xref: /netbsd-src/sys/kern/subr_pool.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: subr_pool.c,v 1.250 2019/05/09 08:16:14 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11  * Maxime Villard.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.250 2019/05/09 08:16:14 skrll Exp $");
37 
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #include "opt_kleak.h"
43 #endif
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/bitops.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/vmem.h>
53 #include <sys/pool.h>
54 #include <sys/syslog.h>
55 #include <sys/debug.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 
62 #include <uvm/uvm_extern.h>
63 
64 /*
65  * Pool resource management utility.
66  *
67  * Memory is allocated in pages which are split into pieces according to
68  * the pool item size. Each page is kept on one of three lists in the
69  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70  * for empty, full and partially-full pages respectively. The individual
71  * pool items are on a linked list headed by `ph_itemlist' in each page
72  * header. The memory for building the page list is either taken from
73  * the allocated pages themselves (for small pool items) or taken from
74  * an internal pool of page headers (`phpool').
75  */
76 
77 /* List of all pools. Non static as needed by 'vmstat -m' */
78 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
79 
80 /* Private pool for page header structures */
81 #define	PHPOOL_MAX	8
82 static struct pool phpool[PHPOOL_MAX];
83 #define	PHPOOL_FREELIST_NELEM(idx) \
84 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
85 
86 #if defined(KASAN)
87 #define POOL_REDZONE
88 #endif
89 
90 #ifdef POOL_REDZONE
91 # ifdef KASAN
92 #  define POOL_REDZONE_SIZE 8
93 # else
94 #  define POOL_REDZONE_SIZE 2
95 # endif
96 static void pool_redzone_init(struct pool *, size_t);
97 static void pool_redzone_fill(struct pool *, void *);
98 static void pool_redzone_check(struct pool *, void *);
99 static void pool_cache_redzone_check(pool_cache_t, void *);
100 #else
101 # define pool_redzone_init(pp, sz)		__nothing
102 # define pool_redzone_fill(pp, ptr)		__nothing
103 # define pool_redzone_check(pp, ptr)		__nothing
104 # define pool_cache_redzone_check(pc, ptr)	__nothing
105 #endif
106 
107 #ifdef KLEAK
108 static void pool_kleak_fill(struct pool *, void *);
109 static void pool_cache_kleak_fill(pool_cache_t, void *);
110 #else
111 #define pool_kleak_fill(pp, ptr)	__nothing
112 #define pool_cache_kleak_fill(pc, ptr)	__nothing
113 #endif
114 
115 #ifdef POOL_QUARANTINE
116 static void pool_quarantine_init(struct pool *);
117 static void pool_quarantine_flush(struct pool *);
118 static bool pool_put_quarantine(struct pool *, void *,
119     struct pool_pagelist *);
120 static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
121 #else
122 #define pool_quarantine_init(a)			__nothing
123 #define pool_quarantine_flush(a)		__nothing
124 #define pool_put_quarantine(a, b, c)		false
125 #define pool_cache_put_quarantine(a, b, c)	false
126 #endif
127 
128 #define pc_has_ctor(pc) \
129 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
130 #define pc_has_dtor(pc) \
131 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
132 
133 static void *pool_page_alloc_meta(struct pool *, int);
134 static void pool_page_free_meta(struct pool *, void *);
135 
136 /* allocator for pool metadata */
137 struct pool_allocator pool_allocator_meta = {
138 	.pa_alloc = pool_page_alloc_meta,
139 	.pa_free = pool_page_free_meta,
140 	.pa_pagesz = 0
141 };
142 
143 #define POOL_ALLOCATOR_BIG_BASE 13
144 extern struct pool_allocator pool_allocator_big[];
145 static int pool_bigidx(size_t);
146 
147 /* # of seconds to retain page after last use */
148 int pool_inactive_time = 10;
149 
150 /* Next candidate for drainage (see pool_drain()) */
151 static struct pool *drainpp;
152 
153 /* This lock protects both pool_head and drainpp. */
154 static kmutex_t pool_head_lock;
155 static kcondvar_t pool_busy;
156 
157 /* This lock protects initialization of a potentially shared pool allocator */
158 static kmutex_t pool_allocator_lock;
159 
160 static unsigned int poolid_counter = 0;
161 
162 typedef uint32_t pool_item_bitmap_t;
163 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
164 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
165 
166 struct pool_item_header {
167 	/* Page headers */
168 	LIST_ENTRY(pool_item_header)
169 				ph_pagelist;	/* pool page list */
170 	union {
171 		/* !PR_PHINPAGE */
172 		struct {
173 			SPLAY_ENTRY(pool_item_header)
174 				phu_node;	/* off-page page headers */
175 		} phu_offpage;
176 		/* PR_PHINPAGE */
177 		struct {
178 			unsigned int phu_poolid;
179 		} phu_onpage;
180 	} ph_u1;
181 	void *			ph_page;	/* this page's address */
182 	uint32_t		ph_time;	/* last referenced */
183 	uint16_t		ph_nmissing;	/* # of chunks in use */
184 	uint16_t		ph_off;		/* start offset in page */
185 	union {
186 		/* !PR_USEBMAP */
187 		struct {
188 			LIST_HEAD(, pool_item)
189 				phu_itemlist;	/* chunk list for this page */
190 		} phu_normal;
191 		/* PR_USEBMAP */
192 		struct {
193 			pool_item_bitmap_t phu_bitmap[1];
194 		} phu_notouch;
195 	} ph_u2;
196 };
197 #define ph_node		ph_u1.phu_offpage.phu_node
198 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
199 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
200 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
201 
202 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
203 
204 #if defined(DIAGNOSTIC) && !defined(KASAN)
205 #define POOL_CHECK_MAGIC
206 #endif
207 
208 struct pool_item {
209 #ifdef POOL_CHECK_MAGIC
210 	u_int pi_magic;
211 #endif
212 #define	PI_MAGIC 0xdeaddeadU
213 	/* Other entries use only this list entry */
214 	LIST_ENTRY(pool_item)	pi_list;
215 };
216 
217 #define	POOL_NEEDS_CATCHUP(pp)						\
218 	((pp)->pr_nitems < (pp)->pr_minitems)
219 
220 /*
221  * Pool cache management.
222  *
223  * Pool caches provide a way for constructed objects to be cached by the
224  * pool subsystem.  This can lead to performance improvements by avoiding
225  * needless object construction/destruction; it is deferred until absolutely
226  * necessary.
227  *
228  * Caches are grouped into cache groups.  Each cache group references up
229  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
230  * object from the pool, it calls the object's constructor and places it
231  * into a cache group.  When a cache group frees an object back to the
232  * pool, it first calls the object's destructor.  This allows the object
233  * to persist in constructed form while freed to the cache.
234  *
235  * The pool references each cache, so that when a pool is drained by the
236  * pagedaemon, it can drain each individual cache as well.  Each time a
237  * cache is drained, the most idle cache group is freed to the pool in
238  * its entirety.
239  *
240  * Pool caches are layed on top of pools.  By layering them, we can avoid
241  * the complexity of cache management for pools which would not benefit
242  * from it.
243  */
244 
245 static struct pool pcg_normal_pool;
246 static struct pool pcg_large_pool;
247 static struct pool cache_pool;
248 static struct pool cache_cpu_pool;
249 
250 /* List of all caches. */
251 TAILQ_HEAD(,pool_cache) pool_cache_head =
252     TAILQ_HEAD_INITIALIZER(pool_cache_head);
253 
254 int pool_cache_disable;		/* global disable for caching */
255 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
256 
257 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
258 				    void *);
259 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
260 				    void **, paddr_t *, int);
261 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
262 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
263 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
264 static void	pool_cache_transfer(pool_cache_t);
265 
266 static int	pool_catchup(struct pool *);
267 static void	pool_prime_page(struct pool *, void *,
268 		    struct pool_item_header *);
269 static void	pool_update_curpage(struct pool *);
270 
271 static int	pool_grow(struct pool *, int);
272 static void	*pool_allocator_alloc(struct pool *, int);
273 static void	pool_allocator_free(struct pool *, void *);
274 
275 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
276 	void (*)(const char *, ...) __printflike(1, 2));
277 static void pool_print1(struct pool *, const char *,
278 	void (*)(const char *, ...) __printflike(1, 2));
279 
280 static int pool_chk_page(struct pool *, const char *,
281 			 struct pool_item_header *);
282 
283 /* -------------------------------------------------------------------------- */
284 
285 static inline unsigned int
286 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
287     const void *v)
288 {
289 	const char *cp = v;
290 	unsigned int idx;
291 
292 	KASSERT(pp->pr_roflags & PR_USEBMAP);
293 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
294 
295 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
296 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
297 		    pp->pr_itemsperpage);
298 	}
299 
300 	return idx;
301 }
302 
303 static inline void
304 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
305     void *obj)
306 {
307 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
308 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
309 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
310 
311 	if (__predict_false((*bitmap & mask) != 0)) {
312 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
313 	}
314 
315 	*bitmap |= mask;
316 }
317 
318 static inline void *
319 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
320 {
321 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
322 	unsigned int idx;
323 	int i;
324 
325 	for (i = 0; ; i++) {
326 		int bit;
327 
328 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
329 		bit = ffs32(bitmap[i]);
330 		if (bit) {
331 			pool_item_bitmap_t mask;
332 
333 			bit--;
334 			idx = (i * BITMAP_SIZE) + bit;
335 			mask = 1U << bit;
336 			KASSERT((bitmap[i] & mask) != 0);
337 			bitmap[i] &= ~mask;
338 			break;
339 		}
340 	}
341 	KASSERT(idx < pp->pr_itemsperpage);
342 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
343 }
344 
345 static inline void
346 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
347 {
348 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
349 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
350 	int i;
351 
352 	for (i = 0; i < n; i++) {
353 		bitmap[i] = (pool_item_bitmap_t)-1;
354 	}
355 }
356 
357 /* -------------------------------------------------------------------------- */
358 
359 static inline void
360 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
361     void *obj)
362 {
363 	struct pool_item *pi = obj;
364 
365 #ifdef POOL_CHECK_MAGIC
366 	pi->pi_magic = PI_MAGIC;
367 #endif
368 
369 	if (pp->pr_redzone) {
370 		/*
371 		 * Mark the pool_item as valid. The rest is already
372 		 * invalid.
373 		 */
374 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
375 	}
376 
377 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
378 }
379 
380 static inline void *
381 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
382 {
383 	struct pool_item *pi;
384 	void *v;
385 
386 	v = pi = LIST_FIRST(&ph->ph_itemlist);
387 	if (__predict_false(v == NULL)) {
388 		mutex_exit(&pp->pr_lock);
389 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
390 	}
391 	KASSERTMSG((pp->pr_nitems > 0),
392 	    "%s: [%s] nitems %u inconsistent on itemlist",
393 	    __func__, pp->pr_wchan, pp->pr_nitems);
394 #ifdef POOL_CHECK_MAGIC
395 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
396 	    "%s: [%s] free list modified: "
397 	    "magic=%x; page %p; item addr %p", __func__,
398 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
399 #endif
400 
401 	/*
402 	 * Remove from item list.
403 	 */
404 	LIST_REMOVE(pi, pi_list);
405 
406 	return v;
407 }
408 
409 /* -------------------------------------------------------------------------- */
410 
411 static inline int
412 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
413 {
414 
415 	/*
416 	 * We consider pool_item_header with smaller ph_page bigger. This
417 	 * unnatural ordering is for the benefit of pr_find_pagehead.
418 	 */
419 	if (a->ph_page < b->ph_page)
420 		return 1;
421 	else if (a->ph_page > b->ph_page)
422 		return -1;
423 	else
424 		return 0;
425 }
426 
427 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
428 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
429 
430 static inline struct pool_item_header *
431 pr_find_pagehead_noalign(struct pool *pp, void *v)
432 {
433 	struct pool_item_header *ph, tmp;
434 
435 	tmp.ph_page = (void *)(uintptr_t)v;
436 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
437 	if (ph == NULL) {
438 		ph = SPLAY_ROOT(&pp->pr_phtree);
439 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
440 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
441 		}
442 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
443 	}
444 
445 	return ph;
446 }
447 
448 /*
449  * Return the pool page header based on item address.
450  */
451 static inline struct pool_item_header *
452 pr_find_pagehead(struct pool *pp, void *v)
453 {
454 	struct pool_item_header *ph, tmp;
455 
456 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
457 		ph = pr_find_pagehead_noalign(pp, v);
458 	} else {
459 		void *page =
460 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
461 
462 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
463 			ph = (struct pool_item_header *)page;
464 			if (__predict_false((void *)ph->ph_page != page)) {
465 				panic("%s: [%s] item %p not part of pool",
466 				    __func__, pp->pr_wchan, v);
467 			}
468 			if (__predict_false((char *)v < (char *)page +
469 			    ph->ph_off)) {
470 				panic("%s: [%s] item %p below item space",
471 				    __func__, pp->pr_wchan, v);
472 			}
473 			if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
474 				panic("%s: [%s] item %p poolid %u != %u",
475 				    __func__, pp->pr_wchan, v, ph->ph_poolid,
476 				    pp->pr_poolid);
477 			}
478 		} else {
479 			tmp.ph_page = page;
480 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
481 		}
482 	}
483 
484 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
485 	    ((char *)ph->ph_page <= (char *)v &&
486 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
487 	return ph;
488 }
489 
490 static void
491 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
492 {
493 	struct pool_item_header *ph;
494 
495 	while ((ph = LIST_FIRST(pq)) != NULL) {
496 		LIST_REMOVE(ph, ph_pagelist);
497 		pool_allocator_free(pp, ph->ph_page);
498 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
499 			pool_put(pp->pr_phpool, ph);
500 	}
501 }
502 
503 /*
504  * Remove a page from the pool.
505  */
506 static inline void
507 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
508      struct pool_pagelist *pq)
509 {
510 
511 	KASSERT(mutex_owned(&pp->pr_lock));
512 
513 	/*
514 	 * If the page was idle, decrement the idle page count.
515 	 */
516 	if (ph->ph_nmissing == 0) {
517 		KASSERT(pp->pr_nidle != 0);
518 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
519 		    "nitems=%u < itemsperpage=%u",
520 		    pp->pr_nitems, pp->pr_itemsperpage);
521 		pp->pr_nidle--;
522 	}
523 
524 	pp->pr_nitems -= pp->pr_itemsperpage;
525 
526 	/*
527 	 * Unlink the page from the pool and queue it for release.
528 	 */
529 	LIST_REMOVE(ph, ph_pagelist);
530 	if (pp->pr_roflags & PR_PHINPAGE) {
531 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
532 			panic("%s: [%s] ph %p poolid %u != %u",
533 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
534 			    pp->pr_poolid);
535 		}
536 	} else {
537 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
538 	}
539 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
540 
541 	pp->pr_npages--;
542 	pp->pr_npagefree++;
543 
544 	pool_update_curpage(pp);
545 }
546 
547 /*
548  * Initialize all the pools listed in the "pools" link set.
549  */
550 void
551 pool_subsystem_init(void)
552 {
553 	size_t size;
554 	int idx;
555 
556 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
557 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
558 	cv_init(&pool_busy, "poolbusy");
559 
560 	/*
561 	 * Initialize private page header pool and cache magazine pool if we
562 	 * haven't done so yet.
563 	 */
564 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
565 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
566 		int nelem;
567 		size_t sz;
568 
569 		nelem = PHPOOL_FREELIST_NELEM(idx);
570 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
571 		    "phpool-%d", nelem);
572 		sz = sizeof(struct pool_item_header);
573 		if (nelem) {
574 			sz = offsetof(struct pool_item_header,
575 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
576 		}
577 		pool_init(&phpool[idx], sz, 0, 0, 0,
578 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
579 	}
580 
581 	size = sizeof(pcg_t) +
582 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
583 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
584 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
585 
586 	size = sizeof(pcg_t) +
587 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
588 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
589 	    "pcglarge", &pool_allocator_meta, IPL_VM);
590 
591 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
592 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
593 
594 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
595 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
596 }
597 
598 static inline bool
599 pool_init_is_phinpage(const struct pool *pp)
600 {
601 	size_t pagesize;
602 
603 	if (pp->pr_roflags & PR_PHINPAGE) {
604 		return true;
605 	}
606 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
607 		return false;
608 	}
609 
610 	pagesize = pp->pr_alloc->pa_pagesz;
611 
612 	/*
613 	 * Threshold: the item size is below 1/16 of a page size, and below
614 	 * 8 times the page header size. The latter ensures we go off-page
615 	 * if the page header would make us waste a rather big item.
616 	 */
617 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
618 		return true;
619 	}
620 
621 	/* Put the header into the page if it doesn't waste any items. */
622 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
623 		return true;
624 	}
625 
626 	return false;
627 }
628 
629 static inline bool
630 pool_init_is_usebmap(const struct pool *pp)
631 {
632 	size_t bmapsize;
633 
634 	if (pp->pr_roflags & PR_NOTOUCH) {
635 		return true;
636 	}
637 
638 	/*
639 	 * If we're on-page, and the page header can already contain a bitmap
640 	 * big enough to cover all the items of the page, go with a bitmap.
641 	 */
642 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
643 		return false;
644 	}
645 	bmapsize = roundup(PHSIZE, pp->pr_align) -
646 	    offsetof(struct pool_item_header, ph_bitmap[0]);
647 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
648 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
649 		return true;
650 	}
651 
652 	return false;
653 }
654 
655 /*
656  * Initialize the given pool resource structure.
657  *
658  * We export this routine to allow other kernel parts to declare
659  * static pools that must be initialized before kmem(9) is available.
660  */
661 void
662 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
663     const char *wchan, struct pool_allocator *palloc, int ipl)
664 {
665 	struct pool *pp1;
666 	size_t prsize;
667 	int itemspace, slack;
668 
669 	/* XXX ioff will be removed. */
670 	KASSERT(ioff == 0);
671 
672 #ifdef DEBUG
673 	if (__predict_true(!cold))
674 		mutex_enter(&pool_head_lock);
675 	/*
676 	 * Check that the pool hasn't already been initialised and
677 	 * added to the list of all pools.
678 	 */
679 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
680 		if (pp == pp1)
681 			panic("%s: [%s] already initialised", __func__,
682 			    wchan);
683 	}
684 	if (__predict_true(!cold))
685 		mutex_exit(&pool_head_lock);
686 #endif
687 
688 	if (palloc == NULL)
689 		palloc = &pool_allocator_kmem;
690 
691 	if (!cold)
692 		mutex_enter(&pool_allocator_lock);
693 	if (palloc->pa_refcnt++ == 0) {
694 		if (palloc->pa_pagesz == 0)
695 			palloc->pa_pagesz = PAGE_SIZE;
696 
697 		TAILQ_INIT(&palloc->pa_list);
698 
699 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
700 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
701 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
702 	}
703 	if (!cold)
704 		mutex_exit(&pool_allocator_lock);
705 
706 	if (align == 0)
707 		align = ALIGN(1);
708 
709 	prsize = size;
710 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
711 		prsize = sizeof(struct pool_item);
712 
713 	prsize = roundup(prsize, align);
714 	KASSERTMSG((prsize <= palloc->pa_pagesz),
715 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
716 	    __func__, wchan, prsize, palloc->pa_pagesz);
717 
718 	/*
719 	 * Initialize the pool structure.
720 	 */
721 	LIST_INIT(&pp->pr_emptypages);
722 	LIST_INIT(&pp->pr_fullpages);
723 	LIST_INIT(&pp->pr_partpages);
724 	pp->pr_cache = NULL;
725 	pp->pr_curpage = NULL;
726 	pp->pr_npages = 0;
727 	pp->pr_minitems = 0;
728 	pp->pr_minpages = 0;
729 	pp->pr_maxpages = UINT_MAX;
730 	pp->pr_roflags = flags;
731 	pp->pr_flags = 0;
732 	pp->pr_size = prsize;
733 	pp->pr_reqsize = size;
734 	pp->pr_align = align;
735 	pp->pr_wchan = wchan;
736 	pp->pr_alloc = palloc;
737 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
738 	pp->pr_nitems = 0;
739 	pp->pr_nout = 0;
740 	pp->pr_hardlimit = UINT_MAX;
741 	pp->pr_hardlimit_warning = NULL;
742 	pp->pr_hardlimit_ratecap.tv_sec = 0;
743 	pp->pr_hardlimit_ratecap.tv_usec = 0;
744 	pp->pr_hardlimit_warning_last.tv_sec = 0;
745 	pp->pr_hardlimit_warning_last.tv_usec = 0;
746 	pp->pr_drain_hook = NULL;
747 	pp->pr_drain_hook_arg = NULL;
748 	pp->pr_freecheck = NULL;
749 	pool_redzone_init(pp, size);
750 	pool_quarantine_init(pp);
751 
752 	/*
753 	 * Decide whether to put the page header off-page to avoid wasting too
754 	 * large a part of the page or too big an item. Off-page page headers
755 	 * go on a hash table, so we can match a returned item with its header
756 	 * based on the page address.
757 	 */
758 	if (pool_init_is_phinpage(pp)) {
759 		/* Use the beginning of the page for the page header */
760 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
761 		pp->pr_itemoffset = roundup(PHSIZE, align);
762 		pp->pr_roflags |= PR_PHINPAGE;
763 	} else {
764 		/* The page header will be taken from our page header pool */
765 		itemspace = palloc->pa_pagesz;
766 		pp->pr_itemoffset = 0;
767 		SPLAY_INIT(&pp->pr_phtree);
768 	}
769 
770 	pp->pr_itemsperpage = itemspace / pp->pr_size;
771 	KASSERT(pp->pr_itemsperpage != 0);
772 
773 	/*
774 	 * Decide whether to use a bitmap or a linked list to manage freed
775 	 * items.
776 	 */
777 	if (pool_init_is_usebmap(pp)) {
778 		pp->pr_roflags |= PR_USEBMAP;
779 	}
780 
781 	/*
782 	 * If we're off-page and use a bitmap, choose the appropriate pool to
783 	 * allocate page headers, whose size varies depending on the bitmap. If
784 	 * we're just off-page, take the first pool, no extra size. If we're
785 	 * on-page, nothing to do.
786 	 */
787 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
788 		int idx;
789 
790 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
791 		    idx++) {
792 			/* nothing */
793 		}
794 		if (idx >= PHPOOL_MAX) {
795 			/*
796 			 * if you see this panic, consider to tweak
797 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
798 			 */
799 			panic("%s: [%s] too large itemsperpage(%d) for "
800 			    "PR_USEBMAP", __func__,
801 			    pp->pr_wchan, pp->pr_itemsperpage);
802 		}
803 		pp->pr_phpool = &phpool[idx];
804 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
805 		pp->pr_phpool = &phpool[0];
806 	} else {
807 		pp->pr_phpool = NULL;
808 	}
809 
810 	/*
811 	 * Use the slack between the chunks and the page header
812 	 * for "cache coloring".
813 	 */
814 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
815 	pp->pr_maxcolor = rounddown(slack, align);
816 	pp->pr_curcolor = 0;
817 
818 	pp->pr_nget = 0;
819 	pp->pr_nfail = 0;
820 	pp->pr_nput = 0;
821 	pp->pr_npagealloc = 0;
822 	pp->pr_npagefree = 0;
823 	pp->pr_hiwat = 0;
824 	pp->pr_nidle = 0;
825 	pp->pr_refcnt = 0;
826 
827 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
828 	cv_init(&pp->pr_cv, wchan);
829 	pp->pr_ipl = ipl;
830 
831 	/* Insert into the list of all pools. */
832 	if (!cold)
833 		mutex_enter(&pool_head_lock);
834 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
835 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
836 			break;
837 	}
838 	if (pp1 == NULL)
839 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
840 	else
841 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
842 	if (!cold)
843 		mutex_exit(&pool_head_lock);
844 
845 	/* Insert this into the list of pools using this allocator. */
846 	if (!cold)
847 		mutex_enter(&palloc->pa_lock);
848 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
849 	if (!cold)
850 		mutex_exit(&palloc->pa_lock);
851 }
852 
853 /*
854  * De-commision a pool resource.
855  */
856 void
857 pool_destroy(struct pool *pp)
858 {
859 	struct pool_pagelist pq;
860 	struct pool_item_header *ph;
861 
862 	pool_quarantine_flush(pp);
863 
864 	/* Remove from global pool list */
865 	mutex_enter(&pool_head_lock);
866 	while (pp->pr_refcnt != 0)
867 		cv_wait(&pool_busy, &pool_head_lock);
868 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
869 	if (drainpp == pp)
870 		drainpp = NULL;
871 	mutex_exit(&pool_head_lock);
872 
873 	/* Remove this pool from its allocator's list of pools. */
874 	mutex_enter(&pp->pr_alloc->pa_lock);
875 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
876 	mutex_exit(&pp->pr_alloc->pa_lock);
877 
878 	mutex_enter(&pool_allocator_lock);
879 	if (--pp->pr_alloc->pa_refcnt == 0)
880 		mutex_destroy(&pp->pr_alloc->pa_lock);
881 	mutex_exit(&pool_allocator_lock);
882 
883 	mutex_enter(&pp->pr_lock);
884 
885 	KASSERT(pp->pr_cache == NULL);
886 	KASSERTMSG((pp->pr_nout == 0),
887 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
888 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
889 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
890 
891 	/* Remove all pages */
892 	LIST_INIT(&pq);
893 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
894 		pr_rmpage(pp, ph, &pq);
895 
896 	mutex_exit(&pp->pr_lock);
897 
898 	pr_pagelist_free(pp, &pq);
899 	cv_destroy(&pp->pr_cv);
900 	mutex_destroy(&pp->pr_lock);
901 }
902 
903 void
904 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
905 {
906 
907 	/* XXX no locking -- must be used just after pool_init() */
908 	KASSERTMSG((pp->pr_drain_hook == NULL),
909 	    "%s: [%s] already set", __func__, pp->pr_wchan);
910 	pp->pr_drain_hook = fn;
911 	pp->pr_drain_hook_arg = arg;
912 }
913 
914 static struct pool_item_header *
915 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
916 {
917 	struct pool_item_header *ph;
918 
919 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
920 		ph = storage;
921 	else
922 		ph = pool_get(pp->pr_phpool, flags);
923 
924 	return ph;
925 }
926 
927 /*
928  * Grab an item from the pool.
929  */
930 void *
931 pool_get(struct pool *pp, int flags)
932 {
933 	struct pool_item_header *ph;
934 	void *v;
935 
936 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
937 	KASSERTMSG((pp->pr_itemsperpage != 0),
938 	    "%s: [%s] pr_itemsperpage is zero, "
939 	    "pool not initialized?", __func__, pp->pr_wchan);
940 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
941 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
942 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
943 	    __func__, pp->pr_wchan);
944 	if (flags & PR_WAITOK) {
945 		ASSERT_SLEEPABLE();
946 	}
947 
948 	mutex_enter(&pp->pr_lock);
949  startover:
950 	/*
951 	 * Check to see if we've reached the hard limit.  If we have,
952 	 * and we can wait, then wait until an item has been returned to
953 	 * the pool.
954 	 */
955 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
956 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
957 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
958 		if (pp->pr_drain_hook != NULL) {
959 			/*
960 			 * Since the drain hook is going to free things
961 			 * back to the pool, unlock, call the hook, re-lock,
962 			 * and check the hardlimit condition again.
963 			 */
964 			mutex_exit(&pp->pr_lock);
965 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
966 			mutex_enter(&pp->pr_lock);
967 			if (pp->pr_nout < pp->pr_hardlimit)
968 				goto startover;
969 		}
970 
971 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
972 			/*
973 			 * XXX: A warning isn't logged in this case.  Should
974 			 * it be?
975 			 */
976 			pp->pr_flags |= PR_WANTED;
977 			do {
978 				cv_wait(&pp->pr_cv, &pp->pr_lock);
979 			} while (pp->pr_flags & PR_WANTED);
980 			goto startover;
981 		}
982 
983 		/*
984 		 * Log a message that the hard limit has been hit.
985 		 */
986 		if (pp->pr_hardlimit_warning != NULL &&
987 		    ratecheck(&pp->pr_hardlimit_warning_last,
988 			      &pp->pr_hardlimit_ratecap))
989 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
990 
991 		pp->pr_nfail++;
992 
993 		mutex_exit(&pp->pr_lock);
994 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
995 		return NULL;
996 	}
997 
998 	/*
999 	 * The convention we use is that if `curpage' is not NULL, then
1000 	 * it points at a non-empty bucket. In particular, `curpage'
1001 	 * never points at a page header which has PR_PHINPAGE set and
1002 	 * has no items in its bucket.
1003 	 */
1004 	if ((ph = pp->pr_curpage) == NULL) {
1005 		int error;
1006 
1007 		KASSERTMSG((pp->pr_nitems == 0),
1008 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
1009 		    __func__, pp->pr_wchan, pp->pr_nitems);
1010 
1011 		/*
1012 		 * Call the back-end page allocator for more memory.
1013 		 * Release the pool lock, as the back-end page allocator
1014 		 * may block.
1015 		 */
1016 		error = pool_grow(pp, flags);
1017 		if (error != 0) {
1018 			/*
1019 			 * pool_grow aborts when another thread
1020 			 * is allocating a new page. Retry if it
1021 			 * waited for it.
1022 			 */
1023 			if (error == ERESTART)
1024 				goto startover;
1025 
1026 			/*
1027 			 * We were unable to allocate a page or item
1028 			 * header, but we released the lock during
1029 			 * allocation, so perhaps items were freed
1030 			 * back to the pool.  Check for this case.
1031 			 */
1032 			if (pp->pr_curpage != NULL)
1033 				goto startover;
1034 
1035 			pp->pr_nfail++;
1036 			mutex_exit(&pp->pr_lock);
1037 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
1038 			return NULL;
1039 		}
1040 
1041 		/* Start the allocation process over. */
1042 		goto startover;
1043 	}
1044 	if (pp->pr_roflags & PR_USEBMAP) {
1045 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1046 		    "%s: %s: page empty", __func__, pp->pr_wchan);
1047 		v = pr_item_bitmap_get(pp, ph);
1048 	} else {
1049 		v = pr_item_linkedlist_get(pp, ph);
1050 	}
1051 	pp->pr_nitems--;
1052 	pp->pr_nout++;
1053 	if (ph->ph_nmissing == 0) {
1054 		KASSERT(pp->pr_nidle > 0);
1055 		pp->pr_nidle--;
1056 
1057 		/*
1058 		 * This page was previously empty.  Move it to the list of
1059 		 * partially-full pages.  This page is already curpage.
1060 		 */
1061 		LIST_REMOVE(ph, ph_pagelist);
1062 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1063 	}
1064 	ph->ph_nmissing++;
1065 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1066 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1067 			LIST_EMPTY(&ph->ph_itemlist)),
1068 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
1069 			pp->pr_wchan, ph->ph_nmissing);
1070 		/*
1071 		 * This page is now full.  Move it to the full list
1072 		 * and select a new current page.
1073 		 */
1074 		LIST_REMOVE(ph, ph_pagelist);
1075 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1076 		pool_update_curpage(pp);
1077 	}
1078 
1079 	pp->pr_nget++;
1080 
1081 	/*
1082 	 * If we have a low water mark and we are now below that low
1083 	 * water mark, add more items to the pool.
1084 	 */
1085 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1086 		/*
1087 		 * XXX: Should we log a warning?  Should we set up a timeout
1088 		 * to try again in a second or so?  The latter could break
1089 		 * a caller's assumptions about interrupt protection, etc.
1090 		 */
1091 	}
1092 
1093 	mutex_exit(&pp->pr_lock);
1094 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1095 	FREECHECK_OUT(&pp->pr_freecheck, v);
1096 	pool_redzone_fill(pp, v);
1097 	if (flags & PR_ZERO)
1098 		memset(v, 0, pp->pr_reqsize);
1099 	else
1100 		pool_kleak_fill(pp, v);
1101 	return v;
1102 }
1103 
1104 /*
1105  * Internal version of pool_put().  Pool is already locked/entered.
1106  */
1107 static void
1108 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1109 {
1110 	struct pool_item_header *ph;
1111 
1112 	KASSERT(mutex_owned(&pp->pr_lock));
1113 	pool_redzone_check(pp, v);
1114 	FREECHECK_IN(&pp->pr_freecheck, v);
1115 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1116 
1117 	KASSERTMSG((pp->pr_nout > 0),
1118 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1119 
1120 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1121 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
1122 	}
1123 
1124 	/*
1125 	 * Return to item list.
1126 	 */
1127 	if (pp->pr_roflags & PR_USEBMAP) {
1128 		pr_item_bitmap_put(pp, ph, v);
1129 	} else {
1130 		pr_item_linkedlist_put(pp, ph, v);
1131 	}
1132 	KDASSERT(ph->ph_nmissing != 0);
1133 	ph->ph_nmissing--;
1134 	pp->pr_nput++;
1135 	pp->pr_nitems++;
1136 	pp->pr_nout--;
1137 
1138 	/* Cancel "pool empty" condition if it exists */
1139 	if (pp->pr_curpage == NULL)
1140 		pp->pr_curpage = ph;
1141 
1142 	if (pp->pr_flags & PR_WANTED) {
1143 		pp->pr_flags &= ~PR_WANTED;
1144 		cv_broadcast(&pp->pr_cv);
1145 	}
1146 
1147 	/*
1148 	 * If this page is now empty, do one of two things:
1149 	 *
1150 	 *	(1) If we have more pages than the page high water mark,
1151 	 *	    free the page back to the system.  ONLY CONSIDER
1152 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1153 	 *	    CLAIM.
1154 	 *
1155 	 *	(2) Otherwise, move the page to the empty page list.
1156 	 *
1157 	 * Either way, select a new current page (so we use a partially-full
1158 	 * page if one is available).
1159 	 */
1160 	if (ph->ph_nmissing == 0) {
1161 		pp->pr_nidle++;
1162 		if (pp->pr_npages > pp->pr_minpages &&
1163 		    pp->pr_npages > pp->pr_maxpages) {
1164 			pr_rmpage(pp, ph, pq);
1165 		} else {
1166 			LIST_REMOVE(ph, ph_pagelist);
1167 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1168 
1169 			/*
1170 			 * Update the timestamp on the page.  A page must
1171 			 * be idle for some period of time before it can
1172 			 * be reclaimed by the pagedaemon.  This minimizes
1173 			 * ping-pong'ing for memory.
1174 			 *
1175 			 * note for 64-bit time_t: truncating to 32-bit is not
1176 			 * a problem for our usage.
1177 			 */
1178 			ph->ph_time = time_uptime;
1179 		}
1180 		pool_update_curpage(pp);
1181 	}
1182 
1183 	/*
1184 	 * If the page was previously completely full, move it to the
1185 	 * partially-full list and make it the current page.  The next
1186 	 * allocation will get the item from this page, instead of
1187 	 * further fragmenting the pool.
1188 	 */
1189 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1190 		LIST_REMOVE(ph, ph_pagelist);
1191 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1192 		pp->pr_curpage = ph;
1193 	}
1194 }
1195 
1196 void
1197 pool_put(struct pool *pp, void *v)
1198 {
1199 	struct pool_pagelist pq;
1200 
1201 	LIST_INIT(&pq);
1202 
1203 	mutex_enter(&pp->pr_lock);
1204 	if (!pool_put_quarantine(pp, v, &pq)) {
1205 		pool_do_put(pp, v, &pq);
1206 	}
1207 	mutex_exit(&pp->pr_lock);
1208 
1209 	pr_pagelist_free(pp, &pq);
1210 }
1211 
1212 /*
1213  * pool_grow: grow a pool by a page.
1214  *
1215  * => called with pool locked.
1216  * => unlock and relock the pool.
1217  * => return with pool locked.
1218  */
1219 
1220 static int
1221 pool_grow(struct pool *pp, int flags)
1222 {
1223 	struct pool_item_header *ph;
1224 	char *storage;
1225 
1226 	/*
1227 	 * If there's a pool_grow in progress, wait for it to complete
1228 	 * and try again from the top.
1229 	 */
1230 	if (pp->pr_flags & PR_GROWING) {
1231 		if (flags & PR_WAITOK) {
1232 			do {
1233 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1234 			} while (pp->pr_flags & PR_GROWING);
1235 			return ERESTART;
1236 		} else {
1237 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
1238 				/*
1239 				 * This needs an unlock/relock dance so
1240 				 * that the other caller has a chance to
1241 				 * run and actually do the thing.  Note
1242 				 * that this is effectively a busy-wait.
1243 				 */
1244 				mutex_exit(&pp->pr_lock);
1245 				mutex_enter(&pp->pr_lock);
1246 				return ERESTART;
1247 			}
1248 			return EWOULDBLOCK;
1249 		}
1250 	}
1251 	pp->pr_flags |= PR_GROWING;
1252 	if (flags & PR_WAITOK)
1253 		mutex_exit(&pp->pr_lock);
1254 	else
1255 		pp->pr_flags |= PR_GROWINGNOWAIT;
1256 
1257 	storage = pool_allocator_alloc(pp, flags);
1258 	if (__predict_false(storage == NULL))
1259 		goto out;
1260 
1261 	ph = pool_alloc_item_header(pp, storage, flags);
1262 	if (__predict_false(ph == NULL)) {
1263 		pool_allocator_free(pp, storage);
1264 		goto out;
1265 	}
1266 
1267 	if (flags & PR_WAITOK)
1268 		mutex_enter(&pp->pr_lock);
1269 	pool_prime_page(pp, storage, ph);
1270 	pp->pr_npagealloc++;
1271 	KASSERT(pp->pr_flags & PR_GROWING);
1272 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1273 	/*
1274 	 * If anyone was waiting for pool_grow, notify them that we
1275 	 * may have just done it.
1276 	 */
1277 	cv_broadcast(&pp->pr_cv);
1278 	return 0;
1279 out:
1280 	if (flags & PR_WAITOK)
1281 		mutex_enter(&pp->pr_lock);
1282 	KASSERT(pp->pr_flags & PR_GROWING);
1283 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1284 	return ENOMEM;
1285 }
1286 
1287 /*
1288  * Add N items to the pool.
1289  */
1290 int
1291 pool_prime(struct pool *pp, int n)
1292 {
1293 	int newpages;
1294 	int error = 0;
1295 
1296 	mutex_enter(&pp->pr_lock);
1297 
1298 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1299 
1300 	while (newpages > 0) {
1301 		error = pool_grow(pp, PR_NOWAIT);
1302 		if (error) {
1303 			if (error == ERESTART)
1304 				continue;
1305 			break;
1306 		}
1307 		pp->pr_minpages++;
1308 		newpages--;
1309 	}
1310 
1311 	if (pp->pr_minpages >= pp->pr_maxpages)
1312 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1313 
1314 	mutex_exit(&pp->pr_lock);
1315 	return error;
1316 }
1317 
1318 /*
1319  * Add a page worth of items to the pool.
1320  *
1321  * Note, we must be called with the pool descriptor LOCKED.
1322  */
1323 static void
1324 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1325 {
1326 	const unsigned int align = pp->pr_align;
1327 	struct pool_item *pi;
1328 	void *cp = storage;
1329 	int n;
1330 
1331 	KASSERT(mutex_owned(&pp->pr_lock));
1332 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1333 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1334 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1335 
1336 	/*
1337 	 * Insert page header.
1338 	 */
1339 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1340 	LIST_INIT(&ph->ph_itemlist);
1341 	ph->ph_page = storage;
1342 	ph->ph_nmissing = 0;
1343 	ph->ph_time = time_uptime;
1344 	if (pp->pr_roflags & PR_PHINPAGE)
1345 		ph->ph_poolid = pp->pr_poolid;
1346 	else
1347 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1348 
1349 	pp->pr_nidle++;
1350 
1351 	/*
1352 	 * The item space starts after the on-page header, if any.
1353 	 */
1354 	ph->ph_off = pp->pr_itemoffset;
1355 
1356 	/*
1357 	 * Color this page.
1358 	 */
1359 	ph->ph_off += pp->pr_curcolor;
1360 	cp = (char *)cp + ph->ph_off;
1361 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1362 		pp->pr_curcolor = 0;
1363 
1364 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1365 
1366 	/*
1367 	 * Insert remaining chunks on the bucket list.
1368 	 */
1369 	n = pp->pr_itemsperpage;
1370 	pp->pr_nitems += n;
1371 
1372 	if (pp->pr_roflags & PR_USEBMAP) {
1373 		pr_item_bitmap_init(pp, ph);
1374 	} else {
1375 		while (n--) {
1376 			pi = (struct pool_item *)cp;
1377 
1378 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1379 
1380 			/* Insert on page list */
1381 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1382 #ifdef POOL_CHECK_MAGIC
1383 			pi->pi_magic = PI_MAGIC;
1384 #endif
1385 			cp = (char *)cp + pp->pr_size;
1386 
1387 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * If the pool was depleted, point at the new page.
1393 	 */
1394 	if (pp->pr_curpage == NULL)
1395 		pp->pr_curpage = ph;
1396 
1397 	if (++pp->pr_npages > pp->pr_hiwat)
1398 		pp->pr_hiwat = pp->pr_npages;
1399 }
1400 
1401 /*
1402  * Used by pool_get() when nitems drops below the low water mark.  This
1403  * is used to catch up pr_nitems with the low water mark.
1404  *
1405  * Note 1, we never wait for memory here, we let the caller decide what to do.
1406  *
1407  * Note 2, we must be called with the pool already locked, and we return
1408  * with it locked.
1409  */
1410 static int
1411 pool_catchup(struct pool *pp)
1412 {
1413 	int error = 0;
1414 
1415 	while (POOL_NEEDS_CATCHUP(pp)) {
1416 		error = pool_grow(pp, PR_NOWAIT);
1417 		if (error) {
1418 			if (error == ERESTART)
1419 				continue;
1420 			break;
1421 		}
1422 	}
1423 	return error;
1424 }
1425 
1426 static void
1427 pool_update_curpage(struct pool *pp)
1428 {
1429 
1430 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1431 	if (pp->pr_curpage == NULL) {
1432 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1433 	}
1434 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1435 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1436 }
1437 
1438 void
1439 pool_setlowat(struct pool *pp, int n)
1440 {
1441 
1442 	mutex_enter(&pp->pr_lock);
1443 
1444 	pp->pr_minitems = n;
1445 	pp->pr_minpages = (n == 0)
1446 		? 0
1447 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1448 
1449 	/* Make sure we're caught up with the newly-set low water mark. */
1450 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1451 		/*
1452 		 * XXX: Should we log a warning?  Should we set up a timeout
1453 		 * to try again in a second or so?  The latter could break
1454 		 * a caller's assumptions about interrupt protection, etc.
1455 		 */
1456 	}
1457 
1458 	mutex_exit(&pp->pr_lock);
1459 }
1460 
1461 void
1462 pool_sethiwat(struct pool *pp, int n)
1463 {
1464 
1465 	mutex_enter(&pp->pr_lock);
1466 
1467 	pp->pr_maxpages = (n == 0)
1468 		? 0
1469 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1470 
1471 	mutex_exit(&pp->pr_lock);
1472 }
1473 
1474 void
1475 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1476 {
1477 
1478 	mutex_enter(&pp->pr_lock);
1479 
1480 	pp->pr_hardlimit = n;
1481 	pp->pr_hardlimit_warning = warnmess;
1482 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1483 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1484 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1485 
1486 	/*
1487 	 * In-line version of pool_sethiwat(), because we don't want to
1488 	 * release the lock.
1489 	 */
1490 	pp->pr_maxpages = (n == 0)
1491 		? 0
1492 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1493 
1494 	mutex_exit(&pp->pr_lock);
1495 }
1496 
1497 /*
1498  * Release all complete pages that have not been used recently.
1499  *
1500  * Must not be called from interrupt context.
1501  */
1502 int
1503 pool_reclaim(struct pool *pp)
1504 {
1505 	struct pool_item_header *ph, *phnext;
1506 	struct pool_pagelist pq;
1507 	uint32_t curtime;
1508 	bool klock;
1509 	int rv;
1510 
1511 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1512 
1513 	if (pp->pr_drain_hook != NULL) {
1514 		/*
1515 		 * The drain hook must be called with the pool unlocked.
1516 		 */
1517 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1518 	}
1519 
1520 	/*
1521 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1522 	 * to block.
1523 	 */
1524 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1525 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1526 		KERNEL_LOCK(1, NULL);
1527 		klock = true;
1528 	} else
1529 		klock = false;
1530 
1531 	/* Reclaim items from the pool's cache (if any). */
1532 	if (pp->pr_cache != NULL)
1533 		pool_cache_invalidate(pp->pr_cache);
1534 
1535 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1536 		if (klock) {
1537 			KERNEL_UNLOCK_ONE(NULL);
1538 		}
1539 		return 0;
1540 	}
1541 
1542 	LIST_INIT(&pq);
1543 
1544 	curtime = time_uptime;
1545 
1546 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1547 		phnext = LIST_NEXT(ph, ph_pagelist);
1548 
1549 		/* Check our minimum page claim */
1550 		if (pp->pr_npages <= pp->pr_minpages)
1551 			break;
1552 
1553 		KASSERT(ph->ph_nmissing == 0);
1554 		if (curtime - ph->ph_time < pool_inactive_time)
1555 			continue;
1556 
1557 		/*
1558 		 * If freeing this page would put us below
1559 		 * the low water mark, stop now.
1560 		 */
1561 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1562 		    pp->pr_minitems)
1563 			break;
1564 
1565 		pr_rmpage(pp, ph, &pq);
1566 	}
1567 
1568 	mutex_exit(&pp->pr_lock);
1569 
1570 	if (LIST_EMPTY(&pq))
1571 		rv = 0;
1572 	else {
1573 		pr_pagelist_free(pp, &pq);
1574 		rv = 1;
1575 	}
1576 
1577 	if (klock) {
1578 		KERNEL_UNLOCK_ONE(NULL);
1579 	}
1580 
1581 	return rv;
1582 }
1583 
1584 /*
1585  * Drain pools, one at a time. The drained pool is returned within ppp.
1586  *
1587  * Note, must never be called from interrupt context.
1588  */
1589 bool
1590 pool_drain(struct pool **ppp)
1591 {
1592 	bool reclaimed;
1593 	struct pool *pp;
1594 
1595 	KASSERT(!TAILQ_EMPTY(&pool_head));
1596 
1597 	pp = NULL;
1598 
1599 	/* Find next pool to drain, and add a reference. */
1600 	mutex_enter(&pool_head_lock);
1601 	do {
1602 		if (drainpp == NULL) {
1603 			drainpp = TAILQ_FIRST(&pool_head);
1604 		}
1605 		if (drainpp != NULL) {
1606 			pp = drainpp;
1607 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1608 		}
1609 		/*
1610 		 * Skip completely idle pools.  We depend on at least
1611 		 * one pool in the system being active.
1612 		 */
1613 	} while (pp == NULL || pp->pr_npages == 0);
1614 	pp->pr_refcnt++;
1615 	mutex_exit(&pool_head_lock);
1616 
1617 	/* Drain the cache (if any) and pool.. */
1618 	reclaimed = pool_reclaim(pp);
1619 
1620 	/* Finally, unlock the pool. */
1621 	mutex_enter(&pool_head_lock);
1622 	pp->pr_refcnt--;
1623 	cv_broadcast(&pool_busy);
1624 	mutex_exit(&pool_head_lock);
1625 
1626 	if (ppp != NULL)
1627 		*ppp = pp;
1628 
1629 	return reclaimed;
1630 }
1631 
1632 /*
1633  * Calculate the total number of pages consumed by pools.
1634  */
1635 int
1636 pool_totalpages(void)
1637 {
1638 
1639 	mutex_enter(&pool_head_lock);
1640 	int pages = pool_totalpages_locked();
1641 	mutex_exit(&pool_head_lock);
1642 
1643 	return pages;
1644 }
1645 
1646 int
1647 pool_totalpages_locked(void)
1648 {
1649 	struct pool *pp;
1650 	uint64_t total = 0;
1651 
1652 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1653 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1654 
1655 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1656 			bytes -= (pp->pr_nout * pp->pr_size);
1657 		total += bytes;
1658 	}
1659 
1660 	return atop(total);
1661 }
1662 
1663 /*
1664  * Diagnostic helpers.
1665  */
1666 
1667 void
1668 pool_printall(const char *modif, void (*pr)(const char *, ...))
1669 {
1670 	struct pool *pp;
1671 
1672 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1673 		pool_printit(pp, modif, pr);
1674 	}
1675 }
1676 
1677 void
1678 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1679 {
1680 
1681 	if (pp == NULL) {
1682 		(*pr)("Must specify a pool to print.\n");
1683 		return;
1684 	}
1685 
1686 	pool_print1(pp, modif, pr);
1687 }
1688 
1689 static void
1690 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1691     void (*pr)(const char *, ...))
1692 {
1693 	struct pool_item_header *ph;
1694 
1695 	LIST_FOREACH(ph, pl, ph_pagelist) {
1696 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1697 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1698 #ifdef POOL_CHECK_MAGIC
1699 		struct pool_item *pi;
1700 		if (!(pp->pr_roflags & PR_USEBMAP)) {
1701 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1702 				if (pi->pi_magic != PI_MAGIC) {
1703 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1704 					    pi, pi->pi_magic);
1705 				}
1706 			}
1707 		}
1708 #endif
1709 	}
1710 }
1711 
1712 static void
1713 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1714 {
1715 	struct pool_item_header *ph;
1716 	pool_cache_t pc;
1717 	pcg_t *pcg;
1718 	pool_cache_cpu_t *cc;
1719 	uint64_t cpuhit, cpumiss;
1720 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1721 	char c;
1722 
1723 	while ((c = *modif++) != '\0') {
1724 		if (c == 'l')
1725 			print_log = 1;
1726 		if (c == 'p')
1727 			print_pagelist = 1;
1728 		if (c == 'c')
1729 			print_cache = 1;
1730 	}
1731 
1732 	if ((pc = pp->pr_cache) != NULL) {
1733 		(*pr)("POOL CACHE");
1734 	} else {
1735 		(*pr)("POOL");
1736 	}
1737 
1738 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1739 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1740 	    pp->pr_roflags);
1741 	(*pr)("\talloc %p\n", pp->pr_alloc);
1742 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1743 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1744 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1745 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1746 
1747 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1748 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1749 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1750 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1751 
1752 	if (print_pagelist == 0)
1753 		goto skip_pagelist;
1754 
1755 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1756 		(*pr)("\n\tempty page list:\n");
1757 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1758 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1759 		(*pr)("\n\tfull page list:\n");
1760 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1761 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1762 		(*pr)("\n\tpartial-page list:\n");
1763 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1764 
1765 	if (pp->pr_curpage == NULL)
1766 		(*pr)("\tno current page\n");
1767 	else
1768 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1769 
1770  skip_pagelist:
1771 	if (print_log == 0)
1772 		goto skip_log;
1773 
1774 	(*pr)("\n");
1775 
1776  skip_log:
1777 
1778 #define PR_GROUPLIST(pcg)						\
1779 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1780 	for (i = 0; i < pcg->pcg_size; i++) {				\
1781 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1782 		    POOL_PADDR_INVALID) {				\
1783 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1784 			    pcg->pcg_objects[i].pcgo_va,		\
1785 			    (unsigned long long)			\
1786 			    pcg->pcg_objects[i].pcgo_pa);		\
1787 		} else {						\
1788 			(*pr)("\t\t\t%p\n",				\
1789 			    pcg->pcg_objects[i].pcgo_va);		\
1790 		}							\
1791 	}
1792 
1793 	if (pc != NULL) {
1794 		cpuhit = 0;
1795 		cpumiss = 0;
1796 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1797 			if ((cc = pc->pc_cpus[i]) == NULL)
1798 				continue;
1799 			cpuhit += cc->cc_hits;
1800 			cpumiss += cc->cc_misses;
1801 		}
1802 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1803 		(*pr)("\tcache layer hits %llu misses %llu\n",
1804 		    pc->pc_hits, pc->pc_misses);
1805 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1806 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1807 		    pc->pc_contended);
1808 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1809 		    pc->pc_nempty, pc->pc_nfull);
1810 		if (print_cache) {
1811 			(*pr)("\tfull cache groups:\n");
1812 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1813 			    pcg = pcg->pcg_next) {
1814 				PR_GROUPLIST(pcg);
1815 			}
1816 			(*pr)("\tempty cache groups:\n");
1817 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1818 			    pcg = pcg->pcg_next) {
1819 				PR_GROUPLIST(pcg);
1820 			}
1821 		}
1822 	}
1823 #undef PR_GROUPLIST
1824 }
1825 
1826 static int
1827 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1828 {
1829 	struct pool_item *pi;
1830 	void *page;
1831 	int n;
1832 
1833 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1834 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1835 		if (page != ph->ph_page &&
1836 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1837 			if (label != NULL)
1838 				printf("%s: ", label);
1839 			printf("pool(%p:%s): page inconsistency: page %p;"
1840 			       " at page head addr %p (p %p)\n", pp,
1841 				pp->pr_wchan, ph->ph_page,
1842 				ph, page);
1843 			return 1;
1844 		}
1845 	}
1846 
1847 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
1848 		return 0;
1849 
1850 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1851 	     pi != NULL;
1852 	     pi = LIST_NEXT(pi,pi_list), n++) {
1853 
1854 #ifdef POOL_CHECK_MAGIC
1855 		if (pi->pi_magic != PI_MAGIC) {
1856 			if (label != NULL)
1857 				printf("%s: ", label);
1858 			printf("pool(%s): free list modified: magic=%x;"
1859 			       " page %p; item ordinal %d; addr %p\n",
1860 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1861 				n, pi);
1862 			panic("pool");
1863 		}
1864 #endif
1865 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1866 			continue;
1867 		}
1868 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1869 		if (page == ph->ph_page)
1870 			continue;
1871 
1872 		if (label != NULL)
1873 			printf("%s: ", label);
1874 		printf("pool(%p:%s): page inconsistency: page %p;"
1875 		       " item ordinal %d; addr %p (p %p)\n", pp,
1876 			pp->pr_wchan, ph->ph_page,
1877 			n, pi, page);
1878 		return 1;
1879 	}
1880 	return 0;
1881 }
1882 
1883 
1884 int
1885 pool_chk(struct pool *pp, const char *label)
1886 {
1887 	struct pool_item_header *ph;
1888 	int r = 0;
1889 
1890 	mutex_enter(&pp->pr_lock);
1891 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1892 		r = pool_chk_page(pp, label, ph);
1893 		if (r) {
1894 			goto out;
1895 		}
1896 	}
1897 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1898 		r = pool_chk_page(pp, label, ph);
1899 		if (r) {
1900 			goto out;
1901 		}
1902 	}
1903 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1904 		r = pool_chk_page(pp, label, ph);
1905 		if (r) {
1906 			goto out;
1907 		}
1908 	}
1909 
1910 out:
1911 	mutex_exit(&pp->pr_lock);
1912 	return r;
1913 }
1914 
1915 /*
1916  * pool_cache_init:
1917  *
1918  *	Initialize a pool cache.
1919  */
1920 pool_cache_t
1921 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1922     const char *wchan, struct pool_allocator *palloc, int ipl,
1923     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1924 {
1925 	pool_cache_t pc;
1926 
1927 	pc = pool_get(&cache_pool, PR_WAITOK);
1928 	if (pc == NULL)
1929 		return NULL;
1930 
1931 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1932 	   palloc, ipl, ctor, dtor, arg);
1933 
1934 	return pc;
1935 }
1936 
1937 /*
1938  * pool_cache_bootstrap:
1939  *
1940  *	Kernel-private version of pool_cache_init().  The caller
1941  *	provides initial storage.
1942  */
1943 void
1944 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1945     u_int align_offset, u_int flags, const char *wchan,
1946     struct pool_allocator *palloc, int ipl,
1947     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1948     void *arg)
1949 {
1950 	CPU_INFO_ITERATOR cii;
1951 	pool_cache_t pc1;
1952 	struct cpu_info *ci;
1953 	struct pool *pp;
1954 
1955 	pp = &pc->pc_pool;
1956 	if (palloc == NULL && ipl == IPL_NONE) {
1957 		if (size > PAGE_SIZE) {
1958 			int bigidx = pool_bigidx(size);
1959 
1960 			palloc = &pool_allocator_big[bigidx];
1961 		} else
1962 			palloc = &pool_allocator_nointr;
1963 	}
1964 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1965 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1966 
1967 	if (ctor == NULL) {
1968 		ctor = (int (*)(void *, void *, int))nullop;
1969 	}
1970 	if (dtor == NULL) {
1971 		dtor = (void (*)(void *, void *))nullop;
1972 	}
1973 
1974 	pc->pc_emptygroups = NULL;
1975 	pc->pc_fullgroups = NULL;
1976 	pc->pc_partgroups = NULL;
1977 	pc->pc_ctor = ctor;
1978 	pc->pc_dtor = dtor;
1979 	pc->pc_arg  = arg;
1980 	pc->pc_hits  = 0;
1981 	pc->pc_misses = 0;
1982 	pc->pc_nempty = 0;
1983 	pc->pc_npart = 0;
1984 	pc->pc_nfull = 0;
1985 	pc->pc_contended = 0;
1986 	pc->pc_refcnt = 0;
1987 	pc->pc_freecheck = NULL;
1988 
1989 	if ((flags & PR_LARGECACHE) != 0) {
1990 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1991 		pc->pc_pcgpool = &pcg_large_pool;
1992 	} else {
1993 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1994 		pc->pc_pcgpool = &pcg_normal_pool;
1995 	}
1996 
1997 	/* Allocate per-CPU caches. */
1998 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1999 	pc->pc_ncpu = 0;
2000 	if (ncpu < 2) {
2001 		/* XXX For sparc: boot CPU is not attached yet. */
2002 		pool_cache_cpu_init1(curcpu(), pc);
2003 	} else {
2004 		for (CPU_INFO_FOREACH(cii, ci)) {
2005 			pool_cache_cpu_init1(ci, pc);
2006 		}
2007 	}
2008 
2009 	/* Add to list of all pools. */
2010 	if (__predict_true(!cold))
2011 		mutex_enter(&pool_head_lock);
2012 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2013 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2014 			break;
2015 	}
2016 	if (pc1 == NULL)
2017 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2018 	else
2019 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2020 	if (__predict_true(!cold))
2021 		mutex_exit(&pool_head_lock);
2022 
2023 	membar_sync();
2024 	pp->pr_cache = pc;
2025 }
2026 
2027 /*
2028  * pool_cache_destroy:
2029  *
2030  *	Destroy a pool cache.
2031  */
2032 void
2033 pool_cache_destroy(pool_cache_t pc)
2034 {
2035 
2036 	pool_cache_bootstrap_destroy(pc);
2037 	pool_put(&cache_pool, pc);
2038 }
2039 
2040 /*
2041  * pool_cache_bootstrap_destroy:
2042  *
2043  *	Destroy a pool cache.
2044  */
2045 void
2046 pool_cache_bootstrap_destroy(pool_cache_t pc)
2047 {
2048 	struct pool *pp = &pc->pc_pool;
2049 	u_int i;
2050 
2051 	/* Remove it from the global list. */
2052 	mutex_enter(&pool_head_lock);
2053 	while (pc->pc_refcnt != 0)
2054 		cv_wait(&pool_busy, &pool_head_lock);
2055 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2056 	mutex_exit(&pool_head_lock);
2057 
2058 	/* First, invalidate the entire cache. */
2059 	pool_cache_invalidate(pc);
2060 
2061 	/* Disassociate it from the pool. */
2062 	mutex_enter(&pp->pr_lock);
2063 	pp->pr_cache = NULL;
2064 	mutex_exit(&pp->pr_lock);
2065 
2066 	/* Destroy per-CPU data */
2067 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2068 		pool_cache_invalidate_cpu(pc, i);
2069 
2070 	/* Finally, destroy it. */
2071 	mutex_destroy(&pc->pc_lock);
2072 	pool_destroy(pp);
2073 }
2074 
2075 /*
2076  * pool_cache_cpu_init1:
2077  *
2078  *	Called for each pool_cache whenever a new CPU is attached.
2079  */
2080 static void
2081 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2082 {
2083 	pool_cache_cpu_t *cc;
2084 	int index;
2085 
2086 	index = ci->ci_index;
2087 
2088 	KASSERT(index < __arraycount(pc->pc_cpus));
2089 
2090 	if ((cc = pc->pc_cpus[index]) != NULL) {
2091 		KASSERT(cc->cc_cpuindex == index);
2092 		return;
2093 	}
2094 
2095 	/*
2096 	 * The first CPU is 'free'.  This needs to be the case for
2097 	 * bootstrap - we may not be able to allocate yet.
2098 	 */
2099 	if (pc->pc_ncpu == 0) {
2100 		cc = &pc->pc_cpu0;
2101 		pc->pc_ncpu = 1;
2102 	} else {
2103 		mutex_enter(&pc->pc_lock);
2104 		pc->pc_ncpu++;
2105 		mutex_exit(&pc->pc_lock);
2106 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2107 	}
2108 
2109 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2110 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2111 	cc->cc_cache = pc;
2112 	cc->cc_cpuindex = index;
2113 	cc->cc_hits = 0;
2114 	cc->cc_misses = 0;
2115 	cc->cc_current = __UNCONST(&pcg_dummy);
2116 	cc->cc_previous = __UNCONST(&pcg_dummy);
2117 
2118 	pc->pc_cpus[index] = cc;
2119 }
2120 
2121 /*
2122  * pool_cache_cpu_init:
2123  *
2124  *	Called whenever a new CPU is attached.
2125  */
2126 void
2127 pool_cache_cpu_init(struct cpu_info *ci)
2128 {
2129 	pool_cache_t pc;
2130 
2131 	mutex_enter(&pool_head_lock);
2132 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2133 		pc->pc_refcnt++;
2134 		mutex_exit(&pool_head_lock);
2135 
2136 		pool_cache_cpu_init1(ci, pc);
2137 
2138 		mutex_enter(&pool_head_lock);
2139 		pc->pc_refcnt--;
2140 		cv_broadcast(&pool_busy);
2141 	}
2142 	mutex_exit(&pool_head_lock);
2143 }
2144 
2145 /*
2146  * pool_cache_reclaim:
2147  *
2148  *	Reclaim memory from a pool cache.
2149  */
2150 bool
2151 pool_cache_reclaim(pool_cache_t pc)
2152 {
2153 
2154 	return pool_reclaim(&pc->pc_pool);
2155 }
2156 
2157 static void
2158 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2159 {
2160 	(*pc->pc_dtor)(pc->pc_arg, object);
2161 	pool_put(&pc->pc_pool, object);
2162 }
2163 
2164 /*
2165  * pool_cache_destruct_object:
2166  *
2167  *	Force destruction of an object and its release back into
2168  *	the pool.
2169  */
2170 void
2171 pool_cache_destruct_object(pool_cache_t pc, void *object)
2172 {
2173 
2174 	FREECHECK_IN(&pc->pc_freecheck, object);
2175 
2176 	pool_cache_destruct_object1(pc, object);
2177 }
2178 
2179 /*
2180  * pool_cache_invalidate_groups:
2181  *
2182  *	Invalidate a chain of groups and destruct all objects.
2183  */
2184 static void
2185 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2186 {
2187 	void *object;
2188 	pcg_t *next;
2189 	int i;
2190 
2191 	for (; pcg != NULL; pcg = next) {
2192 		next = pcg->pcg_next;
2193 
2194 		for (i = 0; i < pcg->pcg_avail; i++) {
2195 			object = pcg->pcg_objects[i].pcgo_va;
2196 			pool_cache_destruct_object1(pc, object);
2197 		}
2198 
2199 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2200 			pool_put(&pcg_large_pool, pcg);
2201 		} else {
2202 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2203 			pool_put(&pcg_normal_pool, pcg);
2204 		}
2205 	}
2206 }
2207 
2208 /*
2209  * pool_cache_invalidate:
2210  *
2211  *	Invalidate a pool cache (destruct and release all of the
2212  *	cached objects).  Does not reclaim objects from the pool.
2213  *
2214  *	Note: For pool caches that provide constructed objects, there
2215  *	is an assumption that another level of synchronization is occurring
2216  *	between the input to the constructor and the cache invalidation.
2217  *
2218  *	Invalidation is a costly process and should not be called from
2219  *	interrupt context.
2220  */
2221 void
2222 pool_cache_invalidate(pool_cache_t pc)
2223 {
2224 	uint64_t where;
2225 	pcg_t *full, *empty, *part;
2226 
2227 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2228 
2229 	if (ncpu < 2 || !mp_online) {
2230 		/*
2231 		 * We might be called early enough in the boot process
2232 		 * for the CPU data structures to not be fully initialized.
2233 		 * In this case, transfer the content of the local CPU's
2234 		 * cache back into global cache as only this CPU is currently
2235 		 * running.
2236 		 */
2237 		pool_cache_transfer(pc);
2238 	} else {
2239 		/*
2240 		 * Signal all CPUs that they must transfer their local
2241 		 * cache back to the global pool then wait for the xcall to
2242 		 * complete.
2243 		 */
2244 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2245 		    pc, NULL);
2246 		xc_wait(where);
2247 	}
2248 
2249 	/* Empty pool caches, then invalidate objects */
2250 	mutex_enter(&pc->pc_lock);
2251 	full = pc->pc_fullgroups;
2252 	empty = pc->pc_emptygroups;
2253 	part = pc->pc_partgroups;
2254 	pc->pc_fullgroups = NULL;
2255 	pc->pc_emptygroups = NULL;
2256 	pc->pc_partgroups = NULL;
2257 	pc->pc_nfull = 0;
2258 	pc->pc_nempty = 0;
2259 	pc->pc_npart = 0;
2260 	mutex_exit(&pc->pc_lock);
2261 
2262 	pool_cache_invalidate_groups(pc, full);
2263 	pool_cache_invalidate_groups(pc, empty);
2264 	pool_cache_invalidate_groups(pc, part);
2265 }
2266 
2267 /*
2268  * pool_cache_invalidate_cpu:
2269  *
2270  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2271  *	identified by its associated index.
2272  *	It is caller's responsibility to ensure that no operation is
2273  *	taking place on this pool cache while doing this invalidation.
2274  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2275  *	pool cached objects from a CPU different from the one currently running
2276  *	may result in an undefined behaviour.
2277  */
2278 static void
2279 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2280 {
2281 	pool_cache_cpu_t *cc;
2282 	pcg_t *pcg;
2283 
2284 	if ((cc = pc->pc_cpus[index]) == NULL)
2285 		return;
2286 
2287 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2288 		pcg->pcg_next = NULL;
2289 		pool_cache_invalidate_groups(pc, pcg);
2290 	}
2291 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2292 		pcg->pcg_next = NULL;
2293 		pool_cache_invalidate_groups(pc, pcg);
2294 	}
2295 	if (cc != &pc->pc_cpu0)
2296 		pool_put(&cache_cpu_pool, cc);
2297 
2298 }
2299 
2300 void
2301 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2302 {
2303 
2304 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2305 }
2306 
2307 void
2308 pool_cache_setlowat(pool_cache_t pc, int n)
2309 {
2310 
2311 	pool_setlowat(&pc->pc_pool, n);
2312 }
2313 
2314 void
2315 pool_cache_sethiwat(pool_cache_t pc, int n)
2316 {
2317 
2318 	pool_sethiwat(&pc->pc_pool, n);
2319 }
2320 
2321 void
2322 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2323 {
2324 
2325 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2326 }
2327 
2328 static bool __noinline
2329 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2330 		    paddr_t *pap, int flags)
2331 {
2332 	pcg_t *pcg, *cur;
2333 	uint64_t ncsw;
2334 	pool_cache_t pc;
2335 	void *object;
2336 
2337 	KASSERT(cc->cc_current->pcg_avail == 0);
2338 	KASSERT(cc->cc_previous->pcg_avail == 0);
2339 
2340 	pc = cc->cc_cache;
2341 	cc->cc_misses++;
2342 
2343 	/*
2344 	 * Nothing was available locally.  Try and grab a group
2345 	 * from the cache.
2346 	 */
2347 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2348 		ncsw = curlwp->l_ncsw;
2349 		mutex_enter(&pc->pc_lock);
2350 		pc->pc_contended++;
2351 
2352 		/*
2353 		 * If we context switched while locking, then
2354 		 * our view of the per-CPU data is invalid:
2355 		 * retry.
2356 		 */
2357 		if (curlwp->l_ncsw != ncsw) {
2358 			mutex_exit(&pc->pc_lock);
2359 			return true;
2360 		}
2361 	}
2362 
2363 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2364 		/*
2365 		 * If there's a full group, release our empty
2366 		 * group back to the cache.  Install the full
2367 		 * group as cc_current and return.
2368 		 */
2369 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2370 			KASSERT(cur->pcg_avail == 0);
2371 			cur->pcg_next = pc->pc_emptygroups;
2372 			pc->pc_emptygroups = cur;
2373 			pc->pc_nempty++;
2374 		}
2375 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2376 		cc->cc_current = pcg;
2377 		pc->pc_fullgroups = pcg->pcg_next;
2378 		pc->pc_hits++;
2379 		pc->pc_nfull--;
2380 		mutex_exit(&pc->pc_lock);
2381 		return true;
2382 	}
2383 
2384 	/*
2385 	 * Nothing available locally or in cache.  Take the slow
2386 	 * path: fetch a new object from the pool and construct
2387 	 * it.
2388 	 */
2389 	pc->pc_misses++;
2390 	mutex_exit(&pc->pc_lock);
2391 	splx(s);
2392 
2393 	object = pool_get(&pc->pc_pool, flags);
2394 	*objectp = object;
2395 	if (__predict_false(object == NULL)) {
2396 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2397 		return false;
2398 	}
2399 
2400 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2401 		pool_put(&pc->pc_pool, object);
2402 		*objectp = NULL;
2403 		return false;
2404 	}
2405 
2406 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2407 
2408 	if (pap != NULL) {
2409 #ifdef POOL_VTOPHYS
2410 		*pap = POOL_VTOPHYS(object);
2411 #else
2412 		*pap = POOL_PADDR_INVALID;
2413 #endif
2414 	}
2415 
2416 	FREECHECK_OUT(&pc->pc_freecheck, object);
2417 	pool_cache_kleak_fill(pc, object);
2418 	return false;
2419 }
2420 
2421 /*
2422  * pool_cache_get{,_paddr}:
2423  *
2424  *	Get an object from a pool cache (optionally returning
2425  *	the physical address of the object).
2426  */
2427 void *
2428 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2429 {
2430 	pool_cache_cpu_t *cc;
2431 	pcg_t *pcg;
2432 	void *object;
2433 	int s;
2434 
2435 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2436 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2437 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2438 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
2439 	    __func__, pc->pc_pool.pr_wchan);
2440 
2441 	if (flags & PR_WAITOK) {
2442 		ASSERT_SLEEPABLE();
2443 	}
2444 
2445 	/* Lock out interrupts and disable preemption. */
2446 	s = splvm();
2447 	while (/* CONSTCOND */ true) {
2448 		/* Try and allocate an object from the current group. */
2449 		cc = pc->pc_cpus[curcpu()->ci_index];
2450 		KASSERT(cc->cc_cache == pc);
2451 	 	pcg = cc->cc_current;
2452 		if (__predict_true(pcg->pcg_avail > 0)) {
2453 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2454 			if (__predict_false(pap != NULL))
2455 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2456 #if defined(DIAGNOSTIC)
2457 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2458 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2459 			KASSERT(object != NULL);
2460 #endif
2461 			cc->cc_hits++;
2462 			splx(s);
2463 			FREECHECK_OUT(&pc->pc_freecheck, object);
2464 			pool_redzone_fill(&pc->pc_pool, object);
2465 			pool_cache_kleak_fill(pc, object);
2466 			return object;
2467 		}
2468 
2469 		/*
2470 		 * That failed.  If the previous group isn't empty, swap
2471 		 * it with the current group and allocate from there.
2472 		 */
2473 		pcg = cc->cc_previous;
2474 		if (__predict_true(pcg->pcg_avail > 0)) {
2475 			cc->cc_previous = cc->cc_current;
2476 			cc->cc_current = pcg;
2477 			continue;
2478 		}
2479 
2480 		/*
2481 		 * Can't allocate from either group: try the slow path.
2482 		 * If get_slow() allocated an object for us, or if
2483 		 * no more objects are available, it will return false.
2484 		 * Otherwise, we need to retry.
2485 		 */
2486 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2487 			break;
2488 	}
2489 
2490 	/*
2491 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2492 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
2493 	 * constructor fails.
2494 	 */
2495 	return object;
2496 }
2497 
2498 static bool __noinline
2499 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2500 {
2501 	struct lwp *l = curlwp;
2502 	pcg_t *pcg, *cur;
2503 	uint64_t ncsw;
2504 	pool_cache_t pc;
2505 
2506 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2507 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2508 
2509 	pc = cc->cc_cache;
2510 	pcg = NULL;
2511 	cc->cc_misses++;
2512 	ncsw = l->l_ncsw;
2513 
2514 	/*
2515 	 * If there are no empty groups in the cache then allocate one
2516 	 * while still unlocked.
2517 	 */
2518 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2519 		if (__predict_true(!pool_cache_disable)) {
2520 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2521 		}
2522 		/*
2523 		 * If pool_get() blocked, then our view of
2524 		 * the per-CPU data is invalid: retry.
2525 		 */
2526 		if (__predict_false(l->l_ncsw != ncsw)) {
2527 			if (pcg != NULL) {
2528 				pool_put(pc->pc_pcgpool, pcg);
2529 			}
2530 			return true;
2531 		}
2532 		if (__predict_true(pcg != NULL)) {
2533 			pcg->pcg_avail = 0;
2534 			pcg->pcg_size = pc->pc_pcgsize;
2535 		}
2536 	}
2537 
2538 	/* Lock the cache. */
2539 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2540 		mutex_enter(&pc->pc_lock);
2541 		pc->pc_contended++;
2542 
2543 		/*
2544 		 * If we context switched while locking, then our view of
2545 		 * the per-CPU data is invalid: retry.
2546 		 */
2547 		if (__predict_false(l->l_ncsw != ncsw)) {
2548 			mutex_exit(&pc->pc_lock);
2549 			if (pcg != NULL) {
2550 				pool_put(pc->pc_pcgpool, pcg);
2551 			}
2552 			return true;
2553 		}
2554 	}
2555 
2556 	/* If there are no empty groups in the cache then allocate one. */
2557 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2558 		pcg = pc->pc_emptygroups;
2559 		pc->pc_emptygroups = pcg->pcg_next;
2560 		pc->pc_nempty--;
2561 	}
2562 
2563 	/*
2564 	 * If there's a empty group, release our full group back
2565 	 * to the cache.  Install the empty group to the local CPU
2566 	 * and return.
2567 	 */
2568 	if (pcg != NULL) {
2569 		KASSERT(pcg->pcg_avail == 0);
2570 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2571 			cc->cc_previous = pcg;
2572 		} else {
2573 			cur = cc->cc_current;
2574 			if (__predict_true(cur != &pcg_dummy)) {
2575 				KASSERT(cur->pcg_avail == cur->pcg_size);
2576 				cur->pcg_next = pc->pc_fullgroups;
2577 				pc->pc_fullgroups = cur;
2578 				pc->pc_nfull++;
2579 			}
2580 			cc->cc_current = pcg;
2581 		}
2582 		pc->pc_hits++;
2583 		mutex_exit(&pc->pc_lock);
2584 		return true;
2585 	}
2586 
2587 	/*
2588 	 * Nothing available locally or in cache, and we didn't
2589 	 * allocate an empty group.  Take the slow path and destroy
2590 	 * the object here and now.
2591 	 */
2592 	pc->pc_misses++;
2593 	mutex_exit(&pc->pc_lock);
2594 	splx(s);
2595 	pool_cache_destruct_object(pc, object);
2596 
2597 	return false;
2598 }
2599 
2600 /*
2601  * pool_cache_put{,_paddr}:
2602  *
2603  *	Put an object back to the pool cache (optionally caching the
2604  *	physical address of the object).
2605  */
2606 void
2607 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2608 {
2609 	pool_cache_cpu_t *cc;
2610 	pcg_t *pcg;
2611 	int s;
2612 
2613 	KASSERT(object != NULL);
2614 	pool_cache_redzone_check(pc, object);
2615 	FREECHECK_IN(&pc->pc_freecheck, object);
2616 
2617 	if (pool_cache_put_quarantine(pc, object, pa)) {
2618 		return;
2619 	}
2620 
2621 	/* Lock out interrupts and disable preemption. */
2622 	s = splvm();
2623 	while (/* CONSTCOND */ true) {
2624 		/* If the current group isn't full, release it there. */
2625 		cc = pc->pc_cpus[curcpu()->ci_index];
2626 		KASSERT(cc->cc_cache == pc);
2627 	 	pcg = cc->cc_current;
2628 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2629 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2630 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2631 			pcg->pcg_avail++;
2632 			cc->cc_hits++;
2633 			splx(s);
2634 			return;
2635 		}
2636 
2637 		/*
2638 		 * That failed.  If the previous group isn't full, swap
2639 		 * it with the current group and try again.
2640 		 */
2641 		pcg = cc->cc_previous;
2642 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2643 			cc->cc_previous = cc->cc_current;
2644 			cc->cc_current = pcg;
2645 			continue;
2646 		}
2647 
2648 		/*
2649 		 * Can't free to either group: try the slow path.
2650 		 * If put_slow() releases the object for us, it
2651 		 * will return false.  Otherwise we need to retry.
2652 		 */
2653 		if (!pool_cache_put_slow(cc, s, object))
2654 			break;
2655 	}
2656 }
2657 
2658 /*
2659  * pool_cache_transfer:
2660  *
2661  *	Transfer objects from the per-CPU cache to the global cache.
2662  *	Run within a cross-call thread.
2663  */
2664 static void
2665 pool_cache_transfer(pool_cache_t pc)
2666 {
2667 	pool_cache_cpu_t *cc;
2668 	pcg_t *prev, *cur, **list;
2669 	int s;
2670 
2671 	s = splvm();
2672 	mutex_enter(&pc->pc_lock);
2673 	cc = pc->pc_cpus[curcpu()->ci_index];
2674 	cur = cc->cc_current;
2675 	cc->cc_current = __UNCONST(&pcg_dummy);
2676 	prev = cc->cc_previous;
2677 	cc->cc_previous = __UNCONST(&pcg_dummy);
2678 	if (cur != &pcg_dummy) {
2679 		if (cur->pcg_avail == cur->pcg_size) {
2680 			list = &pc->pc_fullgroups;
2681 			pc->pc_nfull++;
2682 		} else if (cur->pcg_avail == 0) {
2683 			list = &pc->pc_emptygroups;
2684 			pc->pc_nempty++;
2685 		} else {
2686 			list = &pc->pc_partgroups;
2687 			pc->pc_npart++;
2688 		}
2689 		cur->pcg_next = *list;
2690 		*list = cur;
2691 	}
2692 	if (prev != &pcg_dummy) {
2693 		if (prev->pcg_avail == prev->pcg_size) {
2694 			list = &pc->pc_fullgroups;
2695 			pc->pc_nfull++;
2696 		} else if (prev->pcg_avail == 0) {
2697 			list = &pc->pc_emptygroups;
2698 			pc->pc_nempty++;
2699 		} else {
2700 			list = &pc->pc_partgroups;
2701 			pc->pc_npart++;
2702 		}
2703 		prev->pcg_next = *list;
2704 		*list = prev;
2705 	}
2706 	mutex_exit(&pc->pc_lock);
2707 	splx(s);
2708 }
2709 
2710 /*
2711  * Pool backend allocators.
2712  *
2713  * Each pool has a backend allocator that handles allocation, deallocation,
2714  * and any additional draining that might be needed.
2715  *
2716  * We provide two standard allocators:
2717  *
2718  *	pool_allocator_kmem - the default when no allocator is specified
2719  *
2720  *	pool_allocator_nointr - used for pools that will not be accessed
2721  *	in interrupt context.
2722  */
2723 void	*pool_page_alloc(struct pool *, int);
2724 void	pool_page_free(struct pool *, void *);
2725 
2726 struct pool_allocator pool_allocator_kmem = {
2727 	.pa_alloc = pool_page_alloc,
2728 	.pa_free = pool_page_free,
2729 	.pa_pagesz = 0
2730 };
2731 
2732 struct pool_allocator pool_allocator_nointr = {
2733 	.pa_alloc = pool_page_alloc,
2734 	.pa_free = pool_page_free,
2735 	.pa_pagesz = 0
2736 };
2737 
2738 struct pool_allocator pool_allocator_big[] = {
2739 	{
2740 		.pa_alloc = pool_page_alloc,
2741 		.pa_free = pool_page_free,
2742 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2743 	},
2744 	{
2745 		.pa_alloc = pool_page_alloc,
2746 		.pa_free = pool_page_free,
2747 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2748 	},
2749 	{
2750 		.pa_alloc = pool_page_alloc,
2751 		.pa_free = pool_page_free,
2752 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2753 	},
2754 	{
2755 		.pa_alloc = pool_page_alloc,
2756 		.pa_free = pool_page_free,
2757 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2758 	},
2759 	{
2760 		.pa_alloc = pool_page_alloc,
2761 		.pa_free = pool_page_free,
2762 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2763 	},
2764 	{
2765 		.pa_alloc = pool_page_alloc,
2766 		.pa_free = pool_page_free,
2767 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2768 	},
2769 	{
2770 		.pa_alloc = pool_page_alloc,
2771 		.pa_free = pool_page_free,
2772 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2773 	},
2774 	{
2775 		.pa_alloc = pool_page_alloc,
2776 		.pa_free = pool_page_free,
2777 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2778 	}
2779 };
2780 
2781 static int
2782 pool_bigidx(size_t size)
2783 {
2784 	int i;
2785 
2786 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2787 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2788 			return i;
2789 	}
2790 	panic("pool item size %zu too large, use a custom allocator", size);
2791 }
2792 
2793 static void *
2794 pool_allocator_alloc(struct pool *pp, int flags)
2795 {
2796 	struct pool_allocator *pa = pp->pr_alloc;
2797 	void *res;
2798 
2799 	res = (*pa->pa_alloc)(pp, flags);
2800 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2801 		/*
2802 		 * We only run the drain hook here if PR_NOWAIT.
2803 		 * In other cases, the hook will be run in
2804 		 * pool_reclaim().
2805 		 */
2806 		if (pp->pr_drain_hook != NULL) {
2807 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2808 			res = (*pa->pa_alloc)(pp, flags);
2809 		}
2810 	}
2811 	return res;
2812 }
2813 
2814 static void
2815 pool_allocator_free(struct pool *pp, void *v)
2816 {
2817 	struct pool_allocator *pa = pp->pr_alloc;
2818 
2819 	if (pp->pr_redzone) {
2820 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2821 	}
2822 	(*pa->pa_free)(pp, v);
2823 }
2824 
2825 void *
2826 pool_page_alloc(struct pool *pp, int flags)
2827 {
2828 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2829 	vmem_addr_t va;
2830 	int ret;
2831 
2832 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2833 	    vflags | VM_INSTANTFIT, &va);
2834 
2835 	return ret ? NULL : (void *)va;
2836 }
2837 
2838 void
2839 pool_page_free(struct pool *pp, void *v)
2840 {
2841 
2842 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2843 }
2844 
2845 static void *
2846 pool_page_alloc_meta(struct pool *pp, int flags)
2847 {
2848 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2849 	vmem_addr_t va;
2850 	int ret;
2851 
2852 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2853 	    vflags | VM_INSTANTFIT, &va);
2854 
2855 	return ret ? NULL : (void *)va;
2856 }
2857 
2858 static void
2859 pool_page_free_meta(struct pool *pp, void *v)
2860 {
2861 
2862 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2863 }
2864 
2865 #ifdef KLEAK
2866 static void
2867 pool_kleak_fill(struct pool *pp, void *p)
2868 {
2869 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2870 		return;
2871 	}
2872 	kleak_fill_area(p, pp->pr_size);
2873 }
2874 
2875 static void
2876 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2877 {
2878 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2879 		return;
2880 	}
2881 	pool_kleak_fill(&pc->pc_pool, p);
2882 }
2883 #endif
2884 
2885 #ifdef POOL_QUARANTINE
2886 static void
2887 pool_quarantine_init(struct pool *pp)
2888 {
2889 	pp->pr_quar.rotor = 0;
2890 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2891 }
2892 
2893 static void
2894 pool_quarantine_flush(struct pool *pp)
2895 {
2896 	pool_quar_t *quar = &pp->pr_quar;
2897 	struct pool_pagelist pq;
2898 	size_t i;
2899 
2900 	LIST_INIT(&pq);
2901 
2902 	mutex_enter(&pp->pr_lock);
2903 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2904 		if (quar->list[i] == 0)
2905 			continue;
2906 		pool_do_put(pp, (void *)quar->list[i], &pq);
2907 	}
2908 	mutex_exit(&pp->pr_lock);
2909 
2910 	pr_pagelist_free(pp, &pq);
2911 }
2912 
2913 static bool
2914 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
2915 {
2916 	pool_quar_t *quar = &pp->pr_quar;
2917 	uintptr_t old;
2918 
2919 	if (pp->pr_roflags & PR_NOTOUCH) {
2920 		return false;
2921 	}
2922 
2923 	pool_redzone_check(pp, v);
2924 
2925 	old = quar->list[quar->rotor];
2926 	quar->list[quar->rotor] = (uintptr_t)v;
2927 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
2928 	if (old != 0) {
2929 		pool_do_put(pp, (void *)old, pq);
2930 	}
2931 
2932 	return true;
2933 }
2934 
2935 static bool
2936 pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
2937 {
2938 	pool_cache_destruct_object(pc, p);
2939 	return true;
2940 }
2941 #endif
2942 
2943 #ifdef POOL_REDZONE
2944 #if defined(_LP64)
2945 # define PRIME 0x9e37fffffffc0000UL
2946 #else /* defined(_LP64) */
2947 # define PRIME 0x9e3779b1
2948 #endif /* defined(_LP64) */
2949 #define STATIC_BYTE	0xFE
2950 CTASSERT(POOL_REDZONE_SIZE > 1);
2951 
2952 #ifndef KASAN
2953 static inline uint8_t
2954 pool_pattern_generate(const void *p)
2955 {
2956 	return (uint8_t)(((uintptr_t)p) * PRIME
2957 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2958 }
2959 #endif
2960 
2961 static void
2962 pool_redzone_init(struct pool *pp, size_t requested_size)
2963 {
2964 	size_t redzsz;
2965 	size_t nsz;
2966 
2967 #ifdef KASAN
2968 	redzsz = requested_size;
2969 	kasan_add_redzone(&redzsz);
2970 	redzsz -= requested_size;
2971 #else
2972 	redzsz = POOL_REDZONE_SIZE;
2973 #endif
2974 
2975 	if (pp->pr_roflags & PR_NOTOUCH) {
2976 		pp->pr_redzone = false;
2977 		return;
2978 	}
2979 
2980 	/*
2981 	 * We may have extended the requested size earlier; check if
2982 	 * there's naturally space in the padding for a red zone.
2983 	 */
2984 	if (pp->pr_size - requested_size >= redzsz) {
2985 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
2986 		pp->pr_redzone = true;
2987 		return;
2988 	}
2989 
2990 	/*
2991 	 * No space in the natural padding; check if we can extend a
2992 	 * bit the size of the pool.
2993 	 */
2994 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2995 	if (nsz <= pp->pr_alloc->pa_pagesz) {
2996 		/* Ok, we can */
2997 		pp->pr_size = nsz;
2998 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
2999 		pp->pr_redzone = true;
3000 	} else {
3001 		/* No space for a red zone... snif :'( */
3002 		pp->pr_redzone = false;
3003 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
3004 	}
3005 }
3006 
3007 static void
3008 pool_redzone_fill(struct pool *pp, void *p)
3009 {
3010 	if (!pp->pr_redzone)
3011 		return;
3012 #ifdef KASAN
3013 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3014 	    KASAN_POOL_REDZONE);
3015 #else
3016 	uint8_t *cp, pat;
3017 	const uint8_t *ep;
3018 
3019 	cp = (uint8_t *)p + pp->pr_reqsize;
3020 	ep = cp + POOL_REDZONE_SIZE;
3021 
3022 	/*
3023 	 * We really don't want the first byte of the red zone to be '\0';
3024 	 * an off-by-one in a string may not be properly detected.
3025 	 */
3026 	pat = pool_pattern_generate(cp);
3027 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
3028 	cp++;
3029 
3030 	while (cp < ep) {
3031 		*cp = pool_pattern_generate(cp);
3032 		cp++;
3033 	}
3034 #endif
3035 }
3036 
3037 static void
3038 pool_redzone_check(struct pool *pp, void *p)
3039 {
3040 	if (!pp->pr_redzone)
3041 		return;
3042 #ifdef KASAN
3043 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3044 #else
3045 	uint8_t *cp, pat, expected;
3046 	const uint8_t *ep;
3047 
3048 	cp = (uint8_t *)p + pp->pr_reqsize;
3049 	ep = cp + POOL_REDZONE_SIZE;
3050 
3051 	pat = pool_pattern_generate(cp);
3052 	expected = (pat == '\0') ? STATIC_BYTE: pat;
3053 	if (__predict_false(expected != *cp)) {
3054 		printf("%s: %p: 0x%02x != 0x%02x\n",
3055 		   __func__, cp, *cp, expected);
3056 	}
3057 	cp++;
3058 
3059 	while (cp < ep) {
3060 		expected = pool_pattern_generate(cp);
3061 		if (__predict_false(*cp != expected)) {
3062 			printf("%s: %p: 0x%02x != 0x%02x\n",
3063 			   __func__, cp, *cp, expected);
3064 		}
3065 		cp++;
3066 	}
3067 #endif
3068 }
3069 
3070 static void
3071 pool_cache_redzone_check(pool_cache_t pc, void *p)
3072 {
3073 #ifdef KASAN
3074 	/* If there is a ctor/dtor, leave the data as valid. */
3075 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3076 		return;
3077 	}
3078 #endif
3079 	pool_redzone_check(&pc->pc_pool, p);
3080 }
3081 
3082 #endif /* POOL_REDZONE */
3083 
3084 #if defined(DDB)
3085 static bool
3086 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3087 {
3088 
3089 	return (uintptr_t)ph->ph_page <= addr &&
3090 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3091 }
3092 
3093 static bool
3094 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3095 {
3096 
3097 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3098 }
3099 
3100 static bool
3101 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3102 {
3103 	int i;
3104 
3105 	if (pcg == NULL) {
3106 		return false;
3107 	}
3108 	for (i = 0; i < pcg->pcg_avail; i++) {
3109 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3110 			return true;
3111 		}
3112 	}
3113 	return false;
3114 }
3115 
3116 static bool
3117 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3118 {
3119 
3120 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3121 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3122 		pool_item_bitmap_t *bitmap =
3123 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
3124 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3125 
3126 		return (*bitmap & mask) == 0;
3127 	} else {
3128 		struct pool_item *pi;
3129 
3130 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3131 			if (pool_in_item(pp, pi, addr)) {
3132 				return false;
3133 			}
3134 		}
3135 		return true;
3136 	}
3137 }
3138 
3139 void
3140 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3141 {
3142 	struct pool *pp;
3143 
3144 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3145 		struct pool_item_header *ph;
3146 		uintptr_t item;
3147 		bool allocated = true;
3148 		bool incache = false;
3149 		bool incpucache = false;
3150 		char cpucachestr[32];
3151 
3152 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3153 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3154 				if (pool_in_page(pp, ph, addr)) {
3155 					goto found;
3156 				}
3157 			}
3158 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3159 				if (pool_in_page(pp, ph, addr)) {
3160 					allocated =
3161 					    pool_allocated(pp, ph, addr);
3162 					goto found;
3163 				}
3164 			}
3165 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3166 				if (pool_in_page(pp, ph, addr)) {
3167 					allocated = false;
3168 					goto found;
3169 				}
3170 			}
3171 			continue;
3172 		} else {
3173 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3174 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3175 				continue;
3176 			}
3177 			allocated = pool_allocated(pp, ph, addr);
3178 		}
3179 found:
3180 		if (allocated && pp->pr_cache) {
3181 			pool_cache_t pc = pp->pr_cache;
3182 			struct pool_cache_group *pcg;
3183 			int i;
3184 
3185 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3186 			    pcg = pcg->pcg_next) {
3187 				if (pool_in_cg(pp, pcg, addr)) {
3188 					incache = true;
3189 					goto print;
3190 				}
3191 			}
3192 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3193 				pool_cache_cpu_t *cc;
3194 
3195 				if ((cc = pc->pc_cpus[i]) == NULL) {
3196 					continue;
3197 				}
3198 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3199 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3200 					struct cpu_info *ci =
3201 					    cpu_lookup(i);
3202 
3203 					incpucache = true;
3204 					snprintf(cpucachestr,
3205 					    sizeof(cpucachestr),
3206 					    "cached by CPU %u",
3207 					    ci->ci_index);
3208 					goto print;
3209 				}
3210 			}
3211 		}
3212 print:
3213 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3214 		item = item + rounddown(addr - item, pp->pr_size);
3215 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3216 		    (void *)addr, item, (size_t)(addr - item),
3217 		    pp->pr_wchan,
3218 		    incpucache ? cpucachestr :
3219 		    incache ? "cached" : allocated ? "allocated" : "free");
3220 	}
3221 }
3222 #endif /* defined(DDB) */
3223 
3224 static int
3225 pool_sysctl(SYSCTLFN_ARGS)
3226 {
3227 	struct pool_sysctl data;
3228 	struct pool *pp;
3229 	struct pool_cache *pc;
3230 	pool_cache_cpu_t *cc;
3231 	int error;
3232 	size_t i, written;
3233 
3234 	if (oldp == NULL) {
3235 		*oldlenp = 0;
3236 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3237 			*oldlenp += sizeof(data);
3238 		return 0;
3239 	}
3240 
3241 	memset(&data, 0, sizeof(data));
3242 	error = 0;
3243 	written = 0;
3244 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3245 		if (written + sizeof(data) > *oldlenp)
3246 			break;
3247 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3248 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3249 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
3250 #define COPY(field) data.field = pp->field
3251 		COPY(pr_size);
3252 
3253 		COPY(pr_itemsperpage);
3254 		COPY(pr_nitems);
3255 		COPY(pr_nout);
3256 		COPY(pr_hardlimit);
3257 		COPY(pr_npages);
3258 		COPY(pr_minpages);
3259 		COPY(pr_maxpages);
3260 
3261 		COPY(pr_nget);
3262 		COPY(pr_nfail);
3263 		COPY(pr_nput);
3264 		COPY(pr_npagealloc);
3265 		COPY(pr_npagefree);
3266 		COPY(pr_hiwat);
3267 		COPY(pr_nidle);
3268 #undef COPY
3269 
3270 		data.pr_cache_nmiss_pcpu = 0;
3271 		data.pr_cache_nhit_pcpu = 0;
3272 		if (pp->pr_cache) {
3273 			pc = pp->pr_cache;
3274 			data.pr_cache_meta_size = pc->pc_pcgsize;
3275 			data.pr_cache_nfull = pc->pc_nfull;
3276 			data.pr_cache_npartial = pc->pc_npart;
3277 			data.pr_cache_nempty = pc->pc_nempty;
3278 			data.pr_cache_ncontended = pc->pc_contended;
3279 			data.pr_cache_nmiss_global = pc->pc_misses;
3280 			data.pr_cache_nhit_global = pc->pc_hits;
3281 			for (i = 0; i < pc->pc_ncpu; ++i) {
3282 				cc = pc->pc_cpus[i];
3283 				if (cc == NULL)
3284 					continue;
3285 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
3286 				data.pr_cache_nhit_pcpu += cc->cc_hits;
3287 			}
3288 		} else {
3289 			data.pr_cache_meta_size = 0;
3290 			data.pr_cache_nfull = 0;
3291 			data.pr_cache_npartial = 0;
3292 			data.pr_cache_nempty = 0;
3293 			data.pr_cache_ncontended = 0;
3294 			data.pr_cache_nmiss_global = 0;
3295 			data.pr_cache_nhit_global = 0;
3296 		}
3297 
3298 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
3299 		if (error)
3300 			break;
3301 		written += sizeof(data);
3302 		oldp = (char *)oldp + sizeof(data);
3303 	}
3304 
3305 	*oldlenp = written;
3306 	return error;
3307 }
3308 
3309 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3310 {
3311 	const struct sysctlnode *rnode = NULL;
3312 
3313 	sysctl_createv(clog, 0, NULL, &rnode,
3314 		       CTLFLAG_PERMANENT,
3315 		       CTLTYPE_STRUCT, "pool",
3316 		       SYSCTL_DESCR("Get pool statistics"),
3317 		       pool_sysctl, 0, NULL, 0,
3318 		       CTL_KERN, CTL_CREATE, CTL_EOL);
3319 }
3320