xref: /netbsd-src/sys/kern/subr_pool.c (revision f81322cf185a4db50f71fcf7701f20198272620e)
1 /*	$NetBSD: subr_pool.c,v 1.113 2006/03/17 10:09:25 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.113 2006/03/17 10:09:25 yamt Exp $");
42 
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * Pool resource management utility.
61  *
62  * Memory is allocated in pages which are split into pieces according to
63  * the pool item size. Each page is kept on one of three lists in the
64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65  * for empty, full and partially-full pages respectively. The individual
66  * pool items are on a linked list headed by `ph_itemlist' in each page
67  * header. The memory for building the page list is either taken from
68  * the allocated pages themselves (for small pool items) or taken from
69  * an internal pool of page headers (`phpool').
70  */
71 
72 /* List of all pools */
73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
74 
75 /* Private pool for page header structures */
76 #define	PHPOOL_MAX	8
77 static struct pool phpool[PHPOOL_MAX];
78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
79 
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84 
85 static void *pool_page_alloc_meta(struct pool *, int);
86 static void pool_page_free_meta(struct pool *, void *);
87 
88 /* allocator for pool metadata */
89 static struct pool_allocator pool_allocator_meta = {
90 	pool_page_alloc_meta, pool_page_free_meta
91 };
92 
93 /* # of seconds to retain page after last use */
94 int pool_inactive_time = 10;
95 
96 /* Next candidate for drainage (see pool_drain()) */
97 static struct pool	*drainpp;
98 
99 /* This spin lock protects both pool_head and drainpp. */
100 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
101 
102 typedef uint8_t pool_item_freelist_t;
103 
104 struct pool_item_header {
105 	/* Page headers */
106 	LIST_ENTRY(pool_item_header)
107 				ph_pagelist;	/* pool page list */
108 	SPLAY_ENTRY(pool_item_header)
109 				ph_node;	/* Off-page page headers */
110 	caddr_t			ph_page;	/* this page's address */
111 	struct timeval		ph_time;	/* last referenced */
112 	union {
113 		/* !PR_NOTOUCH */
114 		struct {
115 			LIST_HEAD(, pool_item)
116 				phu_itemlist;	/* chunk list for this page */
117 		} phu_normal;
118 		/* PR_NOTOUCH */
119 		struct {
120 			uint16_t
121 				phu_off;	/* start offset in page */
122 			pool_item_freelist_t
123 				phu_firstfree;	/* first free item */
124 			/*
125 			 * XXX it might be better to use
126 			 * a simple bitmap and ffs(3)
127 			 */
128 		} phu_notouch;
129 	} ph_u;
130 	uint16_t		ph_nmissing;	/* # of chunks in use */
131 };
132 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
133 #define	ph_off		ph_u.phu_notouch.phu_off
134 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
135 
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 	u_int pi_magic;
139 #endif
140 #define	PI_MAGIC 0xdeadbeefU
141 	/* Other entries use only this list entry */
142 	LIST_ENTRY(pool_item)	pi_list;
143 };
144 
145 #define	POOL_NEEDS_CATCHUP(pp)						\
146 	((pp)->pr_nitems < (pp)->pr_minitems)
147 
148 /*
149  * Pool cache management.
150  *
151  * Pool caches provide a way for constructed objects to be cached by the
152  * pool subsystem.  This can lead to performance improvements by avoiding
153  * needless object construction/destruction; it is deferred until absolutely
154  * necessary.
155  *
156  * Caches are grouped into cache groups.  Each cache group references
157  * up to 16 constructed objects.  When a cache allocates an object
158  * from the pool, it calls the object's constructor and places it into
159  * a cache group.  When a cache group frees an object back to the pool,
160  * it first calls the object's destructor.  This allows the object to
161  * persist in constructed form while freed to the cache.
162  *
163  * Multiple caches may exist for each pool.  This allows a single
164  * object type to have multiple constructed forms.  The pool references
165  * each cache, so that when a pool is drained by the pagedaemon, it can
166  * drain each individual cache as well.  Each time a cache is drained,
167  * the most idle cache group is freed to the pool in its entirety.
168  *
169  * Pool caches are layed on top of pools.  By layering them, we can avoid
170  * the complexity of cache management for pools which would not benefit
171  * from it.
172  */
173 
174 /* The cache group pool. */
175 static struct pool pcgpool;
176 
177 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
178 				   struct pool_cache_grouplist *);
179 static void	pcg_grouplist_free(struct pool_cache_grouplist *);
180 
181 static int	pool_catchup(struct pool *);
182 static void	pool_prime_page(struct pool *, caddr_t,
183 		    struct pool_item_header *);
184 static void	pool_update_curpage(struct pool *);
185 
186 static int	pool_grow(struct pool *, int);
187 void		*pool_allocator_alloc(struct pool *, int);
188 void		pool_allocator_free(struct pool *, void *);
189 
190 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
191 	void (*)(const char *, ...));
192 static void pool_print1(struct pool *, const char *,
193 	void (*)(const char *, ...));
194 
195 static int pool_chk_page(struct pool *, const char *,
196 			 struct pool_item_header *);
197 
198 /*
199  * Pool log entry. An array of these is allocated in pool_init().
200  */
201 struct pool_log {
202 	const char	*pl_file;
203 	long		pl_line;
204 	int		pl_action;
205 #define	PRLOG_GET	1
206 #define	PRLOG_PUT	2
207 	void		*pl_addr;
208 };
209 
210 #ifdef POOL_DIAGNOSTIC
211 /* Number of entries in pool log buffers */
212 #ifndef POOL_LOGSIZE
213 #define	POOL_LOGSIZE	10
214 #endif
215 
216 int pool_logsize = POOL_LOGSIZE;
217 
218 static inline void
219 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
220 {
221 	int n = pp->pr_curlogentry;
222 	struct pool_log *pl;
223 
224 	if ((pp->pr_roflags & PR_LOGGING) == 0)
225 		return;
226 
227 	/*
228 	 * Fill in the current entry. Wrap around and overwrite
229 	 * the oldest entry if necessary.
230 	 */
231 	pl = &pp->pr_log[n];
232 	pl->pl_file = file;
233 	pl->pl_line = line;
234 	pl->pl_action = action;
235 	pl->pl_addr = v;
236 	if (++n >= pp->pr_logsize)
237 		n = 0;
238 	pp->pr_curlogentry = n;
239 }
240 
241 static void
242 pr_printlog(struct pool *pp, struct pool_item *pi,
243     void (*pr)(const char *, ...))
244 {
245 	int i = pp->pr_logsize;
246 	int n = pp->pr_curlogentry;
247 
248 	if ((pp->pr_roflags & PR_LOGGING) == 0)
249 		return;
250 
251 	/*
252 	 * Print all entries in this pool's log.
253 	 */
254 	while (i-- > 0) {
255 		struct pool_log *pl = &pp->pr_log[n];
256 		if (pl->pl_action != 0) {
257 			if (pi == NULL || pi == pl->pl_addr) {
258 				(*pr)("\tlog entry %d:\n", i);
259 				(*pr)("\t\taction = %s, addr = %p\n",
260 				    pl->pl_action == PRLOG_GET ? "get" : "put",
261 				    pl->pl_addr);
262 				(*pr)("\t\tfile: %s at line %lu\n",
263 				    pl->pl_file, pl->pl_line);
264 			}
265 		}
266 		if (++n >= pp->pr_logsize)
267 			n = 0;
268 	}
269 }
270 
271 static inline void
272 pr_enter(struct pool *pp, const char *file, long line)
273 {
274 
275 	if (__predict_false(pp->pr_entered_file != NULL)) {
276 		printf("pool %s: reentrancy at file %s line %ld\n",
277 		    pp->pr_wchan, file, line);
278 		printf("         previous entry at file %s line %ld\n",
279 		    pp->pr_entered_file, pp->pr_entered_line);
280 		panic("pr_enter");
281 	}
282 
283 	pp->pr_entered_file = file;
284 	pp->pr_entered_line = line;
285 }
286 
287 static inline void
288 pr_leave(struct pool *pp)
289 {
290 
291 	if (__predict_false(pp->pr_entered_file == NULL)) {
292 		printf("pool %s not entered?\n", pp->pr_wchan);
293 		panic("pr_leave");
294 	}
295 
296 	pp->pr_entered_file = NULL;
297 	pp->pr_entered_line = 0;
298 }
299 
300 static inline void
301 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
302 {
303 
304 	if (pp->pr_entered_file != NULL)
305 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
306 		    pp->pr_entered_file, pp->pr_entered_line);
307 }
308 #else
309 #define	pr_log(pp, v, action, file, line)
310 #define	pr_printlog(pp, pi, pr)
311 #define	pr_enter(pp, file, line)
312 #define	pr_leave(pp)
313 #define	pr_enter_check(pp, pr)
314 #endif /* POOL_DIAGNOSTIC */
315 
316 static inline int
317 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
318     const void *v)
319 {
320 	const char *cp = v;
321 	int idx;
322 
323 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
324 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
325 	KASSERT(idx < pp->pr_itemsperpage);
326 	return idx;
327 }
328 
329 #define	PR_FREELIST_ALIGN(p) \
330 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
331 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
332 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
333 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
334 
335 static inline void
336 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
337     void *obj)
338 {
339 	int idx = pr_item_notouch_index(pp, ph, obj);
340 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
341 
342 	KASSERT(freelist[idx] == PR_INDEX_USED);
343 	freelist[idx] = ph->ph_firstfree;
344 	ph->ph_firstfree = idx;
345 }
346 
347 static inline void *
348 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
349 {
350 	int idx = ph->ph_firstfree;
351 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
352 
353 	KASSERT(freelist[idx] != PR_INDEX_USED);
354 	ph->ph_firstfree = freelist[idx];
355 	freelist[idx] = PR_INDEX_USED;
356 
357 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
358 }
359 
360 static inline int
361 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
362 {
363 	if (a->ph_page < b->ph_page)
364 		return (-1);
365 	else if (a->ph_page > b->ph_page)
366 		return (1);
367 	else
368 		return (0);
369 }
370 
371 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
372 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
373 
374 /*
375  * Return the pool page header based on page address.
376  */
377 static inline struct pool_item_header *
378 pr_find_pagehead(struct pool *pp, caddr_t page)
379 {
380 	struct pool_item_header *ph, tmp;
381 
382 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
383 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
384 
385 	tmp.ph_page = page;
386 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
387 	return ph;
388 }
389 
390 static void
391 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
392 {
393 	struct pool_item_header *ph;
394 	int s;
395 
396 	while ((ph = LIST_FIRST(pq)) != NULL) {
397 		LIST_REMOVE(ph, ph_pagelist);
398 		pool_allocator_free(pp, ph->ph_page);
399 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
400 			s = splvm();
401 			pool_put(pp->pr_phpool, ph);
402 			splx(s);
403 		}
404 	}
405 }
406 
407 /*
408  * Remove a page from the pool.
409  */
410 static inline void
411 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
412      struct pool_pagelist *pq)
413 {
414 
415 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
416 
417 	/*
418 	 * If the page was idle, decrement the idle page count.
419 	 */
420 	if (ph->ph_nmissing == 0) {
421 #ifdef DIAGNOSTIC
422 		if (pp->pr_nidle == 0)
423 			panic("pr_rmpage: nidle inconsistent");
424 		if (pp->pr_nitems < pp->pr_itemsperpage)
425 			panic("pr_rmpage: nitems inconsistent");
426 #endif
427 		pp->pr_nidle--;
428 	}
429 
430 	pp->pr_nitems -= pp->pr_itemsperpage;
431 
432 	/*
433 	 * Unlink the page from the pool and queue it for release.
434 	 */
435 	LIST_REMOVE(ph, ph_pagelist);
436 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
437 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
438 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
439 
440 	pp->pr_npages--;
441 	pp->pr_npagefree++;
442 
443 	pool_update_curpage(pp);
444 }
445 
446 /*
447  * Initialize all the pools listed in the "pools" link set.
448  */
449 void
450 link_pool_init(void)
451 {
452 	__link_set_decl(pools, struct link_pool_init);
453 	struct link_pool_init * const *pi;
454 
455 	__link_set_foreach(pi, pools)
456 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
457 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
458 		    (*pi)->palloc);
459 }
460 
461 /*
462  * Initialize the given pool resource structure.
463  *
464  * We export this routine to allow other kernel parts to declare
465  * static pools that must be initialized before malloc() is available.
466  */
467 void
468 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
469     const char *wchan, struct pool_allocator *palloc)
470 {
471 	int off, slack;
472 	size_t trysize, phsize;
473 	int s;
474 
475 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
476 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
477 
478 #ifdef POOL_DIAGNOSTIC
479 	/*
480 	 * Always log if POOL_DIAGNOSTIC is defined.
481 	 */
482 	if (pool_logsize != 0)
483 		flags |= PR_LOGGING;
484 #endif
485 
486 	if (palloc == NULL)
487 		palloc = &pool_allocator_kmem;
488 #ifdef POOL_SUBPAGE
489 	if (size > palloc->pa_pagesz) {
490 		if (palloc == &pool_allocator_kmem)
491 			palloc = &pool_allocator_kmem_fullpage;
492 		else if (palloc == &pool_allocator_nointr)
493 			palloc = &pool_allocator_nointr_fullpage;
494 	}
495 #endif /* POOL_SUBPAGE */
496 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
497 		if (palloc->pa_pagesz == 0)
498 			palloc->pa_pagesz = PAGE_SIZE;
499 
500 		TAILQ_INIT(&palloc->pa_list);
501 
502 		simple_lock_init(&palloc->pa_slock);
503 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
504 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
505 		palloc->pa_flags |= PA_INITIALIZED;
506 	}
507 
508 	if (align == 0)
509 		align = ALIGN(1);
510 
511 	if (size < sizeof(struct pool_item))
512 		size = sizeof(struct pool_item);
513 
514 	size = roundup(size, align);
515 #ifdef DIAGNOSTIC
516 	if (size > palloc->pa_pagesz)
517 		panic("pool_init: pool item size (%lu) too large",
518 		      (u_long)size);
519 #endif
520 
521 	/*
522 	 * Initialize the pool structure.
523 	 */
524 	LIST_INIT(&pp->pr_emptypages);
525 	LIST_INIT(&pp->pr_fullpages);
526 	LIST_INIT(&pp->pr_partpages);
527 	LIST_INIT(&pp->pr_cachelist);
528 	pp->pr_curpage = NULL;
529 	pp->pr_npages = 0;
530 	pp->pr_minitems = 0;
531 	pp->pr_minpages = 0;
532 	pp->pr_maxpages = UINT_MAX;
533 	pp->pr_roflags = flags;
534 	pp->pr_flags = 0;
535 	pp->pr_size = size;
536 	pp->pr_align = align;
537 	pp->pr_wchan = wchan;
538 	pp->pr_alloc = palloc;
539 	pp->pr_nitems = 0;
540 	pp->pr_nout = 0;
541 	pp->pr_hardlimit = UINT_MAX;
542 	pp->pr_hardlimit_warning = NULL;
543 	pp->pr_hardlimit_ratecap.tv_sec = 0;
544 	pp->pr_hardlimit_ratecap.tv_usec = 0;
545 	pp->pr_hardlimit_warning_last.tv_sec = 0;
546 	pp->pr_hardlimit_warning_last.tv_usec = 0;
547 	pp->pr_drain_hook = NULL;
548 	pp->pr_drain_hook_arg = NULL;
549 
550 	/*
551 	 * Decide whether to put the page header off page to avoid
552 	 * wasting too large a part of the page or too big item.
553 	 * Off-page page headers go on a hash table, so we can match
554 	 * a returned item with its header based on the page address.
555 	 * We use 1/16 of the page size and about 8 times of the item
556 	 * size as the threshold (XXX: tune)
557 	 *
558 	 * However, we'll put the header into the page if we can put
559 	 * it without wasting any items.
560 	 *
561 	 * Silently enforce `0 <= ioff < align'.
562 	 */
563 	pp->pr_itemoffset = ioff %= align;
564 	/* See the comment below about reserved bytes. */
565 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
566 	phsize = ALIGN(sizeof(struct pool_item_header));
567 	if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
568 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
569 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
570 		/* Use the end of the page for the page header */
571 		pp->pr_roflags |= PR_PHINPAGE;
572 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
573 	} else {
574 		/* The page header will be taken from our page header pool */
575 		pp->pr_phoffset = 0;
576 		off = palloc->pa_pagesz;
577 		SPLAY_INIT(&pp->pr_phtree);
578 	}
579 
580 	/*
581 	 * Alignment is to take place at `ioff' within the item. This means
582 	 * we must reserve up to `align - 1' bytes on the page to allow
583 	 * appropriate positioning of each item.
584 	 */
585 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
586 	KASSERT(pp->pr_itemsperpage != 0);
587 	if ((pp->pr_roflags & PR_NOTOUCH)) {
588 		int idx;
589 
590 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
591 		    idx++) {
592 			/* nothing */
593 		}
594 		if (idx >= PHPOOL_MAX) {
595 			/*
596 			 * if you see this panic, consider to tweak
597 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
598 			 */
599 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
600 			    pp->pr_wchan, pp->pr_itemsperpage);
601 		}
602 		pp->pr_phpool = &phpool[idx];
603 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
604 		pp->pr_phpool = &phpool[0];
605 	}
606 #if defined(DIAGNOSTIC)
607 	else {
608 		pp->pr_phpool = NULL;
609 	}
610 #endif
611 
612 	/*
613 	 * Use the slack between the chunks and the page header
614 	 * for "cache coloring".
615 	 */
616 	slack = off - pp->pr_itemsperpage * pp->pr_size;
617 	pp->pr_maxcolor = (slack / align) * align;
618 	pp->pr_curcolor = 0;
619 
620 	pp->pr_nget = 0;
621 	pp->pr_nfail = 0;
622 	pp->pr_nput = 0;
623 	pp->pr_npagealloc = 0;
624 	pp->pr_npagefree = 0;
625 	pp->pr_hiwat = 0;
626 	pp->pr_nidle = 0;
627 
628 #ifdef POOL_DIAGNOSTIC
629 	if (flags & PR_LOGGING) {
630 		if (kmem_map == NULL ||
631 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
632 		     M_TEMP, M_NOWAIT)) == NULL)
633 			pp->pr_roflags &= ~PR_LOGGING;
634 		pp->pr_curlogentry = 0;
635 		pp->pr_logsize = pool_logsize;
636 	}
637 #endif
638 
639 	pp->pr_entered_file = NULL;
640 	pp->pr_entered_line = 0;
641 
642 	simple_lock_init(&pp->pr_slock);
643 
644 	/*
645 	 * Initialize private page header pool and cache magazine pool if we
646 	 * haven't done so yet.
647 	 * XXX LOCKING.
648 	 */
649 	if (phpool[0].pr_size == 0) {
650 		int idx;
651 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
652 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
653 			int nelem;
654 			size_t sz;
655 
656 			nelem = PHPOOL_FREELIST_NELEM(idx);
657 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
658 			    "phpool-%d", nelem);
659 			sz = sizeof(struct pool_item_header);
660 			if (nelem) {
661 				sz = PR_FREELIST_ALIGN(sz)
662 				    + nelem * sizeof(pool_item_freelist_t);
663 			}
664 			pool_init(&phpool[idx], sz, 0, 0, 0,
665 			    phpool_names[idx], &pool_allocator_meta);
666 		}
667 #ifdef POOL_SUBPAGE
668 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
669 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
670 #endif
671 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
672 		    0, "pcgpool", &pool_allocator_meta);
673 	}
674 
675 	/* Insert into the list of all pools. */
676 	simple_lock(&pool_head_slock);
677 	LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
678 	simple_unlock(&pool_head_slock);
679 
680 	/* Insert this into the list of pools using this allocator. */
681 	s = splvm();
682 	simple_lock(&palloc->pa_slock);
683 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
684 	simple_unlock(&palloc->pa_slock);
685 	splx(s);
686 }
687 
688 /*
689  * De-commision a pool resource.
690  */
691 void
692 pool_destroy(struct pool *pp)
693 {
694 	struct pool_pagelist pq;
695 	struct pool_item_header *ph;
696 	int s;
697 
698 	/* Remove from global pool list */
699 	simple_lock(&pool_head_slock);
700 	LIST_REMOVE(pp, pr_poollist);
701 	if (drainpp == pp)
702 		drainpp = NULL;
703 	simple_unlock(&pool_head_slock);
704 
705 	/* Remove this pool from its allocator's list of pools. */
706 	s = splvm();
707 	simple_lock(&pp->pr_alloc->pa_slock);
708 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
709 	simple_unlock(&pp->pr_alloc->pa_slock);
710 	splx(s);
711 
712 	s = splvm();
713 	simple_lock(&pp->pr_slock);
714 
715 	KASSERT(LIST_EMPTY(&pp->pr_cachelist));
716 
717 #ifdef DIAGNOSTIC
718 	if (pp->pr_nout != 0) {
719 		pr_printlog(pp, NULL, printf);
720 		panic("pool_destroy: pool busy: still out: %u",
721 		    pp->pr_nout);
722 	}
723 #endif
724 
725 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
726 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
727 
728 	/* Remove all pages */
729 	LIST_INIT(&pq);
730 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
731 		pr_rmpage(pp, ph, &pq);
732 
733 	simple_unlock(&pp->pr_slock);
734 	splx(s);
735 
736 	pr_pagelist_free(pp, &pq);
737 
738 #ifdef POOL_DIAGNOSTIC
739 	if ((pp->pr_roflags & PR_LOGGING) != 0)
740 		free(pp->pr_log, M_TEMP);
741 #endif
742 }
743 
744 void
745 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
746 {
747 
748 	/* XXX no locking -- must be used just after pool_init() */
749 #ifdef DIAGNOSTIC
750 	if (pp->pr_drain_hook != NULL)
751 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
752 #endif
753 	pp->pr_drain_hook = fn;
754 	pp->pr_drain_hook_arg = arg;
755 }
756 
757 static struct pool_item_header *
758 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
759 {
760 	struct pool_item_header *ph;
761 	int s;
762 
763 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
764 
765 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
766 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
767 	else {
768 		s = splvm();
769 		ph = pool_get(pp->pr_phpool, flags);
770 		splx(s);
771 	}
772 
773 	return (ph);
774 }
775 
776 /*
777  * Grab an item from the pool; must be called at appropriate spl level
778  */
779 void *
780 #ifdef POOL_DIAGNOSTIC
781 _pool_get(struct pool *pp, int flags, const char *file, long line)
782 #else
783 pool_get(struct pool *pp, int flags)
784 #endif
785 {
786 	struct pool_item *pi;
787 	struct pool_item_header *ph;
788 	void *v;
789 
790 #ifdef DIAGNOSTIC
791 	if (__predict_false(pp->pr_itemsperpage == 0))
792 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
793 		    "pool not initialized?", pp);
794 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
795 			    (flags & PR_WAITOK) != 0))
796 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
797 
798 #endif /* DIAGNOSTIC */
799 #ifdef LOCKDEBUG
800 	if (flags & PR_WAITOK)
801 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
802 	SCHED_ASSERT_UNLOCKED();
803 #endif
804 
805 	simple_lock(&pp->pr_slock);
806 	pr_enter(pp, file, line);
807 
808  startover:
809 	/*
810 	 * Check to see if we've reached the hard limit.  If we have,
811 	 * and we can wait, then wait until an item has been returned to
812 	 * the pool.
813 	 */
814 #ifdef DIAGNOSTIC
815 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
816 		pr_leave(pp);
817 		simple_unlock(&pp->pr_slock);
818 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
819 	}
820 #endif
821 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
822 		if (pp->pr_drain_hook != NULL) {
823 			/*
824 			 * Since the drain hook is going to free things
825 			 * back to the pool, unlock, call the hook, re-lock,
826 			 * and check the hardlimit condition again.
827 			 */
828 			pr_leave(pp);
829 			simple_unlock(&pp->pr_slock);
830 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
831 			simple_lock(&pp->pr_slock);
832 			pr_enter(pp, file, line);
833 			if (pp->pr_nout < pp->pr_hardlimit)
834 				goto startover;
835 		}
836 
837 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
838 			/*
839 			 * XXX: A warning isn't logged in this case.  Should
840 			 * it be?
841 			 */
842 			pp->pr_flags |= PR_WANTED;
843 			pr_leave(pp);
844 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
845 			pr_enter(pp, file, line);
846 			goto startover;
847 		}
848 
849 		/*
850 		 * Log a message that the hard limit has been hit.
851 		 */
852 		if (pp->pr_hardlimit_warning != NULL &&
853 		    ratecheck(&pp->pr_hardlimit_warning_last,
854 			      &pp->pr_hardlimit_ratecap))
855 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
856 
857 		pp->pr_nfail++;
858 
859 		pr_leave(pp);
860 		simple_unlock(&pp->pr_slock);
861 		return (NULL);
862 	}
863 
864 	/*
865 	 * The convention we use is that if `curpage' is not NULL, then
866 	 * it points at a non-empty bucket. In particular, `curpage'
867 	 * never points at a page header which has PR_PHINPAGE set and
868 	 * has no items in its bucket.
869 	 */
870 	if ((ph = pp->pr_curpage) == NULL) {
871 		int error;
872 
873 #ifdef DIAGNOSTIC
874 		if (pp->pr_nitems != 0) {
875 			simple_unlock(&pp->pr_slock);
876 			printf("pool_get: %s: curpage NULL, nitems %u\n",
877 			    pp->pr_wchan, pp->pr_nitems);
878 			panic("pool_get: nitems inconsistent");
879 		}
880 #endif
881 
882 		/*
883 		 * Call the back-end page allocator for more memory.
884 		 * Release the pool lock, as the back-end page allocator
885 		 * may block.
886 		 */
887 		pr_leave(pp);
888 		error = pool_grow(pp, flags);
889 		pr_enter(pp, file, line);
890 		if (error != 0) {
891 			/*
892 			 * We were unable to allocate a page or item
893 			 * header, but we released the lock during
894 			 * allocation, so perhaps items were freed
895 			 * back to the pool.  Check for this case.
896 			 */
897 			if (pp->pr_curpage != NULL)
898 				goto startover;
899 
900 			if ((flags & PR_WAITOK) == 0) {
901 				pp->pr_nfail++;
902 				pr_leave(pp);
903 				simple_unlock(&pp->pr_slock);
904 				return (NULL);
905 			}
906 
907 			/*
908 			 * Wait for items to be returned to this pool.
909 			 *
910 			 * wake up once a second and try again,
911 			 * as the check in pool_cache_put_paddr() is racy.
912 			 */
913 			pp->pr_flags |= PR_WANTED;
914 			/* PA_WANTED is already set on the allocator. */
915 			pr_leave(pp);
916 			ltsleep(pp, PSWP, pp->pr_wchan, hz, &pp->pr_slock);
917 			pr_enter(pp, file, line);
918 		}
919 
920 		/* Start the allocation process over. */
921 		goto startover;
922 	}
923 	if (pp->pr_roflags & PR_NOTOUCH) {
924 #ifdef DIAGNOSTIC
925 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
926 			pr_leave(pp);
927 			simple_unlock(&pp->pr_slock);
928 			panic("pool_get: %s: page empty", pp->pr_wchan);
929 		}
930 #endif
931 		v = pr_item_notouch_get(pp, ph);
932 #ifdef POOL_DIAGNOSTIC
933 		pr_log(pp, v, PRLOG_GET, file, line);
934 #endif
935 	} else {
936 		v = pi = LIST_FIRST(&ph->ph_itemlist);
937 		if (__predict_false(v == NULL)) {
938 			pr_leave(pp);
939 			simple_unlock(&pp->pr_slock);
940 			panic("pool_get: %s: page empty", pp->pr_wchan);
941 		}
942 #ifdef DIAGNOSTIC
943 		if (__predict_false(pp->pr_nitems == 0)) {
944 			pr_leave(pp);
945 			simple_unlock(&pp->pr_slock);
946 			printf("pool_get: %s: items on itemlist, nitems %u\n",
947 			    pp->pr_wchan, pp->pr_nitems);
948 			panic("pool_get: nitems inconsistent");
949 		}
950 #endif
951 
952 #ifdef POOL_DIAGNOSTIC
953 		pr_log(pp, v, PRLOG_GET, file, line);
954 #endif
955 
956 #ifdef DIAGNOSTIC
957 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
958 			pr_printlog(pp, pi, printf);
959 			panic("pool_get(%s): free list modified: "
960 			    "magic=%x; page %p; item addr %p\n",
961 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
962 		}
963 #endif
964 
965 		/*
966 		 * Remove from item list.
967 		 */
968 		LIST_REMOVE(pi, pi_list);
969 	}
970 	pp->pr_nitems--;
971 	pp->pr_nout++;
972 	if (ph->ph_nmissing == 0) {
973 #ifdef DIAGNOSTIC
974 		if (__predict_false(pp->pr_nidle == 0))
975 			panic("pool_get: nidle inconsistent");
976 #endif
977 		pp->pr_nidle--;
978 
979 		/*
980 		 * This page was previously empty.  Move it to the list of
981 		 * partially-full pages.  This page is already curpage.
982 		 */
983 		LIST_REMOVE(ph, ph_pagelist);
984 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
985 	}
986 	ph->ph_nmissing++;
987 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
988 #ifdef DIAGNOSTIC
989 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
990 		    !LIST_EMPTY(&ph->ph_itemlist))) {
991 			pr_leave(pp);
992 			simple_unlock(&pp->pr_slock);
993 			panic("pool_get: %s: nmissing inconsistent",
994 			    pp->pr_wchan);
995 		}
996 #endif
997 		/*
998 		 * This page is now full.  Move it to the full list
999 		 * and select a new current page.
1000 		 */
1001 		LIST_REMOVE(ph, ph_pagelist);
1002 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1003 		pool_update_curpage(pp);
1004 	}
1005 
1006 	pp->pr_nget++;
1007 	pr_leave(pp);
1008 
1009 	/*
1010 	 * If we have a low water mark and we are now below that low
1011 	 * water mark, add more items to the pool.
1012 	 */
1013 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1014 		/*
1015 		 * XXX: Should we log a warning?  Should we set up a timeout
1016 		 * to try again in a second or so?  The latter could break
1017 		 * a caller's assumptions about interrupt protection, etc.
1018 		 */
1019 	}
1020 
1021 	simple_unlock(&pp->pr_slock);
1022 	return (v);
1023 }
1024 
1025 /*
1026  * Internal version of pool_put().  Pool is already locked/entered.
1027  */
1028 static void
1029 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1030 {
1031 	struct pool_item *pi = v;
1032 	struct pool_item_header *ph;
1033 	caddr_t page;
1034 	int s;
1035 
1036 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1037 	SCHED_ASSERT_UNLOCKED();
1038 
1039 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
1040 
1041 #ifdef DIAGNOSTIC
1042 	if (__predict_false(pp->pr_nout == 0)) {
1043 		printf("pool %s: putting with none out\n",
1044 		    pp->pr_wchan);
1045 		panic("pool_put");
1046 	}
1047 #endif
1048 
1049 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
1050 		pr_printlog(pp, NULL, printf);
1051 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1052 	}
1053 
1054 #ifdef LOCKDEBUG
1055 	/*
1056 	 * Check if we're freeing a locked simple lock.
1057 	 */
1058 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1059 #endif
1060 
1061 	/*
1062 	 * Return to item list.
1063 	 */
1064 	if (pp->pr_roflags & PR_NOTOUCH) {
1065 		pr_item_notouch_put(pp, ph, v);
1066 	} else {
1067 #ifdef DIAGNOSTIC
1068 		pi->pi_magic = PI_MAGIC;
1069 #endif
1070 #ifdef DEBUG
1071 		{
1072 			int i, *ip = v;
1073 
1074 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1075 				*ip++ = PI_MAGIC;
1076 			}
1077 		}
1078 #endif
1079 
1080 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1081 	}
1082 	KDASSERT(ph->ph_nmissing != 0);
1083 	ph->ph_nmissing--;
1084 	pp->pr_nput++;
1085 	pp->pr_nitems++;
1086 	pp->pr_nout--;
1087 
1088 	/* Cancel "pool empty" condition if it exists */
1089 	if (pp->pr_curpage == NULL)
1090 		pp->pr_curpage = ph;
1091 
1092 	if (pp->pr_flags & PR_WANTED) {
1093 		pp->pr_flags &= ~PR_WANTED;
1094 		if (ph->ph_nmissing == 0)
1095 			pp->pr_nidle++;
1096 		wakeup((caddr_t)pp);
1097 		return;
1098 	}
1099 
1100 	/*
1101 	 * If this page is now empty, do one of two things:
1102 	 *
1103 	 *	(1) If we have more pages than the page high water mark,
1104 	 *	    free the page back to the system.  ONLY CONSIDER
1105 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1106 	 *	    CLAIM.
1107 	 *
1108 	 *	(2) Otherwise, move the page to the empty page list.
1109 	 *
1110 	 * Either way, select a new current page (so we use a partially-full
1111 	 * page if one is available).
1112 	 */
1113 	if (ph->ph_nmissing == 0) {
1114 		pp->pr_nidle++;
1115 		if (pp->pr_npages > pp->pr_minpages &&
1116 		    (pp->pr_npages > pp->pr_maxpages ||
1117 		     (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
1118 			pr_rmpage(pp, ph, pq);
1119 		} else {
1120 			LIST_REMOVE(ph, ph_pagelist);
1121 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1122 
1123 			/*
1124 			 * Update the timestamp on the page.  A page must
1125 			 * be idle for some period of time before it can
1126 			 * be reclaimed by the pagedaemon.  This minimizes
1127 			 * ping-pong'ing for memory.
1128 			 */
1129 			s = splclock();
1130 			ph->ph_time = mono_time;
1131 			splx(s);
1132 		}
1133 		pool_update_curpage(pp);
1134 	}
1135 
1136 	/*
1137 	 * If the page was previously completely full, move it to the
1138 	 * partially-full list and make it the current page.  The next
1139 	 * allocation will get the item from this page, instead of
1140 	 * further fragmenting the pool.
1141 	 */
1142 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1143 		LIST_REMOVE(ph, ph_pagelist);
1144 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1145 		pp->pr_curpage = ph;
1146 	}
1147 }
1148 
1149 /*
1150  * Return resource to the pool; must be called at appropriate spl level
1151  */
1152 #ifdef POOL_DIAGNOSTIC
1153 void
1154 _pool_put(struct pool *pp, void *v, const char *file, long line)
1155 {
1156 	struct pool_pagelist pq;
1157 
1158 	LIST_INIT(&pq);
1159 
1160 	simple_lock(&pp->pr_slock);
1161 	pr_enter(pp, file, line);
1162 
1163 	pr_log(pp, v, PRLOG_PUT, file, line);
1164 
1165 	pool_do_put(pp, v, &pq);
1166 
1167 	pr_leave(pp);
1168 	simple_unlock(&pp->pr_slock);
1169 
1170 	pr_pagelist_free(pp, &pq);
1171 }
1172 #undef pool_put
1173 #endif /* POOL_DIAGNOSTIC */
1174 
1175 void
1176 pool_put(struct pool *pp, void *v)
1177 {
1178 	struct pool_pagelist pq;
1179 
1180 	LIST_INIT(&pq);
1181 
1182 	simple_lock(&pp->pr_slock);
1183 	pool_do_put(pp, v, &pq);
1184 	simple_unlock(&pp->pr_slock);
1185 
1186 	pr_pagelist_free(pp, &pq);
1187 }
1188 
1189 #ifdef POOL_DIAGNOSTIC
1190 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1191 #endif
1192 
1193 /*
1194  * pool_grow: grow a pool by a page.
1195  *
1196  * => called with pool locked.
1197  * => unlock and relock the pool.
1198  * => return with pool locked.
1199  */
1200 
1201 static int
1202 pool_grow(struct pool *pp, int flags)
1203 {
1204 	struct pool_item_header *ph = NULL;
1205 	char *cp;
1206 
1207 	simple_unlock(&pp->pr_slock);
1208 	cp = pool_allocator_alloc(pp, flags);
1209 	if (__predict_true(cp != NULL)) {
1210 		ph = pool_alloc_item_header(pp, cp, flags);
1211 	}
1212 	if (__predict_false(cp == NULL || ph == NULL)) {
1213 		if (cp != NULL) {
1214 			pool_allocator_free(pp, cp);
1215 		}
1216 		simple_lock(&pp->pr_slock);
1217 		return ENOMEM;
1218 	}
1219 
1220 	simple_lock(&pp->pr_slock);
1221 	pool_prime_page(pp, cp, ph);
1222 	pp->pr_npagealloc++;
1223 	pp->pr_minpages++;
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Add N items to the pool.
1229  */
1230 int
1231 pool_prime(struct pool *pp, int n)
1232 {
1233 	int newpages;
1234 	int error = 0;
1235 
1236 	simple_lock(&pp->pr_slock);
1237 
1238 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1239 
1240 	while (newpages-- > 0) {
1241 		error = pool_grow(pp, PR_NOWAIT);
1242 		if (error) {
1243 			break;
1244 		}
1245 		pp->pr_minpages++;
1246 	}
1247 
1248 	if (pp->pr_minpages >= pp->pr_maxpages)
1249 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1250 
1251 	simple_unlock(&pp->pr_slock);
1252 	return error;
1253 }
1254 
1255 /*
1256  * Add a page worth of items to the pool.
1257  *
1258  * Note, we must be called with the pool descriptor LOCKED.
1259  */
1260 static void
1261 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1262 {
1263 	struct pool_item *pi;
1264 	caddr_t cp = storage;
1265 	unsigned int align = pp->pr_align;
1266 	unsigned int ioff = pp->pr_itemoffset;
1267 	int n;
1268 	int s;
1269 
1270 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1271 
1272 #ifdef DIAGNOSTIC
1273 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1274 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1275 #endif
1276 
1277 	/*
1278 	 * Insert page header.
1279 	 */
1280 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1281 	LIST_INIT(&ph->ph_itemlist);
1282 	ph->ph_page = storage;
1283 	ph->ph_nmissing = 0;
1284 	s = splclock();
1285 	ph->ph_time = mono_time;
1286 	splx(s);
1287 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1288 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1289 
1290 	pp->pr_nidle++;
1291 
1292 	/*
1293 	 * Color this page.
1294 	 */
1295 	cp = (caddr_t)(cp + pp->pr_curcolor);
1296 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1297 		pp->pr_curcolor = 0;
1298 
1299 	/*
1300 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1301 	 */
1302 	if (ioff != 0)
1303 		cp = (caddr_t)(cp + (align - ioff));
1304 
1305 	/*
1306 	 * Insert remaining chunks on the bucket list.
1307 	 */
1308 	n = pp->pr_itemsperpage;
1309 	pp->pr_nitems += n;
1310 
1311 	if (pp->pr_roflags & PR_NOTOUCH) {
1312 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
1313 		int i;
1314 
1315 		ph->ph_off = cp - storage;
1316 		ph->ph_firstfree = 0;
1317 		for (i = 0; i < n - 1; i++)
1318 			freelist[i] = i + 1;
1319 		freelist[n - 1] = PR_INDEX_EOL;
1320 	} else {
1321 		while (n--) {
1322 			pi = (struct pool_item *)cp;
1323 
1324 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1325 
1326 			/* Insert on page list */
1327 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1328 #ifdef DIAGNOSTIC
1329 			pi->pi_magic = PI_MAGIC;
1330 #endif
1331 			cp = (caddr_t)(cp + pp->pr_size);
1332 		}
1333 	}
1334 
1335 	/*
1336 	 * If the pool was depleted, point at the new page.
1337 	 */
1338 	if (pp->pr_curpage == NULL)
1339 		pp->pr_curpage = ph;
1340 
1341 	if (++pp->pr_npages > pp->pr_hiwat)
1342 		pp->pr_hiwat = pp->pr_npages;
1343 }
1344 
1345 /*
1346  * Used by pool_get() when nitems drops below the low water mark.  This
1347  * is used to catch up pr_nitems with the low water mark.
1348  *
1349  * Note 1, we never wait for memory here, we let the caller decide what to do.
1350  *
1351  * Note 2, we must be called with the pool already locked, and we return
1352  * with it locked.
1353  */
1354 static int
1355 pool_catchup(struct pool *pp)
1356 {
1357 	int error = 0;
1358 
1359 	while (POOL_NEEDS_CATCHUP(pp)) {
1360 		error = pool_grow(pp, PR_NOWAIT);
1361 		if (error) {
1362 			break;
1363 		}
1364 	}
1365 	return error;
1366 }
1367 
1368 static void
1369 pool_update_curpage(struct pool *pp)
1370 {
1371 
1372 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1373 	if (pp->pr_curpage == NULL) {
1374 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1375 	}
1376 }
1377 
1378 void
1379 pool_setlowat(struct pool *pp, int n)
1380 {
1381 
1382 	simple_lock(&pp->pr_slock);
1383 
1384 	pp->pr_minitems = n;
1385 	pp->pr_minpages = (n == 0)
1386 		? 0
1387 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1388 
1389 	/* Make sure we're caught up with the newly-set low water mark. */
1390 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1391 		/*
1392 		 * XXX: Should we log a warning?  Should we set up a timeout
1393 		 * to try again in a second or so?  The latter could break
1394 		 * a caller's assumptions about interrupt protection, etc.
1395 		 */
1396 	}
1397 
1398 	simple_unlock(&pp->pr_slock);
1399 }
1400 
1401 void
1402 pool_sethiwat(struct pool *pp, int n)
1403 {
1404 
1405 	simple_lock(&pp->pr_slock);
1406 
1407 	pp->pr_maxpages = (n == 0)
1408 		? 0
1409 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1410 
1411 	simple_unlock(&pp->pr_slock);
1412 }
1413 
1414 void
1415 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1416 {
1417 
1418 	simple_lock(&pp->pr_slock);
1419 
1420 	pp->pr_hardlimit = n;
1421 	pp->pr_hardlimit_warning = warnmess;
1422 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1423 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1424 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1425 
1426 	/*
1427 	 * In-line version of pool_sethiwat(), because we don't want to
1428 	 * release the lock.
1429 	 */
1430 	pp->pr_maxpages = (n == 0)
1431 		? 0
1432 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1433 
1434 	simple_unlock(&pp->pr_slock);
1435 }
1436 
1437 /*
1438  * Release all complete pages that have not been used recently.
1439  */
1440 int
1441 #ifdef POOL_DIAGNOSTIC
1442 _pool_reclaim(struct pool *pp, const char *file, long line)
1443 #else
1444 pool_reclaim(struct pool *pp)
1445 #endif
1446 {
1447 	struct pool_item_header *ph, *phnext;
1448 	struct pool_cache *pc;
1449 	struct pool_pagelist pq;
1450 	struct pool_cache_grouplist pcgl;
1451 	struct timeval curtime, diff;
1452 	int s;
1453 
1454 	if (pp->pr_drain_hook != NULL) {
1455 		/*
1456 		 * The drain hook must be called with the pool unlocked.
1457 		 */
1458 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1459 	}
1460 
1461 	if (simple_lock_try(&pp->pr_slock) == 0)
1462 		return (0);
1463 	pr_enter(pp, file, line);
1464 
1465 	LIST_INIT(&pq);
1466 	LIST_INIT(&pcgl);
1467 
1468 	/*
1469 	 * Reclaim items from the pool's caches.
1470 	 */
1471 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1472 		pool_cache_reclaim(pc, &pq, &pcgl);
1473 
1474 	s = splclock();
1475 	curtime = mono_time;
1476 	splx(s);
1477 
1478 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1479 		phnext = LIST_NEXT(ph, ph_pagelist);
1480 
1481 		/* Check our minimum page claim */
1482 		if (pp->pr_npages <= pp->pr_minpages)
1483 			break;
1484 
1485 		KASSERT(ph->ph_nmissing == 0);
1486 		timersub(&curtime, &ph->ph_time, &diff);
1487 		if (diff.tv_sec < pool_inactive_time)
1488 			continue;
1489 
1490 		/*
1491 		 * If freeing this page would put us below
1492 		 * the low water mark, stop now.
1493 		 */
1494 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1495 		    pp->pr_minitems)
1496 			break;
1497 
1498 		pr_rmpage(pp, ph, &pq);
1499 	}
1500 
1501 	pr_leave(pp);
1502 	simple_unlock(&pp->pr_slock);
1503 	if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1504 		return 0;
1505 
1506 	pr_pagelist_free(pp, &pq);
1507 	pcg_grouplist_free(&pcgl);
1508 	return (1);
1509 }
1510 
1511 /*
1512  * Drain pools, one at a time.
1513  *
1514  * Note, we must never be called from an interrupt context.
1515  */
1516 void
1517 pool_drain(void *arg)
1518 {
1519 	struct pool *pp;
1520 	int s;
1521 
1522 	pp = NULL;
1523 	s = splvm();
1524 	simple_lock(&pool_head_slock);
1525 	if (drainpp == NULL) {
1526 		drainpp = LIST_FIRST(&pool_head);
1527 	}
1528 	if (drainpp) {
1529 		pp = drainpp;
1530 		drainpp = LIST_NEXT(pp, pr_poollist);
1531 	}
1532 	simple_unlock(&pool_head_slock);
1533 	pool_reclaim(pp);
1534 	splx(s);
1535 }
1536 
1537 /*
1538  * Diagnostic helpers.
1539  */
1540 void
1541 pool_print(struct pool *pp, const char *modif)
1542 {
1543 	int s;
1544 
1545 	s = splvm();
1546 	if (simple_lock_try(&pp->pr_slock) == 0) {
1547 		printf("pool %s is locked; try again later\n",
1548 		    pp->pr_wchan);
1549 		splx(s);
1550 		return;
1551 	}
1552 	pool_print1(pp, modif, printf);
1553 	simple_unlock(&pp->pr_slock);
1554 	splx(s);
1555 }
1556 
1557 void
1558 pool_printall(const char *modif, void (*pr)(const char *, ...))
1559 {
1560 	struct pool *pp;
1561 
1562 	if (simple_lock_try(&pool_head_slock) == 0) {
1563 		(*pr)("WARNING: pool_head_slock is locked\n");
1564 	} else {
1565 		simple_unlock(&pool_head_slock);
1566 	}
1567 
1568 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
1569 		pool_printit(pp, modif, pr);
1570 	}
1571 }
1572 
1573 void
1574 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1575 {
1576 
1577 	if (pp == NULL) {
1578 		(*pr)("Must specify a pool to print.\n");
1579 		return;
1580 	}
1581 
1582 	/*
1583 	 * Called from DDB; interrupts should be blocked, and all
1584 	 * other processors should be paused.  We can skip locking
1585 	 * the pool in this case.
1586 	 *
1587 	 * We do a simple_lock_try() just to print the lock
1588 	 * status, however.
1589 	 */
1590 
1591 	if (simple_lock_try(&pp->pr_slock) == 0)
1592 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1593 	else
1594 		simple_unlock(&pp->pr_slock);
1595 
1596 	pool_print1(pp, modif, pr);
1597 }
1598 
1599 static void
1600 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1601     void (*pr)(const char *, ...))
1602 {
1603 	struct pool_item_header *ph;
1604 #ifdef DIAGNOSTIC
1605 	struct pool_item *pi;
1606 #endif
1607 
1608 	LIST_FOREACH(ph, pl, ph_pagelist) {
1609 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1610 		    ph->ph_page, ph->ph_nmissing,
1611 		    (u_long)ph->ph_time.tv_sec,
1612 		    (u_long)ph->ph_time.tv_usec);
1613 #ifdef DIAGNOSTIC
1614 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1615 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1616 				if (pi->pi_magic != PI_MAGIC) {
1617 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1618 					    pi, pi->pi_magic);
1619 				}
1620 			}
1621 		}
1622 #endif
1623 	}
1624 }
1625 
1626 static void
1627 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1628 {
1629 	struct pool_item_header *ph;
1630 	struct pool_cache *pc;
1631 	struct pool_cache_group *pcg;
1632 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1633 	char c;
1634 
1635 	while ((c = *modif++) != '\0') {
1636 		if (c == 'l')
1637 			print_log = 1;
1638 		if (c == 'p')
1639 			print_pagelist = 1;
1640 		if (c == 'c')
1641 			print_cache = 1;
1642 	}
1643 
1644 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1645 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1646 	    pp->pr_roflags);
1647 	(*pr)("\talloc %p\n", pp->pr_alloc);
1648 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1649 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1650 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1651 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1652 
1653 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1654 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1655 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1656 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1657 
1658 	if (print_pagelist == 0)
1659 		goto skip_pagelist;
1660 
1661 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1662 		(*pr)("\n\tempty page list:\n");
1663 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1664 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1665 		(*pr)("\n\tfull page list:\n");
1666 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1667 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1668 		(*pr)("\n\tpartial-page list:\n");
1669 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1670 
1671 	if (pp->pr_curpage == NULL)
1672 		(*pr)("\tno current page\n");
1673 	else
1674 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1675 
1676  skip_pagelist:
1677 	if (print_log == 0)
1678 		goto skip_log;
1679 
1680 	(*pr)("\n");
1681 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1682 		(*pr)("\tno log\n");
1683 	else
1684 		pr_printlog(pp, NULL, pr);
1685 
1686  skip_log:
1687 	if (print_cache == 0)
1688 		goto skip_cache;
1689 
1690 #define PR_GROUPLIST(pcg)						\
1691 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1692 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
1693 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1694 		    POOL_PADDR_INVALID) {				\
1695 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1696 			    pcg->pcg_objects[i].pcgo_va,		\
1697 			    (unsigned long long)			\
1698 			    pcg->pcg_objects[i].pcgo_pa);		\
1699 		} else {						\
1700 			(*pr)("\t\t\t%p\n",				\
1701 			    pcg->pcg_objects[i].pcgo_va);		\
1702 		}							\
1703 	}
1704 
1705 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1706 		(*pr)("\tcache %p\n", pc);
1707 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1708 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1709 		(*pr)("\t    full groups:\n");
1710 		LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1711 			PR_GROUPLIST(pcg);
1712 		}
1713 		(*pr)("\t    partial groups:\n");
1714 		LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1715 			PR_GROUPLIST(pcg);
1716 		}
1717 		(*pr)("\t    empty groups:\n");
1718 		LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1719 			PR_GROUPLIST(pcg);
1720 		}
1721 	}
1722 #undef PR_GROUPLIST
1723 
1724  skip_cache:
1725 	pr_enter_check(pp, pr);
1726 }
1727 
1728 static int
1729 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1730 {
1731 	struct pool_item *pi;
1732 	caddr_t page;
1733 	int n;
1734 
1735 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1736 	if (page != ph->ph_page &&
1737 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1738 		if (label != NULL)
1739 			printf("%s: ", label);
1740 		printf("pool(%p:%s): page inconsistency: page %p;"
1741 		       " at page head addr %p (p %p)\n", pp,
1742 			pp->pr_wchan, ph->ph_page,
1743 			ph, page);
1744 		return 1;
1745 	}
1746 
1747 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1748 		return 0;
1749 
1750 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1751 	     pi != NULL;
1752 	     pi = LIST_NEXT(pi,pi_list), n++) {
1753 
1754 #ifdef DIAGNOSTIC
1755 		if (pi->pi_magic != PI_MAGIC) {
1756 			if (label != NULL)
1757 				printf("%s: ", label);
1758 			printf("pool(%s): free list modified: magic=%x;"
1759 			       " page %p; item ordinal %d;"
1760 			       " addr %p (p %p)\n",
1761 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1762 				n, pi, page);
1763 			panic("pool");
1764 		}
1765 #endif
1766 		page =
1767 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1768 		if (page == ph->ph_page)
1769 			continue;
1770 
1771 		if (label != NULL)
1772 			printf("%s: ", label);
1773 		printf("pool(%p:%s): page inconsistency: page %p;"
1774 		       " item ordinal %d; addr %p (p %p)\n", pp,
1775 			pp->pr_wchan, ph->ph_page,
1776 			n, pi, page);
1777 		return 1;
1778 	}
1779 	return 0;
1780 }
1781 
1782 
1783 int
1784 pool_chk(struct pool *pp, const char *label)
1785 {
1786 	struct pool_item_header *ph;
1787 	int r = 0;
1788 
1789 	simple_lock(&pp->pr_slock);
1790 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1791 		r = pool_chk_page(pp, label, ph);
1792 		if (r) {
1793 			goto out;
1794 		}
1795 	}
1796 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1797 		r = pool_chk_page(pp, label, ph);
1798 		if (r) {
1799 			goto out;
1800 		}
1801 	}
1802 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1803 		r = pool_chk_page(pp, label, ph);
1804 		if (r) {
1805 			goto out;
1806 		}
1807 	}
1808 
1809 out:
1810 	simple_unlock(&pp->pr_slock);
1811 	return (r);
1812 }
1813 
1814 /*
1815  * pool_cache_init:
1816  *
1817  *	Initialize a pool cache.
1818  *
1819  *	NOTE: If the pool must be protected from interrupts, we expect
1820  *	to be called at the appropriate interrupt priority level.
1821  */
1822 void
1823 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1824     int (*ctor)(void *, void *, int),
1825     void (*dtor)(void *, void *),
1826     void *arg)
1827 {
1828 
1829 	LIST_INIT(&pc->pc_emptygroups);
1830 	LIST_INIT(&pc->pc_fullgroups);
1831 	LIST_INIT(&pc->pc_partgroups);
1832 	simple_lock_init(&pc->pc_slock);
1833 
1834 	pc->pc_pool = pp;
1835 
1836 	pc->pc_ctor = ctor;
1837 	pc->pc_dtor = dtor;
1838 	pc->pc_arg  = arg;
1839 
1840 	pc->pc_hits   = 0;
1841 	pc->pc_misses = 0;
1842 
1843 	pc->pc_ngroups = 0;
1844 
1845 	pc->pc_nitems = 0;
1846 
1847 	simple_lock(&pp->pr_slock);
1848 	LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1849 	simple_unlock(&pp->pr_slock);
1850 }
1851 
1852 /*
1853  * pool_cache_destroy:
1854  *
1855  *	Destroy a pool cache.
1856  */
1857 void
1858 pool_cache_destroy(struct pool_cache *pc)
1859 {
1860 	struct pool *pp = pc->pc_pool;
1861 
1862 	/* First, invalidate the entire cache. */
1863 	pool_cache_invalidate(pc);
1864 
1865 	/* ...and remove it from the pool's cache list. */
1866 	simple_lock(&pp->pr_slock);
1867 	LIST_REMOVE(pc, pc_poollist);
1868 	simple_unlock(&pp->pr_slock);
1869 }
1870 
1871 static inline void *
1872 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1873 {
1874 	void *object;
1875 	u_int idx;
1876 
1877 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1878 	KASSERT(pcg->pcg_avail != 0);
1879 	idx = --pcg->pcg_avail;
1880 
1881 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1882 	object = pcg->pcg_objects[idx].pcgo_va;
1883 	if (pap != NULL)
1884 		*pap = pcg->pcg_objects[idx].pcgo_pa;
1885 	pcg->pcg_objects[idx].pcgo_va = NULL;
1886 
1887 	return (object);
1888 }
1889 
1890 static inline void
1891 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1892 {
1893 	u_int idx;
1894 
1895 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1896 	idx = pcg->pcg_avail++;
1897 
1898 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1899 	pcg->pcg_objects[idx].pcgo_va = object;
1900 	pcg->pcg_objects[idx].pcgo_pa = pa;
1901 }
1902 
1903 static void
1904 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
1905 {
1906 	struct pool_cache_group *pcg;
1907 	int s;
1908 
1909 	s = splvm();
1910 	while ((pcg = LIST_FIRST(pcgl)) != NULL) {
1911 		LIST_REMOVE(pcg, pcg_list);
1912 		pool_put(&pcgpool, pcg);
1913 	}
1914 	splx(s);
1915 }
1916 
1917 /*
1918  * pool_cache_get{,_paddr}:
1919  *
1920  *	Get an object from a pool cache (optionally returning
1921  *	the physical address of the object).
1922  */
1923 void *
1924 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1925 {
1926 	struct pool_cache_group *pcg;
1927 	void *object;
1928 
1929 #ifdef LOCKDEBUG
1930 	if (flags & PR_WAITOK)
1931 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1932 #endif
1933 
1934 	simple_lock(&pc->pc_slock);
1935 
1936 	pcg = LIST_FIRST(&pc->pc_partgroups);
1937 	if (pcg == NULL) {
1938 		pcg = LIST_FIRST(&pc->pc_fullgroups);
1939 		if (pcg != NULL) {
1940 			LIST_REMOVE(pcg, pcg_list);
1941 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
1942 		}
1943 	}
1944 	if (pcg == NULL) {
1945 
1946 		/*
1947 		 * No groups with any available objects.  Allocate
1948 		 * a new object, construct it, and return it to
1949 		 * the caller.  We will allocate a group, if necessary,
1950 		 * when the object is freed back to the cache.
1951 		 */
1952 		pc->pc_misses++;
1953 		simple_unlock(&pc->pc_slock);
1954 		object = pool_get(pc->pc_pool, flags);
1955 		if (object != NULL && pc->pc_ctor != NULL) {
1956 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1957 				pool_put(pc->pc_pool, object);
1958 				return (NULL);
1959 			}
1960 		}
1961 		if (object != NULL && pap != NULL) {
1962 #ifdef POOL_VTOPHYS
1963 			*pap = POOL_VTOPHYS(object);
1964 #else
1965 			*pap = POOL_PADDR_INVALID;
1966 #endif
1967 		}
1968 		return (object);
1969 	}
1970 
1971 	pc->pc_hits++;
1972 	pc->pc_nitems--;
1973 	object = pcg_get(pcg, pap);
1974 
1975 	if (pcg->pcg_avail == 0) {
1976 		LIST_REMOVE(pcg, pcg_list);
1977 		LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
1978 	}
1979 	simple_unlock(&pc->pc_slock);
1980 
1981 	return (object);
1982 }
1983 
1984 /*
1985  * pool_cache_put{,_paddr}:
1986  *
1987  *	Put an object back to the pool cache (optionally caching the
1988  *	physical address of the object).
1989  */
1990 void
1991 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1992 {
1993 	struct pool_cache_group *pcg;
1994 	int s;
1995 
1996 	if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
1997 		goto destruct;
1998 	}
1999 
2000 	simple_lock(&pc->pc_slock);
2001 
2002 	pcg = LIST_FIRST(&pc->pc_partgroups);
2003 	if (pcg == NULL) {
2004 		pcg = LIST_FIRST(&pc->pc_emptygroups);
2005 		if (pcg != NULL) {
2006 			LIST_REMOVE(pcg, pcg_list);
2007 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2008 		}
2009 	}
2010 	if (pcg == NULL) {
2011 
2012 		/*
2013 		 * No empty groups to free the object to.  Attempt to
2014 		 * allocate one.
2015 		 */
2016 		simple_unlock(&pc->pc_slock);
2017 		s = splvm();
2018 		pcg = pool_get(&pcgpool, PR_NOWAIT);
2019 		splx(s);
2020 		if (pcg == NULL) {
2021 destruct:
2022 
2023 			/*
2024 			 * Unable to allocate a cache group; destruct the object
2025 			 * and free it back to the pool.
2026 			 */
2027 			pool_cache_destruct_object(pc, object);
2028 			return;
2029 		}
2030 		memset(pcg, 0, sizeof(*pcg));
2031 		simple_lock(&pc->pc_slock);
2032 		pc->pc_ngroups++;
2033 		LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2034 	}
2035 
2036 	pc->pc_nitems++;
2037 	pcg_put(pcg, object, pa);
2038 
2039 	if (pcg->pcg_avail == PCG_NOBJECTS) {
2040 		LIST_REMOVE(pcg, pcg_list);
2041 		LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2042 	}
2043 	simple_unlock(&pc->pc_slock);
2044 }
2045 
2046 /*
2047  * pool_cache_destruct_object:
2048  *
2049  *	Force destruction of an object and its release back into
2050  *	the pool.
2051  */
2052 void
2053 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2054 {
2055 
2056 	if (pc->pc_dtor != NULL)
2057 		(*pc->pc_dtor)(pc->pc_arg, object);
2058 	pool_put(pc->pc_pool, object);
2059 }
2060 
2061 static void
2062 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2063     struct pool_cache *pc, struct pool_pagelist *pq,
2064     struct pool_cache_grouplist *pcgdl)
2065 {
2066 	struct pool_cache_group *pcg, *npcg;
2067 	void *object;
2068 
2069 	for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2070 		npcg = LIST_NEXT(pcg, pcg_list);
2071 		while (pcg->pcg_avail != 0) {
2072 			pc->pc_nitems--;
2073 			object = pcg_get(pcg, NULL);
2074 			if (pc->pc_dtor != NULL)
2075 				(*pc->pc_dtor)(pc->pc_arg, object);
2076 			pool_do_put(pc->pc_pool, object, pq);
2077 		}
2078 		pc->pc_ngroups--;
2079 		LIST_REMOVE(pcg, pcg_list);
2080 		LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2081 	}
2082 }
2083 
2084 static void
2085 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2086     struct pool_cache_grouplist *pcgl)
2087 {
2088 
2089 	LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2090 	LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2091 
2092 	pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2093 	pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2094 
2095 	KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2096 	KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2097 	KASSERT(pc->pc_nitems == 0);
2098 }
2099 
2100 /*
2101  * pool_cache_invalidate:
2102  *
2103  *	Invalidate a pool cache (destruct and release all of the
2104  *	cached objects).
2105  */
2106 void
2107 pool_cache_invalidate(struct pool_cache *pc)
2108 {
2109 	struct pool_pagelist pq;
2110 	struct pool_cache_grouplist pcgl;
2111 
2112 	LIST_INIT(&pq);
2113 	LIST_INIT(&pcgl);
2114 
2115 	simple_lock(&pc->pc_slock);
2116 	simple_lock(&pc->pc_pool->pr_slock);
2117 
2118 	pool_do_cache_invalidate(pc, &pq, &pcgl);
2119 
2120 	simple_unlock(&pc->pc_pool->pr_slock);
2121 	simple_unlock(&pc->pc_slock);
2122 
2123 	pr_pagelist_free(pc->pc_pool, &pq);
2124 	pcg_grouplist_free(&pcgl);
2125 }
2126 
2127 /*
2128  * pool_cache_reclaim:
2129  *
2130  *	Reclaim a pool cache for pool_reclaim().
2131  */
2132 static void
2133 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2134     struct pool_cache_grouplist *pcgl)
2135 {
2136 
2137 	/*
2138 	 * We're locking in the wrong order (normally pool_cache -> pool,
2139 	 * but the pool is already locked when we get here), so we have
2140 	 * to use trylock.  If we can't lock the pool_cache, it's not really
2141 	 * a big deal here.
2142 	 */
2143 	if (simple_lock_try(&pc->pc_slock) == 0)
2144 		return;
2145 
2146 	pool_do_cache_invalidate(pc, pq, pcgl);
2147 
2148 	simple_unlock(&pc->pc_slock);
2149 }
2150 
2151 /*
2152  * Pool backend allocators.
2153  *
2154  * Each pool has a backend allocator that handles allocation, deallocation,
2155  * and any additional draining that might be needed.
2156  *
2157  * We provide two standard allocators:
2158  *
2159  *	pool_allocator_kmem - the default when no allocator is specified
2160  *
2161  *	pool_allocator_nointr - used for pools that will not be accessed
2162  *	in interrupt context.
2163  */
2164 void	*pool_page_alloc(struct pool *, int);
2165 void	pool_page_free(struct pool *, void *);
2166 
2167 #ifdef POOL_SUBPAGE
2168 struct pool_allocator pool_allocator_kmem_fullpage = {
2169 	pool_page_alloc, pool_page_free, 0,
2170 };
2171 #else
2172 struct pool_allocator pool_allocator_kmem = {
2173 	pool_page_alloc, pool_page_free, 0,
2174 };
2175 #endif
2176 
2177 void	*pool_page_alloc_nointr(struct pool *, int);
2178 void	pool_page_free_nointr(struct pool *, void *);
2179 
2180 #ifdef POOL_SUBPAGE
2181 struct pool_allocator pool_allocator_nointr_fullpage = {
2182 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2183 };
2184 #else
2185 struct pool_allocator pool_allocator_nointr = {
2186 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2187 };
2188 #endif
2189 
2190 #ifdef POOL_SUBPAGE
2191 void	*pool_subpage_alloc(struct pool *, int);
2192 void	pool_subpage_free(struct pool *, void *);
2193 
2194 struct pool_allocator pool_allocator_kmem = {
2195 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2196 };
2197 
2198 void	*pool_subpage_alloc_nointr(struct pool *, int);
2199 void	pool_subpage_free_nointr(struct pool *, void *);
2200 
2201 struct pool_allocator pool_allocator_nointr = {
2202 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2203 };
2204 #endif /* POOL_SUBPAGE */
2205 
2206 /*
2207  * We have at least three different resources for the same allocation and
2208  * each resource can be depleted.  First, we have the ready elements in the
2209  * pool.  Then we have the resource (typically a vm_map) for this allocator.
2210  * Finally, we have physical memory.  Waiting for any of these can be
2211  * unnecessary when any other is freed, but the kernel doesn't support
2212  * sleeping on multiple wait channels, so we have to employ another strategy.
2213  *
2214  * The caller sleeps on the pool (so that it can be awakened when an item
2215  * is returned to the pool), but we set PA_WANT on the allocator.  When a
2216  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
2217  * will wake up all sleeping pools belonging to this allocator.
2218  *
2219  * XXX Thundering herd.
2220  */
2221 void *
2222 pool_allocator_alloc(struct pool *org, int flags)
2223 {
2224 	struct pool_allocator *pa = org->pr_alloc;
2225 	struct pool *pp, *start;
2226 	int s, freed;
2227 	void *res;
2228 
2229 	LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
2230 
2231 	do {
2232 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2233 			return (res);
2234 		if ((flags & PR_WAITOK) == 0) {
2235 			/*
2236 			 * We only run the drain hookhere if PR_NOWAIT.
2237 			 * In other cases, the hook will be run in
2238 			 * pool_reclaim().
2239 			 */
2240 			if (org->pr_drain_hook != NULL) {
2241 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
2242 				    flags);
2243 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2244 					return (res);
2245 			}
2246 			break;
2247 		}
2248 
2249 		/*
2250 		 * Drain all pools, that use this allocator.
2251 		 * We do this to reclaim VA space.
2252 		 * pa_alloc is responsible for waiting for
2253 		 * physical memory.
2254 		 *
2255 		 * XXX We risk looping forever if start if someone
2256 		 * calls pool_destroy on "start".  But there is no
2257 		 * other way to have potentially sleeping pool_reclaim,
2258 		 * non-sleeping locks on pool_allocator, and some
2259 		 * stirring of drained pools in the allocator.
2260 		 *
2261 		 * XXX Maybe we should use pool_head_slock for locking
2262 		 * the allocators?
2263 		 */
2264 		freed = 0;
2265 
2266 		s = splvm();
2267 		simple_lock(&pa->pa_slock);
2268 		pp = start = TAILQ_FIRST(&pa->pa_list);
2269 		do {
2270 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2271 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2272 			simple_unlock(&pa->pa_slock);
2273 			freed = pool_reclaim(pp);
2274 			simple_lock(&pa->pa_slock);
2275 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2276 			 freed == 0);
2277 
2278 		if (freed == 0) {
2279 			/*
2280 			 * We set PA_WANT here, the caller will most likely
2281 			 * sleep waiting for pages (if not, this won't hurt
2282 			 * that much), and there is no way to set this in
2283 			 * the caller without violating locking order.
2284 			 */
2285 			pa->pa_flags |= PA_WANT;
2286 		}
2287 		simple_unlock(&pa->pa_slock);
2288 		splx(s);
2289 	} while (freed);
2290 	return (NULL);
2291 }
2292 
2293 void
2294 pool_allocator_free(struct pool *pp, void *v)
2295 {
2296 	struct pool_allocator *pa = pp->pr_alloc;
2297 	int s;
2298 
2299 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2300 
2301 	(*pa->pa_free)(pp, v);
2302 
2303 	s = splvm();
2304 	simple_lock(&pa->pa_slock);
2305 	if ((pa->pa_flags & PA_WANT) == 0) {
2306 		simple_unlock(&pa->pa_slock);
2307 		splx(s);
2308 		return;
2309 	}
2310 
2311 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2312 		simple_lock(&pp->pr_slock);
2313 		if ((pp->pr_flags & PR_WANTED) != 0) {
2314 			pp->pr_flags &= ~PR_WANTED;
2315 			wakeup(pp);
2316 		}
2317 		simple_unlock(&pp->pr_slock);
2318 	}
2319 	pa->pa_flags &= ~PA_WANT;
2320 	simple_unlock(&pa->pa_slock);
2321 	splx(s);
2322 }
2323 
2324 void *
2325 pool_page_alloc(struct pool *pp, int flags)
2326 {
2327 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2328 
2329 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2330 }
2331 
2332 void
2333 pool_page_free(struct pool *pp, void *v)
2334 {
2335 
2336 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2337 }
2338 
2339 static void *
2340 pool_page_alloc_meta(struct pool *pp, int flags)
2341 {
2342 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2343 
2344 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2345 }
2346 
2347 static void
2348 pool_page_free_meta(struct pool *pp, void *v)
2349 {
2350 
2351 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2352 }
2353 
2354 #ifdef POOL_SUBPAGE
2355 /* Sub-page allocator, for machines with large hardware pages. */
2356 void *
2357 pool_subpage_alloc(struct pool *pp, int flags)
2358 {
2359 	void *v;
2360 	int s;
2361 	s = splvm();
2362 	v = pool_get(&psppool, flags);
2363 	splx(s);
2364 	return v;
2365 }
2366 
2367 void
2368 pool_subpage_free(struct pool *pp, void *v)
2369 {
2370 	int s;
2371 	s = splvm();
2372 	pool_put(&psppool, v);
2373 	splx(s);
2374 }
2375 
2376 /* We don't provide a real nointr allocator.  Maybe later. */
2377 void *
2378 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2379 {
2380 
2381 	return (pool_subpage_alloc(pp, flags));
2382 }
2383 
2384 void
2385 pool_subpage_free_nointr(struct pool *pp, void *v)
2386 {
2387 
2388 	pool_subpage_free(pp, v);
2389 }
2390 #endif /* POOL_SUBPAGE */
2391 void *
2392 pool_page_alloc_nointr(struct pool *pp, int flags)
2393 {
2394 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2395 
2396 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2397 }
2398 
2399 void
2400 pool_page_free_nointr(struct pool *pp, void *v)
2401 {
2402 
2403 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2404 }
2405