1 /* $NetBSD: subr_pool.c,v 1.277 2021/07/25 06:00:31 simonb Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018, 5 * 2020 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by 11 * Maxime Villard. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.277 2021/07/25 06:00:31 simonb Exp $"); 37 38 #ifdef _KERNEL_OPT 39 #include "opt_ddb.h" 40 #include "opt_lockdebug.h" 41 #include "opt_pool.h" 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/bitops.h> 48 #include <sys/proc.h> 49 #include <sys/errno.h> 50 #include <sys/kernel.h> 51 #include <sys/vmem.h> 52 #include <sys/pool.h> 53 #include <sys/syslog.h> 54 #include <sys/debug.h> 55 #include <sys/lock.h> 56 #include <sys/lockdebug.h> 57 #include <sys/xcall.h> 58 #include <sys/cpu.h> 59 #include <sys/atomic.h> 60 #include <sys/asan.h> 61 #include <sys/msan.h> 62 #include <sys/fault.h> 63 64 #include <uvm/uvm_extern.h> 65 66 /* 67 * Pool resource management utility. 68 * 69 * Memory is allocated in pages which are split into pieces according to 70 * the pool item size. Each page is kept on one of three lists in the 71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 72 * for empty, full and partially-full pages respectively. The individual 73 * pool items are on a linked list headed by `ph_itemlist' in each page 74 * header. The memory for building the page list is either taken from 75 * the allocated pages themselves (for small pool items) or taken from 76 * an internal pool of page headers (`phpool'). 77 */ 78 79 /* List of all pools. Non static as needed by 'vmstat -m' */ 80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 81 82 /* Private pool for page header structures */ 83 #define PHPOOL_MAX 8 84 static struct pool phpool[PHPOOL_MAX]; 85 #define PHPOOL_FREELIST_NELEM(idx) \ 86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx))) 87 88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN)) 89 #define POOL_REDZONE 90 #endif 91 92 #if defined(POOL_QUARANTINE) 93 #define POOL_NOCACHE 94 #endif 95 96 #ifdef POOL_REDZONE 97 # ifdef KASAN 98 # define POOL_REDZONE_SIZE 8 99 # else 100 # define POOL_REDZONE_SIZE 2 101 # endif 102 static void pool_redzone_init(struct pool *, size_t); 103 static void pool_redzone_fill(struct pool *, void *); 104 static void pool_redzone_check(struct pool *, void *); 105 static void pool_cache_redzone_check(pool_cache_t, void *); 106 #else 107 # define pool_redzone_init(pp, sz) __nothing 108 # define pool_redzone_fill(pp, ptr) __nothing 109 # define pool_redzone_check(pp, ptr) __nothing 110 # define pool_cache_redzone_check(pc, ptr) __nothing 111 #endif 112 113 #ifdef KMSAN 114 static inline void pool_get_kmsan(struct pool *, void *); 115 static inline void pool_put_kmsan(struct pool *, void *); 116 static inline void pool_cache_get_kmsan(pool_cache_t, void *); 117 static inline void pool_cache_put_kmsan(pool_cache_t, void *); 118 #else 119 #define pool_get_kmsan(pp, ptr) __nothing 120 #define pool_put_kmsan(pp, ptr) __nothing 121 #define pool_cache_get_kmsan(pc, ptr) __nothing 122 #define pool_cache_put_kmsan(pc, ptr) __nothing 123 #endif 124 125 #ifdef POOL_QUARANTINE 126 static void pool_quarantine_init(struct pool *); 127 static void pool_quarantine_flush(struct pool *); 128 static bool pool_put_quarantine(struct pool *, void *, 129 struct pool_pagelist *); 130 #else 131 #define pool_quarantine_init(a) __nothing 132 #define pool_quarantine_flush(a) __nothing 133 #define pool_put_quarantine(a, b, c) false 134 #endif 135 136 #ifdef POOL_NOCACHE 137 static bool pool_cache_put_nocache(pool_cache_t, void *); 138 #else 139 #define pool_cache_put_nocache(a, b) false 140 #endif 141 142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop) 143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop) 144 145 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR) 146 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR) 147 148 /* 149 * Pool backend allocators. 150 * 151 * Each pool has a backend allocator that handles allocation, deallocation, 152 * and any additional draining that might be needed. 153 * 154 * We provide two standard allocators: 155 * 156 * pool_allocator_kmem - the default when no allocator is specified 157 * 158 * pool_allocator_nointr - used for pools that will not be accessed 159 * in interrupt context. 160 */ 161 void *pool_page_alloc(struct pool *, int); 162 void pool_page_free(struct pool *, void *); 163 164 static void *pool_page_alloc_meta(struct pool *, int); 165 static void pool_page_free_meta(struct pool *, void *); 166 167 struct pool_allocator pool_allocator_kmem = { 168 .pa_alloc = pool_page_alloc, 169 .pa_free = pool_page_free, 170 .pa_pagesz = 0 171 }; 172 173 struct pool_allocator pool_allocator_nointr = { 174 .pa_alloc = pool_page_alloc, 175 .pa_free = pool_page_free, 176 .pa_pagesz = 0 177 }; 178 179 struct pool_allocator pool_allocator_meta = { 180 .pa_alloc = pool_page_alloc_meta, 181 .pa_free = pool_page_free_meta, 182 .pa_pagesz = 0 183 }; 184 185 #define POOL_ALLOCATOR_BIG_BASE 13 186 static struct pool_allocator pool_allocator_big[] = { 187 { 188 .pa_alloc = pool_page_alloc, 189 .pa_free = pool_page_free, 190 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0), 191 }, 192 { 193 .pa_alloc = pool_page_alloc, 194 .pa_free = pool_page_free, 195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1), 196 }, 197 { 198 .pa_alloc = pool_page_alloc, 199 .pa_free = pool_page_free, 200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2), 201 }, 202 { 203 .pa_alloc = pool_page_alloc, 204 .pa_free = pool_page_free, 205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3), 206 }, 207 { 208 .pa_alloc = pool_page_alloc, 209 .pa_free = pool_page_free, 210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4), 211 }, 212 { 213 .pa_alloc = pool_page_alloc, 214 .pa_free = pool_page_free, 215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5), 216 }, 217 { 218 .pa_alloc = pool_page_alloc, 219 .pa_free = pool_page_free, 220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6), 221 }, 222 { 223 .pa_alloc = pool_page_alloc, 224 .pa_free = pool_page_free, 225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7), 226 }, 227 { 228 .pa_alloc = pool_page_alloc, 229 .pa_free = pool_page_free, 230 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8), 231 }, 232 { 233 .pa_alloc = pool_page_alloc, 234 .pa_free = pool_page_free, 235 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9), 236 }, 237 { 238 .pa_alloc = pool_page_alloc, 239 .pa_free = pool_page_free, 240 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10), 241 }, 242 { 243 .pa_alloc = pool_page_alloc, 244 .pa_free = pool_page_free, 245 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11), 246 } 247 }; 248 249 static int pool_bigidx(size_t); 250 251 /* # of seconds to retain page after last use */ 252 int pool_inactive_time = 10; 253 254 /* Next candidate for drainage (see pool_drain()) */ 255 static struct pool *drainpp; 256 257 /* This lock protects both pool_head and drainpp. */ 258 static kmutex_t pool_head_lock; 259 static kcondvar_t pool_busy; 260 261 /* This lock protects initialization of a potentially shared pool allocator */ 262 static kmutex_t pool_allocator_lock; 263 264 static unsigned int poolid_counter = 0; 265 266 typedef uint32_t pool_item_bitmap_t; 267 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 268 #define BITMAP_MASK (BITMAP_SIZE - 1) 269 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2)) 270 271 struct pool_item_header { 272 /* Page headers */ 273 LIST_ENTRY(pool_item_header) 274 ph_pagelist; /* pool page list */ 275 union { 276 /* !PR_PHINPAGE */ 277 struct { 278 SPLAY_ENTRY(pool_item_header) 279 phu_node; /* off-page page headers */ 280 } phu_offpage; 281 /* PR_PHINPAGE */ 282 struct { 283 unsigned int phu_poolid; 284 } phu_onpage; 285 } ph_u1; 286 void * ph_page; /* this page's address */ 287 uint32_t ph_time; /* last referenced */ 288 uint16_t ph_nmissing; /* # of chunks in use */ 289 uint16_t ph_off; /* start offset in page */ 290 union { 291 /* !PR_USEBMAP */ 292 struct { 293 LIST_HEAD(, pool_item) 294 phu_itemlist; /* chunk list for this page */ 295 } phu_normal; 296 /* PR_USEBMAP */ 297 struct { 298 pool_item_bitmap_t phu_bitmap[1]; 299 } phu_notouch; 300 } ph_u2; 301 }; 302 #define ph_node ph_u1.phu_offpage.phu_node 303 #define ph_poolid ph_u1.phu_onpage.phu_poolid 304 #define ph_itemlist ph_u2.phu_normal.phu_itemlist 305 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap 306 307 #define PHSIZE ALIGN(sizeof(struct pool_item_header)) 308 309 CTASSERT(offsetof(struct pool_item_header, ph_u2) + 310 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header)); 311 312 #if defined(DIAGNOSTIC) && !defined(KASAN) 313 #define POOL_CHECK_MAGIC 314 #endif 315 316 struct pool_item { 317 #ifdef POOL_CHECK_MAGIC 318 u_int pi_magic; 319 #endif 320 #define PI_MAGIC 0xdeaddeadU 321 /* Other entries use only this list entry */ 322 LIST_ENTRY(pool_item) pi_list; 323 }; 324 325 #define POOL_NEEDS_CATCHUP(pp) \ 326 ((pp)->pr_nitems < (pp)->pr_minitems || \ 327 (pp)->pr_npages < (pp)->pr_minpages) 328 #define POOL_OBJ_TO_PAGE(pp, v) \ 329 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask) 330 331 /* 332 * Pool cache management. 333 * 334 * Pool caches provide a way for constructed objects to be cached by the 335 * pool subsystem. This can lead to performance improvements by avoiding 336 * needless object construction/destruction; it is deferred until absolutely 337 * necessary. 338 * 339 * Caches are grouped into cache groups. Each cache group references up 340 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 341 * object from the pool, it calls the object's constructor and places it 342 * into a cache group. When a cache group frees an object back to the 343 * pool, it first calls the object's destructor. This allows the object 344 * to persist in constructed form while freed to the cache. 345 * 346 * The pool references each cache, so that when a pool is drained by the 347 * pagedaemon, it can drain each individual cache as well. Each time a 348 * cache is drained, the most idle cache group is freed to the pool in 349 * its entirety. 350 * 351 * Pool caches are layed on top of pools. By layering them, we can avoid 352 * the complexity of cache management for pools which would not benefit 353 * from it. 354 */ 355 356 static struct pool pcg_normal_pool; 357 static struct pool pcg_large_pool; 358 static struct pool cache_pool; 359 static struct pool cache_cpu_pool; 360 361 static pcg_t *volatile pcg_large_cache __cacheline_aligned; 362 static pcg_t *volatile pcg_normal_cache __cacheline_aligned; 363 364 /* List of all caches. */ 365 TAILQ_HEAD(,pool_cache) pool_cache_head = 366 TAILQ_HEAD_INITIALIZER(pool_cache_head); 367 368 int pool_cache_disable; /* global disable for caching */ 369 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 370 371 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int, 372 void *); 373 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int, 374 void **, paddr_t *, int); 375 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 376 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 377 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 378 static void pool_cache_transfer(pool_cache_t); 379 static int pool_pcg_get(pcg_t *volatile *, pcg_t **); 380 static int pool_pcg_put(pcg_t *volatile *, pcg_t *); 381 static pcg_t * pool_pcg_trunc(pcg_t *volatile *); 382 383 static int pool_catchup(struct pool *); 384 static void pool_prime_page(struct pool *, void *, 385 struct pool_item_header *); 386 static void pool_update_curpage(struct pool *); 387 388 static int pool_grow(struct pool *, int); 389 static void *pool_allocator_alloc(struct pool *, int); 390 static void pool_allocator_free(struct pool *, void *); 391 392 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 393 void (*)(const char *, ...) __printflike(1, 2)); 394 static void pool_print1(struct pool *, const char *, 395 void (*)(const char *, ...) __printflike(1, 2)); 396 397 static int pool_chk_page(struct pool *, const char *, 398 struct pool_item_header *); 399 400 /* -------------------------------------------------------------------------- */ 401 402 static inline unsigned int 403 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph, 404 const void *v) 405 { 406 const char *cp = v; 407 unsigned int idx; 408 409 KASSERT(pp->pr_roflags & PR_USEBMAP); 410 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 411 412 if (__predict_false(idx >= pp->pr_itemsperpage)) { 413 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx, 414 pp->pr_itemsperpage); 415 } 416 417 return idx; 418 } 419 420 static inline void 421 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph, 422 void *obj) 423 { 424 unsigned int idx = pr_item_bitmap_index(pp, ph, obj); 425 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 426 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK); 427 428 if (__predict_false((*bitmap & mask) != 0)) { 429 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj); 430 } 431 432 *bitmap |= mask; 433 } 434 435 static inline void * 436 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph) 437 { 438 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 439 unsigned int idx; 440 int i; 441 442 for (i = 0; ; i++) { 443 int bit; 444 445 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 446 bit = ffs32(bitmap[i]); 447 if (bit) { 448 pool_item_bitmap_t mask; 449 450 bit--; 451 idx = (i * BITMAP_SIZE) + bit; 452 mask = 1U << bit; 453 KASSERT((bitmap[i] & mask) != 0); 454 bitmap[i] &= ~mask; 455 break; 456 } 457 } 458 KASSERT(idx < pp->pr_itemsperpage); 459 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 460 } 461 462 static inline void 463 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph) 464 { 465 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 466 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 467 int i; 468 469 for (i = 0; i < n; i++) { 470 bitmap[i] = (pool_item_bitmap_t)-1; 471 } 472 } 473 474 /* -------------------------------------------------------------------------- */ 475 476 static inline void 477 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph, 478 void *obj) 479 { 480 struct pool_item *pi = obj; 481 482 #ifdef POOL_CHECK_MAGIC 483 pi->pi_magic = PI_MAGIC; 484 #endif 485 486 if (pp->pr_redzone) { 487 /* 488 * Mark the pool_item as valid. The rest is already 489 * invalid. 490 */ 491 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0); 492 } 493 494 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 495 } 496 497 static inline void * 498 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph) 499 { 500 struct pool_item *pi; 501 void *v; 502 503 v = pi = LIST_FIRST(&ph->ph_itemlist); 504 if (__predict_false(v == NULL)) { 505 mutex_exit(&pp->pr_lock); 506 panic("%s: [%s] page empty", __func__, pp->pr_wchan); 507 } 508 KASSERTMSG((pp->pr_nitems > 0), 509 "%s: [%s] nitems %u inconsistent on itemlist", 510 __func__, pp->pr_wchan, pp->pr_nitems); 511 #ifdef POOL_CHECK_MAGIC 512 KASSERTMSG((pi->pi_magic == PI_MAGIC), 513 "%s: [%s] free list modified: " 514 "magic=%x; page %p; item addr %p", __func__, 515 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 516 #endif 517 518 /* 519 * Remove from item list. 520 */ 521 LIST_REMOVE(pi, pi_list); 522 523 return v; 524 } 525 526 /* -------------------------------------------------------------------------- */ 527 528 static inline void 529 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page, 530 void *object) 531 { 532 if (__predict_false((void *)ph->ph_page != page)) { 533 panic("%s: [%s] item %p not part of pool", __func__, 534 pp->pr_wchan, object); 535 } 536 if (__predict_false((char *)object < (char *)page + ph->ph_off)) { 537 panic("%s: [%s] item %p below item space", __func__, 538 pp->pr_wchan, object); 539 } 540 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 541 panic("%s: [%s] item %p poolid %u != %u", __func__, 542 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid); 543 } 544 } 545 546 static inline void 547 pc_phinpage_check(pool_cache_t pc, void *object) 548 { 549 struct pool_item_header *ph; 550 struct pool *pp; 551 void *page; 552 553 pp = &pc->pc_pool; 554 page = POOL_OBJ_TO_PAGE(pp, object); 555 ph = (struct pool_item_header *)page; 556 557 pr_phinpage_check(pp, ph, page, object); 558 } 559 560 /* -------------------------------------------------------------------------- */ 561 562 static inline int 563 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 564 { 565 566 /* 567 * We consider pool_item_header with smaller ph_page bigger. This 568 * unnatural ordering is for the benefit of pr_find_pagehead. 569 */ 570 if (a->ph_page < b->ph_page) 571 return 1; 572 else if (a->ph_page > b->ph_page) 573 return -1; 574 else 575 return 0; 576 } 577 578 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 579 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 580 581 static inline struct pool_item_header * 582 pr_find_pagehead_noalign(struct pool *pp, void *v) 583 { 584 struct pool_item_header *ph, tmp; 585 586 tmp.ph_page = (void *)(uintptr_t)v; 587 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 588 if (ph == NULL) { 589 ph = SPLAY_ROOT(&pp->pr_phtree); 590 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 591 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 592 } 593 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 594 } 595 596 return ph; 597 } 598 599 /* 600 * Return the pool page header based on item address. 601 */ 602 static inline struct pool_item_header * 603 pr_find_pagehead(struct pool *pp, void *v) 604 { 605 struct pool_item_header *ph, tmp; 606 607 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 608 ph = pr_find_pagehead_noalign(pp, v); 609 } else { 610 void *page = POOL_OBJ_TO_PAGE(pp, v); 611 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 612 ph = (struct pool_item_header *)page; 613 pr_phinpage_check(pp, ph, page, v); 614 } else { 615 tmp.ph_page = page; 616 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 617 } 618 } 619 620 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 621 ((char *)ph->ph_page <= (char *)v && 622 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 623 return ph; 624 } 625 626 static void 627 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 628 { 629 struct pool_item_header *ph; 630 631 while ((ph = LIST_FIRST(pq)) != NULL) { 632 LIST_REMOVE(ph, ph_pagelist); 633 pool_allocator_free(pp, ph->ph_page); 634 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 635 pool_put(pp->pr_phpool, ph); 636 } 637 } 638 639 /* 640 * Remove a page from the pool. 641 */ 642 static inline void 643 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 644 struct pool_pagelist *pq) 645 { 646 647 KASSERT(mutex_owned(&pp->pr_lock)); 648 649 /* 650 * If the page was idle, decrement the idle page count. 651 */ 652 if (ph->ph_nmissing == 0) { 653 KASSERT(pp->pr_nidle != 0); 654 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage), 655 "%s: [%s] nitems=%u < itemsperpage=%u", __func__, 656 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage); 657 pp->pr_nidle--; 658 } 659 660 pp->pr_nitems -= pp->pr_itemsperpage; 661 662 /* 663 * Unlink the page from the pool and queue it for release. 664 */ 665 LIST_REMOVE(ph, ph_pagelist); 666 if (pp->pr_roflags & PR_PHINPAGE) { 667 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 668 panic("%s: [%s] ph %p poolid %u != %u", 669 __func__, pp->pr_wchan, ph, ph->ph_poolid, 670 pp->pr_poolid); 671 } 672 } else { 673 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 674 } 675 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 676 677 pp->pr_npages--; 678 pp->pr_npagefree++; 679 680 pool_update_curpage(pp); 681 } 682 683 /* 684 * Initialize all the pools listed in the "pools" link set. 685 */ 686 void 687 pool_subsystem_init(void) 688 { 689 size_t size; 690 int idx; 691 692 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 693 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 694 cv_init(&pool_busy, "poolbusy"); 695 696 /* 697 * Initialize private page header pool and cache magazine pool if we 698 * haven't done so yet. 699 */ 700 for (idx = 0; idx < PHPOOL_MAX; idx++) { 701 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 702 int nelem; 703 size_t sz; 704 705 nelem = PHPOOL_FREELIST_NELEM(idx); 706 KASSERT(nelem != 0); 707 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 708 "phpool-%d", nelem); 709 sz = offsetof(struct pool_item_header, 710 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 711 pool_init(&phpool[idx], sz, 0, 0, 0, 712 phpool_names[idx], &pool_allocator_meta, IPL_VM); 713 } 714 715 size = sizeof(pcg_t) + 716 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 717 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 718 "pcgnormal", &pool_allocator_meta, IPL_VM); 719 720 size = sizeof(pcg_t) + 721 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 722 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 723 "pcglarge", &pool_allocator_meta, IPL_VM); 724 725 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 726 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 727 728 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 729 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 730 } 731 732 static inline bool 733 pool_init_is_phinpage(const struct pool *pp) 734 { 735 size_t pagesize; 736 737 if (pp->pr_roflags & PR_PHINPAGE) { 738 return true; 739 } 740 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) { 741 return false; 742 } 743 744 pagesize = pp->pr_alloc->pa_pagesz; 745 746 /* 747 * Threshold: the item size is below 1/16 of a page size, and below 748 * 8 times the page header size. The latter ensures we go off-page 749 * if the page header would make us waste a rather big item. 750 */ 751 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) { 752 return true; 753 } 754 755 /* Put the header into the page if it doesn't waste any items. */ 756 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) { 757 return true; 758 } 759 760 return false; 761 } 762 763 static inline bool 764 pool_init_is_usebmap(const struct pool *pp) 765 { 766 size_t bmapsize; 767 768 if (pp->pr_roflags & PR_NOTOUCH) { 769 return true; 770 } 771 772 /* 773 * If we're off-page, go with a bitmap. 774 */ 775 if (!(pp->pr_roflags & PR_PHINPAGE)) { 776 return true; 777 } 778 779 /* 780 * If we're on-page, and the page header can already contain a bitmap 781 * big enough to cover all the items of the page, go with a bitmap. 782 */ 783 bmapsize = roundup(PHSIZE, pp->pr_align) - 784 offsetof(struct pool_item_header, ph_bitmap[0]); 785 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0); 786 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) { 787 return true; 788 } 789 790 return false; 791 } 792 793 /* 794 * Initialize the given pool resource structure. 795 * 796 * We export this routine to allow other kernel parts to declare 797 * static pools that must be initialized before kmem(9) is available. 798 */ 799 void 800 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 801 const char *wchan, struct pool_allocator *palloc, int ipl) 802 { 803 struct pool *pp1; 804 size_t prsize; 805 int itemspace, slack; 806 807 /* XXX ioff will be removed. */ 808 KASSERT(ioff == 0); 809 810 #ifdef DEBUG 811 if (__predict_true(!cold)) 812 mutex_enter(&pool_head_lock); 813 /* 814 * Check that the pool hasn't already been initialised and 815 * added to the list of all pools. 816 */ 817 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 818 if (pp == pp1) 819 panic("%s: [%s] already initialised", __func__, 820 wchan); 821 } 822 if (__predict_true(!cold)) 823 mutex_exit(&pool_head_lock); 824 #endif 825 826 if (palloc == NULL) 827 palloc = &pool_allocator_kmem; 828 829 if (!cold) 830 mutex_enter(&pool_allocator_lock); 831 if (palloc->pa_refcnt++ == 0) { 832 if (palloc->pa_pagesz == 0) 833 palloc->pa_pagesz = PAGE_SIZE; 834 835 TAILQ_INIT(&palloc->pa_list); 836 837 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 838 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 839 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 840 } 841 if (!cold) 842 mutex_exit(&pool_allocator_lock); 843 844 if (align == 0) 845 align = ALIGN(1); 846 847 prsize = size; 848 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) 849 prsize = sizeof(struct pool_item); 850 851 prsize = roundup(prsize, align); 852 KASSERTMSG((prsize <= palloc->pa_pagesz), 853 "%s: [%s] pool item size (%zu) larger than page size (%u)", 854 __func__, wchan, prsize, palloc->pa_pagesz); 855 856 /* 857 * Initialize the pool structure. 858 */ 859 LIST_INIT(&pp->pr_emptypages); 860 LIST_INIT(&pp->pr_fullpages); 861 LIST_INIT(&pp->pr_partpages); 862 pp->pr_cache = NULL; 863 pp->pr_curpage = NULL; 864 pp->pr_npages = 0; 865 pp->pr_minitems = 0; 866 pp->pr_minpages = 0; 867 pp->pr_maxpages = UINT_MAX; 868 pp->pr_roflags = flags; 869 pp->pr_flags = 0; 870 pp->pr_size = prsize; 871 pp->pr_reqsize = size; 872 pp->pr_align = align; 873 pp->pr_wchan = wchan; 874 pp->pr_alloc = palloc; 875 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter); 876 pp->pr_nitems = 0; 877 pp->pr_nout = 0; 878 pp->pr_hardlimit = UINT_MAX; 879 pp->pr_hardlimit_warning = NULL; 880 pp->pr_hardlimit_ratecap.tv_sec = 0; 881 pp->pr_hardlimit_ratecap.tv_usec = 0; 882 pp->pr_hardlimit_warning_last.tv_sec = 0; 883 pp->pr_hardlimit_warning_last.tv_usec = 0; 884 pp->pr_drain_hook = NULL; 885 pp->pr_drain_hook_arg = NULL; 886 pp->pr_freecheck = NULL; 887 pp->pr_redzone = false; 888 pool_redzone_init(pp, size); 889 pool_quarantine_init(pp); 890 891 /* 892 * Decide whether to put the page header off-page to avoid wasting too 893 * large a part of the page or too big an item. Off-page page headers 894 * go on a hash table, so we can match a returned item with its header 895 * based on the page address. 896 */ 897 if (pool_init_is_phinpage(pp)) { 898 /* Use the beginning of the page for the page header */ 899 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align); 900 pp->pr_itemoffset = roundup(PHSIZE, align); 901 pp->pr_roflags |= PR_PHINPAGE; 902 } else { 903 /* The page header will be taken from our page header pool */ 904 itemspace = palloc->pa_pagesz; 905 pp->pr_itemoffset = 0; 906 SPLAY_INIT(&pp->pr_phtree); 907 } 908 909 pp->pr_itemsperpage = itemspace / pp->pr_size; 910 KASSERT(pp->pr_itemsperpage != 0); 911 912 /* 913 * Decide whether to use a bitmap or a linked list to manage freed 914 * items. 915 */ 916 if (pool_init_is_usebmap(pp)) { 917 pp->pr_roflags |= PR_USEBMAP; 918 } 919 920 /* 921 * If we're off-page, then we're using a bitmap; choose the appropriate 922 * pool to allocate page headers, whose size varies depending on the 923 * bitmap. If we're on-page, nothing to do. 924 */ 925 if (!(pp->pr_roflags & PR_PHINPAGE)) { 926 int idx; 927 928 KASSERT(pp->pr_roflags & PR_USEBMAP); 929 930 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 931 idx++) { 932 /* nothing */ 933 } 934 if (idx >= PHPOOL_MAX) { 935 /* 936 * if you see this panic, consider to tweak 937 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 938 */ 939 panic("%s: [%s] too large itemsperpage(%d) for " 940 "PR_USEBMAP", __func__, 941 pp->pr_wchan, pp->pr_itemsperpage); 942 } 943 pp->pr_phpool = &phpool[idx]; 944 } else { 945 pp->pr_phpool = NULL; 946 } 947 948 /* 949 * Use the slack between the chunks and the page header 950 * for "cache coloring". 951 */ 952 slack = itemspace - pp->pr_itemsperpage * pp->pr_size; 953 pp->pr_maxcolor = rounddown(slack, align); 954 pp->pr_curcolor = 0; 955 956 pp->pr_nget = 0; 957 pp->pr_nfail = 0; 958 pp->pr_nput = 0; 959 pp->pr_npagealloc = 0; 960 pp->pr_npagefree = 0; 961 pp->pr_hiwat = 0; 962 pp->pr_nidle = 0; 963 pp->pr_refcnt = 0; 964 965 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 966 cv_init(&pp->pr_cv, wchan); 967 pp->pr_ipl = ipl; 968 969 /* Insert into the list of all pools. */ 970 if (!cold) 971 mutex_enter(&pool_head_lock); 972 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 973 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 974 break; 975 } 976 if (pp1 == NULL) 977 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 978 else 979 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 980 if (!cold) 981 mutex_exit(&pool_head_lock); 982 983 /* Insert this into the list of pools using this allocator. */ 984 if (!cold) 985 mutex_enter(&palloc->pa_lock); 986 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 987 if (!cold) 988 mutex_exit(&palloc->pa_lock); 989 } 990 991 /* 992 * De-commision a pool resource. 993 */ 994 void 995 pool_destroy(struct pool *pp) 996 { 997 struct pool_pagelist pq; 998 struct pool_item_header *ph; 999 1000 pool_quarantine_flush(pp); 1001 1002 /* Remove from global pool list */ 1003 mutex_enter(&pool_head_lock); 1004 while (pp->pr_refcnt != 0) 1005 cv_wait(&pool_busy, &pool_head_lock); 1006 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 1007 if (drainpp == pp) 1008 drainpp = NULL; 1009 mutex_exit(&pool_head_lock); 1010 1011 /* Remove this pool from its allocator's list of pools. */ 1012 mutex_enter(&pp->pr_alloc->pa_lock); 1013 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 1014 mutex_exit(&pp->pr_alloc->pa_lock); 1015 1016 mutex_enter(&pool_allocator_lock); 1017 if (--pp->pr_alloc->pa_refcnt == 0) 1018 mutex_destroy(&pp->pr_alloc->pa_lock); 1019 mutex_exit(&pool_allocator_lock); 1020 1021 mutex_enter(&pp->pr_lock); 1022 1023 KASSERT(pp->pr_cache == NULL); 1024 KASSERTMSG((pp->pr_nout == 0), 1025 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan, 1026 pp->pr_nout); 1027 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 1028 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 1029 1030 /* Remove all pages */ 1031 LIST_INIT(&pq); 1032 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1033 pr_rmpage(pp, ph, &pq); 1034 1035 mutex_exit(&pp->pr_lock); 1036 1037 pr_pagelist_free(pp, &pq); 1038 cv_destroy(&pp->pr_cv); 1039 mutex_destroy(&pp->pr_lock); 1040 } 1041 1042 void 1043 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 1044 { 1045 1046 /* XXX no locking -- must be used just after pool_init() */ 1047 KASSERTMSG((pp->pr_drain_hook == NULL), 1048 "%s: [%s] already set", __func__, pp->pr_wchan); 1049 pp->pr_drain_hook = fn; 1050 pp->pr_drain_hook_arg = arg; 1051 } 1052 1053 static struct pool_item_header * 1054 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 1055 { 1056 struct pool_item_header *ph; 1057 1058 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 1059 ph = storage; 1060 else 1061 ph = pool_get(pp->pr_phpool, flags); 1062 1063 return ph; 1064 } 1065 1066 /* 1067 * Grab an item from the pool. 1068 */ 1069 void * 1070 pool_get(struct pool *pp, int flags) 1071 { 1072 struct pool_item_header *ph; 1073 void *v; 1074 1075 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 1076 KASSERTMSG((pp->pr_itemsperpage != 0), 1077 "%s: [%s] pr_itemsperpage is zero, " 1078 "pool not initialized?", __func__, pp->pr_wchan); 1079 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p()) 1080 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL), 1081 "%s: [%s] is IPL_NONE, but called from interrupt context", 1082 __func__, pp->pr_wchan); 1083 if (flags & PR_WAITOK) { 1084 ASSERT_SLEEPABLE(); 1085 } 1086 1087 if (flags & PR_NOWAIT) { 1088 if (fault_inject()) 1089 return NULL; 1090 } 1091 1092 mutex_enter(&pp->pr_lock); 1093 startover: 1094 /* 1095 * Check to see if we've reached the hard limit. If we have, 1096 * and we can wait, then wait until an item has been returned to 1097 * the pool. 1098 */ 1099 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit), 1100 "%s: %s: crossed hard limit", __func__, pp->pr_wchan); 1101 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1102 if (pp->pr_drain_hook != NULL) { 1103 /* 1104 * Since the drain hook is going to free things 1105 * back to the pool, unlock, call the hook, re-lock, 1106 * and check the hardlimit condition again. 1107 */ 1108 mutex_exit(&pp->pr_lock); 1109 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1110 mutex_enter(&pp->pr_lock); 1111 if (pp->pr_nout < pp->pr_hardlimit) 1112 goto startover; 1113 } 1114 1115 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1116 /* 1117 * XXX: A warning isn't logged in this case. Should 1118 * it be? 1119 */ 1120 pp->pr_flags |= PR_WANTED; 1121 do { 1122 cv_wait(&pp->pr_cv, &pp->pr_lock); 1123 } while (pp->pr_flags & PR_WANTED); 1124 goto startover; 1125 } 1126 1127 /* 1128 * Log a message that the hard limit has been hit. 1129 */ 1130 if (pp->pr_hardlimit_warning != NULL && 1131 ratecheck(&pp->pr_hardlimit_warning_last, 1132 &pp->pr_hardlimit_ratecap)) 1133 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1134 1135 pp->pr_nfail++; 1136 1137 mutex_exit(&pp->pr_lock); 1138 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1139 return NULL; 1140 } 1141 1142 /* 1143 * The convention we use is that if `curpage' is not NULL, then 1144 * it points at a non-empty bucket. In particular, `curpage' 1145 * never points at a page header which has PR_PHINPAGE set and 1146 * has no items in its bucket. 1147 */ 1148 if ((ph = pp->pr_curpage) == NULL) { 1149 int error; 1150 1151 KASSERTMSG((pp->pr_nitems == 0), 1152 "%s: [%s] curpage NULL, inconsistent nitems %u", 1153 __func__, pp->pr_wchan, pp->pr_nitems); 1154 1155 /* 1156 * Call the back-end page allocator for more memory. 1157 * Release the pool lock, as the back-end page allocator 1158 * may block. 1159 */ 1160 error = pool_grow(pp, flags); 1161 if (error != 0) { 1162 /* 1163 * pool_grow aborts when another thread 1164 * is allocating a new page. Retry if it 1165 * waited for it. 1166 */ 1167 if (error == ERESTART) 1168 goto startover; 1169 1170 /* 1171 * We were unable to allocate a page or item 1172 * header, but we released the lock during 1173 * allocation, so perhaps items were freed 1174 * back to the pool. Check for this case. 1175 */ 1176 if (pp->pr_curpage != NULL) 1177 goto startover; 1178 1179 pp->pr_nfail++; 1180 mutex_exit(&pp->pr_lock); 1181 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1182 return NULL; 1183 } 1184 1185 /* Start the allocation process over. */ 1186 goto startover; 1187 } 1188 if (pp->pr_roflags & PR_USEBMAP) { 1189 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage), 1190 "%s: [%s] pool page empty", __func__, pp->pr_wchan); 1191 v = pr_item_bitmap_get(pp, ph); 1192 } else { 1193 v = pr_item_linkedlist_get(pp, ph); 1194 } 1195 pp->pr_nitems--; 1196 pp->pr_nout++; 1197 if (ph->ph_nmissing == 0) { 1198 KASSERT(pp->pr_nidle > 0); 1199 pp->pr_nidle--; 1200 1201 /* 1202 * This page was previously empty. Move it to the list of 1203 * partially-full pages. This page is already curpage. 1204 */ 1205 LIST_REMOVE(ph, ph_pagelist); 1206 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1207 } 1208 ph->ph_nmissing++; 1209 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1210 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) || 1211 LIST_EMPTY(&ph->ph_itemlist)), 1212 "%s: [%s] nmissing (%u) inconsistent", __func__, 1213 pp->pr_wchan, ph->ph_nmissing); 1214 /* 1215 * This page is now full. Move it to the full list 1216 * and select a new current page. 1217 */ 1218 LIST_REMOVE(ph, ph_pagelist); 1219 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1220 pool_update_curpage(pp); 1221 } 1222 1223 pp->pr_nget++; 1224 1225 /* 1226 * If we have a low water mark and we are now below that low 1227 * water mark, add more items to the pool. 1228 */ 1229 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1230 /* 1231 * XXX: Should we log a warning? Should we set up a timeout 1232 * to try again in a second or so? The latter could break 1233 * a caller's assumptions about interrupt protection, etc. 1234 */ 1235 } 1236 1237 mutex_exit(&pp->pr_lock); 1238 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0); 1239 FREECHECK_OUT(&pp->pr_freecheck, v); 1240 pool_redzone_fill(pp, v); 1241 pool_get_kmsan(pp, v); 1242 if (flags & PR_ZERO) 1243 memset(v, 0, pp->pr_reqsize); 1244 return v; 1245 } 1246 1247 /* 1248 * Internal version of pool_put(). Pool is already locked/entered. 1249 */ 1250 static void 1251 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1252 { 1253 struct pool_item_header *ph; 1254 1255 KASSERT(mutex_owned(&pp->pr_lock)); 1256 pool_redzone_check(pp, v); 1257 pool_put_kmsan(pp, v); 1258 FREECHECK_IN(&pp->pr_freecheck, v); 1259 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1260 1261 KASSERTMSG((pp->pr_nout > 0), 1262 "%s: [%s] putting with none out", __func__, pp->pr_wchan); 1263 1264 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1265 panic("%s: [%s] page header missing", __func__, pp->pr_wchan); 1266 } 1267 1268 /* 1269 * Return to item list. 1270 */ 1271 if (pp->pr_roflags & PR_USEBMAP) { 1272 pr_item_bitmap_put(pp, ph, v); 1273 } else { 1274 pr_item_linkedlist_put(pp, ph, v); 1275 } 1276 KDASSERT(ph->ph_nmissing != 0); 1277 ph->ph_nmissing--; 1278 pp->pr_nput++; 1279 pp->pr_nitems++; 1280 pp->pr_nout--; 1281 1282 /* Cancel "pool empty" condition if it exists */ 1283 if (pp->pr_curpage == NULL) 1284 pp->pr_curpage = ph; 1285 1286 if (pp->pr_flags & PR_WANTED) { 1287 pp->pr_flags &= ~PR_WANTED; 1288 cv_broadcast(&pp->pr_cv); 1289 } 1290 1291 /* 1292 * If this page is now empty, do one of two things: 1293 * 1294 * (1) If we have more pages than the page high water mark, 1295 * free the page back to the system. ONLY CONSIDER 1296 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1297 * CLAIM. 1298 * 1299 * (2) Otherwise, move the page to the empty page list. 1300 * 1301 * Either way, select a new current page (so we use a partially-full 1302 * page if one is available). 1303 */ 1304 if (ph->ph_nmissing == 0) { 1305 pp->pr_nidle++; 1306 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems && 1307 pp->pr_npages > pp->pr_minpages && 1308 pp->pr_npages > pp->pr_maxpages) { 1309 pr_rmpage(pp, ph, pq); 1310 } else { 1311 LIST_REMOVE(ph, ph_pagelist); 1312 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1313 1314 /* 1315 * Update the timestamp on the page. A page must 1316 * be idle for some period of time before it can 1317 * be reclaimed by the pagedaemon. This minimizes 1318 * ping-pong'ing for memory. 1319 * 1320 * note for 64-bit time_t: truncating to 32-bit is not 1321 * a problem for our usage. 1322 */ 1323 ph->ph_time = time_uptime; 1324 } 1325 pool_update_curpage(pp); 1326 } 1327 1328 /* 1329 * If the page was previously completely full, move it to the 1330 * partially-full list and make it the current page. The next 1331 * allocation will get the item from this page, instead of 1332 * further fragmenting the pool. 1333 */ 1334 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1335 LIST_REMOVE(ph, ph_pagelist); 1336 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1337 pp->pr_curpage = ph; 1338 } 1339 } 1340 1341 void 1342 pool_put(struct pool *pp, void *v) 1343 { 1344 struct pool_pagelist pq; 1345 1346 LIST_INIT(&pq); 1347 1348 mutex_enter(&pp->pr_lock); 1349 if (!pool_put_quarantine(pp, v, &pq)) { 1350 pool_do_put(pp, v, &pq); 1351 } 1352 mutex_exit(&pp->pr_lock); 1353 1354 pr_pagelist_free(pp, &pq); 1355 } 1356 1357 /* 1358 * pool_grow: grow a pool by a page. 1359 * 1360 * => called with pool locked. 1361 * => unlock and relock the pool. 1362 * => return with pool locked. 1363 */ 1364 1365 static int 1366 pool_grow(struct pool *pp, int flags) 1367 { 1368 struct pool_item_header *ph; 1369 char *storage; 1370 1371 /* 1372 * If there's a pool_grow in progress, wait for it to complete 1373 * and try again from the top. 1374 */ 1375 if (pp->pr_flags & PR_GROWING) { 1376 if (flags & PR_WAITOK) { 1377 do { 1378 cv_wait(&pp->pr_cv, &pp->pr_lock); 1379 } while (pp->pr_flags & PR_GROWING); 1380 return ERESTART; 1381 } else { 1382 if (pp->pr_flags & PR_GROWINGNOWAIT) { 1383 /* 1384 * This needs an unlock/relock dance so 1385 * that the other caller has a chance to 1386 * run and actually do the thing. Note 1387 * that this is effectively a busy-wait. 1388 */ 1389 mutex_exit(&pp->pr_lock); 1390 mutex_enter(&pp->pr_lock); 1391 return ERESTART; 1392 } 1393 return EWOULDBLOCK; 1394 } 1395 } 1396 pp->pr_flags |= PR_GROWING; 1397 if (flags & PR_WAITOK) 1398 mutex_exit(&pp->pr_lock); 1399 else 1400 pp->pr_flags |= PR_GROWINGNOWAIT; 1401 1402 storage = pool_allocator_alloc(pp, flags); 1403 if (__predict_false(storage == NULL)) 1404 goto out; 1405 1406 ph = pool_alloc_item_header(pp, storage, flags); 1407 if (__predict_false(ph == NULL)) { 1408 pool_allocator_free(pp, storage); 1409 goto out; 1410 } 1411 1412 if (flags & PR_WAITOK) 1413 mutex_enter(&pp->pr_lock); 1414 pool_prime_page(pp, storage, ph); 1415 pp->pr_npagealloc++; 1416 KASSERT(pp->pr_flags & PR_GROWING); 1417 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1418 /* 1419 * If anyone was waiting for pool_grow, notify them that we 1420 * may have just done it. 1421 */ 1422 cv_broadcast(&pp->pr_cv); 1423 return 0; 1424 out: 1425 if (flags & PR_WAITOK) 1426 mutex_enter(&pp->pr_lock); 1427 KASSERT(pp->pr_flags & PR_GROWING); 1428 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1429 return ENOMEM; 1430 } 1431 1432 void 1433 pool_prime(struct pool *pp, int n) 1434 { 1435 1436 mutex_enter(&pp->pr_lock); 1437 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1438 if (pp->pr_maxpages <= pp->pr_minpages) 1439 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1440 while (pp->pr_npages < pp->pr_minpages) 1441 (void) pool_grow(pp, PR_WAITOK); 1442 mutex_exit(&pp->pr_lock); 1443 } 1444 1445 /* 1446 * Add a page worth of items to the pool. 1447 * 1448 * Note, we must be called with the pool descriptor LOCKED. 1449 */ 1450 static void 1451 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1452 { 1453 const unsigned int align = pp->pr_align; 1454 struct pool_item *pi; 1455 void *cp = storage; 1456 int n; 1457 1458 KASSERT(mutex_owned(&pp->pr_lock)); 1459 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) || 1460 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)), 1461 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp); 1462 1463 /* 1464 * Insert page header. 1465 */ 1466 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1467 LIST_INIT(&ph->ph_itemlist); 1468 ph->ph_page = storage; 1469 ph->ph_nmissing = 0; 1470 ph->ph_time = time_uptime; 1471 if (pp->pr_roflags & PR_PHINPAGE) 1472 ph->ph_poolid = pp->pr_poolid; 1473 else 1474 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1475 1476 pp->pr_nidle++; 1477 1478 /* 1479 * The item space starts after the on-page header, if any. 1480 */ 1481 ph->ph_off = pp->pr_itemoffset; 1482 1483 /* 1484 * Color this page. 1485 */ 1486 ph->ph_off += pp->pr_curcolor; 1487 cp = (char *)cp + ph->ph_off; 1488 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1489 pp->pr_curcolor = 0; 1490 1491 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1492 1493 /* 1494 * Insert remaining chunks on the bucket list. 1495 */ 1496 n = pp->pr_itemsperpage; 1497 pp->pr_nitems += n; 1498 1499 if (pp->pr_roflags & PR_USEBMAP) { 1500 pr_item_bitmap_init(pp, ph); 1501 } else { 1502 while (n--) { 1503 pi = (struct pool_item *)cp; 1504 1505 KASSERT((((vaddr_t)pi) & (align - 1)) == 0); 1506 1507 /* Insert on page list */ 1508 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1509 #ifdef POOL_CHECK_MAGIC 1510 pi->pi_magic = PI_MAGIC; 1511 #endif 1512 cp = (char *)cp + pp->pr_size; 1513 1514 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1515 } 1516 } 1517 1518 /* 1519 * If the pool was depleted, point at the new page. 1520 */ 1521 if (pp->pr_curpage == NULL) 1522 pp->pr_curpage = ph; 1523 1524 if (++pp->pr_npages > pp->pr_hiwat) 1525 pp->pr_hiwat = pp->pr_npages; 1526 } 1527 1528 /* 1529 * Used by pool_get() when nitems drops below the low water mark. This 1530 * is used to catch up pr_nitems with the low water mark. 1531 * 1532 * Note 1, we never wait for memory here, we let the caller decide what to do. 1533 * 1534 * Note 2, we must be called with the pool already locked, and we return 1535 * with it locked. 1536 */ 1537 static int 1538 pool_catchup(struct pool *pp) 1539 { 1540 int error = 0; 1541 1542 while (POOL_NEEDS_CATCHUP(pp)) { 1543 error = pool_grow(pp, PR_NOWAIT); 1544 if (error) { 1545 if (error == ERESTART) 1546 continue; 1547 break; 1548 } 1549 } 1550 return error; 1551 } 1552 1553 static void 1554 pool_update_curpage(struct pool *pp) 1555 { 1556 1557 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1558 if (pp->pr_curpage == NULL) { 1559 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1560 } 1561 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1562 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1563 } 1564 1565 void 1566 pool_setlowat(struct pool *pp, int n) 1567 { 1568 1569 mutex_enter(&pp->pr_lock); 1570 pp->pr_minitems = n; 1571 1572 /* Make sure we're caught up with the newly-set low water mark. */ 1573 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1574 /* 1575 * XXX: Should we log a warning? Should we set up a timeout 1576 * to try again in a second or so? The latter could break 1577 * a caller's assumptions about interrupt protection, etc. 1578 */ 1579 } 1580 1581 mutex_exit(&pp->pr_lock); 1582 } 1583 1584 void 1585 pool_sethiwat(struct pool *pp, int n) 1586 { 1587 1588 mutex_enter(&pp->pr_lock); 1589 1590 pp->pr_maxitems = n; 1591 1592 mutex_exit(&pp->pr_lock); 1593 } 1594 1595 void 1596 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1597 { 1598 1599 mutex_enter(&pp->pr_lock); 1600 1601 pp->pr_hardlimit = n; 1602 pp->pr_hardlimit_warning = warnmess; 1603 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1604 pp->pr_hardlimit_warning_last.tv_sec = 0; 1605 pp->pr_hardlimit_warning_last.tv_usec = 0; 1606 1607 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1608 1609 mutex_exit(&pp->pr_lock); 1610 } 1611 1612 unsigned int 1613 pool_nget(struct pool *pp) 1614 { 1615 1616 return pp->pr_nget; 1617 } 1618 1619 unsigned int 1620 pool_nput(struct pool *pp) 1621 { 1622 1623 return pp->pr_nput; 1624 } 1625 1626 /* 1627 * Release all complete pages that have not been used recently. 1628 * 1629 * Must not be called from interrupt context. 1630 */ 1631 int 1632 pool_reclaim(struct pool *pp) 1633 { 1634 struct pool_item_header *ph, *phnext; 1635 struct pool_pagelist pq; 1636 uint32_t curtime; 1637 bool klock; 1638 int rv; 1639 1640 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1641 1642 if (pp->pr_drain_hook != NULL) { 1643 /* 1644 * The drain hook must be called with the pool unlocked. 1645 */ 1646 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1647 } 1648 1649 /* 1650 * XXXSMP Because we do not want to cause non-MPSAFE code 1651 * to block. 1652 */ 1653 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1654 pp->pr_ipl == IPL_SOFTSERIAL) { 1655 KERNEL_LOCK(1, NULL); 1656 klock = true; 1657 } else 1658 klock = false; 1659 1660 /* Reclaim items from the pool's cache (if any). */ 1661 if (pp->pr_cache != NULL) 1662 pool_cache_invalidate(pp->pr_cache); 1663 1664 if (mutex_tryenter(&pp->pr_lock) == 0) { 1665 if (klock) { 1666 KERNEL_UNLOCK_ONE(NULL); 1667 } 1668 return 0; 1669 } 1670 1671 LIST_INIT(&pq); 1672 1673 curtime = time_uptime; 1674 1675 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1676 phnext = LIST_NEXT(ph, ph_pagelist); 1677 1678 /* Check our minimum page claim */ 1679 if (pp->pr_npages <= pp->pr_minpages) 1680 break; 1681 1682 KASSERT(ph->ph_nmissing == 0); 1683 if (curtime - ph->ph_time < pool_inactive_time) 1684 continue; 1685 1686 /* 1687 * If freeing this page would put us below the minimum free items 1688 * or the minimum pages, stop now. 1689 */ 1690 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems || 1691 pp->pr_npages - 1 < pp->pr_minpages) 1692 break; 1693 1694 pr_rmpage(pp, ph, &pq); 1695 } 1696 1697 mutex_exit(&pp->pr_lock); 1698 1699 if (LIST_EMPTY(&pq)) 1700 rv = 0; 1701 else { 1702 pr_pagelist_free(pp, &pq); 1703 rv = 1; 1704 } 1705 1706 if (klock) { 1707 KERNEL_UNLOCK_ONE(NULL); 1708 } 1709 1710 return rv; 1711 } 1712 1713 /* 1714 * Drain pools, one at a time. The drained pool is returned within ppp. 1715 * 1716 * Note, must never be called from interrupt context. 1717 */ 1718 bool 1719 pool_drain(struct pool **ppp) 1720 { 1721 bool reclaimed; 1722 struct pool *pp; 1723 1724 KASSERT(!TAILQ_EMPTY(&pool_head)); 1725 1726 pp = NULL; 1727 1728 /* Find next pool to drain, and add a reference. */ 1729 mutex_enter(&pool_head_lock); 1730 do { 1731 if (drainpp == NULL) { 1732 drainpp = TAILQ_FIRST(&pool_head); 1733 } 1734 if (drainpp != NULL) { 1735 pp = drainpp; 1736 drainpp = TAILQ_NEXT(pp, pr_poollist); 1737 } 1738 /* 1739 * Skip completely idle pools. We depend on at least 1740 * one pool in the system being active. 1741 */ 1742 } while (pp == NULL || pp->pr_npages == 0); 1743 pp->pr_refcnt++; 1744 mutex_exit(&pool_head_lock); 1745 1746 /* Drain the cache (if any) and pool.. */ 1747 reclaimed = pool_reclaim(pp); 1748 1749 /* Finally, unlock the pool. */ 1750 mutex_enter(&pool_head_lock); 1751 pp->pr_refcnt--; 1752 cv_broadcast(&pool_busy); 1753 mutex_exit(&pool_head_lock); 1754 1755 if (ppp != NULL) 1756 *ppp = pp; 1757 1758 return reclaimed; 1759 } 1760 1761 /* 1762 * Calculate the total number of pages consumed by pools. 1763 */ 1764 int 1765 pool_totalpages(void) 1766 { 1767 1768 mutex_enter(&pool_head_lock); 1769 int pages = pool_totalpages_locked(); 1770 mutex_exit(&pool_head_lock); 1771 1772 return pages; 1773 } 1774 1775 int 1776 pool_totalpages_locked(void) 1777 { 1778 struct pool *pp; 1779 uint64_t total = 0; 1780 1781 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1782 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz; 1783 1784 if ((pp->pr_roflags & PR_RECURSIVE) != 0) 1785 bytes -= (pp->pr_nout * pp->pr_size); 1786 total += bytes; 1787 } 1788 1789 return atop(total); 1790 } 1791 1792 /* 1793 * Diagnostic helpers. 1794 */ 1795 1796 void 1797 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1798 { 1799 struct pool *pp; 1800 1801 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1802 pool_printit(pp, modif, pr); 1803 } 1804 } 1805 1806 void 1807 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1808 { 1809 1810 if (pp == NULL) { 1811 (*pr)("Must specify a pool to print.\n"); 1812 return; 1813 } 1814 1815 pool_print1(pp, modif, pr); 1816 } 1817 1818 static void 1819 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1820 void (*pr)(const char *, ...)) 1821 { 1822 struct pool_item_header *ph; 1823 1824 LIST_FOREACH(ph, pl, ph_pagelist) { 1825 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1826 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1827 #ifdef POOL_CHECK_MAGIC 1828 struct pool_item *pi; 1829 if (!(pp->pr_roflags & PR_USEBMAP)) { 1830 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1831 if (pi->pi_magic != PI_MAGIC) { 1832 (*pr)("\t\t\titem %p, magic 0x%x\n", 1833 pi, pi->pi_magic); 1834 } 1835 } 1836 } 1837 #endif 1838 } 1839 } 1840 1841 static void 1842 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1843 { 1844 struct pool_item_header *ph; 1845 pool_cache_t pc; 1846 pcg_t *pcg; 1847 pool_cache_cpu_t *cc; 1848 uint64_t cpuhit, cpumiss, pchit, pcmiss; 1849 uint32_t nfull; 1850 int i; 1851 bool print_log = false, print_pagelist = false, print_cache = false; 1852 bool print_short = false, skip_empty = false; 1853 char c; 1854 1855 while ((c = *modif++) != '\0') { 1856 if (c == 'l') 1857 print_log = true; 1858 if (c == 'p') 1859 print_pagelist = true; 1860 if (c == 'c') 1861 print_cache = true; 1862 if (c == 's') 1863 print_short = true; 1864 if (c == 'S') 1865 skip_empty = true; 1866 } 1867 1868 if (skip_empty && pp->pr_nget == 0) 1869 return; 1870 1871 if ((pc = pp->pr_cache) != NULL) { 1872 (*pr)("POOLCACHE"); 1873 } else { 1874 (*pr)("POOL"); 1875 } 1876 1877 /* Single line output. */ 1878 if (print_short) { 1879 (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n", 1880 pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages, 1881 pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput, 1882 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle); 1883 1884 return; 1885 } 1886 1887 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1888 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1889 pp->pr_roflags); 1890 (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc); 1891 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1892 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1893 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1894 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1895 1896 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1897 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1898 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1899 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1900 1901 if (!print_pagelist) 1902 goto skip_pagelist; 1903 1904 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1905 (*pr)("\n\tempty page list:\n"); 1906 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1907 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1908 (*pr)("\n\tfull page list:\n"); 1909 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1910 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1911 (*pr)("\n\tpartial-page list:\n"); 1912 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1913 1914 if (pp->pr_curpage == NULL) 1915 (*pr)("\tno current page\n"); 1916 else 1917 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1918 1919 skip_pagelist: 1920 if (print_log) 1921 goto skip_log; 1922 1923 (*pr)("\n"); 1924 1925 skip_log: 1926 1927 #define PR_GROUPLIST(pcg) \ 1928 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1929 for (i = 0; i < pcg->pcg_size; i++) { \ 1930 if (pcg->pcg_objects[i].pcgo_pa != \ 1931 POOL_PADDR_INVALID) { \ 1932 (*pr)("\t\t\t%p, 0x%llx\n", \ 1933 pcg->pcg_objects[i].pcgo_va, \ 1934 (unsigned long long) \ 1935 pcg->pcg_objects[i].pcgo_pa); \ 1936 } else { \ 1937 (*pr)("\t\t\t%p\n", \ 1938 pcg->pcg_objects[i].pcgo_va); \ 1939 } \ 1940 } 1941 1942 if (pc != NULL) { 1943 cpuhit = 0; 1944 cpumiss = 0; 1945 pcmiss = 0; 1946 nfull = 0; 1947 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1948 if ((cc = pc->pc_cpus[i]) == NULL) 1949 continue; 1950 cpuhit += cc->cc_hits; 1951 cpumiss += cc->cc_misses; 1952 pcmiss += cc->cc_pcmisses; 1953 nfull += cc->cc_nfull; 1954 } 1955 pchit = cpumiss - pcmiss; 1956 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1957 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss); 1958 (*pr)("\tcache layer full groups %u\n", nfull); 1959 if (print_cache) { 1960 (*pr)("\tfull cache groups:\n"); 1961 for (pcg = pc->pc_fullgroups; pcg != NULL; 1962 pcg = pcg->pcg_next) { 1963 PR_GROUPLIST(pcg); 1964 } 1965 } 1966 } 1967 #undef PR_GROUPLIST 1968 } 1969 1970 static int 1971 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1972 { 1973 struct pool_item *pi; 1974 void *page; 1975 int n; 1976 1977 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1978 page = POOL_OBJ_TO_PAGE(pp, ph); 1979 if (page != ph->ph_page && 1980 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1981 if (label != NULL) 1982 printf("%s: ", label); 1983 printf("pool(%p:%s): page inconsistency: page %p;" 1984 " at page head addr %p (p %p)\n", pp, 1985 pp->pr_wchan, ph->ph_page, 1986 ph, page); 1987 return 1; 1988 } 1989 } 1990 1991 if ((pp->pr_roflags & PR_USEBMAP) != 0) 1992 return 0; 1993 1994 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1995 pi != NULL; 1996 pi = LIST_NEXT(pi,pi_list), n++) { 1997 1998 #ifdef POOL_CHECK_MAGIC 1999 if (pi->pi_magic != PI_MAGIC) { 2000 if (label != NULL) 2001 printf("%s: ", label); 2002 printf("pool(%s): free list modified: magic=%x;" 2003 " page %p; item ordinal %d; addr %p\n", 2004 pp->pr_wchan, pi->pi_magic, ph->ph_page, 2005 n, pi); 2006 panic("pool"); 2007 } 2008 #endif 2009 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 2010 continue; 2011 } 2012 page = POOL_OBJ_TO_PAGE(pp, pi); 2013 if (page == ph->ph_page) 2014 continue; 2015 2016 if (label != NULL) 2017 printf("%s: ", label); 2018 printf("pool(%p:%s): page inconsistency: page %p;" 2019 " item ordinal %d; addr %p (p %p)\n", pp, 2020 pp->pr_wchan, ph->ph_page, 2021 n, pi, page); 2022 return 1; 2023 } 2024 return 0; 2025 } 2026 2027 2028 int 2029 pool_chk(struct pool *pp, const char *label) 2030 { 2031 struct pool_item_header *ph; 2032 int r = 0; 2033 2034 mutex_enter(&pp->pr_lock); 2035 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2036 r = pool_chk_page(pp, label, ph); 2037 if (r) { 2038 goto out; 2039 } 2040 } 2041 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2042 r = pool_chk_page(pp, label, ph); 2043 if (r) { 2044 goto out; 2045 } 2046 } 2047 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2048 r = pool_chk_page(pp, label, ph); 2049 if (r) { 2050 goto out; 2051 } 2052 } 2053 2054 out: 2055 mutex_exit(&pp->pr_lock); 2056 return r; 2057 } 2058 2059 /* 2060 * pool_cache_init: 2061 * 2062 * Initialize a pool cache. 2063 */ 2064 pool_cache_t 2065 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2066 const char *wchan, struct pool_allocator *palloc, int ipl, 2067 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2068 { 2069 pool_cache_t pc; 2070 2071 pc = pool_get(&cache_pool, PR_WAITOK); 2072 if (pc == NULL) 2073 return NULL; 2074 2075 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2076 palloc, ipl, ctor, dtor, arg); 2077 2078 return pc; 2079 } 2080 2081 /* 2082 * pool_cache_bootstrap: 2083 * 2084 * Kernel-private version of pool_cache_init(). The caller 2085 * provides initial storage. 2086 */ 2087 void 2088 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2089 u_int align_offset, u_int flags, const char *wchan, 2090 struct pool_allocator *palloc, int ipl, 2091 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2092 void *arg) 2093 { 2094 CPU_INFO_ITERATOR cii; 2095 pool_cache_t pc1; 2096 struct cpu_info *ci; 2097 struct pool *pp; 2098 2099 pp = &pc->pc_pool; 2100 if (palloc == NULL && ipl == IPL_NONE) { 2101 if (size > PAGE_SIZE) { 2102 int bigidx = pool_bigidx(size); 2103 2104 palloc = &pool_allocator_big[bigidx]; 2105 flags |= PR_NOALIGN; 2106 } else 2107 palloc = &pool_allocator_nointr; 2108 } 2109 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2110 2111 if (ctor == NULL) { 2112 ctor = NO_CTOR; 2113 } 2114 if (dtor == NULL) { 2115 dtor = NO_DTOR; 2116 } 2117 2118 pc->pc_fullgroups = NULL; 2119 pc->pc_partgroups = NULL; 2120 pc->pc_ctor = ctor; 2121 pc->pc_dtor = dtor; 2122 pc->pc_arg = arg; 2123 pc->pc_refcnt = 0; 2124 pc->pc_freecheck = NULL; 2125 2126 if ((flags & PR_LARGECACHE) != 0) { 2127 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2128 pc->pc_pcgpool = &pcg_large_pool; 2129 pc->pc_pcgcache = &pcg_large_cache; 2130 } else { 2131 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2132 pc->pc_pcgpool = &pcg_normal_pool; 2133 pc->pc_pcgcache = &pcg_normal_cache; 2134 } 2135 2136 /* Allocate per-CPU caches. */ 2137 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2138 pc->pc_ncpu = 0; 2139 if (ncpu < 2) { 2140 /* XXX For sparc: boot CPU is not attached yet. */ 2141 pool_cache_cpu_init1(curcpu(), pc); 2142 } else { 2143 for (CPU_INFO_FOREACH(cii, ci)) { 2144 pool_cache_cpu_init1(ci, pc); 2145 } 2146 } 2147 2148 /* Add to list of all pools. */ 2149 if (__predict_true(!cold)) 2150 mutex_enter(&pool_head_lock); 2151 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2152 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2153 break; 2154 } 2155 if (pc1 == NULL) 2156 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2157 else 2158 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2159 if (__predict_true(!cold)) 2160 mutex_exit(&pool_head_lock); 2161 2162 membar_sync(); 2163 pp->pr_cache = pc; 2164 } 2165 2166 /* 2167 * pool_cache_destroy: 2168 * 2169 * Destroy a pool cache. 2170 */ 2171 void 2172 pool_cache_destroy(pool_cache_t pc) 2173 { 2174 2175 pool_cache_bootstrap_destroy(pc); 2176 pool_put(&cache_pool, pc); 2177 } 2178 2179 /* 2180 * pool_cache_bootstrap_destroy: 2181 * 2182 * Destroy a pool cache. 2183 */ 2184 void 2185 pool_cache_bootstrap_destroy(pool_cache_t pc) 2186 { 2187 struct pool *pp = &pc->pc_pool; 2188 u_int i; 2189 2190 /* Remove it from the global list. */ 2191 mutex_enter(&pool_head_lock); 2192 while (pc->pc_refcnt != 0) 2193 cv_wait(&pool_busy, &pool_head_lock); 2194 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2195 mutex_exit(&pool_head_lock); 2196 2197 /* First, invalidate the entire cache. */ 2198 pool_cache_invalidate(pc); 2199 2200 /* Disassociate it from the pool. */ 2201 mutex_enter(&pp->pr_lock); 2202 pp->pr_cache = NULL; 2203 mutex_exit(&pp->pr_lock); 2204 2205 /* Destroy per-CPU data */ 2206 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 2207 pool_cache_invalidate_cpu(pc, i); 2208 2209 /* Finally, destroy it. */ 2210 pool_destroy(pp); 2211 } 2212 2213 /* 2214 * pool_cache_cpu_init1: 2215 * 2216 * Called for each pool_cache whenever a new CPU is attached. 2217 */ 2218 static void 2219 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2220 { 2221 pool_cache_cpu_t *cc; 2222 int index; 2223 2224 index = ci->ci_index; 2225 2226 KASSERT(index < __arraycount(pc->pc_cpus)); 2227 2228 if ((cc = pc->pc_cpus[index]) != NULL) { 2229 return; 2230 } 2231 2232 /* 2233 * The first CPU is 'free'. This needs to be the case for 2234 * bootstrap - we may not be able to allocate yet. 2235 */ 2236 if (pc->pc_ncpu == 0) { 2237 cc = &pc->pc_cpu0; 2238 pc->pc_ncpu = 1; 2239 } else { 2240 pc->pc_ncpu++; 2241 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2242 } 2243 2244 cc->cc_current = __UNCONST(&pcg_dummy); 2245 cc->cc_previous = __UNCONST(&pcg_dummy); 2246 cc->cc_pcgcache = pc->pc_pcgcache; 2247 cc->cc_hits = 0; 2248 cc->cc_misses = 0; 2249 cc->cc_pcmisses = 0; 2250 cc->cc_contended = 0; 2251 cc->cc_nfull = 0; 2252 cc->cc_npart = 0; 2253 2254 pc->pc_cpus[index] = cc; 2255 } 2256 2257 /* 2258 * pool_cache_cpu_init: 2259 * 2260 * Called whenever a new CPU is attached. 2261 */ 2262 void 2263 pool_cache_cpu_init(struct cpu_info *ci) 2264 { 2265 pool_cache_t pc; 2266 2267 mutex_enter(&pool_head_lock); 2268 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2269 pc->pc_refcnt++; 2270 mutex_exit(&pool_head_lock); 2271 2272 pool_cache_cpu_init1(ci, pc); 2273 2274 mutex_enter(&pool_head_lock); 2275 pc->pc_refcnt--; 2276 cv_broadcast(&pool_busy); 2277 } 2278 mutex_exit(&pool_head_lock); 2279 } 2280 2281 /* 2282 * pool_cache_reclaim: 2283 * 2284 * Reclaim memory from a pool cache. 2285 */ 2286 bool 2287 pool_cache_reclaim(pool_cache_t pc) 2288 { 2289 2290 return pool_reclaim(&pc->pc_pool); 2291 } 2292 2293 static void 2294 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2295 { 2296 (*pc->pc_dtor)(pc->pc_arg, object); 2297 pool_put(&pc->pc_pool, object); 2298 } 2299 2300 /* 2301 * pool_cache_destruct_object: 2302 * 2303 * Force destruction of an object and its release back into 2304 * the pool. 2305 */ 2306 void 2307 pool_cache_destruct_object(pool_cache_t pc, void *object) 2308 { 2309 2310 FREECHECK_IN(&pc->pc_freecheck, object); 2311 2312 pool_cache_destruct_object1(pc, object); 2313 } 2314 2315 /* 2316 * pool_cache_invalidate_groups: 2317 * 2318 * Invalidate a chain of groups and destruct all objects. Return the 2319 * number of groups that were invalidated. 2320 */ 2321 static int 2322 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2323 { 2324 void *object; 2325 pcg_t *next; 2326 int i, n; 2327 2328 for (n = 0; pcg != NULL; pcg = next, n++) { 2329 next = pcg->pcg_next; 2330 2331 for (i = 0; i < pcg->pcg_avail; i++) { 2332 object = pcg->pcg_objects[i].pcgo_va; 2333 pool_cache_destruct_object1(pc, object); 2334 } 2335 2336 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2337 pool_put(&pcg_large_pool, pcg); 2338 } else { 2339 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2340 pool_put(&pcg_normal_pool, pcg); 2341 } 2342 } 2343 return n; 2344 } 2345 2346 /* 2347 * pool_cache_invalidate: 2348 * 2349 * Invalidate a pool cache (destruct and release all of the 2350 * cached objects). Does not reclaim objects from the pool. 2351 * 2352 * Note: For pool caches that provide constructed objects, there 2353 * is an assumption that another level of synchronization is occurring 2354 * between the input to the constructor and the cache invalidation. 2355 * 2356 * Invalidation is a costly process and should not be called from 2357 * interrupt context. 2358 */ 2359 void 2360 pool_cache_invalidate(pool_cache_t pc) 2361 { 2362 uint64_t where; 2363 pcg_t *pcg; 2364 int n, s; 2365 2366 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 2367 2368 if (ncpu < 2 || !mp_online) { 2369 /* 2370 * We might be called early enough in the boot process 2371 * for the CPU data structures to not be fully initialized. 2372 * In this case, transfer the content of the local CPU's 2373 * cache back into global cache as only this CPU is currently 2374 * running. 2375 */ 2376 pool_cache_transfer(pc); 2377 } else { 2378 /* 2379 * Signal all CPUs that they must transfer their local 2380 * cache back to the global pool then wait for the xcall to 2381 * complete. 2382 */ 2383 where = xc_broadcast(0, 2384 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL); 2385 xc_wait(where); 2386 } 2387 2388 /* Now dequeue and invalidate everything. */ 2389 pcg = pool_pcg_trunc(&pcg_normal_cache); 2390 (void)pool_cache_invalidate_groups(pc, pcg); 2391 2392 pcg = pool_pcg_trunc(&pcg_large_cache); 2393 (void)pool_cache_invalidate_groups(pc, pcg); 2394 2395 pcg = pool_pcg_trunc(&pc->pc_fullgroups); 2396 n = pool_cache_invalidate_groups(pc, pcg); 2397 s = splvm(); 2398 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n; 2399 splx(s); 2400 2401 pcg = pool_pcg_trunc(&pc->pc_partgroups); 2402 n = pool_cache_invalidate_groups(pc, pcg); 2403 s = splvm(); 2404 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n; 2405 splx(s); 2406 } 2407 2408 /* 2409 * pool_cache_invalidate_cpu: 2410 * 2411 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2412 * identified by its associated index. 2413 * It is caller's responsibility to ensure that no operation is 2414 * taking place on this pool cache while doing this invalidation. 2415 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2416 * pool cached objects from a CPU different from the one currently running 2417 * may result in an undefined behaviour. 2418 */ 2419 static void 2420 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2421 { 2422 pool_cache_cpu_t *cc; 2423 pcg_t *pcg; 2424 2425 if ((cc = pc->pc_cpus[index]) == NULL) 2426 return; 2427 2428 if ((pcg = cc->cc_current) != &pcg_dummy) { 2429 pcg->pcg_next = NULL; 2430 pool_cache_invalidate_groups(pc, pcg); 2431 } 2432 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2433 pcg->pcg_next = NULL; 2434 pool_cache_invalidate_groups(pc, pcg); 2435 } 2436 if (cc != &pc->pc_cpu0) 2437 pool_put(&cache_cpu_pool, cc); 2438 2439 } 2440 2441 void 2442 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2443 { 2444 2445 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2446 } 2447 2448 void 2449 pool_cache_setlowat(pool_cache_t pc, int n) 2450 { 2451 2452 pool_setlowat(&pc->pc_pool, n); 2453 } 2454 2455 void 2456 pool_cache_sethiwat(pool_cache_t pc, int n) 2457 { 2458 2459 pool_sethiwat(&pc->pc_pool, n); 2460 } 2461 2462 void 2463 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2464 { 2465 2466 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2467 } 2468 2469 void 2470 pool_cache_prime(pool_cache_t pc, int n) 2471 { 2472 2473 pool_prime(&pc->pc_pool, n); 2474 } 2475 2476 unsigned int 2477 pool_cache_nget(pool_cache_t pc) 2478 { 2479 2480 return pool_nget(&pc->pc_pool); 2481 } 2482 2483 unsigned int 2484 pool_cache_nput(pool_cache_t pc) 2485 { 2486 2487 return pool_nput(&pc->pc_pool); 2488 } 2489 2490 /* 2491 * pool_pcg_get: 2492 * 2493 * Get a cache group from the specified list. Return true if 2494 * contention was encountered. Must be called at IPL_VM because 2495 * of spin wait vs. kernel_lock. 2496 */ 2497 static int 2498 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp) 2499 { 2500 int count = SPINLOCK_BACKOFF_MIN; 2501 pcg_t *o, *n; 2502 2503 for (o = atomic_load_relaxed(head);; o = n) { 2504 if (__predict_false(o == &pcg_dummy)) { 2505 /* Wait for concurrent get to complete. */ 2506 SPINLOCK_BACKOFF(count); 2507 n = atomic_load_relaxed(head); 2508 continue; 2509 } 2510 if (__predict_false(o == NULL)) { 2511 break; 2512 } 2513 /* Lock out concurrent get/put. */ 2514 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy)); 2515 if (o == n) { 2516 /* Fetch pointer to next item and then unlock. */ 2517 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2518 membar_datadep_consumer(); /* alpha */ 2519 #endif 2520 n = atomic_load_relaxed(&o->pcg_next); 2521 atomic_store_release(head, n); 2522 break; 2523 } 2524 } 2525 *pcgp = o; 2526 return count != SPINLOCK_BACKOFF_MIN; 2527 } 2528 2529 /* 2530 * pool_pcg_trunc: 2531 * 2532 * Chop out entire list of pool cache groups. 2533 */ 2534 static pcg_t * 2535 pool_pcg_trunc(pcg_t *volatile *head) 2536 { 2537 int count = SPINLOCK_BACKOFF_MIN, s; 2538 pcg_t *o, *n; 2539 2540 s = splvm(); 2541 for (o = atomic_load_relaxed(head);; o = n) { 2542 if (__predict_false(o == &pcg_dummy)) { 2543 /* Wait for concurrent get to complete. */ 2544 SPINLOCK_BACKOFF(count); 2545 n = atomic_load_relaxed(head); 2546 continue; 2547 } 2548 n = atomic_cas_ptr(head, o, NULL); 2549 if (o == n) { 2550 splx(s); 2551 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2552 membar_datadep_consumer(); /* alpha */ 2553 #endif 2554 return o; 2555 } 2556 } 2557 } 2558 2559 /* 2560 * pool_pcg_put: 2561 * 2562 * Put a pool cache group to the specified list. Return true if 2563 * contention was encountered. Must be called at IPL_VM because of 2564 * spin wait vs. kernel_lock. 2565 */ 2566 static int 2567 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg) 2568 { 2569 int count = SPINLOCK_BACKOFF_MIN; 2570 pcg_t *o, *n; 2571 2572 for (o = atomic_load_relaxed(head);; o = n) { 2573 if (__predict_false(o == &pcg_dummy)) { 2574 /* Wait for concurrent get to complete. */ 2575 SPINLOCK_BACKOFF(count); 2576 n = atomic_load_relaxed(head); 2577 continue; 2578 } 2579 pcg->pcg_next = o; 2580 #ifndef __HAVE_ATOMIC_AS_MEMBAR 2581 membar_exit(); 2582 #endif 2583 n = atomic_cas_ptr(head, o, pcg); 2584 if (o == n) { 2585 return count != SPINLOCK_BACKOFF_MIN; 2586 } 2587 } 2588 } 2589 2590 static bool __noinline 2591 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, 2592 void **objectp, paddr_t *pap, int flags) 2593 { 2594 pcg_t *pcg, *cur; 2595 void *object; 2596 2597 KASSERT(cc->cc_current->pcg_avail == 0); 2598 KASSERT(cc->cc_previous->pcg_avail == 0); 2599 2600 cc->cc_misses++; 2601 2602 /* 2603 * If there's a full group, release our empty group back to the 2604 * cache. Install the full group as cc_current and return. 2605 */ 2606 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg); 2607 if (__predict_true(pcg != NULL)) { 2608 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2609 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2610 KASSERT(cur->pcg_avail == 0); 2611 (void)pool_pcg_put(cc->cc_pcgcache, cur); 2612 } 2613 cc->cc_nfull--; 2614 cc->cc_current = pcg; 2615 return true; 2616 } 2617 2618 /* 2619 * Nothing available locally or in cache. Take the slow 2620 * path: fetch a new object from the pool and construct 2621 * it. 2622 */ 2623 cc->cc_pcmisses++; 2624 splx(s); 2625 2626 object = pool_get(&pc->pc_pool, flags); 2627 *objectp = object; 2628 if (__predict_false(object == NULL)) { 2629 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 2630 return false; 2631 } 2632 2633 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2634 pool_put(&pc->pc_pool, object); 2635 *objectp = NULL; 2636 return false; 2637 } 2638 2639 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0); 2640 2641 if (pap != NULL) { 2642 #ifdef POOL_VTOPHYS 2643 *pap = POOL_VTOPHYS(object); 2644 #else 2645 *pap = POOL_PADDR_INVALID; 2646 #endif 2647 } 2648 2649 FREECHECK_OUT(&pc->pc_freecheck, object); 2650 return false; 2651 } 2652 2653 /* 2654 * pool_cache_get{,_paddr}: 2655 * 2656 * Get an object from a pool cache (optionally returning 2657 * the physical address of the object). 2658 */ 2659 void * 2660 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2661 { 2662 pool_cache_cpu_t *cc; 2663 pcg_t *pcg; 2664 void *object; 2665 int s; 2666 2667 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 2668 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2669 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2670 "%s: [%s] is IPL_NONE, but called from interrupt context", 2671 __func__, pc->pc_pool.pr_wchan); 2672 2673 if (flags & PR_WAITOK) { 2674 ASSERT_SLEEPABLE(); 2675 } 2676 2677 if (flags & PR_NOWAIT) { 2678 if (fault_inject()) 2679 return NULL; 2680 } 2681 2682 /* Lock out interrupts and disable preemption. */ 2683 s = splvm(); 2684 while (/* CONSTCOND */ true) { 2685 /* Try and allocate an object from the current group. */ 2686 cc = pc->pc_cpus[curcpu()->ci_index]; 2687 pcg = cc->cc_current; 2688 if (__predict_true(pcg->pcg_avail > 0)) { 2689 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2690 if (__predict_false(pap != NULL)) 2691 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2692 #if defined(DIAGNOSTIC) 2693 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2694 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2695 KASSERT(object != NULL); 2696 #endif 2697 cc->cc_hits++; 2698 splx(s); 2699 FREECHECK_OUT(&pc->pc_freecheck, object); 2700 pool_redzone_fill(&pc->pc_pool, object); 2701 pool_cache_get_kmsan(pc, object); 2702 return object; 2703 } 2704 2705 /* 2706 * That failed. If the previous group isn't empty, swap 2707 * it with the current group and allocate from there. 2708 */ 2709 pcg = cc->cc_previous; 2710 if (__predict_true(pcg->pcg_avail > 0)) { 2711 cc->cc_previous = cc->cc_current; 2712 cc->cc_current = pcg; 2713 continue; 2714 } 2715 2716 /* 2717 * Can't allocate from either group: try the slow path. 2718 * If get_slow() allocated an object for us, or if 2719 * no more objects are available, it will return false. 2720 * Otherwise, we need to retry. 2721 */ 2722 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) { 2723 if (object != NULL) { 2724 kmsan_orig(object, pc->pc_pool.pr_size, 2725 KMSAN_TYPE_POOL, __RET_ADDR); 2726 } 2727 break; 2728 } 2729 } 2730 2731 /* 2732 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but 2733 * pool_cache_get can fail even in the PR_WAITOK case, if the 2734 * constructor fails. 2735 */ 2736 return object; 2737 } 2738 2739 static bool __noinline 2740 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object) 2741 { 2742 pcg_t *pcg, *cur; 2743 2744 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2745 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2746 2747 cc->cc_misses++; 2748 2749 /* 2750 * Try to get an empty group from the cache. If there are no empty 2751 * groups in the cache then allocate one. 2752 */ 2753 (void)pool_pcg_get(cc->cc_pcgcache, &pcg); 2754 if (__predict_false(pcg == NULL)) { 2755 if (__predict_true(!pool_cache_disable)) { 2756 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2757 } 2758 if (__predict_true(pcg != NULL)) { 2759 pcg->pcg_avail = 0; 2760 pcg->pcg_size = pc->pc_pcgsize; 2761 } 2762 } 2763 2764 /* 2765 * If there's a empty group, release our full group back to the 2766 * cache. Install the empty group to the local CPU and return. 2767 */ 2768 if (pcg != NULL) { 2769 KASSERT(pcg->pcg_avail == 0); 2770 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2771 cc->cc_previous = pcg; 2772 } else { 2773 cur = cc->cc_current; 2774 if (__predict_true(cur != &pcg_dummy)) { 2775 KASSERT(cur->pcg_avail == cur->pcg_size); 2776 cc->cc_contended += 2777 pool_pcg_put(&pc->pc_fullgroups, cur); 2778 cc->cc_nfull++; 2779 } 2780 cc->cc_current = pcg; 2781 } 2782 return true; 2783 } 2784 2785 /* 2786 * Nothing available locally or in cache, and we didn't 2787 * allocate an empty group. Take the slow path and destroy 2788 * the object here and now. 2789 */ 2790 cc->cc_pcmisses++; 2791 splx(s); 2792 pool_cache_destruct_object(pc, object); 2793 2794 return false; 2795 } 2796 2797 /* 2798 * pool_cache_put{,_paddr}: 2799 * 2800 * Put an object back to the pool cache (optionally caching the 2801 * physical address of the object). 2802 */ 2803 void 2804 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2805 { 2806 pool_cache_cpu_t *cc; 2807 pcg_t *pcg; 2808 int s; 2809 2810 KASSERT(object != NULL); 2811 pool_cache_put_kmsan(pc, object); 2812 pool_cache_redzone_check(pc, object); 2813 FREECHECK_IN(&pc->pc_freecheck, object); 2814 2815 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) { 2816 pc_phinpage_check(pc, object); 2817 } 2818 2819 if (pool_cache_put_nocache(pc, object)) { 2820 return; 2821 } 2822 2823 /* Lock out interrupts and disable preemption. */ 2824 s = splvm(); 2825 while (/* CONSTCOND */ true) { 2826 /* If the current group isn't full, release it there. */ 2827 cc = pc->pc_cpus[curcpu()->ci_index]; 2828 pcg = cc->cc_current; 2829 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2830 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2831 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2832 pcg->pcg_avail++; 2833 cc->cc_hits++; 2834 splx(s); 2835 return; 2836 } 2837 2838 /* 2839 * That failed. If the previous group isn't full, swap 2840 * it with the current group and try again. 2841 */ 2842 pcg = cc->cc_previous; 2843 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2844 cc->cc_previous = cc->cc_current; 2845 cc->cc_current = pcg; 2846 continue; 2847 } 2848 2849 /* 2850 * Can't free to either group: try the slow path. 2851 * If put_slow() releases the object for us, it 2852 * will return false. Otherwise we need to retry. 2853 */ 2854 if (!pool_cache_put_slow(pc, cc, s, object)) 2855 break; 2856 } 2857 } 2858 2859 /* 2860 * pool_cache_transfer: 2861 * 2862 * Transfer objects from the per-CPU cache to the global cache. 2863 * Run within a cross-call thread. 2864 */ 2865 static void 2866 pool_cache_transfer(pool_cache_t pc) 2867 { 2868 pool_cache_cpu_t *cc; 2869 pcg_t *prev, *cur; 2870 int s; 2871 2872 s = splvm(); 2873 cc = pc->pc_cpus[curcpu()->ci_index]; 2874 cur = cc->cc_current; 2875 cc->cc_current = __UNCONST(&pcg_dummy); 2876 prev = cc->cc_previous; 2877 cc->cc_previous = __UNCONST(&pcg_dummy); 2878 if (cur != &pcg_dummy) { 2879 if (cur->pcg_avail == cur->pcg_size) { 2880 (void)pool_pcg_put(&pc->pc_fullgroups, cur); 2881 cc->cc_nfull++; 2882 } else if (cur->pcg_avail == 0) { 2883 (void)pool_pcg_put(pc->pc_pcgcache, cur); 2884 } else { 2885 (void)pool_pcg_put(&pc->pc_partgroups, cur); 2886 cc->cc_npart++; 2887 } 2888 } 2889 if (prev != &pcg_dummy) { 2890 if (prev->pcg_avail == prev->pcg_size) { 2891 (void)pool_pcg_put(&pc->pc_fullgroups, prev); 2892 cc->cc_nfull++; 2893 } else if (prev->pcg_avail == 0) { 2894 (void)pool_pcg_put(pc->pc_pcgcache, prev); 2895 } else { 2896 (void)pool_pcg_put(&pc->pc_partgroups, prev); 2897 cc->cc_npart++; 2898 } 2899 } 2900 splx(s); 2901 } 2902 2903 static int 2904 pool_bigidx(size_t size) 2905 { 2906 int i; 2907 2908 for (i = 0; i < __arraycount(pool_allocator_big); i++) { 2909 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size) 2910 return i; 2911 } 2912 panic("pool item size %zu too large, use a custom allocator", size); 2913 } 2914 2915 static void * 2916 pool_allocator_alloc(struct pool *pp, int flags) 2917 { 2918 struct pool_allocator *pa = pp->pr_alloc; 2919 void *res; 2920 2921 res = (*pa->pa_alloc)(pp, flags); 2922 if (res == NULL && (flags & PR_WAITOK) == 0) { 2923 /* 2924 * We only run the drain hook here if PR_NOWAIT. 2925 * In other cases, the hook will be run in 2926 * pool_reclaim(). 2927 */ 2928 if (pp->pr_drain_hook != NULL) { 2929 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2930 res = (*pa->pa_alloc)(pp, flags); 2931 } 2932 } 2933 return res; 2934 } 2935 2936 static void 2937 pool_allocator_free(struct pool *pp, void *v) 2938 { 2939 struct pool_allocator *pa = pp->pr_alloc; 2940 2941 if (pp->pr_redzone) { 2942 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0); 2943 } 2944 (*pa->pa_free)(pp, v); 2945 } 2946 2947 void * 2948 pool_page_alloc(struct pool *pp, int flags) 2949 { 2950 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2951 vmem_addr_t va; 2952 int ret; 2953 2954 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 2955 vflags | VM_INSTANTFIT, &va); 2956 2957 return ret ? NULL : (void *)va; 2958 } 2959 2960 void 2961 pool_page_free(struct pool *pp, void *v) 2962 { 2963 2964 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 2965 } 2966 2967 static void * 2968 pool_page_alloc_meta(struct pool *pp, int flags) 2969 { 2970 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2971 vmem_addr_t va; 2972 int ret; 2973 2974 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 2975 vflags | VM_INSTANTFIT, &va); 2976 2977 return ret ? NULL : (void *)va; 2978 } 2979 2980 static void 2981 pool_page_free_meta(struct pool *pp, void *v) 2982 { 2983 2984 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 2985 } 2986 2987 #ifdef KMSAN 2988 static inline void 2989 pool_get_kmsan(struct pool *pp, void *p) 2990 { 2991 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR); 2992 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT); 2993 } 2994 2995 static inline void 2996 pool_put_kmsan(struct pool *pp, void *p) 2997 { 2998 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED); 2999 } 3000 3001 static inline void 3002 pool_cache_get_kmsan(pool_cache_t pc, void *p) 3003 { 3004 if (__predict_false(pc_has_ctor(pc))) { 3005 return; 3006 } 3007 pool_get_kmsan(&pc->pc_pool, p); 3008 } 3009 3010 static inline void 3011 pool_cache_put_kmsan(pool_cache_t pc, void *p) 3012 { 3013 pool_put_kmsan(&pc->pc_pool, p); 3014 } 3015 #endif 3016 3017 #ifdef POOL_QUARANTINE 3018 static void 3019 pool_quarantine_init(struct pool *pp) 3020 { 3021 pp->pr_quar.rotor = 0; 3022 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar)); 3023 } 3024 3025 static void 3026 pool_quarantine_flush(struct pool *pp) 3027 { 3028 pool_quar_t *quar = &pp->pr_quar; 3029 struct pool_pagelist pq; 3030 size_t i; 3031 3032 LIST_INIT(&pq); 3033 3034 mutex_enter(&pp->pr_lock); 3035 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) { 3036 if (quar->list[i] == 0) 3037 continue; 3038 pool_do_put(pp, (void *)quar->list[i], &pq); 3039 } 3040 mutex_exit(&pp->pr_lock); 3041 3042 pr_pagelist_free(pp, &pq); 3043 } 3044 3045 static bool 3046 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq) 3047 { 3048 pool_quar_t *quar = &pp->pr_quar; 3049 uintptr_t old; 3050 3051 if (pp->pr_roflags & PR_NOTOUCH) { 3052 return false; 3053 } 3054 3055 pool_redzone_check(pp, v); 3056 3057 old = quar->list[quar->rotor]; 3058 quar->list[quar->rotor] = (uintptr_t)v; 3059 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH; 3060 if (old != 0) { 3061 pool_do_put(pp, (void *)old, pq); 3062 } 3063 3064 return true; 3065 } 3066 #endif 3067 3068 #ifdef POOL_NOCACHE 3069 static bool 3070 pool_cache_put_nocache(pool_cache_t pc, void *p) 3071 { 3072 pool_cache_destruct_object(pc, p); 3073 return true; 3074 } 3075 #endif 3076 3077 #ifdef POOL_REDZONE 3078 #if defined(_LP64) 3079 # define PRIME 0x9e37fffffffc0000UL 3080 #else /* defined(_LP64) */ 3081 # define PRIME 0x9e3779b1 3082 #endif /* defined(_LP64) */ 3083 #define STATIC_BYTE 0xFE 3084 CTASSERT(POOL_REDZONE_SIZE > 1); 3085 3086 #ifndef KASAN 3087 static inline uint8_t 3088 pool_pattern_generate(const void *p) 3089 { 3090 return (uint8_t)(((uintptr_t)p) * PRIME 3091 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 3092 } 3093 #endif 3094 3095 static void 3096 pool_redzone_init(struct pool *pp, size_t requested_size) 3097 { 3098 size_t redzsz; 3099 size_t nsz; 3100 3101 #ifdef KASAN 3102 redzsz = requested_size; 3103 kasan_add_redzone(&redzsz); 3104 redzsz -= requested_size; 3105 #else 3106 redzsz = POOL_REDZONE_SIZE; 3107 #endif 3108 3109 if (pp->pr_roflags & PR_NOTOUCH) { 3110 pp->pr_redzone = false; 3111 return; 3112 } 3113 3114 /* 3115 * We may have extended the requested size earlier; check if 3116 * there's naturally space in the padding for a red zone. 3117 */ 3118 if (pp->pr_size - requested_size >= redzsz) { 3119 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3120 pp->pr_redzone = true; 3121 return; 3122 } 3123 3124 /* 3125 * No space in the natural padding; check if we can extend a 3126 * bit the size of the pool. 3127 * 3128 * Avoid using redzone for allocations half of a page or larger. 3129 * For pagesize items, we'd waste a whole new page (could be 3130 * unmapped?), and for half pagesize items, approximately half 3131 * the space is lost (eg, 4K pages, you get one 2K allocation.) 3132 */ 3133 nsz = roundup(pp->pr_size + redzsz, pp->pr_align); 3134 if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) { 3135 /* Ok, we can */ 3136 pp->pr_size = nsz; 3137 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3138 pp->pr_redzone = true; 3139 } else { 3140 /* No space for a red zone... snif :'( */ 3141 pp->pr_redzone = false; 3142 aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan); 3143 } 3144 } 3145 3146 static void 3147 pool_redzone_fill(struct pool *pp, void *p) 3148 { 3149 if (!pp->pr_redzone) 3150 return; 3151 #ifdef KASAN 3152 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone, 3153 KASAN_POOL_REDZONE); 3154 #else 3155 uint8_t *cp, pat; 3156 const uint8_t *ep; 3157 3158 cp = (uint8_t *)p + pp->pr_reqsize; 3159 ep = cp + POOL_REDZONE_SIZE; 3160 3161 /* 3162 * We really don't want the first byte of the red zone to be '\0'; 3163 * an off-by-one in a string may not be properly detected. 3164 */ 3165 pat = pool_pattern_generate(cp); 3166 *cp = (pat == '\0') ? STATIC_BYTE: pat; 3167 cp++; 3168 3169 while (cp < ep) { 3170 *cp = pool_pattern_generate(cp); 3171 cp++; 3172 } 3173 #endif 3174 } 3175 3176 static void 3177 pool_redzone_check(struct pool *pp, void *p) 3178 { 3179 if (!pp->pr_redzone) 3180 return; 3181 #ifdef KASAN 3182 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED); 3183 #else 3184 uint8_t *cp, pat, expected; 3185 const uint8_t *ep; 3186 3187 cp = (uint8_t *)p + pp->pr_reqsize; 3188 ep = cp + POOL_REDZONE_SIZE; 3189 3190 pat = pool_pattern_generate(cp); 3191 expected = (pat == '\0') ? STATIC_BYTE: pat; 3192 if (__predict_false(*cp != expected)) { 3193 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3194 pp->pr_wchan, *cp, expected); 3195 } 3196 cp++; 3197 3198 while (cp < ep) { 3199 expected = pool_pattern_generate(cp); 3200 if (__predict_false(*cp != expected)) { 3201 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3202 pp->pr_wchan, *cp, expected); 3203 } 3204 cp++; 3205 } 3206 #endif 3207 } 3208 3209 static void 3210 pool_cache_redzone_check(pool_cache_t pc, void *p) 3211 { 3212 #ifdef KASAN 3213 /* If there is a ctor/dtor, leave the data as valid. */ 3214 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) { 3215 return; 3216 } 3217 #endif 3218 pool_redzone_check(&pc->pc_pool, p); 3219 } 3220 3221 #endif /* POOL_REDZONE */ 3222 3223 #if defined(DDB) 3224 static bool 3225 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3226 { 3227 3228 return (uintptr_t)ph->ph_page <= addr && 3229 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 3230 } 3231 3232 static bool 3233 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 3234 { 3235 3236 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 3237 } 3238 3239 static bool 3240 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 3241 { 3242 int i; 3243 3244 if (pcg == NULL) { 3245 return false; 3246 } 3247 for (i = 0; i < pcg->pcg_avail; i++) { 3248 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 3249 return true; 3250 } 3251 } 3252 return false; 3253 } 3254 3255 static bool 3256 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3257 { 3258 3259 if ((pp->pr_roflags & PR_USEBMAP) != 0) { 3260 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr); 3261 pool_item_bitmap_t *bitmap = 3262 ph->ph_bitmap + (idx / BITMAP_SIZE); 3263 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 3264 3265 return (*bitmap & mask) == 0; 3266 } else { 3267 struct pool_item *pi; 3268 3269 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 3270 if (pool_in_item(pp, pi, addr)) { 3271 return false; 3272 } 3273 } 3274 return true; 3275 } 3276 } 3277 3278 void 3279 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 3280 { 3281 struct pool *pp; 3282 3283 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3284 struct pool_item_header *ph; 3285 uintptr_t item; 3286 bool allocated = true; 3287 bool incache = false; 3288 bool incpucache = false; 3289 char cpucachestr[32]; 3290 3291 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 3292 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 3293 if (pool_in_page(pp, ph, addr)) { 3294 goto found; 3295 } 3296 } 3297 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3298 if (pool_in_page(pp, ph, addr)) { 3299 allocated = 3300 pool_allocated(pp, ph, addr); 3301 goto found; 3302 } 3303 } 3304 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3305 if (pool_in_page(pp, ph, addr)) { 3306 allocated = false; 3307 goto found; 3308 } 3309 } 3310 continue; 3311 } else { 3312 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3313 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3314 continue; 3315 } 3316 allocated = pool_allocated(pp, ph, addr); 3317 } 3318 found: 3319 if (allocated && pp->pr_cache) { 3320 pool_cache_t pc = pp->pr_cache; 3321 struct pool_cache_group *pcg; 3322 int i; 3323 3324 for (pcg = pc->pc_fullgroups; pcg != NULL; 3325 pcg = pcg->pcg_next) { 3326 if (pool_in_cg(pp, pcg, addr)) { 3327 incache = true; 3328 goto print; 3329 } 3330 } 3331 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 3332 pool_cache_cpu_t *cc; 3333 3334 if ((cc = pc->pc_cpus[i]) == NULL) { 3335 continue; 3336 } 3337 if (pool_in_cg(pp, cc->cc_current, addr) || 3338 pool_in_cg(pp, cc->cc_previous, addr)) { 3339 struct cpu_info *ci = 3340 cpu_lookup(i); 3341 3342 incpucache = true; 3343 snprintf(cpucachestr, 3344 sizeof(cpucachestr), 3345 "cached by CPU %u", 3346 ci->ci_index); 3347 goto print; 3348 } 3349 } 3350 } 3351 print: 3352 item = (uintptr_t)ph->ph_page + ph->ph_off; 3353 item = item + rounddown(addr - item, pp->pr_size); 3354 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3355 (void *)addr, item, (size_t)(addr - item), 3356 pp->pr_wchan, 3357 incpucache ? cpucachestr : 3358 incache ? "cached" : allocated ? "allocated" : "free"); 3359 } 3360 } 3361 #endif /* defined(DDB) */ 3362 3363 static int 3364 pool_sysctl(SYSCTLFN_ARGS) 3365 { 3366 struct pool_sysctl data; 3367 struct pool *pp; 3368 struct pool_cache *pc; 3369 pool_cache_cpu_t *cc; 3370 int error; 3371 size_t i, written; 3372 3373 if (oldp == NULL) { 3374 *oldlenp = 0; 3375 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 3376 *oldlenp += sizeof(data); 3377 return 0; 3378 } 3379 3380 memset(&data, 0, sizeof(data)); 3381 error = 0; 3382 written = 0; 3383 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3384 if (written + sizeof(data) > *oldlenp) 3385 break; 3386 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); 3387 data.pr_pagesize = pp->pr_alloc->pa_pagesz; 3388 data.pr_flags = pp->pr_roflags | pp->pr_flags; 3389 #define COPY(field) data.field = pp->field 3390 COPY(pr_size); 3391 3392 COPY(pr_itemsperpage); 3393 COPY(pr_nitems); 3394 COPY(pr_nout); 3395 COPY(pr_hardlimit); 3396 COPY(pr_npages); 3397 COPY(pr_minpages); 3398 COPY(pr_maxpages); 3399 3400 COPY(pr_nget); 3401 COPY(pr_nfail); 3402 COPY(pr_nput); 3403 COPY(pr_npagealloc); 3404 COPY(pr_npagefree); 3405 COPY(pr_hiwat); 3406 COPY(pr_nidle); 3407 #undef COPY 3408 3409 data.pr_cache_nmiss_pcpu = 0; 3410 data.pr_cache_nhit_pcpu = 0; 3411 data.pr_cache_nmiss_global = 0; 3412 data.pr_cache_nempty = 0; 3413 data.pr_cache_ncontended = 0; 3414 data.pr_cache_npartial = 0; 3415 if (pp->pr_cache) { 3416 uint32_t nfull = 0; 3417 pc = pp->pr_cache; 3418 data.pr_cache_meta_size = pc->pc_pcgsize; 3419 for (i = 0; i < pc->pc_ncpu; ++i) { 3420 cc = pc->pc_cpus[i]; 3421 if (cc == NULL) 3422 continue; 3423 data.pr_cache_ncontended += cc->cc_contended; 3424 data.pr_cache_nmiss_pcpu += cc->cc_misses; 3425 data.pr_cache_nhit_pcpu += cc->cc_hits; 3426 data.pr_cache_nmiss_global += cc->cc_pcmisses; 3427 nfull += cc->cc_nfull; /* 32-bit rollover! */ 3428 data.pr_cache_npartial += cc->cc_npart; 3429 } 3430 data.pr_cache_nfull = nfull; 3431 } else { 3432 data.pr_cache_meta_size = 0; 3433 data.pr_cache_nfull = 0; 3434 } 3435 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu - 3436 data.pr_cache_nmiss_global; 3437 3438 error = sysctl_copyout(l, &data, oldp, sizeof(data)); 3439 if (error) 3440 break; 3441 written += sizeof(data); 3442 oldp = (char *)oldp + sizeof(data); 3443 } 3444 3445 *oldlenp = written; 3446 return error; 3447 } 3448 3449 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup") 3450 { 3451 const struct sysctlnode *rnode = NULL; 3452 3453 sysctl_createv(clog, 0, NULL, &rnode, 3454 CTLFLAG_PERMANENT, 3455 CTLTYPE_STRUCT, "pool", 3456 SYSCTL_DESCR("Get pool statistics"), 3457 pool_sysctl, 0, NULL, 0, 3458 CTL_KERN, CTL_CREATE, CTL_EOL); 3459 } 3460