 			 */
1323 			ph->ph_time = time_uptime;
1324 		}
1325 		pool_update_curpage(pp);
1326 	}
1327 
1328 	/*
1329 	 * If the page was previously completely full, move it to the
1330 	 * partially-full list and make it the current page.  The next
1331 	 * allocation will get the item from this page, instead of
1332 	 * further fragmenting the pool.
1333 	 */
1334 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1335 		LIST_REMOVE(ph, ph_pagelist);
1336 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1337 		pp->pr_curpage = ph;
1338 	}
1339 }
1340 
1341 void
1342 pool_put(struct pool *pp, void *v)
1343 {
1344 	struct pool_pagelist pq;
1345 
1346 	LIST_INIT(&pq);
1347 
1348 	mutex_enter(&pp->pr_lock);
1349 	if (!pool_put_quarantine(pp, v, &pq)) {
1350 		pool_do_put(pp, v, &pq);
1351 	}
1352 	mutex_exit(&pp->pr_lock);
1353 
1354 	pr_pagelist_free(pp, &pq);
1355 }
1356 
1357 /*
1358  * pool_grow: grow a pool by a page.
1359  *
1360  * => called with pool locked.
1361  * => unlock and relock the pool.
1362  * => return with pool locked.
1363  */
1364 
1365 static int
1366 pool_grow(struct pool *pp, int flags)
1367 {
1368 	struct pool_item_header *ph;
1369 	char *storage;
1370 
1371 	/*
1372 	 * If there's a pool_grow in progress, wait for it to complete
1373 	 * and try again from the top.
1374 	 */
1375 	if (pp->pr_flags & PR_GROWING) {
1376 		if (flags & PR_WAITOK) {
1377 			do {
1378 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1379 			} while (pp->pr_flags & PR_GROWING);
1380 			return ERESTART;
1381 		} else {
1382 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
1383 				/*
1384 				 * This needs an unlock/relock dance so
1385 				 * that the other caller has a chance to
1386 				 * run and actually do the thing.  Note
1387 				 * that this is effectively a busy-wait.
1388 				 */
1389 				mutex_exit(&pp->pr_lock);
1390 				mutex_enter(&pp->pr_lock);
1391 				return ERESTART;
1392 			}
1393 			return EWOULDBLOCK;
1394 		}
1395 	}
1396 	pp->pr_flags |= PR_GROWING;
1397 	if (flags & PR_WAITOK)
1398 		mutex_exit(&pp->pr_lock);
1399 	else
1400 		pp->pr_flags |= PR_GROWINGNOWAIT;
1401 
1402 	storage = pool_allocator_alloc(pp, flags);
1403 	if (__predict_false(storage == NULL))
1404 		goto out;
1405 
1406 	ph = pool_alloc_item_header(pp, storage, flags);
1407 	if (__predict_false(ph == NULL)) {
1408 		pool_allocator_free(pp, storage);
1409 		goto out;
1410 	}
1411 
1412 	if (flags & PR_WAITOK)
1413 		mutex_enter(&pp->pr_lock);
1414 	pool_prime_page(pp, storage, ph);
1415 	pp->pr_npagealloc++;
1416 	KASSERT(pp->pr_flags & PR_GROWING);
1417 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1418 	/*
1419 	 * If anyone was waiting for pool_grow, notify them that we
1420 	 * may have just done it.
1421 	 */
1422 	cv_broadcast(&pp->pr_cv);
1423 	return 0;
1424 out:
1425 	if (flags & PR_WAITOK)
1426 		mutex_enter(&pp->pr_lock);
1427 	KASSERT(pp->pr_flags & PR_GROWING);
1428 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1429 	return ENOMEM;
1430 }
1431 
1432 void
1433 pool_prime(struct pool *pp, int n)
1434 {
1435 
1436 	mutex_enter(&pp->pr_lock);
1437 	pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1438 	if (pp->pr_maxpages <= pp->pr_minpages)
1439 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1440 	while (pp->pr_npages < pp->pr_minpages)
1441 		(void) pool_grow(pp, PR_WAITOK);
1442 	mutex_exit(&pp->pr_lock);
1443 }
1444 
1445 /*
1446  * Add a page worth of items to the pool.
1447  *
1448  * Note, we must be called with the pool descriptor LOCKED.
1449  */
1450 static void
1451 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1452 {
1453 	const unsigned int align = pp->pr_align;
1454 	struct pool_item *pi;
1455 	void *cp = storage;
1456 	int n;
1457 
1458 	KASSERT(mutex_owned(&pp->pr_lock));
1459 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1460 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1461 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1462 
1463 	/*
1464 	 * Insert page header.
1465 	 */
1466 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1467 	LIST_INIT(&ph->ph_itemlist);
1468 	ph->ph_page = storage;
1469 	ph->ph_nmissing = 0;
1470 	ph->ph_time = time_uptime;
1471 	if (pp->pr_roflags & PR_PHINPAGE)
1472 		ph->ph_poolid = pp->pr_poolid;
1473 	else
1474 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1475 
1476 	pp->pr_nidle++;
1477 
1478 	/*
1479 	 * The item space starts after the on-page header, if any.
1480 	 */
1481 	ph->ph_off = pp->pr_itemoffset;
1482 
1483 	/*
1484 	 * Color this page.
1485 	 */
1486 	ph->ph_off += pp->pr_curcolor;
1487 	cp = (char *)cp + ph->ph_off;
1488 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1489 		pp->pr_curcolor = 0;
1490 
1491 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1492 
1493 	/*
1494 	 * Insert remaining chunks on the bucket list.
1495 	 */
1496 	n = pp->pr_itemsperpage;
1497 	pp->pr_nitems += n;
1498 
1499 	if (pp->pr_roflags & PR_USEBMAP) {
1500 		pr_item_bitmap_init(pp, ph);
1501 	} else {
1502 		while (n--) {
1503 			pi = (struct pool_item *)cp;
1504 
1505 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1506 
1507 			/* Insert on page list */
1508 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1509 #ifdef POOL_CHECK_MAGIC
1510 			pi->pi_magic = PI_MAGIC;
1511 #endif
1512 			cp = (char *)cp + pp->pr_size;
1513 
1514 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1515 		}
1516 	}
1517 
1518 	/*
1519 	 * If the pool was depleted, point at the new page.
1520 	 */
1521 	if (pp->pr_curpage == NULL)
1522 		pp->pr_curpage = ph;
1523 
1524 	if (++pp->pr_npages > pp->pr_hiwat)
1525 		pp->pr_hiwat = pp->pr_npages;
1526 }
1527 
1528 /*
1529  * Used by pool_get() when nitems drops below the low water mark.  This
1530  * is used to catch up pr_nitems with the low water mark.
1531  *
1532  * Note 1, we never wait for memory here, we let the caller decide what to do.
1533  *
1534  * Note 2, we must be called with the pool already locked, and we return
1535  * with it locked.
1536  */
1537 static int
1538 pool_catchup(struct pool *pp)
1539 {
1540 	int error = 0;
1541 
1542 	while (POOL_NEEDS_CATCHUP(pp)) {
1543 		error = pool_grow(pp, PR_NOWAIT);
1544 		if (error) {
1545 			if (error == ERESTART)
1546 				continue;
1547 			break;
1548 		}
1549 	}
1550 	return error;
1551 }
1552 
1553 static void
1554 pool_update_curpage(struct pool *pp)
1555 {
1556 
1557 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1558 	if (pp->pr_curpage == NULL) {
1559 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1560 	}
1561 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1562 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1563 }
1564 
1565 void
1566 pool_setlowat(struct pool *pp, int n)
1567 {
1568 
1569 	mutex_enter(&pp->pr_lock);
1570 	pp->pr_minitems = n;
1571 
1572 	/* Make sure we're caught up with the newly-set low water mark. */
1573 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1574 		/*
1575 		 * XXX: Should we log a warning?  Should we set up a timeout
1576 		 * to try again in a second or so?  The latter could break
1577 		 * a caller's assumptions about interrupt protection, etc.
1578 		 */
1579 	}
1580 
1581 	mutex_exit(&pp->pr_lock);
1582 }
1583 
1584 void
1585 pool_sethiwat(struct pool *pp, int n)
1586 {
1587 
1588 	mutex_enter(&pp->pr_lock);
1589 
1590 	pp->pr_maxitems = n;
1591 
1592 	mutex_exit(&pp->pr_lock);
1593 }
1594 
1595 void
1596 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1597 {
1598 
1599 	mutex_enter(&pp->pr_lock);
1600 
1601 	pp->pr_hardlimit = n;
1602 	pp->pr_hardlimit_warning = warnmess;
1603 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1604 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1605 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1606 
1607 	pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1608 
1609 	mutex_exit(&pp->pr_lock);
1610 }
1611 
1612 unsigned int
1613 pool_nget(struct pool *pp)
1614 {
1615 
1616 	return pp->pr_nget;
1617 }
1618 
1619 unsigned int
1620 pool_nput(struct pool *pp)
1621 {
1622 
1623 	return pp->pr_nput;
1624 }
1625 
1626 /*
1627  * Release all complete pages that have not been used recently.
1628  *
1629  * Must not be called from interrupt context.
1630  */
1631 int
1632 pool_reclaim(struct pool *pp)
1633 {
1634 	struct pool_item_header *ph, *phnext;
1635 	struct pool_pagelist pq;
1636 	uint32_t curtime;
1637 	bool klock;
1638 	int rv;
1639 
1640 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1641 
1642 	if (pp->pr_drain_hook != NULL) {
1643 		/*
1644 		 * The drain hook must be called with the pool unlocked.
1645 		 */
1646 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1647 	}
1648 
1649 	/*
1650 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1651 	 * to block.
1652 	 */
1653 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1654 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1655 		KERNEL_LOCK(1, NULL);
1656 		klock = true;
1657 	} else
1658 		klock = false;
1659 
1660 	/* Reclaim items from the pool's cache (if any). */
1661 	if (pp->pr_cache != NULL)
1662 		pool_cache_invalidate(pp->pr_cache);
1663 
1664 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1665 		if (klock) {
1666 			KERNEL_UNLOCK_ONE(NULL);
1667 		}
1668 		return 0;
1669 	}
1670 
1671 	LIST_INIT(&pq);
1672 
1673 	curtime = time_uptime;
1674 
1675 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1676 		phnext = LIST_NEXT(ph, ph_pagelist);
1677 
1678 		/* Check our minimum page claim */
1679 		if (pp->pr_npages <= pp->pr_minpages)
1680 			break;
1681 
1682 		KASSERT(ph->ph_nmissing == 0);
1683 		if (curtime - ph->ph_time < pool_inactive_time)
1684 			continue;
1685 
1686 		/*
1687 		 * If freeing this page would put us below the minimum free items
1688 		 * or the minimum pages, stop now.
1689 		 */
1690 		if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1691 		    pp->pr_npages - 1 < pp->pr_minpages)
1692 			break;
1693 
1694 		pr_rmpage(pp, ph, &pq);
1695 	}
1696 
1697 	mutex_exit(&pp->pr_lock);
1698 
1699 	if (LIST_EMPTY(&pq))
1700 		rv = 0;
1701 	else {
1702 		pr_pagelist_free(pp, &pq);
1703 		rv = 1;
1704 	}
1705 
1706 	if (klock) {
1707 		KERNEL_UNLOCK_ONE(NULL);
1708 	}
1709 
1710 	return rv;
1711 }
1712 
1713 /*
1714  * Drain pools, one at a time. The drained pool is returned within ppp.
1715  *
1716  * Note, must never be called from interrupt context.
1717  */
1718 bool
1719 pool_drain(struct pool **ppp)
1720 {
1721 	bool reclaimed;
1722 	struct pool *pp;
1723 
1724 	KASSERT(!TAILQ_EMPTY(&pool_head));
1725 
1726 	pp = NULL;
1727 
1728 	/* Find next pool to drain, and add a reference. */
1729 	mutex_enter(&pool_head_lock);
1730 	do {
1731 		if (drainpp == NULL) {
1732 			drainpp = TAILQ_FIRST(&pool_head);
1733 		}
1734 		if (drainpp != NULL) {
1735 			pp = drainpp;
1736 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1737 		}
1738 		/*
1739 		 * Skip completely idle pools.  We depend on at least
1740 		 * one pool in the system being active.
1741 		 */
1742 	} while (pp == NULL || pp->pr_npages == 0);
1743 	pp->pr_refcnt++;
1744 	mutex_exit(&pool_head_lock);
1745 
1746 	/* Drain the cache (if any) and pool.. */
1747 	reclaimed = pool_reclaim(pp);
1748 
1749 	/* Finally, unlock the pool. */
1750 	mutex_enter(&pool_head_lock);
1751 	pp->pr_refcnt--;
1752 	cv_broadcast(&pool_busy);
1753 	mutex_exit(&pool_head_lock);
1754 
1755 	if (ppp != NULL)
1756 		*ppp = pp;
1757 
1758 	return reclaimed;
1759 }
1760 
1761 /*
1762  * Calculate the total number of pages consumed by pools.
1763  */
1764 int
1765 pool_totalpages(void)
1766 {
1767 
1768 	mutex_enter(&pool_head_lock);
1769 	int pages = pool_totalpages_locked();
1770 	mutex_exit(&pool_head_lock);
1771 
1772 	return pages;
1773 }
1774 
1775 int
1776 pool_totalpages_locked(void)
1777 {
1778 	struct pool *pp;
1779 	uint64_t total = 0;
1780 
1781 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1782 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1783 
1784 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1785 			bytes -= (pp->pr_nout * pp->pr_size);
1786 		total += bytes;
1787 	}
1788 
1789 	return atop(total);
1790 }
1791 
1792 /*
1793  * Diagnostic helpers.
1794  */
1795 
1796 void
1797 pool_printall(const char *modif, void (*pr)(const char *, ...))
1798 {
1799 	struct pool *pp;
1800 
1801 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1802 		pool_printit(pp, modif, pr);
1803 	}
1804 }
1805 
1806 void
1807 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1808 {
1809 
1810 	if (pp == NULL) {
1811 		(*pr)("Must specify a pool to print.\n");
1812 		return;
1813 	}
1814 
1815 	pool_print1(pp, modif, pr);
1816 }
1817 
1818 static void
1819 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1820     void (*pr)(const char *, ...))
1821 {
1822 	struct pool_item_header *ph;
1823 
1824 	LIST_FOREACH(ph, pl, ph_pagelist) {
1825 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1826 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1827 #ifdef POOL_CHECK_MAGIC
1828 		struct pool_item *pi;
1829 		if (!(pp->pr_roflags & PR_USEBMAP)) {
1830 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1831 				if (pi->pi_magic != PI_MAGIC) {
1832 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1833 					    pi, pi->pi_magic);
1834 				}
1835 			}
1836 		}
1837 #endif
1838 	}
1839 }
1840 
1841 static void
1842 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1843 {
1844 	struct pool_item_header *ph;
1845 	pool_cache_t pc;
1846 	pcg_t *pcg;
1847 	pool_cache_cpu_t *cc;
1848 	uint64_t cpuhit, cpumiss, pchit, pcmiss;
1849 	uint32_t nfull;
1850 	int i;
1851 	bool print_log = false, print_pagelist = false, print_cache = false;
1852 	bool print_short = false, skip_empty = false;
1853 	char c;
1854 
1855 	while ((c = *modif++) != '\0') {
1856 		if (c == 'l')
1857 			print_log = true;
1858 		if (c == 'p')
1859 			print_pagelist = true;
1860 		if (c == 'c')
1861 			print_cache = true;
1862 		if (c == 's')
1863 			print_short = true;
1864 		if (c == 'S')
1865 			skip_empty = true;
1866 	}
1867 
1868 	if (skip_empty && pp->pr_nget == 0)
1869 		return;
1870 
1871 	if ((pc = pp->pr_cache) != NULL) {
1872 		(*pr)("POOLCACHE");
1873 	} else {
1874 		(*pr)("POOL");
1875 	}
1876 
1877 	/* Single line output. */
1878 	if (print_short) {
1879 		(*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n",
1880 		    pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
1881 		    pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
1882 		    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle);
1883 
1884 		return;
1885 	}
1886 
1887 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1888 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1889 	    pp->pr_roflags);
1890 	(*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
1891 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1892 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1893 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1894 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1895 
1896 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1897 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1898 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1899 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1900 
1901 	if (!print_pagelist)
1902 		goto skip_pagelist;
1903 
1904 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1905 		(*pr)("\n\tempty page list:\n");
1906 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1907 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1908 		(*pr)("\n\tfull page list:\n");
1909 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1910 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1911 		(*pr)("\n\tpartial-page list:\n");
1912 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1913 
1914 	if (pp->pr_curpage == NULL)
1915 		(*pr)("\tno current page\n");
1916 	else
1917 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1918 
1919  skip_pagelist:
1920 	if (print_log)
1921 		goto skip_log;
1922 
1923 	(*pr)("\n");
1924 
1925  skip_log:
1926 
1927 #define PR_GROUPLIST(pcg)						\
1928 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1929 	for (i = 0; i < pcg->pcg_size; i++) {				\
1930 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1931 		    POOL_PADDR_INVALID) {				\
1932 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1933 			    pcg->pcg_objects[i].pcgo_va,		\
1934 			    (unsigned long long)			\
1935 			    pcg->pcg_objects[i].pcgo_pa);		\
1936 		} else {						\
1937 			(*pr)("\t\t\t%p\n",				\
1938 			    pcg->pcg_objects[i].pcgo_va);		\
1939 		}							\
1940 	}
1941 
1942 	if (pc != NULL) {
1943 		cpuhit = 0;
1944 		cpumiss = 0;
1945 		pcmiss = 0;
1946 		nfull = 0;
1947 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1948 			if ((cc = pc->pc_cpus[i]) == NULL)
1949 				continue;
1950 			cpuhit += cc->cc_hits;
1951 			cpumiss += cc->cc_misses;
1952 			pcmiss += cc->cc_pcmisses;
1953 			nfull += cc->cc_nfull;
1954 		}
1955 		pchit = cpumiss - pcmiss;
1956 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1957 		(*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1958 		(*pr)("\tcache layer full groups %u\n", nfull);
1959 		if (print_cache) {
1960 			(*pr)("\tfull cache groups:\n");
1961 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1962 			    pcg = pcg->pcg_next) {
1963 				PR_GROUPLIST(pcg);
1964 			}
1965 		}
1966 	}
1967 #undef PR_GROUPLIST
1968 }
1969 
1970 static int
1971 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1972 {
1973 	struct pool_item *pi;
1974 	void *page;
1975 	int n;
1976 
1977 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1978 		page = POOL_OBJ_TO_PAGE(pp, ph);
1979 		if (page != ph->ph_page &&
1980 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1981 			if (label != NULL)
1982 				printf("%s: ", label);
1983 			printf("pool(%p:%s): page inconsistency: page %p;"
1984 			       " at page head addr %p (p %p)\n", pp,
1985 				pp->pr_wchan, ph->ph_page,
1986 				ph, page);
1987 			return 1;
1988 		}
1989 	}
1990 
1991 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
1992 		return 0;
1993 
1994 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1995 	     pi != NULL;
1996 	     pi = LIST_NEXT(pi,pi_list), n++) {
1997 
1998 #ifdef POOL_CHECK_MAGIC
1999 		if (pi->pi_magic != PI_MAGIC) {
2000 			if (label != NULL)
2001 				printf("%s: ", label);
2002 			printf("pool(%s): free list modified: magic=%x;"
2003 			       " page %p; item ordinal %d; addr %p\n",
2004 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
2005 				n, pi);
2006 			panic("pool");
2007 		}
2008 #endif
2009 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
2010 			continue;
2011 		}
2012 		page = POOL_OBJ_TO_PAGE(pp, pi);
2013 		if (page == ph->ph_page)
2014 			continue;
2015 
2016 		if (label != NULL)
2017 			printf("%s: ", label);
2018 		printf("pool(%p:%s): page inconsistency: page %p;"
2019 		       " item ordinal %d; addr %p (p %p)\n", pp,
2020 			pp->pr_wchan, ph->ph_page,
2021 			n, pi, page);
2022 		return 1;
2023 	}
2024 	return 0;
2025 }
2026 
2027 
2028 int
2029 pool_chk(struct pool *pp, const char *label)
2030 {
2031 	struct pool_item_header *ph;
2032 	int r = 0;
2033 
2034 	mutex_enter(&pp->pr_lock);
2035 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2036 		r = pool_chk_page(pp, label, ph);
2037 		if (r) {
2038 			goto out;
2039 		}
2040 	}
2041 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2042 		r = pool_chk_page(pp, label, ph);
2043 		if (r) {
2044 			goto out;
2045 		}
2046 	}
2047 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2048 		r = pool_chk_page(pp, label, ph);
2049 		if (r) {
2050 			goto out;
2051 		}
2052 	}
2053 
2054 out:
2055 	mutex_exit(&pp->pr_lock);
2056 	return r;
2057 }
2058 
2059 /*
2060  * pool_cache_init:
2061  *
2062  *	Initialize a pool cache.
2063  */
2064 pool_cache_t
2065 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2066     const char *wchan, struct pool_allocator *palloc, int ipl,
2067     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2068 {
2069 	pool_cache_t pc;
2070 
2071 	pc = pool_get(&cache_pool, PR_WAITOK);
2072 	if (pc == NULL)
2073 		return NULL;
2074 
2075 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2076 	   palloc, ipl, ctor, dtor, arg);
2077 
2078 	return pc;
2079 }
2080 
2081 /*
2082  * pool_cache_bootstrap:
2083  *
2084  *	Kernel-private version of pool_cache_init().  The caller
2085  *	provides initial storage.
2086  */
2087 void
2088 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2089     u_int align_offset, u_int flags, const char *wchan,
2090     struct pool_allocator *palloc, int ipl,
2091     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2092     void *arg)
2093 {
2094 	CPU_INFO_ITERATOR cii;
2095 	pool_cache_t pc1;
2096 	struct cpu_info *ci;
2097 	struct pool *pp;
2098 
2099 	pp = &pc->pc_pool;
2100 	if (palloc == NULL && ipl == IPL_NONE) {
2101 		if (size > PAGE_SIZE) {
2102 			int bigidx = pool_bigidx(size);
2103 
2104 			palloc = &pool_allocator_big[bigidx];
2105 			flags |= PR_NOALIGN;
2106 		} else
2107 			palloc = &pool_allocator_nointr;
2108 	}
2109 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2110 
2111 	if (ctor == NULL) {
2112 		ctor = NO_CTOR;
2113 	}
2114 	if (dtor == NULL) {
2115 		dtor = NO_DTOR;
2116 	}
2117 
2118 	pc->pc_fullgroups = NULL;
2119 	pc->pc_partgroups = NULL;
2120 	pc->pc_ctor = ctor;
2121 	pc->pc_dtor = dtor;
2122 	pc->pc_arg  = arg;
2123 	pc->pc_refcnt = 0;
2124 	pc->pc_freecheck = NULL;
2125 
2126 	if ((flags & PR_LARGECACHE) != 0) {
2127 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2128 		pc->pc_pcgpool = &pcg_large_pool;
2129 		pc->pc_pcgcache = &pcg_large_cache;
2130 	} else {
2131 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2132 		pc->pc_pcgpool = &pcg_normal_pool;
2133 		pc->pc_pcgcache = &pcg_normal_cache;
2134 	}
2135 
2136 	/* Allocate per-CPU caches. */
2137 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2138 	pc->pc_ncpu = 0;
2139 	if (ncpu < 2) {
2140 		/* XXX For sparc: boot CPU is not attached yet. */
2141 		pool_cache_cpu_init1(curcpu(), pc);
2142 	} else {
2143 		for (CPU_INFO_FOREACH(cii, ci)) {
2144 			pool_cache_cpu_init1(ci, pc);
2145 		}
2146 	}
2147 
2148 	/* Add to list of all pools. */
2149 	if (__predict_true(!cold))
2150 		mutex_enter(&pool_head_lock);
2151 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2152 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2153 			break;
2154 	}
2155 	if (pc1 == NULL)
2156 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2157 	else
2158 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2159 	if (__predict_true(!cold))
2160 		mutex_exit(&pool_head_lock);
2161 
2162 	membar_sync();
2163 	pp->pr_cache = pc;
2164 }
2165 
2166 /*
2167  * pool_cache_destroy:
2168  *
2169  *	Destroy a pool cache.
2170  */
2171 void
2172 pool_cache_destroy(pool_cache_t pc)
2173 {
2174 
2175 	pool_cache_bootstrap_destroy(pc);
2176 	pool_put(&cache_pool, pc);
2177 }
2178 
2179 /*
2180  * pool_cache_bootstrap_destroy:
2181  *
2182  *	Destroy a pool cache.
2183  */
2184 void
2185 pool_cache_bootstrap_destroy(pool_cache_t pc)
2186 {
2187 	struct pool *pp = &pc->pc_pool;
2188 	u_int i;
2189 
2190 	/* Remove it from the global list. */
2191 	mutex_enter(&pool_head_lock);
2192 	while (pc->pc_refcnt != 0)
2193 		cv_wait(&pool_busy, &pool_head_lock);
2194 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2195 	mutex_exit(&pool_head_lock);
2196 
2197 	/* First, invalidate the entire cache. */
2198 	pool_cache_invalidate(pc);
2199 
2200 	/* Disassociate it from the pool. */
2201 	mutex_enter(&pp->pr_lock);
2202 	pp->pr_cache = NULL;
2203 	mutex_exit(&pp->pr_lock);
2204 
2205 	/* Destroy per-CPU data */
2206 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2207 		pool_cache_invalidate_cpu(pc, i);
2208 
2209 	/* Finally, destroy it. */
2210 	pool_destroy(pp);
2211 }
2212 
2213 /*
2214  * pool_cache_cpu_init1:
2215  *
2216  *	Called for each pool_cache whenever a new CPU is attached.
2217  */
2218 static void
2219 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2220 {
2221 	pool_cache_cpu_t *cc;
2222 	int index;
2223 
2224 	index = ci->ci_index;
2225 
2226 	KASSERT(index < __arraycount(pc->pc_cpus));
2227 
2228 	if ((cc = pc->pc_cpus[index]) != NULL) {
2229 		return;
2230 	}
2231 
2232 	/*
2233 	 * The first CPU is 'free'.  This needs to be the case for
2234 	 * bootstrap - we may not be able to allocate yet.
2235 	 */
2236 	if (pc->pc_ncpu == 0) {
2237 		cc = &pc->pc_cpu0;
2238 		pc->pc_ncpu = 1;
2239 	} else {
2240 		pc->pc_ncpu++;
2241 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2242 	}
2243 
2244 	cc->cc_current = __UNCONST(&pcg_dummy);
2245 	cc->cc_previous = __UNCONST(&pcg_dummy);
2246 	cc->cc_pcgcache = pc->pc_pcgcache;
2247 	cc->cc_hits = 0;
2248 	cc->cc_misses = 0;
2249 	cc->cc_pcmisses = 0;
2250 	cc->cc_contended = 0;
2251 	cc->cc_nfull = 0;
2252 	cc->cc_npart = 0;
2253 
2254 	pc->pc_cpus[index] = cc;
2255 }
2256 
2257 /*
2258  * pool_cache_cpu_init:
2259  *
2260  *	Called whenever a new CPU is attached.
2261  */
2262 void
2263 pool_cache_cpu_init(struct cpu_info *ci)
2264 {
2265 	pool_cache_t pc;
2266 
2267 	mutex_enter(&pool_head_lock);
2268 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2269 		pc->pc_refcnt++;
2270 		mutex_exit(&pool_head_lock);
2271 
2272 		pool_cache_cpu_init1(ci, pc);
2273 
2274 		mutex_enter(&pool_head_lock);
2275 		pc->pc_refcnt--;
2276 		cv_broadcast(&pool_busy);
2277 	}
2278 	mutex_exit(&pool_head_lock);
2279 }
2280 
2281 /*
2282  * pool_cache_reclaim:
2283  *
2284  *	Reclaim memory from a pool cache.
2285  */
2286 bool
2287 pool_cache_reclaim(pool_cache_t pc)
2288 {
2289 
2290 	return pool_reclaim(&pc->pc_pool);
2291 }
2292 
2293 static void
2294 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2295 {
2296 	(*pc->pc_dtor)(pc->pc_arg, object);
2297 	pool_put(&pc->pc_pool, object);
2298 }
2299 
2300 /*
2301  * pool_cache_destruct_object:
2302  *
2303  *	Force destruction of an object and its release back into
2304  *	the pool.
2305  */
2306 void
2307 pool_cache_destruct_object(pool_cache_t pc, void *object)
2308 {
2309 
2310 	FREECHECK_IN(&pc->pc_freecheck, object);
2311 
2312 	pool_cache_destruct_object1(pc, object);
2313 }
2314 
2315 /*
2316  * pool_cache_invalidate_groups:
2317  *
2318  *	Invalidate a chain of groups and destruct all objects.  Return the
2319  *	number of groups that were invalidated.
2320  */
2321 static int
2322 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2323 {
2324 	void *object;
2325 	pcg_t *next;
2326 	int i, n;
2327 
2328 	for (n = 0; pcg != NULL; pcg = next, n++) {
2329 		next = pcg->pcg_next;
2330 
2331 		for (i = 0; i < pcg->pcg_avail; i++) {
2332 			object = pcg->pcg_objects[i].pcgo_va;
2333 			pool_cache_destruct_object1(pc, object);
2334 		}
2335 
2336 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2337 			pool_put(&pcg_large_pool, pcg);
2338 		} else {
2339 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2340 			pool_put(&pcg_normal_pool, pcg);
2341 		}
2342 	}
2343 	return n;
2344 }
2345 
2346 /*
2347  * pool_cache_invalidate:
2348  *
2349  *	Invalidate a pool cache (destruct and release all of the
2350  *	cached objects).  Does not reclaim objects from the pool.
2351  *
2352  *	Note: For pool caches that provide constructed objects, there
2353  *	is an assumption that another level of synchronization is occurring
2354  *	between the input to the constructor and the cache invalidation.
2355  *
2356  *	Invalidation is a costly process and should not be called from
2357  *	interrupt context.
2358  */
2359 void
2360 pool_cache_invalidate(pool_cache_t pc)
2361 {
2362 	uint64_t where;
2363 	pcg_t *pcg;
2364 	int n, s;
2365 
2366 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2367 
2368 	if (ncpu < 2 || !mp_online) {
2369 		/*
2370 		 * We might be called early enough in the boot process
2371 		 * for the CPU data structures to not be fully initialized.
2372 		 * In this case, transfer the content of the local CPU's
2373 		 * cache back into global cache as only this CPU is currently
2374 		 * running.
2375 		 */
2376 		pool_cache_transfer(pc);
2377 	} else {
2378 		/*
2379 		 * Signal all CPUs that they must transfer their local
2380 		 * cache back to the global pool then wait for the xcall to
2381 		 * complete.
2382 		 */
2383 		where = xc_broadcast(0,
2384 		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2385 		xc_wait(where);
2386 	}
2387 
2388 	/* Now dequeue and invalidate everything. */
2389 	pcg = pool_pcg_trunc(&pcg_normal_cache);
2390 	(void)pool_cache_invalidate_groups(pc, pcg);
2391 
2392 	pcg = pool_pcg_trunc(&pcg_large_cache);
2393 	(void)pool_cache_invalidate_groups(pc, pcg);
2394 
2395 	pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2396 	n = pool_cache_invalidate_groups(pc, pcg);
2397 	s = splvm();
2398 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2399 	splx(s);
2400 
2401 	pcg = pool_pcg_trunc(&pc->pc_partgroups);
2402 	n = pool_cache_invalidate_groups(pc, pcg);
2403 	s = splvm();
2404 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2405 	splx(s);
2406 }
2407 
2408 /*
2409  * pool_cache_invalidate_cpu:
2410  *
2411  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2412  *	identified by its associated index.
2413  *	It is caller's responsibility to ensure that no operation is
2414  *	taking place on this pool cache while doing this invalidation.
2415  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2416  *	pool cached objects from a CPU different from the one currently running
2417  *	may result in an undefined behaviour.
2418  */
2419 static void
2420 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2421 {
2422 	pool_cache_cpu_t *cc;
2423 	pcg_t *pcg;
2424 
2425 	if ((cc = pc->pc_cpus[index]) == NULL)
2426 		return;
2427 
2428 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2429 		pcg->pcg_next = NULL;
2430 		pool_cache_invalidate_groups(pc, pcg);
2431 	}
2432 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2433 		pcg->pcg_next = NULL;
2434 		pool_cache_invalidate_groups(pc, pcg);
2435 	}
2436 	if (cc != &pc->pc_cpu0)
2437 		pool_put(&cache_cpu_pool, cc);
2438 
2439 }
2440 
2441 void
2442 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2443 {
2444 
2445 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2446 }
2447 
2448 void
2449 pool_cache_setlowat(pool_cache_t pc, int n)
2450 {
2451 
2452 	pool_setlowat(&pc->pc_pool, n);
2453 }
2454 
2455 void
2456 pool_cache_sethiwat(pool_cache_t pc, int n)
2457 {
2458 
2459 	pool_sethiwat(&pc->pc_pool, n);
2460 }
2461 
2462 void
2463 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2464 {
2465 
2466 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2467 }
2468 
2469 void
2470 pool_cache_prime(pool_cache_t pc, int n)
2471 {
2472 
2473 	pool_prime(&pc->pc_pool, n);
2474 }
2475 
2476 unsigned int
2477 pool_cache_nget(pool_cache_t pc)
2478 {
2479 
2480 	return pool_nget(&pc->pc_pool);
2481 }
2482 
2483 unsigned int
2484 pool_cache_nput(pool_cache_t pc)
2485 {
2486 
2487 	return pool_nput(&pc->pc_pool);
2488 }
2489 
2490 /*
2491  * pool_pcg_get:
2492  *
2493  *	Get a cache group from the specified list.  Return true if
2494  *	contention was encountered.  Must be called at IPL_VM because
2495  *	of spin wait vs. kernel_lock.
2496  */
2497 static int
2498 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2499 {
2500 	int count = SPINLOCK_BACKOFF_MIN;
2501 	pcg_t *o, *n;
2502 
2503 	for (o = atomic_load_relaxed(head);; o = n) {
2504 		if (__predict_false(o == &pcg_dummy)) {
2505 			/* Wait for concurrent get to complete. */
2506 			SPINLOCK_BACKOFF(count);
2507 			n = atomic_load_relaxed(head);
2508 			continue;
2509 		}
2510 		if (__predict_false(o == NULL)) {
2511 			break;
2512 		}
2513 		/* Lock out concurrent get/put. */
2514 		n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2515 		if (o == n) {
2516 			/* Fetch pointer to next item and then unlock. */
2517 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2518 			membar_datadep_consumer(); /* alpha */
2519 #endif
2520 			n = atomic_load_relaxed(&o->pcg_next);
2521 			atomic_store_release(head, n);
2522 			break;
2523 		}
2524 	}
2525 	*pcgp = o;
2526 	return count != SPINLOCK_BACKOFF_MIN;
2527 }
2528 
2529 /*
2530  * pool_pcg_trunc:
2531  *
2532  *	Chop out entire list of pool cache groups.
2533  */
2534 static pcg_t *
2535 pool_pcg_trunc(pcg_t *volatile *head)
2536 {
2537 	int count = SPINLOCK_BACKOFF_MIN, s;
2538 	pcg_t *o, *n;
2539 
2540 	s = splvm();
2541 	for (o = atomic_load_relaxed(head);; o = n) {
2542 		if (__predict_false(o == &pcg_dummy)) {
2543 			/* Wait for concurrent get to complete. */
2544 			SPINLOCK_BACKOFF(count);
2545 			n = atomic_load_relaxed(head);
2546 			continue;
2547 		}
2548 		n = atomic_cas_ptr(head, o, NULL);
2549 		if (o == n) {
2550 			splx(s);
2551 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2552 			membar_datadep_consumer(); /* alpha */
2553 #endif
2554 			return o;
2555 		}
2556 	}
2557 }
2558 
2559 /*
2560  * pool_pcg_put:
2561  *
2562  *	Put a pool cache group to the specified list.  Return true if
2563  *	contention was encountered.  Must be called at IPL_VM because of
2564  *	spin wait vs. kernel_lock.
2565  */
2566 static int
2567 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2568 {
2569 	int count = SPINLOCK_BACKOFF_MIN;
2570 	pcg_t *o, *n;
2571 
2572 	for (o = atomic_load_relaxed(head);; o = n) {
2573 		if (__predict_false(o == &pcg_dummy)) {
2574 			/* Wait for concurrent get to complete. */
2575 			SPINLOCK_BACKOFF(count);
2576 			n = atomic_load_relaxed(head);
2577 			continue;
2578 		}
2579 		pcg->pcg_next = o;
2580 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2581 		membar_exit();
2582 #endif
2583 		n = atomic_cas_ptr(head, o, pcg);
2584 		if (o == n) {
2585 			return count != SPINLOCK_BACKOFF_MIN;
2586 		}
2587 	}
2588 }
2589 
2590 static bool __noinline
2591 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2592     void **objectp, paddr_t *pap, int flags)
2593 {
2594 	pcg_t *pcg, *cur;
2595 	void *object;
2596 
2597 	KASSERT(cc->cc_current->pcg_avail == 0);
2598 	KASSERT(cc->cc_previous->pcg_avail == 0);
2599 
2600 	cc->cc_misses++;
2601 
2602 	/*
2603 	 * If there's a full group, release our empty group back to the
2604 	 * cache.  Install the full group as cc_current and return.
2605 	 */
2606 	cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2607 	if (__predict_true(pcg != NULL)) {
2608 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2609 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2610 			KASSERT(cur->pcg_avail == 0);
2611 			(void)pool_pcg_put(cc->cc_pcgcache, cur);
2612 		}
2613 		cc->cc_nfull--;
2614 		cc->cc_current = pcg;
2615 		return true;
2616 	}
2617 
2618 	/*
2619 	 * Nothing available locally or in cache.  Take the slow
2620 	 * path: fetch a new object from the pool and construct
2621 	 * it.
2622 	 */
2623 	cc->cc_pcmisses++;
2624 	splx(s);
2625 
2626 	object = pool_get(&pc->pc_pool, flags);
2627 	*objectp = object;
2628 	if (__predict_false(object == NULL)) {
2629 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2630 		return false;
2631 	}
2632 
2633 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2634 		pool_put(&pc->pc_pool, object);
2635 		*objectp = NULL;
2636 		return false;
2637 	}
2638 
2639 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2640 
2641 	if (pap != NULL) {
2642 #ifdef POOL_VTOPHYS
2643 		*pap = POOL_VTOPHYS(object);
2644 #else
2645 		*pap = POOL_PADDR_INVALID;
2646 #endif
2647 	}
2648 
2649 	FREECHECK_OUT(&pc->pc_freecheck, object);
2650 	return false;
2651 }
2652 
2653 /*
2654  * pool_cache_get{,_paddr}:
2655  *
2656  *	Get an object from a pool cache (optionally returning
2657  *	the physical address of the object).
2658  */
2659 void *
2660 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2661 {
2662 	pool_cache_cpu_t *cc;
2663 	pcg_t *pcg;
2664 	void *object;
2665 	int s;
2666 
2667 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2668 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2669 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2670 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
2671 	    __func__, pc->pc_pool.pr_wchan);
2672 
2673 	if (flags & PR_WAITOK) {
2674 		ASSERT_SLEEPABLE();
2675 	}
2676 
2677 	if (flags & PR_NOWAIT) {
2678 		if (fault_inject())
2679 			return NULL;
2680 	}
2681 
2682 	/* Lock out interrupts and disable preemption. */
2683 	s = splvm();
2684 	while (/* CONSTCOND */ true) {
2685 		/* Try and allocate an object from the current group. */
2686 		cc = pc->pc_cpus[curcpu()->ci_index];
2687 	 	pcg = cc->cc_current;
2688 		if (__predict_true(pcg->pcg_avail > 0)) {
2689 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2690 			if (__predict_false(pap != NULL))
2691 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2692 #if defined(DIAGNOSTIC)
2693 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2694 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2695 			KASSERT(object != NULL);
2696 #endif
2697 			cc->cc_hits++;
2698 			splx(s);
2699 			FREECHECK_OUT(&pc->pc_freecheck, object);
2700 			pool_redzone_fill(&pc->pc_pool, object);
2701 			pool_cache_get_kmsan(pc, object);
2702 			return object;
2703 		}
2704 
2705 		/*
2706 		 * That failed.  If the previous group isn't empty, swap
2707 		 * it with the current group and allocate from there.
2708 		 */
2709 		pcg = cc->cc_previous;
2710 		if (__predict_true(pcg->pcg_avail > 0)) {
2711 			cc->cc_previous = cc->cc_current;
2712 			cc->cc_current = pcg;
2713 			continue;
2714 		}
2715 
2716 		/*
2717 		 * Can't allocate from either group: try the slow path.
2718 		 * If get_slow() allocated an object for us, or if
2719 		 * no more objects are available, it will return false.
2720 		 * Otherwise, we need to retry.
2721 		 */
2722 		if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2723 			if (object != NULL) {
2724 				kmsan_orig(object, pc->pc_pool.pr_size,
2725 				    KMSAN_TYPE_POOL, __RET_ADDR);
2726 			}
2727 			break;
2728 		}
2729 	}
2730 
2731 	/*
2732 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2733 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
2734 	 * constructor fails.
2735 	 */
2736 	return object;
2737 }
2738 
2739 static bool __noinline
2740 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2741 {
2742 	pcg_t *pcg, *cur;
2743 
2744 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2745 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2746 
2747 	cc->cc_misses++;
2748 
2749 	/*
2750 	 * Try to get an empty group from the cache.  If there are no empty
2751 	 * groups in the cache then allocate one.
2752 	 */
2753 	(void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2754 	if (__predict_false(pcg == NULL)) {
2755 		if (__predict_true(!pool_cache_disable)) {
2756 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2757 		}
2758 		if (__predict_true(pcg != NULL)) {
2759 			pcg->pcg_avail = 0;
2760 			pcg->pcg_size = pc->pc_pcgsize;
2761 		}
2762 	}
2763 
2764 	/*
2765 	 * If there's a empty group, release our full group back to the
2766 	 * cache.  Install the empty group to the local CPU and return.
2767 	 */
2768 	if (pcg != NULL) {
2769 		KASSERT(pcg->pcg_avail == 0);
2770 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2771 			cc->cc_previous = pcg;
2772 		} else {
2773 			cur = cc->cc_current;
2774 			if (__predict_true(cur != &pcg_dummy)) {
2775 				KASSERT(cur->pcg_avail == cur->pcg_size);
2776 				cc->cc_contended +=
2777 				    pool_pcg_put(&pc->pc_fullgroups, cur);
2778 				cc->cc_nfull++;
2779 			}
2780 			cc->cc_current = pcg;
2781 		}
2782 		return true;
2783 	}
2784 
2785 	/*
2786 	 * Nothing available locally or in cache, and we didn't
2787 	 * allocate an empty group.  Take the slow path and destroy
2788 	 * the object here and now.
2789 	 */
2790 	cc->cc_pcmisses++;
2791 	splx(s);
2792 	pool_cache_destruct_object(pc, object);
2793 
2794 	return false;
2795 }
2796 
2797 /*
2798  * pool_cache_put{,_paddr}:
2799  *
2800  *	Put an object back to the pool cache (optionally caching the
2801  *	physical address of the object).
2802  */
2803 void
2804 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2805 {
2806 	pool_cache_cpu_t *cc;
2807 	pcg_t *pcg;
2808 	int s;
2809 
2810 	KASSERT(object != NULL);
2811 	pool_cache_put_kmsan(pc, object);
2812 	pool_cache_redzone_check(pc, object);
2813 	FREECHECK_IN(&pc->pc_freecheck, object);
2814 
2815 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2816 		pc_phinpage_check(pc, object);
2817 	}
2818 
2819 	if (pool_cache_put_nocache(pc, object)) {
2820 		return;
2821 	}
2822 
2823 	/* Lock out interrupts and disable preemption. */
2824 	s = splvm();
2825 	while (/* CONSTCOND */ true) {
2826 		/* If the current group isn't full, release it there. */
2827 		cc = pc->pc_cpus[curcpu()->ci_index];
2828 	 	pcg = cc->cc_current;
2829 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2830 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2831 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2832 			pcg->pcg_avail++;
2833 			cc->cc_hits++;
2834 			splx(s);
2835 			return;
2836 		}
2837 
2838 		/*
2839 		 * That failed.  If the previous group isn't full, swap
2840 		 * it with the current group and try again.
2841 		 */
2842 		pcg = cc->cc_previous;
2843 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2844 			cc->cc_previous = cc->cc_current;
2845 			cc->cc_current = pcg;
2846 			continue;
2847 		}
2848 
2849 		/*
2850 		 * Can't free to either group: try the slow path.
2851 		 * If put_slow() releases the object for us, it
2852 		 * will return false.  Otherwise we need to retry.
2853 		 */
2854 		if (!pool_cache_put_slow(pc, cc, s, object))
2855 			break;
2856 	}
2857 }
2858 
2859 /*
2860  * pool_cache_transfer:
2861  *
2862  *	Transfer objects from the per-CPU cache to the global cache.
2863  *	Run within a cross-call thread.
2864  */
2865 static void
2866 pool_cache_transfer(pool_cache_t pc)
2867 {
2868 	pool_cache_cpu_t *cc;
2869 	pcg_t *prev, *cur;
2870 	int s;
2871 
2872 	s = splvm();
2873 	cc = pc->pc_cpus[curcpu()->ci_index];
2874 	cur = cc->cc_current;
2875 	cc->cc_current = __UNCONST(&pcg_dummy);
2876 	prev = cc->cc_previous;
2877 	cc->cc_previous = __UNCONST(&pcg_dummy);
2878 	if (cur != &pcg_dummy) {
2879 		if (cur->pcg_avail == cur->pcg_size) {
2880 			(void)pool_pcg_put(&pc->pc_fullgroups, cur);
2881 			cc->cc_nfull++;
2882 		} else if (cur->pcg_avail == 0) {
2883 			(void)pool_pcg_put(pc->pc_pcgcache, cur);
2884 		} else {
2885 			(void)pool_pcg_put(&pc->pc_partgroups, cur);
2886 			cc->cc_npart++;
2887 		}
2888 	}
2889 	if (prev != &pcg_dummy) {
2890 		if (prev->pcg_avail == prev->pcg_size) {
2891 			(void)pool_pcg_put(&pc->pc_fullgroups, prev);
2892 			cc->cc_nfull++;
2893 		} else if (prev->pcg_avail == 0) {
2894 			(void)pool_pcg_put(pc->pc_pcgcache, prev);
2895 		} else {
2896 			(void)pool_pcg_put(&pc->pc_partgroups, prev);
2897 			cc->cc_npart++;
2898 		}
2899 	}
2900 	splx(s);
2901 }
2902 
2903 static int
2904 pool_bigidx(size_t size)
2905 {
2906 	int i;
2907 
2908 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2909 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2910 			return i;
2911 	}
2912 	panic("pool item size %zu too large, use a custom allocator", size);
2913 }
2914 
2915 static void *
2916 pool_allocator_alloc(struct pool *pp, int flags)
2917 {
2918 	struct pool_allocator *pa = pp->pr_alloc;
2919 	void *res;
2920 
2921 	res = (*pa->pa_alloc)(pp, flags);
2922 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2923 		/*
2924 		 * We only run the drain hook here if PR_NOWAIT.
2925 		 * In other cases, the hook will be run in
2926 		 * pool_reclaim().
2927 		 */
2928 		if (pp->pr_drain_hook != NULL) {
2929 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2930 			res = (*pa->pa_alloc)(pp, flags);
2931 		}
2932 	}
2933 	return res;
2934 }
2935 
2936 static void
2937 pool_allocator_free(struct pool *pp, void *v)
2938 {
2939 	struct pool_allocator *pa = pp->pr_alloc;
2940 
2941 	if (pp->pr_redzone) {
2942 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2943 	}
2944 	(*pa->pa_free)(pp, v);
2945 }
2946 
2947 void *
2948 pool_page_alloc(struct pool *pp, int flags)
2949 {
2950 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2951 	vmem_addr_t va;
2952 	int ret;
2953 
2954 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2955 	    vflags | VM_INSTANTFIT, &va);
2956 
2957 	return ret ? NULL : (void *)va;
2958 }
2959 
2960 void
2961 pool_page_free(struct pool *pp, void *v)
2962 {
2963 
2964 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2965 }
2966 
2967 static void *
2968 pool_page_alloc_meta(struct pool *pp, int flags)
2969 {
2970 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2971 	vmem_addr_t va;
2972 	int ret;
2973 
2974 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2975 	    vflags | VM_INSTANTFIT, &va);
2976 
2977 	return ret ? NULL : (void *)va;
2978 }
2979 
2980 static void
2981 pool_page_free_meta(struct pool *pp, void *v)
2982 {
2983 
2984 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2985 }
2986 
2987 #ifdef KMSAN
2988 static inline void
2989 pool_get_kmsan(struct pool *pp, void *p)
2990 {
2991 	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
2992 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
2993 }
2994 
2995 static inline void
2996 pool_put_kmsan(struct pool *pp, void *p)
2997 {
2998 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
2999 }
3000 
3001 static inline void
3002 pool_cache_get_kmsan(pool_cache_t pc, void *p)
3003 {
3004 	if (__predict_false(pc_has_ctor(pc))) {
3005 		return;
3006 	}
3007 	pool_get_kmsan(&pc->pc_pool, p);
3008 }
3009 
3010 static inline void
3011 pool_cache_put_kmsan(pool_cache_t pc, void *p)
3012 {
3013 	pool_put_kmsan(&pc->pc_pool, p);
3014 }
3015 #endif
3016 
3017 #ifdef POOL_QUARANTINE
3018 static void
3019 pool_quarantine_init(struct pool *pp)
3020 {
3021 	pp->pr_quar.rotor = 0;
3022 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
3023 }
3024 
3025 static void
3026 pool_quarantine_flush(struct pool *pp)
3027 {
3028 	pool_quar_t *quar = &pp->pr_quar;
3029 	struct pool_pagelist pq;
3030 	size_t i;
3031 
3032 	LIST_INIT(&pq);
3033 
3034 	mutex_enter(&pp->pr_lock);
3035 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
3036 		if (quar->list[i] == 0)
3037 			continue;
3038 		pool_do_put(pp, (void *)quar->list[i], &pq);
3039 	}
3040 	mutex_exit(&pp->pr_lock);
3041 
3042 	pr_pagelist_free(pp, &pq);
3043 }
3044 
3045 static bool
3046 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3047 {
3048 	pool_quar_t *quar = &pp->pr_quar;
3049 	uintptr_t old;
3050 
3051 	if (pp->pr_roflags & PR_NOTOUCH) {
3052 		return false;
3053 	}
3054 
3055 	pool_redzone_check(pp, v);
3056 
3057 	old = quar->list[quar->rotor];
3058 	quar->list[quar->rotor] = (uintptr_t)v;
3059 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3060 	if (old != 0) {
3061 		pool_do_put(pp, (void *)old, pq);
3062 	}
3063 
3064 	return true;
3065 }
3066 #endif
3067 
3068 #ifdef POOL_NOCACHE
3069 static bool
3070 pool_cache_put_nocache(pool_cache_t pc, void *p)
3071 {
3072 	pool_cache_destruct_object(pc, p);
3073 	return true;
3074 }
3075 #endif
3076 
3077 #ifdef POOL_REDZONE
3078 #if defined(_LP64)
3079 # define PRIME 0x9e37fffffffc0000UL
3080 #else /* defined(_LP64) */
3081 # define PRIME 0x9e3779b1
3082 #endif /* defined(_LP64) */
3083 #define STATIC_BYTE	0xFE
3084 CTASSERT(POOL_REDZONE_SIZE > 1);
3085 
3086 #ifndef KASAN
3087 static inline uint8_t
3088 pool_pattern_generate(const void *p)
3089 {
3090 	return (uint8_t)(((uintptr_t)p) * PRIME
3091 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3092 }
3093 #endif
3094 
3095 static void
3096 pool_redzone_init(struct pool *pp, size_t requested_size)
3097 {
3098 	size_t redzsz;
3099 	size_t nsz;
3100 
3101 #ifdef KASAN
3102 	redzsz = requested_size;
3103 	kasan_add_redzone(&redzsz);
3104 	redzsz -= requested_size;
3105 #else
3106 	redzsz = POOL_REDZONE_SIZE;
3107 #endif
3108 
3109 	if (pp->pr_roflags & PR_NOTOUCH) {
3110 		pp->pr_redzone = false;
3111 		return;
3112 	}
3113 
3114 	/*
3115 	 * We may have extended the requested size earlier; check if
3116 	 * there's naturally space in the padding for a red zone.
3117 	 */
3118 	if (pp->pr_size - requested_size >= redzsz) {
3119 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
3120 		pp->pr_redzone = true;
3121 		return;
3122 	}
3123 
3124 	/*
3125 	 * No space in the natural padding; check if we can extend a
3126 	 * bit the size of the pool.
3127 	 *
3128 	 * Avoid using redzone for allocations half of a page or larger.
3129 	 * For pagesize items, we'd waste a whole new page (could be
3130 	 * unmapped?), and for half pagesize items, approximately half
3131 	 * the space is lost (eg, 4K pages, you get one 2K allocation.)
3132 	 */
3133 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3134 	if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
3135 		/* Ok, we can */
3136 		pp->pr_size = nsz;
3137 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
3138 		pp->pr_redzone = true;
3139 	} else {
3140 		/* No space for a red zone... snif :'( */
3141 		pp->pr_redzone = false;
3142 		aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
3143 	}
3144 }
3145 
3146 static void
3147 pool_redzone_fill(struct pool *pp, void *p)
3148 {
3149 	if (!pp->pr_redzone)
3150 		return;
3151 #ifdef KASAN
3152 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3153 	    KASAN_POOL_REDZONE);
3154 #else
3155 	uint8_t *cp, pat;
3156 	const uint8_t *ep;
3157 
3158 	cp = (uint8_t *)p + pp->pr_reqsize;
3159 	ep = cp + POOL_REDZONE_SIZE;
3160 
3161 	/*
3162 	 * We really don't want the first byte of the red zone to be '\0';
3163 	 * an off-by-one in a string may not be properly detected.
3164 	 */
3165 	pat = pool_pattern_generate(cp);
3166 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
3167 	cp++;
3168 
3169 	while (cp < ep) {
3170 		*cp = pool_pattern_generate(cp);
3171 		cp++;
3172 	}
3173 #endif
3174 }
3175 
3176 static void
3177 pool_redzone_check(struct pool *pp, void *p)
3178 {
3179 	if (!pp->pr_redzone)
3180 		return;
3181 #ifdef KASAN
3182 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3183 #else
3184 	uint8_t *cp, pat, expected;
3185 	const uint8_t *ep;
3186 
3187 	cp = (uint8_t *)p + pp->pr_reqsize;
3188 	ep = cp + POOL_REDZONE_SIZE;
3189 
3190 	pat = pool_pattern_generate(cp);
3191 	expected = (pat == '\0') ? STATIC_BYTE: pat;
3192 	if (__predict_false(*cp != expected)) {
3193 		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3194 		    pp->pr_wchan, *cp, expected);
3195 	}
3196 	cp++;
3197 
3198 	while (cp < ep) {
3199 		expected = pool_pattern_generate(cp);
3200 		if (__predict_false(*cp != expected)) {
3201 			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3202 			    pp->pr_wchan, *cp, expected);
3203 		}
3204 		cp++;
3205 	}
3206 #endif
3207 }
3208 
3209 static void
3210 pool_cache_redzone_check(pool_cache_t pc, void *p)
3211 {
3212 #ifdef KASAN
3213 	/* If there is a ctor/dtor, leave the data as valid. */
3214 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3215 		return;
3216 	}
3217 #endif
3218 	pool_redzone_check(&pc->pc_pool, p);
3219 }
3220 
3221 #endif /* POOL_REDZONE */
3222 
3223 #if defined(DDB)
3224 static bool
3225 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3226 {
3227 
3228 	return (uintptr_t)ph->ph_page <= addr &&
3229 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3230 }
3231 
3232 static bool
3233 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3234 {
3235 
3236 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3237 }
3238 
3239 static bool
3240 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3241 {
3242 	int i;
3243 
3244 	if (pcg == NULL) {
3245 		return false;
3246 	}
3247 	for (i = 0; i < pcg->pcg_avail; i++) {
3248 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3249 			return true;
3250 		}
3251 	}
3252 	return false;
3253 }
3254 
3255 static bool
3256 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3257 {
3258 
3259 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3260 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3261 		pool_item_bitmap_t *bitmap =
3262 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
3263 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3264 
3265 		return (*bitmap & mask) == 0;
3266 	} else {
3267 		struct pool_item *pi;
3268 
3269 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3270 			if (pool_in_item(pp, pi, addr)) {
3271 				return false;
3272 			}
3273 		}
3274 		return true;
3275 	}
3276 }
3277 
3278 void
3279 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3280 {
3281 	struct pool *pp;
3282 
3283 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3284 		struct pool_item_header *ph;
3285 		uintptr_t item;
3286 		bool allocated = true;
3287 		bool incache = false;
3288 		bool incpucache = false;
3289 		char cpucachestr[32];
3290 
3291 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3292 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3293 				if (pool_in_page(pp, ph, addr)) {
3294 					goto found;
3295 				}
3296 			}
3297 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3298 				if (pool_in_page(pp, ph, addr)) {
3299 					allocated =
3300 					    pool_allocated(pp, ph, addr);
3301 					goto found;
3302 				}
3303 			}
3304 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3305 				if (pool_in_page(pp, ph, addr)) {
3306 					allocated = false;
3307 					goto found;
3308 				}
3309 			}
3310 			continue;
3311 		} else {
3312 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3313 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3314 				continue;
3315 			}
3316 			allocated = pool_allocated(pp, ph, addr);
3317 		}
3318 found:
3319 		if (allocated && pp->pr_cache) {
3320 			pool_cache_t pc = pp->pr_cache;
3321 			struct pool_cache_group *pcg;
3322 			int i;
3323 
3324 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3325 			    pcg = pcg->pcg_next) {
3326 				if (pool_in_cg(pp, pcg, addr)) {
3327 					incache = true;
3328 					goto print;
3329 				}
3330 			}
3331 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3332 				pool_cache_cpu_t *cc;
3333 
3334 				if ((cc = pc->pc_cpus[i]) == NULL) {
3335 					continue;
3336 				}
3337 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3338 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3339 					struct cpu_info *ci =
3340 					    cpu_lookup(i);
3341 
3342 					incpucache = true;
3343 					snprintf(cpucachestr,
3344 					    sizeof(cpucachestr),
3345 					    "cached by CPU %u",
3346 					    ci->ci_index);
3347 					goto print;
3348 				}
3349 			}
3350 		}
3351 print:
3352 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3353 		item = item + rounddown(addr - item, pp->pr_size);
3354 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3355 		    (void *)addr, item, (size_t)(addr - item),
3356 		    pp->pr_wchan,
3357 		    incpucache ? cpucachestr :
3358 		    incache ? "cached" : allocated ? "allocated" : "free");
3359 	}
3360 }
3361 #endif /* defined(DDB) */
3362 
3363 static int
3364 pool_sysctl(SYSCTLFN_ARGS)
3365 {
3366 	struct pool_sysctl data;
3367 	struct pool *pp;
3368 	struct pool_cache *pc;
3369 	pool_cache_cpu_t *cc;
3370 	int error;
3371 	size_t i, written;
3372 
3373 	if (oldp == NULL) {
3374 		*oldlenp = 0;
3375 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3376 			*oldlenp += sizeof(data);
3377 		return 0;
3378 	}
3379 
3380 	memset(&data, 0, sizeof(data));
3381 	error = 0;
3382 	written = 0;
3383 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3384 		if (written + sizeof(data) > *oldlenp)
3385 			break;
3386 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3387 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3388 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
3389 #define COPY(field) data.field = pp->field
3390 		COPY(pr_size);
3391 
3392 		COPY(pr_itemsperpage);
3393 		COPY(pr_nitems);
3394 		COPY(pr_nout);
3395 		COPY(pr_hardlimit);
3396 		COPY(pr_npages);
3397 		COPY(pr_minpages);
3398 		COPY(pr_maxpages);
3399 
3400 		COPY(pr_nget);
3401 		COPY(pr_nfail);
3402 		COPY(pr_nput);
3403 		COPY(pr_npagealloc);
3404 		COPY(pr_npagefree);
3405 		COPY(pr_hiwat);
3406 		COPY(pr_nidle);
3407 #undef COPY
3408 
3409 		data.pr_cache_nmiss_pcpu = 0;
3410 		data.pr_cache_nhit_pcpu = 0;
3411 		data.pr_cache_nmiss_global = 0;
3412 		data.pr_cache_nempty = 0;
3413 		data.pr_cache_ncontended = 0;
3414 		data.pr_cache_npartial = 0;
3415 		if (pp->pr_cache) {
3416 			uint32_t nfull = 0;
3417 			pc = pp->pr_cache;
3418 			data.pr_cache_meta_size = pc->pc_pcgsize;
3419 			for (i = 0; i < pc->pc_ncpu; ++i) {
3420 				cc = pc->pc_cpus[i];
3421 				if (cc == NULL)
3422 					continue;
3423 				data.pr_cache_ncontended += cc->cc_contended;
3424 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
3425 				data.pr_cache_nhit_pcpu += cc->cc_hits;
3426 				data.pr_cache_nmiss_global += cc->cc_pcmisses;
3427 				nfull += cc->cc_nfull; /* 32-bit rollover! */
3428 				data.pr_cache_npartial += cc->cc_npart;
3429 			}
3430 			data.pr_cache_nfull = nfull;
3431 		} else {
3432 			data.pr_cache_meta_size = 0;
3433 			data.pr_cache_nfull = 0;
3434 		}
3435 		data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3436 		    data.pr_cache_nmiss_global;
3437 
3438 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
3439 		if (error)
3440 			break;
3441 		written += sizeof(data);
3442 		oldp = (char *)oldp + sizeof(data);
3443 	}
3444 
3445 	*oldlenp = written;
3446 	return error;
3447 }
3448 
3449 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3450 {
3451 	const struct sysctlnode *rnode = NULL;
3452 
3453 	sysctl_createv(clog, 0, NULL, &rnode,
3454 		       CTLFLAG_PERMANENT,
3455 		       CTLTYPE_STRUCT, "pool",
3456 		       SYSCTL_DESCR("Get pool statistics"),
3457 		       pool_sysctl, 0, NULL, 0,
3458 		       CTL_KERN, CTL_CREATE, CTL_EOL);
3459 }
3460