xref: /netbsd-src/sys/kern/subr_pool.c (revision df0caa2637da0538ecdf6b878c4d08e684b43d8f)
1 /*	$NetBSD: subr_pool.c,v 1.101 2005/06/18 01:34:03 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.101 2005/06/18 01:34:03 thorpej Exp $");
42 
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * Pool resource management utility.
61  *
62  * Memory is allocated in pages which are split into pieces according to
63  * the pool item size. Each page is kept on one of three lists in the
64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65  * for empty, full and partially-full pages respectively. The individual
66  * pool items are on a linked list headed by `ph_itemlist' in each page
67  * header. The memory for building the page list is either taken from
68  * the allocated pages themselves (for small pool items) or taken from
69  * an internal pool of page headers (`phpool').
70  */
71 
72 /* List of all pools */
73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74 
75 /* Private pool for page header structures */
76 #define	PHPOOL_MAX	8
77 static struct pool phpool[PHPOOL_MAX];
78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
79 
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84 
85 static void *pool_page_alloc_meta(struct pool *, int);
86 static void pool_page_free_meta(struct pool *, void *);
87 
88 /* allocator for pool metadata */
89 static struct pool_allocator pool_allocator_meta = {
90 	pool_page_alloc_meta, pool_page_free_meta
91 };
92 
93 /* # of seconds to retain page after last use */
94 int pool_inactive_time = 10;
95 
96 /* Next candidate for drainage (see pool_drain()) */
97 static struct pool	*drainpp;
98 
99 /* This spin lock protects both pool_head and drainpp. */
100 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
101 
102 typedef uint8_t pool_item_freelist_t;
103 
104 struct pool_item_header {
105 	/* Page headers */
106 	LIST_ENTRY(pool_item_header)
107 				ph_pagelist;	/* pool page list */
108 	SPLAY_ENTRY(pool_item_header)
109 				ph_node;	/* Off-page page headers */
110 	caddr_t			ph_page;	/* this page's address */
111 	struct timeval		ph_time;	/* last referenced */
112 	union {
113 		/* !PR_NOTOUCH */
114 		struct {
115 			TAILQ_HEAD(, pool_item)
116 				phu_itemlist;	/* chunk list for this page */
117 		} phu_normal;
118 		/* PR_NOTOUCH */
119 		struct {
120 			uint16_t
121 				phu_off;	/* start offset in page */
122 			pool_item_freelist_t
123 				phu_firstfree;	/* first free item */
124 			/*
125 			 * XXX it might be better to use
126 			 * a simple bitmap and ffs(3)
127 			 */
128 		} phu_notouch;
129 	} ph_u;
130 	uint16_t		ph_nmissing;	/* # of chunks in use */
131 };
132 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
133 #define	ph_off		ph_u.phu_notouch.phu_off
134 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
135 
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 	u_int pi_magic;
139 #endif
140 #define	PI_MAGIC 0xdeadbeefU
141 	/* Other entries use only this list entry */
142 	TAILQ_ENTRY(pool_item)	pi_list;
143 };
144 
145 #define	POOL_NEEDS_CATCHUP(pp)						\
146 	((pp)->pr_nitems < (pp)->pr_minitems)
147 
148 /*
149  * Pool cache management.
150  *
151  * Pool caches provide a way for constructed objects to be cached by the
152  * pool subsystem.  This can lead to performance improvements by avoiding
153  * needless object construction/destruction; it is deferred until absolutely
154  * necessary.
155  *
156  * Caches are grouped into cache groups.  Each cache group references
157  * up to 16 constructed objects.  When a cache allocates an object
158  * from the pool, it calls the object's constructor and places it into
159  * a cache group.  When a cache group frees an object back to the pool,
160  * it first calls the object's destructor.  This allows the object to
161  * persist in constructed form while freed to the cache.
162  *
163  * Multiple caches may exist for each pool.  This allows a single
164  * object type to have multiple constructed forms.  The pool references
165  * each cache, so that when a pool is drained by the pagedaemon, it can
166  * drain each individual cache as well.  Each time a cache is drained,
167  * the most idle cache group is freed to the pool in its entirety.
168  *
169  * Pool caches are layed on top of pools.  By layering them, we can avoid
170  * the complexity of cache management for pools which would not benefit
171  * from it.
172  */
173 
174 /* The cache group pool. */
175 static struct pool pcgpool;
176 
177 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *);
178 
179 static int	pool_catchup(struct pool *);
180 static void	pool_prime_page(struct pool *, caddr_t,
181 		    struct pool_item_header *);
182 static void	pool_update_curpage(struct pool *);
183 
184 void		*pool_allocator_alloc(struct pool *, int);
185 void		pool_allocator_free(struct pool *, void *);
186 
187 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
188 	void (*)(const char *, ...));
189 static void pool_print1(struct pool *, const char *,
190 	void (*)(const char *, ...));
191 
192 static int pool_chk_page(struct pool *, const char *,
193 			 struct pool_item_header *);
194 
195 /*
196  * Pool log entry. An array of these is allocated in pool_init().
197  */
198 struct pool_log {
199 	const char	*pl_file;
200 	long		pl_line;
201 	int		pl_action;
202 #define	PRLOG_GET	1
203 #define	PRLOG_PUT	2
204 	void		*pl_addr;
205 };
206 
207 #ifdef POOL_DIAGNOSTIC
208 /* Number of entries in pool log buffers */
209 #ifndef POOL_LOGSIZE
210 #define	POOL_LOGSIZE	10
211 #endif
212 
213 int pool_logsize = POOL_LOGSIZE;
214 
215 static __inline void
216 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
217 {
218 	int n = pp->pr_curlogentry;
219 	struct pool_log *pl;
220 
221 	if ((pp->pr_roflags & PR_LOGGING) == 0)
222 		return;
223 
224 	/*
225 	 * Fill in the current entry. Wrap around and overwrite
226 	 * the oldest entry if necessary.
227 	 */
228 	pl = &pp->pr_log[n];
229 	pl->pl_file = file;
230 	pl->pl_line = line;
231 	pl->pl_action = action;
232 	pl->pl_addr = v;
233 	if (++n >= pp->pr_logsize)
234 		n = 0;
235 	pp->pr_curlogentry = n;
236 }
237 
238 static void
239 pr_printlog(struct pool *pp, struct pool_item *pi,
240     void (*pr)(const char *, ...))
241 {
242 	int i = pp->pr_logsize;
243 	int n = pp->pr_curlogentry;
244 
245 	if ((pp->pr_roflags & PR_LOGGING) == 0)
246 		return;
247 
248 	/*
249 	 * Print all entries in this pool's log.
250 	 */
251 	while (i-- > 0) {
252 		struct pool_log *pl = &pp->pr_log[n];
253 		if (pl->pl_action != 0) {
254 			if (pi == NULL || pi == pl->pl_addr) {
255 				(*pr)("\tlog entry %d:\n", i);
256 				(*pr)("\t\taction = %s, addr = %p\n",
257 				    pl->pl_action == PRLOG_GET ? "get" : "put",
258 				    pl->pl_addr);
259 				(*pr)("\t\tfile: %s at line %lu\n",
260 				    pl->pl_file, pl->pl_line);
261 			}
262 		}
263 		if (++n >= pp->pr_logsize)
264 			n = 0;
265 	}
266 }
267 
268 static __inline void
269 pr_enter(struct pool *pp, const char *file, long line)
270 {
271 
272 	if (__predict_false(pp->pr_entered_file != NULL)) {
273 		printf("pool %s: reentrancy at file %s line %ld\n",
274 		    pp->pr_wchan, file, line);
275 		printf("         previous entry at file %s line %ld\n",
276 		    pp->pr_entered_file, pp->pr_entered_line);
277 		panic("pr_enter");
278 	}
279 
280 	pp->pr_entered_file = file;
281 	pp->pr_entered_line = line;
282 }
283 
284 static __inline void
285 pr_leave(struct pool *pp)
286 {
287 
288 	if (__predict_false(pp->pr_entered_file == NULL)) {
289 		printf("pool %s not entered?\n", pp->pr_wchan);
290 		panic("pr_leave");
291 	}
292 
293 	pp->pr_entered_file = NULL;
294 	pp->pr_entered_line = 0;
295 }
296 
297 static __inline void
298 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
299 {
300 
301 	if (pp->pr_entered_file != NULL)
302 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
303 		    pp->pr_entered_file, pp->pr_entered_line);
304 }
305 #else
306 #define	pr_log(pp, v, action, file, line)
307 #define	pr_printlog(pp, pi, pr)
308 #define	pr_enter(pp, file, line)
309 #define	pr_leave(pp)
310 #define	pr_enter_check(pp, pr)
311 #endif /* POOL_DIAGNOSTIC */
312 
313 static __inline int
314 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
315     const void *v)
316 {
317 	const char *cp = v;
318 	int idx;
319 
320 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
321 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
322 	KASSERT(idx < pp->pr_itemsperpage);
323 	return idx;
324 }
325 
326 #define	PR_FREELIST_ALIGN(p) \
327 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
328 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
329 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
330 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
331 
332 static __inline void
333 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
334     void *obj)
335 {
336 	int idx = pr_item_notouch_index(pp, ph, obj);
337 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
338 
339 	KASSERT(freelist[idx] == PR_INDEX_USED);
340 	freelist[idx] = ph->ph_firstfree;
341 	ph->ph_firstfree = idx;
342 }
343 
344 static __inline void *
345 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
346 {
347 	int idx = ph->ph_firstfree;
348 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
349 
350 	KASSERT(freelist[idx] != PR_INDEX_USED);
351 	ph->ph_firstfree = freelist[idx];
352 	freelist[idx] = PR_INDEX_USED;
353 
354 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
355 }
356 
357 static __inline int
358 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
359 {
360 	if (a->ph_page < b->ph_page)
361 		return (-1);
362 	else if (a->ph_page > b->ph_page)
363 		return (1);
364 	else
365 		return (0);
366 }
367 
368 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
369 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
370 
371 /*
372  * Return the pool page header based on page address.
373  */
374 static __inline struct pool_item_header *
375 pr_find_pagehead(struct pool *pp, caddr_t page)
376 {
377 	struct pool_item_header *ph, tmp;
378 
379 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
380 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
381 
382 	tmp.ph_page = page;
383 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
384 	return ph;
385 }
386 
387 static void
388 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
389 {
390 	struct pool_item_header *ph;
391 	int s;
392 
393 	while ((ph = LIST_FIRST(pq)) != NULL) {
394 		LIST_REMOVE(ph, ph_pagelist);
395 		pool_allocator_free(pp, ph->ph_page);
396 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
397 			s = splvm();
398 			pool_put(pp->pr_phpool, ph);
399 			splx(s);
400 		}
401 	}
402 }
403 
404 /*
405  * Remove a page from the pool.
406  */
407 static __inline void
408 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
409      struct pool_pagelist *pq)
410 {
411 
412 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
413 
414 	/*
415 	 * If the page was idle, decrement the idle page count.
416 	 */
417 	if (ph->ph_nmissing == 0) {
418 #ifdef DIAGNOSTIC
419 		if (pp->pr_nidle == 0)
420 			panic("pr_rmpage: nidle inconsistent");
421 		if (pp->pr_nitems < pp->pr_itemsperpage)
422 			panic("pr_rmpage: nitems inconsistent");
423 #endif
424 		pp->pr_nidle--;
425 	}
426 
427 	pp->pr_nitems -= pp->pr_itemsperpage;
428 
429 	/*
430 	 * Unlink the page from the pool and queue it for release.
431 	 */
432 	LIST_REMOVE(ph, ph_pagelist);
433 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
434 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
435 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
436 
437 	pp->pr_npages--;
438 	pp->pr_npagefree++;
439 
440 	pool_update_curpage(pp);
441 }
442 
443 /*
444  * Initialize all the pools listed in the "pools" link set.
445  */
446 void
447 link_pool_init(void)
448 {
449 	__link_set_decl(pools, struct link_pool_init);
450 	struct link_pool_init * const *pi;
451 
452 	__link_set_foreach(pi, pools)
453 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
454 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
455 		    (*pi)->palloc);
456 }
457 
458 /*
459  * Initialize the given pool resource structure.
460  *
461  * We export this routine to allow other kernel parts to declare
462  * static pools that must be initialized before malloc() is available.
463  */
464 void
465 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
466     const char *wchan, struct pool_allocator *palloc)
467 {
468 	int off, slack;
469 	size_t trysize, phsize;
470 	int s;
471 
472 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
473 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
474 
475 #ifdef POOL_DIAGNOSTIC
476 	/*
477 	 * Always log if POOL_DIAGNOSTIC is defined.
478 	 */
479 	if (pool_logsize != 0)
480 		flags |= PR_LOGGING;
481 #endif
482 
483 #ifdef POOL_SUBPAGE
484 	/*
485 	 * XXX We don't provide a real `nointr' back-end
486 	 * yet; all sub-pages come from a kmem back-end.
487 	 * maybe some day...
488 	 */
489 	if (palloc == NULL) {
490 		extern struct pool_allocator pool_allocator_kmem_subpage;
491 		palloc = &pool_allocator_kmem_subpage;
492 	}
493 	/*
494 	 * We'll assume any user-specified back-end allocator
495 	 * will deal with sub-pages, or simply don't care.
496 	 */
497 #else
498 	if (palloc == NULL)
499 		palloc = &pool_allocator_kmem;
500 #endif /* POOL_SUBPAGE */
501 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
502 		if (palloc->pa_pagesz == 0) {
503 #ifdef POOL_SUBPAGE
504 			if (palloc == &pool_allocator_kmem)
505 				palloc->pa_pagesz = PAGE_SIZE;
506 			else
507 				palloc->pa_pagesz = POOL_SUBPAGE;
508 #else
509 			palloc->pa_pagesz = PAGE_SIZE;
510 #endif /* POOL_SUBPAGE */
511 		}
512 
513 		TAILQ_INIT(&palloc->pa_list);
514 
515 		simple_lock_init(&palloc->pa_slock);
516 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
517 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
518 		palloc->pa_flags |= PA_INITIALIZED;
519 	}
520 
521 	if (align == 0)
522 		align = ALIGN(1);
523 
524 	if (size < sizeof(struct pool_item))
525 		size = sizeof(struct pool_item);
526 
527 	size = roundup(size, align);
528 #ifdef DIAGNOSTIC
529 	if (size > palloc->pa_pagesz)
530 		panic("pool_init: pool item size (%lu) too large",
531 		      (u_long)size);
532 #endif
533 
534 	/*
535 	 * Initialize the pool structure.
536 	 */
537 	LIST_INIT(&pp->pr_emptypages);
538 	LIST_INIT(&pp->pr_fullpages);
539 	LIST_INIT(&pp->pr_partpages);
540 	TAILQ_INIT(&pp->pr_cachelist);
541 	pp->pr_curpage = NULL;
542 	pp->pr_npages = 0;
543 	pp->pr_minitems = 0;
544 	pp->pr_minpages = 0;
545 	pp->pr_maxpages = UINT_MAX;
546 	pp->pr_roflags = flags;
547 	pp->pr_flags = 0;
548 	pp->pr_size = size;
549 	pp->pr_align = align;
550 	pp->pr_wchan = wchan;
551 	pp->pr_alloc = palloc;
552 	pp->pr_nitems = 0;
553 	pp->pr_nout = 0;
554 	pp->pr_hardlimit = UINT_MAX;
555 	pp->pr_hardlimit_warning = NULL;
556 	pp->pr_hardlimit_ratecap.tv_sec = 0;
557 	pp->pr_hardlimit_ratecap.tv_usec = 0;
558 	pp->pr_hardlimit_warning_last.tv_sec = 0;
559 	pp->pr_hardlimit_warning_last.tv_usec = 0;
560 	pp->pr_drain_hook = NULL;
561 	pp->pr_drain_hook_arg = NULL;
562 
563 	/*
564 	 * Decide whether to put the page header off page to avoid
565 	 * wasting too large a part of the page or too big item.
566 	 * Off-page page headers go on a hash table, so we can match
567 	 * a returned item with its header based on the page address.
568 	 * We use 1/16 of the page size and about 8 times of the item
569 	 * size as the threshold (XXX: tune)
570 	 *
571 	 * However, we'll put the header into the page if we can put
572 	 * it without wasting any items.
573 	 *
574 	 * Silently enforce `0 <= ioff < align'.
575 	 */
576 	pp->pr_itemoffset = ioff %= align;
577 	/* See the comment below about reserved bytes. */
578 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
579 	phsize = ALIGN(sizeof(struct pool_item_header));
580 	if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
581 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
582 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
583 		/* Use the end of the page for the page header */
584 		pp->pr_roflags |= PR_PHINPAGE;
585 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
586 	} else {
587 		/* The page header will be taken from our page header pool */
588 		pp->pr_phoffset = 0;
589 		off = palloc->pa_pagesz;
590 		SPLAY_INIT(&pp->pr_phtree);
591 	}
592 
593 	/*
594 	 * Alignment is to take place at `ioff' within the item. This means
595 	 * we must reserve up to `align - 1' bytes on the page to allow
596 	 * appropriate positioning of each item.
597 	 */
598 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
599 	KASSERT(pp->pr_itemsperpage != 0);
600 	if ((pp->pr_roflags & PR_NOTOUCH)) {
601 		int idx;
602 
603 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
604 		    idx++) {
605 			/* nothing */
606 		}
607 		if (idx >= PHPOOL_MAX) {
608 			/*
609 			 * if you see this panic, consider to tweak
610 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
611 			 */
612 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
613 			    pp->pr_wchan, pp->pr_itemsperpage);
614 		}
615 		pp->pr_phpool = &phpool[idx];
616 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
617 		pp->pr_phpool = &phpool[0];
618 	}
619 #if defined(DIAGNOSTIC)
620 	else {
621 		pp->pr_phpool = NULL;
622 	}
623 #endif
624 
625 	/*
626 	 * Use the slack between the chunks and the page header
627 	 * for "cache coloring".
628 	 */
629 	slack = off - pp->pr_itemsperpage * pp->pr_size;
630 	pp->pr_maxcolor = (slack / align) * align;
631 	pp->pr_curcolor = 0;
632 
633 	pp->pr_nget = 0;
634 	pp->pr_nfail = 0;
635 	pp->pr_nput = 0;
636 	pp->pr_npagealloc = 0;
637 	pp->pr_npagefree = 0;
638 	pp->pr_hiwat = 0;
639 	pp->pr_nidle = 0;
640 
641 #ifdef POOL_DIAGNOSTIC
642 	if (flags & PR_LOGGING) {
643 		if (kmem_map == NULL ||
644 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
645 		     M_TEMP, M_NOWAIT)) == NULL)
646 			pp->pr_roflags &= ~PR_LOGGING;
647 		pp->pr_curlogentry = 0;
648 		pp->pr_logsize = pool_logsize;
649 	}
650 #endif
651 
652 	pp->pr_entered_file = NULL;
653 	pp->pr_entered_line = 0;
654 
655 	simple_lock_init(&pp->pr_slock);
656 
657 	/*
658 	 * Initialize private page header pool and cache magazine pool if we
659 	 * haven't done so yet.
660 	 * XXX LOCKING.
661 	 */
662 	if (phpool[0].pr_size == 0) {
663 		int idx;
664 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
665 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
666 			int nelem;
667 			size_t sz;
668 
669 			nelem = PHPOOL_FREELIST_NELEM(idx);
670 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
671 			    "phpool-%d", nelem);
672 			sz = sizeof(struct pool_item_header);
673 			if (nelem) {
674 				sz = PR_FREELIST_ALIGN(sz)
675 				    + nelem * sizeof(pool_item_freelist_t);
676 			}
677 			pool_init(&phpool[idx], sz, 0, 0, 0,
678 			    phpool_names[idx], &pool_allocator_meta);
679 		}
680 #ifdef POOL_SUBPAGE
681 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
682 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
683 #endif
684 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
685 		    0, "pcgpool", &pool_allocator_meta);
686 	}
687 
688 	/* Insert into the list of all pools. */
689 	simple_lock(&pool_head_slock);
690 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
691 	simple_unlock(&pool_head_slock);
692 
693 	/* Insert this into the list of pools using this allocator. */
694 	s = splvm();
695 	simple_lock(&palloc->pa_slock);
696 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
697 	simple_unlock(&palloc->pa_slock);
698 	splx(s);
699 }
700 
701 /*
702  * De-commision a pool resource.
703  */
704 void
705 pool_destroy(struct pool *pp)
706 {
707 	struct pool_pagelist pq;
708 	struct pool_item_header *ph;
709 	int s;
710 
711 	/* Remove from global pool list */
712 	simple_lock(&pool_head_slock);
713 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
714 	if (drainpp == pp)
715 		drainpp = NULL;
716 	simple_unlock(&pool_head_slock);
717 
718 	/* Remove this pool from its allocator's list of pools. */
719 	s = splvm();
720 	simple_lock(&pp->pr_alloc->pa_slock);
721 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
722 	simple_unlock(&pp->pr_alloc->pa_slock);
723 	splx(s);
724 
725 	s = splvm();
726 	simple_lock(&pp->pr_slock);
727 
728 	KASSERT(TAILQ_EMPTY(&pp->pr_cachelist));
729 
730 #ifdef DIAGNOSTIC
731 	if (pp->pr_nout != 0) {
732 		pr_printlog(pp, NULL, printf);
733 		panic("pool_destroy: pool busy: still out: %u",
734 		    pp->pr_nout);
735 	}
736 #endif
737 
738 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
739 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
740 
741 	/* Remove all pages */
742 	LIST_INIT(&pq);
743 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
744 		pr_rmpage(pp, ph, &pq);
745 
746 	simple_unlock(&pp->pr_slock);
747 	splx(s);
748 
749 	pr_pagelist_free(pp, &pq);
750 
751 #ifdef POOL_DIAGNOSTIC
752 	if ((pp->pr_roflags & PR_LOGGING) != 0)
753 		free(pp->pr_log, M_TEMP);
754 #endif
755 }
756 
757 void
758 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
759 {
760 
761 	/* XXX no locking -- must be used just after pool_init() */
762 #ifdef DIAGNOSTIC
763 	if (pp->pr_drain_hook != NULL)
764 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
765 #endif
766 	pp->pr_drain_hook = fn;
767 	pp->pr_drain_hook_arg = arg;
768 }
769 
770 static struct pool_item_header *
771 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
772 {
773 	struct pool_item_header *ph;
774 	int s;
775 
776 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
777 
778 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
779 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
780 	else {
781 		s = splvm();
782 		ph = pool_get(pp->pr_phpool, flags);
783 		splx(s);
784 	}
785 
786 	return (ph);
787 }
788 
789 /*
790  * Grab an item from the pool; must be called at appropriate spl level
791  */
792 void *
793 #ifdef POOL_DIAGNOSTIC
794 _pool_get(struct pool *pp, int flags, const char *file, long line)
795 #else
796 pool_get(struct pool *pp, int flags)
797 #endif
798 {
799 	struct pool_item *pi;
800 	struct pool_item_header *ph;
801 	void *v;
802 
803 #ifdef DIAGNOSTIC
804 	if (__predict_false(pp->pr_itemsperpage == 0))
805 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
806 		    "pool not initialized?", pp);
807 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
808 			    (flags & PR_WAITOK) != 0))
809 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
810 
811 #ifdef LOCKDEBUG
812 	if (flags & PR_WAITOK)
813 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
814 #endif
815 #endif /* DIAGNOSTIC */
816 
817 	simple_lock(&pp->pr_slock);
818 	pr_enter(pp, file, line);
819 
820  startover:
821 	/*
822 	 * Check to see if we've reached the hard limit.  If we have,
823 	 * and we can wait, then wait until an item has been returned to
824 	 * the pool.
825 	 */
826 #ifdef DIAGNOSTIC
827 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
828 		pr_leave(pp);
829 		simple_unlock(&pp->pr_slock);
830 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
831 	}
832 #endif
833 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
834 		if (pp->pr_drain_hook != NULL) {
835 			/*
836 			 * Since the drain hook is going to free things
837 			 * back to the pool, unlock, call the hook, re-lock,
838 			 * and check the hardlimit condition again.
839 			 */
840 			pr_leave(pp);
841 			simple_unlock(&pp->pr_slock);
842 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
843 			simple_lock(&pp->pr_slock);
844 			pr_enter(pp, file, line);
845 			if (pp->pr_nout < pp->pr_hardlimit)
846 				goto startover;
847 		}
848 
849 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
850 			/*
851 			 * XXX: A warning isn't logged in this case.  Should
852 			 * it be?
853 			 */
854 			pp->pr_flags |= PR_WANTED;
855 			pr_leave(pp);
856 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
857 			pr_enter(pp, file, line);
858 			goto startover;
859 		}
860 
861 		/*
862 		 * Log a message that the hard limit has been hit.
863 		 */
864 		if (pp->pr_hardlimit_warning != NULL &&
865 		    ratecheck(&pp->pr_hardlimit_warning_last,
866 			      &pp->pr_hardlimit_ratecap))
867 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
868 
869 		pp->pr_nfail++;
870 
871 		pr_leave(pp);
872 		simple_unlock(&pp->pr_slock);
873 		return (NULL);
874 	}
875 
876 	/*
877 	 * The convention we use is that if `curpage' is not NULL, then
878 	 * it points at a non-empty bucket. In particular, `curpage'
879 	 * never points at a page header which has PR_PHINPAGE set and
880 	 * has no items in its bucket.
881 	 */
882 	if ((ph = pp->pr_curpage) == NULL) {
883 #ifdef DIAGNOSTIC
884 		if (pp->pr_nitems != 0) {
885 			simple_unlock(&pp->pr_slock);
886 			printf("pool_get: %s: curpage NULL, nitems %u\n",
887 			    pp->pr_wchan, pp->pr_nitems);
888 			panic("pool_get: nitems inconsistent");
889 		}
890 #endif
891 
892 		/*
893 		 * Call the back-end page allocator for more memory.
894 		 * Release the pool lock, as the back-end page allocator
895 		 * may block.
896 		 */
897 		pr_leave(pp);
898 		simple_unlock(&pp->pr_slock);
899 		v = pool_allocator_alloc(pp, flags);
900 		if (__predict_true(v != NULL))
901 			ph = pool_alloc_item_header(pp, v, flags);
902 
903 		if (__predict_false(v == NULL || ph == NULL)) {
904 			if (v != NULL)
905 				pool_allocator_free(pp, v);
906 
907 			simple_lock(&pp->pr_slock);
908 			pr_enter(pp, file, line);
909 
910 			/*
911 			 * We were unable to allocate a page or item
912 			 * header, but we released the lock during
913 			 * allocation, so perhaps items were freed
914 			 * back to the pool.  Check for this case.
915 			 */
916 			if (pp->pr_curpage != NULL)
917 				goto startover;
918 
919 			if ((flags & PR_WAITOK) == 0) {
920 				pp->pr_nfail++;
921 				pr_leave(pp);
922 				simple_unlock(&pp->pr_slock);
923 				return (NULL);
924 			}
925 
926 			/*
927 			 * Wait for items to be returned to this pool.
928 			 *
929 			 * XXX: maybe we should wake up once a second and
930 			 * try again?
931 			 */
932 			pp->pr_flags |= PR_WANTED;
933 			/* PA_WANTED is already set on the allocator. */
934 			pr_leave(pp);
935 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
936 			pr_enter(pp, file, line);
937 			goto startover;
938 		}
939 
940 		/* We have more memory; add it to the pool */
941 		simple_lock(&pp->pr_slock);
942 		pr_enter(pp, file, line);
943 		pool_prime_page(pp, v, ph);
944 		pp->pr_npagealloc++;
945 
946 		/* Start the allocation process over. */
947 		goto startover;
948 	}
949 	if (pp->pr_roflags & PR_NOTOUCH) {
950 #ifdef DIAGNOSTIC
951 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
952 			pr_leave(pp);
953 			simple_unlock(&pp->pr_slock);
954 			panic("pool_get: %s: page empty", pp->pr_wchan);
955 		}
956 #endif
957 		v = pr_item_notouch_get(pp, ph);
958 #ifdef POOL_DIAGNOSTIC
959 		pr_log(pp, v, PRLOG_GET, file, line);
960 #endif
961 	} else {
962 		v = pi = TAILQ_FIRST(&ph->ph_itemlist);
963 		if (__predict_false(v == NULL)) {
964 			pr_leave(pp);
965 			simple_unlock(&pp->pr_slock);
966 			panic("pool_get: %s: page empty", pp->pr_wchan);
967 		}
968 #ifdef DIAGNOSTIC
969 		if (__predict_false(pp->pr_nitems == 0)) {
970 			pr_leave(pp);
971 			simple_unlock(&pp->pr_slock);
972 			printf("pool_get: %s: items on itemlist, nitems %u\n",
973 			    pp->pr_wchan, pp->pr_nitems);
974 			panic("pool_get: nitems inconsistent");
975 		}
976 #endif
977 
978 #ifdef POOL_DIAGNOSTIC
979 		pr_log(pp, v, PRLOG_GET, file, line);
980 #endif
981 
982 #ifdef DIAGNOSTIC
983 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
984 			pr_printlog(pp, pi, printf);
985 			panic("pool_get(%s): free list modified: "
986 			    "magic=%x; page %p; item addr %p\n",
987 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
988 		}
989 #endif
990 
991 		/*
992 		 * Remove from item list.
993 		 */
994 		TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
995 	}
996 	pp->pr_nitems--;
997 	pp->pr_nout++;
998 	if (ph->ph_nmissing == 0) {
999 #ifdef DIAGNOSTIC
1000 		if (__predict_false(pp->pr_nidle == 0))
1001 			panic("pool_get: nidle inconsistent");
1002 #endif
1003 		pp->pr_nidle--;
1004 
1005 		/*
1006 		 * This page was previously empty.  Move it to the list of
1007 		 * partially-full pages.  This page is already curpage.
1008 		 */
1009 		LIST_REMOVE(ph, ph_pagelist);
1010 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1011 	}
1012 	ph->ph_nmissing++;
1013 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1014 #ifdef DIAGNOSTIC
1015 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1016 		    !TAILQ_EMPTY(&ph->ph_itemlist))) {
1017 			pr_leave(pp);
1018 			simple_unlock(&pp->pr_slock);
1019 			panic("pool_get: %s: nmissing inconsistent",
1020 			    pp->pr_wchan);
1021 		}
1022 #endif
1023 		/*
1024 		 * This page is now full.  Move it to the full list
1025 		 * and select a new current page.
1026 		 */
1027 		LIST_REMOVE(ph, ph_pagelist);
1028 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1029 		pool_update_curpage(pp);
1030 	}
1031 
1032 	pp->pr_nget++;
1033 
1034 	/*
1035 	 * If we have a low water mark and we are now below that low
1036 	 * water mark, add more items to the pool.
1037 	 */
1038 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1039 		/*
1040 		 * XXX: Should we log a warning?  Should we set up a timeout
1041 		 * to try again in a second or so?  The latter could break
1042 		 * a caller's assumptions about interrupt protection, etc.
1043 		 */
1044 	}
1045 
1046 	pr_leave(pp);
1047 	simple_unlock(&pp->pr_slock);
1048 	return (v);
1049 }
1050 
1051 /*
1052  * Internal version of pool_put().  Pool is already locked/entered.
1053  */
1054 static void
1055 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1056 {
1057 	struct pool_item *pi = v;
1058 	struct pool_item_header *ph;
1059 	caddr_t page;
1060 	int s;
1061 
1062 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1063 
1064 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
1065 
1066 #ifdef DIAGNOSTIC
1067 	if (__predict_false(pp->pr_nout == 0)) {
1068 		printf("pool %s: putting with none out\n",
1069 		    pp->pr_wchan);
1070 		panic("pool_put");
1071 	}
1072 #endif
1073 
1074 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
1075 		pr_printlog(pp, NULL, printf);
1076 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1077 	}
1078 
1079 #ifdef LOCKDEBUG
1080 	/*
1081 	 * Check if we're freeing a locked simple lock.
1082 	 */
1083 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1084 #endif
1085 
1086 	/*
1087 	 * Return to item list.
1088 	 */
1089 	if (pp->pr_roflags & PR_NOTOUCH) {
1090 		pr_item_notouch_put(pp, ph, v);
1091 	} else {
1092 #ifdef DIAGNOSTIC
1093 		pi->pi_magic = PI_MAGIC;
1094 #endif
1095 #ifdef DEBUG
1096 		{
1097 			int i, *ip = v;
1098 
1099 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1100 				*ip++ = PI_MAGIC;
1101 			}
1102 		}
1103 #endif
1104 
1105 		TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1106 	}
1107 	KDASSERT(ph->ph_nmissing != 0);
1108 	ph->ph_nmissing--;
1109 	pp->pr_nput++;
1110 	pp->pr_nitems++;
1111 	pp->pr_nout--;
1112 
1113 	/* Cancel "pool empty" condition if it exists */
1114 	if (pp->pr_curpage == NULL)
1115 		pp->pr_curpage = ph;
1116 
1117 	if (pp->pr_flags & PR_WANTED) {
1118 		pp->pr_flags &= ~PR_WANTED;
1119 		if (ph->ph_nmissing == 0)
1120 			pp->pr_nidle++;
1121 		wakeup((caddr_t)pp);
1122 		return;
1123 	}
1124 
1125 	/*
1126 	 * If this page is now empty, do one of two things:
1127 	 *
1128 	 *	(1) If we have more pages than the page high water mark,
1129 	 *	    free the page back to the system.  ONLY CONSIDER
1130 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1131 	 *	    CLAIM.
1132 	 *
1133 	 *	(2) Otherwise, move the page to the empty page list.
1134 	 *
1135 	 * Either way, select a new current page (so we use a partially-full
1136 	 * page if one is available).
1137 	 */
1138 	if (ph->ph_nmissing == 0) {
1139 		pp->pr_nidle++;
1140 		if (pp->pr_npages > pp->pr_minpages &&
1141 		    (pp->pr_npages > pp->pr_maxpages ||
1142 		     (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
1143 			pr_rmpage(pp, ph, pq);
1144 		} else {
1145 			LIST_REMOVE(ph, ph_pagelist);
1146 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1147 
1148 			/*
1149 			 * Update the timestamp on the page.  A page must
1150 			 * be idle for some period of time before it can
1151 			 * be reclaimed by the pagedaemon.  This minimizes
1152 			 * ping-pong'ing for memory.
1153 			 */
1154 			s = splclock();
1155 			ph->ph_time = mono_time;
1156 			splx(s);
1157 		}
1158 		pool_update_curpage(pp);
1159 	}
1160 
1161 	/*
1162 	 * If the page was previously completely full, move it to the
1163 	 * partially-full list and make it the current page.  The next
1164 	 * allocation will get the item from this page, instead of
1165 	 * further fragmenting the pool.
1166 	 */
1167 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1168 		LIST_REMOVE(ph, ph_pagelist);
1169 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1170 		pp->pr_curpage = ph;
1171 	}
1172 }
1173 
1174 /*
1175  * Return resource to the pool; must be called at appropriate spl level
1176  */
1177 #ifdef POOL_DIAGNOSTIC
1178 void
1179 _pool_put(struct pool *pp, void *v, const char *file, long line)
1180 {
1181 	struct pool_pagelist pq;
1182 
1183 	LIST_INIT(&pq);
1184 
1185 	simple_lock(&pp->pr_slock);
1186 	pr_enter(pp, file, line);
1187 
1188 	pr_log(pp, v, PRLOG_PUT, file, line);
1189 
1190 	pool_do_put(pp, v, &pq);
1191 
1192 	pr_leave(pp);
1193 	simple_unlock(&pp->pr_slock);
1194 
1195 	if (! LIST_EMPTY(&pq))
1196 		pr_pagelist_free(pp, &pq);
1197 }
1198 #undef pool_put
1199 #endif /* POOL_DIAGNOSTIC */
1200 
1201 void
1202 pool_put(struct pool *pp, void *v)
1203 {
1204 	struct pool_pagelist pq;
1205 
1206 	LIST_INIT(&pq);
1207 
1208 	simple_lock(&pp->pr_slock);
1209 	pool_do_put(pp, v, &pq);
1210 	simple_unlock(&pp->pr_slock);
1211 
1212 	if (! LIST_EMPTY(&pq))
1213 		pr_pagelist_free(pp, &pq);
1214 }
1215 
1216 #ifdef POOL_DIAGNOSTIC
1217 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1218 #endif
1219 
1220 /*
1221  * Add N items to the pool.
1222  */
1223 int
1224 pool_prime(struct pool *pp, int n)
1225 {
1226 	struct pool_item_header *ph = NULL;
1227 	caddr_t cp;
1228 	int newpages;
1229 
1230 	simple_lock(&pp->pr_slock);
1231 
1232 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1233 
1234 	while (newpages-- > 0) {
1235 		simple_unlock(&pp->pr_slock);
1236 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1237 		if (__predict_true(cp != NULL))
1238 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1239 
1240 		if (__predict_false(cp == NULL || ph == NULL)) {
1241 			if (cp != NULL)
1242 				pool_allocator_free(pp, cp);
1243 			simple_lock(&pp->pr_slock);
1244 			break;
1245 		}
1246 
1247 		simple_lock(&pp->pr_slock);
1248 		pool_prime_page(pp, cp, ph);
1249 		pp->pr_npagealloc++;
1250 		pp->pr_minpages++;
1251 	}
1252 
1253 	if (pp->pr_minpages >= pp->pr_maxpages)
1254 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1255 
1256 	simple_unlock(&pp->pr_slock);
1257 	return (0);
1258 }
1259 
1260 /*
1261  * Add a page worth of items to the pool.
1262  *
1263  * Note, we must be called with the pool descriptor LOCKED.
1264  */
1265 static void
1266 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1267 {
1268 	struct pool_item *pi;
1269 	caddr_t cp = storage;
1270 	unsigned int align = pp->pr_align;
1271 	unsigned int ioff = pp->pr_itemoffset;
1272 	int n;
1273 	int s;
1274 
1275 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1276 
1277 #ifdef DIAGNOSTIC
1278 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1279 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1280 #endif
1281 
1282 	/*
1283 	 * Insert page header.
1284 	 */
1285 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1286 	TAILQ_INIT(&ph->ph_itemlist);
1287 	ph->ph_page = storage;
1288 	ph->ph_nmissing = 0;
1289 	s = splclock();
1290 	ph->ph_time = mono_time;
1291 	splx(s);
1292 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1293 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1294 
1295 	pp->pr_nidle++;
1296 
1297 	/*
1298 	 * Color this page.
1299 	 */
1300 	cp = (caddr_t)(cp + pp->pr_curcolor);
1301 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1302 		pp->pr_curcolor = 0;
1303 
1304 	/*
1305 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1306 	 */
1307 	if (ioff != 0)
1308 		cp = (caddr_t)(cp + (align - ioff));
1309 
1310 	/*
1311 	 * Insert remaining chunks on the bucket list.
1312 	 */
1313 	n = pp->pr_itemsperpage;
1314 	pp->pr_nitems += n;
1315 
1316 	if (pp->pr_roflags & PR_NOTOUCH) {
1317 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
1318 		int i;
1319 
1320 		ph->ph_off = cp - storage;
1321 		ph->ph_firstfree = 0;
1322 		for (i = 0; i < n - 1; i++)
1323 			freelist[i] = i + 1;
1324 		freelist[n - 1] = PR_INDEX_EOL;
1325 	} else {
1326 		while (n--) {
1327 			pi = (struct pool_item *)cp;
1328 
1329 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1330 
1331 			/* Insert on page list */
1332 			TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1333 #ifdef DIAGNOSTIC
1334 			pi->pi_magic = PI_MAGIC;
1335 #endif
1336 			cp = (caddr_t)(cp + pp->pr_size);
1337 		}
1338 	}
1339 
1340 	/*
1341 	 * If the pool was depleted, point at the new page.
1342 	 */
1343 	if (pp->pr_curpage == NULL)
1344 		pp->pr_curpage = ph;
1345 
1346 	if (++pp->pr_npages > pp->pr_hiwat)
1347 		pp->pr_hiwat = pp->pr_npages;
1348 }
1349 
1350 /*
1351  * Used by pool_get() when nitems drops below the low water mark.  This
1352  * is used to catch up pr_nitems with the low water mark.
1353  *
1354  * Note 1, we never wait for memory here, we let the caller decide what to do.
1355  *
1356  * Note 2, we must be called with the pool already locked, and we return
1357  * with it locked.
1358  */
1359 static int
1360 pool_catchup(struct pool *pp)
1361 {
1362 	struct pool_item_header *ph = NULL;
1363 	caddr_t cp;
1364 	int error = 0;
1365 
1366 	while (POOL_NEEDS_CATCHUP(pp)) {
1367 		/*
1368 		 * Call the page back-end allocator for more memory.
1369 		 *
1370 		 * XXX: We never wait, so should we bother unlocking
1371 		 * the pool descriptor?
1372 		 */
1373 		simple_unlock(&pp->pr_slock);
1374 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1375 		if (__predict_true(cp != NULL))
1376 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1377 		if (__predict_false(cp == NULL || ph == NULL)) {
1378 			if (cp != NULL)
1379 				pool_allocator_free(pp, cp);
1380 			error = ENOMEM;
1381 			simple_lock(&pp->pr_slock);
1382 			break;
1383 		}
1384 		simple_lock(&pp->pr_slock);
1385 		pool_prime_page(pp, cp, ph);
1386 		pp->pr_npagealloc++;
1387 	}
1388 
1389 	return (error);
1390 }
1391 
1392 static void
1393 pool_update_curpage(struct pool *pp)
1394 {
1395 
1396 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1397 	if (pp->pr_curpage == NULL) {
1398 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1399 	}
1400 }
1401 
1402 void
1403 pool_setlowat(struct pool *pp, int n)
1404 {
1405 
1406 	simple_lock(&pp->pr_slock);
1407 
1408 	pp->pr_minitems = n;
1409 	pp->pr_minpages = (n == 0)
1410 		? 0
1411 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1412 
1413 	/* Make sure we're caught up with the newly-set low water mark. */
1414 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1415 		/*
1416 		 * XXX: Should we log a warning?  Should we set up a timeout
1417 		 * to try again in a second or so?  The latter could break
1418 		 * a caller's assumptions about interrupt protection, etc.
1419 		 */
1420 	}
1421 
1422 	simple_unlock(&pp->pr_slock);
1423 }
1424 
1425 void
1426 pool_sethiwat(struct pool *pp, int n)
1427 {
1428 
1429 	simple_lock(&pp->pr_slock);
1430 
1431 	pp->pr_maxpages = (n == 0)
1432 		? 0
1433 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1434 
1435 	simple_unlock(&pp->pr_slock);
1436 }
1437 
1438 void
1439 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1440 {
1441 
1442 	simple_lock(&pp->pr_slock);
1443 
1444 	pp->pr_hardlimit = n;
1445 	pp->pr_hardlimit_warning = warnmess;
1446 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1447 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1448 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1449 
1450 	/*
1451 	 * In-line version of pool_sethiwat(), because we don't want to
1452 	 * release the lock.
1453 	 */
1454 	pp->pr_maxpages = (n == 0)
1455 		? 0
1456 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1457 
1458 	simple_unlock(&pp->pr_slock);
1459 }
1460 
1461 /*
1462  * Release all complete pages that have not been used recently.
1463  */
1464 int
1465 #ifdef POOL_DIAGNOSTIC
1466 _pool_reclaim(struct pool *pp, const char *file, long line)
1467 #else
1468 pool_reclaim(struct pool *pp)
1469 #endif
1470 {
1471 	struct pool_item_header *ph, *phnext;
1472 	struct pool_cache *pc;
1473 	struct timeval curtime;
1474 	struct pool_pagelist pq;
1475 	struct timeval diff;
1476 	int s;
1477 
1478 	if (pp->pr_drain_hook != NULL) {
1479 		/*
1480 		 * The drain hook must be called with the pool unlocked.
1481 		 */
1482 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1483 	}
1484 
1485 	if (simple_lock_try(&pp->pr_slock) == 0)
1486 		return (0);
1487 	pr_enter(pp, file, line);
1488 
1489 	LIST_INIT(&pq);
1490 
1491 	/*
1492 	 * Reclaim items from the pool's caches.
1493 	 */
1494 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1495 		pool_cache_reclaim(pc, &pq);
1496 
1497 	s = splclock();
1498 	curtime = mono_time;
1499 	splx(s);
1500 
1501 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1502 		phnext = LIST_NEXT(ph, ph_pagelist);
1503 
1504 		/* Check our minimum page claim */
1505 		if (pp->pr_npages <= pp->pr_minpages)
1506 			break;
1507 
1508 		KASSERT(ph->ph_nmissing == 0);
1509 		timersub(&curtime, &ph->ph_time, &diff);
1510 		if (diff.tv_sec < pool_inactive_time)
1511 			continue;
1512 
1513 		/*
1514 		 * If freeing this page would put us below
1515 		 * the low water mark, stop now.
1516 		 */
1517 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1518 		    pp->pr_minitems)
1519 			break;
1520 
1521 		pr_rmpage(pp, ph, &pq);
1522 	}
1523 
1524 	pr_leave(pp);
1525 	simple_unlock(&pp->pr_slock);
1526 	if (LIST_EMPTY(&pq))
1527 		return (0);
1528 
1529 	pr_pagelist_free(pp, &pq);
1530 	return (1);
1531 }
1532 
1533 /*
1534  * Drain pools, one at a time.
1535  *
1536  * Note, we must never be called from an interrupt context.
1537  */
1538 void
1539 pool_drain(void *arg)
1540 {
1541 	struct pool *pp;
1542 	int s;
1543 
1544 	pp = NULL;
1545 	s = splvm();
1546 	simple_lock(&pool_head_slock);
1547 	if (drainpp == NULL) {
1548 		drainpp = TAILQ_FIRST(&pool_head);
1549 	}
1550 	if (drainpp) {
1551 		pp = drainpp;
1552 		drainpp = TAILQ_NEXT(pp, pr_poollist);
1553 	}
1554 	simple_unlock(&pool_head_slock);
1555 	pool_reclaim(pp);
1556 	splx(s);
1557 }
1558 
1559 /*
1560  * Diagnostic helpers.
1561  */
1562 void
1563 pool_print(struct pool *pp, const char *modif)
1564 {
1565 	int s;
1566 
1567 	s = splvm();
1568 	if (simple_lock_try(&pp->pr_slock) == 0) {
1569 		printf("pool %s is locked; try again later\n",
1570 		    pp->pr_wchan);
1571 		splx(s);
1572 		return;
1573 	}
1574 	pool_print1(pp, modif, printf);
1575 	simple_unlock(&pp->pr_slock);
1576 	splx(s);
1577 }
1578 
1579 void
1580 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1581 {
1582 	int didlock = 0;
1583 
1584 	if (pp == NULL) {
1585 		(*pr)("Must specify a pool to print.\n");
1586 		return;
1587 	}
1588 
1589 	/*
1590 	 * Called from DDB; interrupts should be blocked, and all
1591 	 * other processors should be paused.  We can skip locking
1592 	 * the pool in this case.
1593 	 *
1594 	 * We do a simple_lock_try() just to print the lock
1595 	 * status, however.
1596 	 */
1597 
1598 	if (simple_lock_try(&pp->pr_slock) == 0)
1599 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1600 	else
1601 		didlock = 1;
1602 
1603 	pool_print1(pp, modif, pr);
1604 
1605 	if (didlock)
1606 		simple_unlock(&pp->pr_slock);
1607 }
1608 
1609 static void
1610 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1611     void (*pr)(const char *, ...))
1612 {
1613 	struct pool_item_header *ph;
1614 #ifdef DIAGNOSTIC
1615 	struct pool_item *pi;
1616 #endif
1617 
1618 	LIST_FOREACH(ph, pl, ph_pagelist) {
1619 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1620 		    ph->ph_page, ph->ph_nmissing,
1621 		    (u_long)ph->ph_time.tv_sec,
1622 		    (u_long)ph->ph_time.tv_usec);
1623 #ifdef DIAGNOSTIC
1624 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1625 			TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1626 				if (pi->pi_magic != PI_MAGIC) {
1627 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1628 					    pi, pi->pi_magic);
1629 				}
1630 			}
1631 		}
1632 #endif
1633 	}
1634 }
1635 
1636 static void
1637 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1638 {
1639 	struct pool_item_header *ph;
1640 	struct pool_cache *pc;
1641 	struct pool_cache_group *pcg;
1642 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1643 	char c;
1644 
1645 	while ((c = *modif++) != '\0') {
1646 		if (c == 'l')
1647 			print_log = 1;
1648 		if (c == 'p')
1649 			print_pagelist = 1;
1650 		if (c == 'c')
1651 			print_cache = 1;
1652 	}
1653 
1654 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1655 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1656 	    pp->pr_roflags);
1657 	(*pr)("\talloc %p\n", pp->pr_alloc);
1658 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1659 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1660 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1661 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1662 
1663 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1664 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1665 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1666 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1667 
1668 	if (print_pagelist == 0)
1669 		goto skip_pagelist;
1670 
1671 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1672 		(*pr)("\n\tempty page list:\n");
1673 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1674 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1675 		(*pr)("\n\tfull page list:\n");
1676 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1677 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1678 		(*pr)("\n\tpartial-page list:\n");
1679 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1680 
1681 	if (pp->pr_curpage == NULL)
1682 		(*pr)("\tno current page\n");
1683 	else
1684 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1685 
1686  skip_pagelist:
1687 	if (print_log == 0)
1688 		goto skip_log;
1689 
1690 	(*pr)("\n");
1691 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1692 		(*pr)("\tno log\n");
1693 	else
1694 		pr_printlog(pp, NULL, pr);
1695 
1696  skip_log:
1697 	if (print_cache == 0)
1698 		goto skip_cache;
1699 
1700 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1701 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1702 		    pc->pc_allocfrom, pc->pc_freeto);
1703 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1704 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1705 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1706 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1707 			for (i = 0; i < PCG_NOBJECTS; i++) {
1708 				if (pcg->pcg_objects[i].pcgo_pa !=
1709 				    POOL_PADDR_INVALID) {
1710 					(*pr)("\t\t\t%p, 0x%llx\n",
1711 					    pcg->pcg_objects[i].pcgo_va,
1712 					    (unsigned long long)
1713 					    pcg->pcg_objects[i].pcgo_pa);
1714 				} else {
1715 					(*pr)("\t\t\t%p\n",
1716 					    pcg->pcg_objects[i].pcgo_va);
1717 				}
1718 			}
1719 		}
1720 	}
1721 
1722  skip_cache:
1723 	pr_enter_check(pp, pr);
1724 }
1725 
1726 static int
1727 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1728 {
1729 	struct pool_item *pi;
1730 	caddr_t page;
1731 	int n;
1732 
1733 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1734 	if (page != ph->ph_page &&
1735 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1736 		if (label != NULL)
1737 			printf("%s: ", label);
1738 		printf("pool(%p:%s): page inconsistency: page %p;"
1739 		       " at page head addr %p (p %p)\n", pp,
1740 			pp->pr_wchan, ph->ph_page,
1741 			ph, page);
1742 		return 1;
1743 	}
1744 
1745 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1746 		return 0;
1747 
1748 	for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1749 	     pi != NULL;
1750 	     pi = TAILQ_NEXT(pi,pi_list), n++) {
1751 
1752 #ifdef DIAGNOSTIC
1753 		if (pi->pi_magic != PI_MAGIC) {
1754 			if (label != NULL)
1755 				printf("%s: ", label);
1756 			printf("pool(%s): free list modified: magic=%x;"
1757 			       " page %p; item ordinal %d;"
1758 			       " addr %p (p %p)\n",
1759 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1760 				n, pi, page);
1761 			panic("pool");
1762 		}
1763 #endif
1764 		page =
1765 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1766 		if (page == ph->ph_page)
1767 			continue;
1768 
1769 		if (label != NULL)
1770 			printf("%s: ", label);
1771 		printf("pool(%p:%s): page inconsistency: page %p;"
1772 		       " item ordinal %d; addr %p (p %p)\n", pp,
1773 			pp->pr_wchan, ph->ph_page,
1774 			n, pi, page);
1775 		return 1;
1776 	}
1777 	return 0;
1778 }
1779 
1780 
1781 int
1782 pool_chk(struct pool *pp, const char *label)
1783 {
1784 	struct pool_item_header *ph;
1785 	int r = 0;
1786 
1787 	simple_lock(&pp->pr_slock);
1788 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1789 		r = pool_chk_page(pp, label, ph);
1790 		if (r) {
1791 			goto out;
1792 		}
1793 	}
1794 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1795 		r = pool_chk_page(pp, label, ph);
1796 		if (r) {
1797 			goto out;
1798 		}
1799 	}
1800 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1801 		r = pool_chk_page(pp, label, ph);
1802 		if (r) {
1803 			goto out;
1804 		}
1805 	}
1806 
1807 out:
1808 	simple_unlock(&pp->pr_slock);
1809 	return (r);
1810 }
1811 
1812 /*
1813  * pool_cache_init:
1814  *
1815  *	Initialize a pool cache.
1816  *
1817  *	NOTE: If the pool must be protected from interrupts, we expect
1818  *	to be called at the appropriate interrupt priority level.
1819  */
1820 void
1821 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1822     int (*ctor)(void *, void *, int),
1823     void (*dtor)(void *, void *),
1824     void *arg)
1825 {
1826 
1827 	TAILQ_INIT(&pc->pc_grouplist);
1828 	simple_lock_init(&pc->pc_slock);
1829 
1830 	pc->pc_allocfrom = NULL;
1831 	pc->pc_freeto = NULL;
1832 	pc->pc_pool = pp;
1833 
1834 	pc->pc_ctor = ctor;
1835 	pc->pc_dtor = dtor;
1836 	pc->pc_arg  = arg;
1837 
1838 	pc->pc_hits   = 0;
1839 	pc->pc_misses = 0;
1840 
1841 	pc->pc_ngroups = 0;
1842 
1843 	pc->pc_nitems = 0;
1844 
1845 	simple_lock(&pp->pr_slock);
1846 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1847 	simple_unlock(&pp->pr_slock);
1848 }
1849 
1850 /*
1851  * pool_cache_destroy:
1852  *
1853  *	Destroy a pool cache.
1854  */
1855 void
1856 pool_cache_destroy(struct pool_cache *pc)
1857 {
1858 	struct pool *pp = pc->pc_pool;
1859 
1860 	/* First, invalidate the entire cache. */
1861 	pool_cache_invalidate(pc);
1862 
1863 	/* ...and remove it from the pool's cache list. */
1864 	simple_lock(&pp->pr_slock);
1865 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1866 	simple_unlock(&pp->pr_slock);
1867 }
1868 
1869 static __inline void *
1870 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1871 {
1872 	void *object;
1873 	u_int idx;
1874 
1875 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1876 	KASSERT(pcg->pcg_avail != 0);
1877 	idx = --pcg->pcg_avail;
1878 
1879 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1880 	object = pcg->pcg_objects[idx].pcgo_va;
1881 	if (pap != NULL)
1882 		*pap = pcg->pcg_objects[idx].pcgo_pa;
1883 	pcg->pcg_objects[idx].pcgo_va = NULL;
1884 
1885 	return (object);
1886 }
1887 
1888 static __inline void
1889 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1890 {
1891 	u_int idx;
1892 
1893 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1894 	idx = pcg->pcg_avail++;
1895 
1896 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1897 	pcg->pcg_objects[idx].pcgo_va = object;
1898 	pcg->pcg_objects[idx].pcgo_pa = pa;
1899 }
1900 
1901 /*
1902  * pool_cache_get{,_paddr}:
1903  *
1904  *	Get an object from a pool cache (optionally returning
1905  *	the physical address of the object).
1906  */
1907 void *
1908 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1909 {
1910 	struct pool_cache_group *pcg;
1911 	void *object;
1912 
1913 #ifdef LOCKDEBUG
1914 	if (flags & PR_WAITOK)
1915 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1916 #endif
1917 
1918 	simple_lock(&pc->pc_slock);
1919 
1920 	if ((pcg = pc->pc_allocfrom) == NULL) {
1921 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1922 			if (pcg->pcg_avail != 0) {
1923 				pc->pc_allocfrom = pcg;
1924 				goto have_group;
1925 			}
1926 		}
1927 
1928 		/*
1929 		 * No groups with any available objects.  Allocate
1930 		 * a new object, construct it, and return it to
1931 		 * the caller.  We will allocate a group, if necessary,
1932 		 * when the object is freed back to the cache.
1933 		 */
1934 		pc->pc_misses++;
1935 		simple_unlock(&pc->pc_slock);
1936 		object = pool_get(pc->pc_pool, flags);
1937 		if (object != NULL && pc->pc_ctor != NULL) {
1938 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1939 				pool_put(pc->pc_pool, object);
1940 				return (NULL);
1941 			}
1942 		}
1943 		if (object != NULL && pap != NULL) {
1944 #ifdef POOL_VTOPHYS
1945 			*pap = POOL_VTOPHYS(object);
1946 #else
1947 			*pap = POOL_PADDR_INVALID;
1948 #endif
1949 		}
1950 		return (object);
1951 	}
1952 
1953  have_group:
1954 	pc->pc_hits++;
1955 	pc->pc_nitems--;
1956 	object = pcg_get(pcg, pap);
1957 
1958 	if (pcg->pcg_avail == 0)
1959 		pc->pc_allocfrom = NULL;
1960 
1961 	simple_unlock(&pc->pc_slock);
1962 
1963 	return (object);
1964 }
1965 
1966 /*
1967  * pool_cache_put{,_paddr}:
1968  *
1969  *	Put an object back to the pool cache (optionally caching the
1970  *	physical address of the object).
1971  */
1972 void
1973 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1974 {
1975 	struct pool_cache_group *pcg;
1976 	int s;
1977 
1978 	simple_lock(&pc->pc_slock);
1979 
1980 	if ((pcg = pc->pc_freeto) == NULL) {
1981 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1982 			if (pcg->pcg_avail != PCG_NOBJECTS) {
1983 				pc->pc_freeto = pcg;
1984 				goto have_group;
1985 			}
1986 		}
1987 
1988 		/*
1989 		 * No empty groups to free the object to.  Attempt to
1990 		 * allocate one.
1991 		 */
1992 		simple_unlock(&pc->pc_slock);
1993 		s = splvm();
1994 		pcg = pool_get(&pcgpool, PR_NOWAIT);
1995 		splx(s);
1996 		if (pcg != NULL) {
1997 			memset(pcg, 0, sizeof(*pcg));
1998 			simple_lock(&pc->pc_slock);
1999 			pc->pc_ngroups++;
2000 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
2001 			if (pc->pc_freeto == NULL)
2002 				pc->pc_freeto = pcg;
2003 			goto have_group;
2004 		}
2005 
2006 		/*
2007 		 * Unable to allocate a cache group; destruct the object
2008 		 * and free it back to the pool.
2009 		 */
2010 		pool_cache_destruct_object(pc, object);
2011 		return;
2012 	}
2013 
2014  have_group:
2015 	pc->pc_nitems++;
2016 	pcg_put(pcg, object, pa);
2017 
2018 	if (pcg->pcg_avail == PCG_NOBJECTS)
2019 		pc->pc_freeto = NULL;
2020 
2021 	simple_unlock(&pc->pc_slock);
2022 }
2023 
2024 /*
2025  * pool_cache_destruct_object:
2026  *
2027  *	Force destruction of an object and its release back into
2028  *	the pool.
2029  */
2030 void
2031 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2032 {
2033 
2034 	if (pc->pc_dtor != NULL)
2035 		(*pc->pc_dtor)(pc->pc_arg, object);
2036 	pool_put(pc->pc_pool, object);
2037 }
2038 
2039 /*
2040  * pool_cache_invalidate:
2041  *
2042  *	Invalidate a pool cache (destruct and release all of the
2043  *	cached objects).
2044  */
2045 void
2046 pool_cache_invalidate(struct pool_cache *pc)
2047 {
2048 	struct pool_pagelist pq;
2049 	struct pool_cache_group *pcg, *npcg;
2050 	void *object;
2051 
2052 	LIST_INIT(&pq);
2053 
2054 	simple_lock(&pc->pc_slock);
2055 	simple_lock(&pc->pc_pool->pr_slock);
2056 
2057 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
2058 	     pcg = npcg) {
2059 		npcg = TAILQ_NEXT(pcg, pcg_list);
2060 		while (pcg->pcg_avail != 0) {
2061 			pc->pc_nitems--;
2062 			object = pcg_get(pcg, NULL);
2063 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
2064 				pc->pc_allocfrom = NULL;
2065 			if (pc->pc_dtor != NULL)
2066 				(*pc->pc_dtor)(pc->pc_arg, object);
2067 			pool_do_put(pc->pc_pool, object, &pq);
2068 		}
2069 	}
2070 
2071 	simple_unlock(&pc->pc_pool->pr_slock);
2072 	simple_unlock(&pc->pc_slock);
2073 
2074 	if (! LIST_EMPTY(&pq))
2075 		pr_pagelist_free(pc->pc_pool, &pq);
2076 }
2077 
2078 /*
2079  * pool_cache_reclaim:
2080  *
2081  *	Reclaim a pool cache for pool_reclaim().
2082  */
2083 static void
2084 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq)
2085 {
2086 	struct pool_cache_group *pcg, *npcg;
2087 	void *object;
2088 	int s;
2089 
2090 	/*
2091 	 * We're locking in the wrong order (normally pool_cache -> pool,
2092 	 * but the pool is already locked when we get here), so we have
2093 	 * to use trylock.  If we can't lock the pool_cache, it's not really
2094 	 * a big deal here.
2095 	 */
2096 	if (simple_lock_try(&pc->pc_slock) == 0)
2097 		return;
2098 
2099 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
2100 	     pcg = npcg) {
2101 		npcg = TAILQ_NEXT(pcg, pcg_list);
2102 		while (pcg->pcg_avail != 0) {
2103 			pc->pc_nitems--;
2104 			object = pcg_get(pcg, NULL);
2105 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
2106 				pc->pc_allocfrom = NULL;
2107 			if (pc->pc_dtor != NULL)
2108 				(*pc->pc_dtor)(pc->pc_arg, object);
2109 			pool_do_put(pc->pc_pool, object, pq);
2110 		}
2111 		pc->pc_ngroups--;
2112 		TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
2113 		if (pc->pc_freeto == pcg)
2114 			pc->pc_freeto = NULL;
2115 		s = splvm();
2116 		pool_put(&pcgpool, pcg);
2117 		splx(s);
2118 	}
2119 
2120 	simple_unlock(&pc->pc_slock);
2121 }
2122 
2123 /*
2124  * Pool backend allocators.
2125  *
2126  * Each pool has a backend allocator that handles allocation, deallocation,
2127  * and any additional draining that might be needed.
2128  *
2129  * We provide two standard allocators:
2130  *
2131  *	pool_allocator_kmem - the default when no allocator is specified
2132  *
2133  *	pool_allocator_nointr - used for pools that will not be accessed
2134  *	in interrupt context.
2135  */
2136 void	*pool_page_alloc(struct pool *, int);
2137 void	pool_page_free(struct pool *, void *);
2138 
2139 struct pool_allocator pool_allocator_kmem = {
2140 	pool_page_alloc, pool_page_free, 0,
2141 };
2142 
2143 void	*pool_page_alloc_nointr(struct pool *, int);
2144 void	pool_page_free_nointr(struct pool *, void *);
2145 
2146 struct pool_allocator pool_allocator_nointr = {
2147 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2148 };
2149 
2150 #ifdef POOL_SUBPAGE
2151 void	*pool_subpage_alloc(struct pool *, int);
2152 void	pool_subpage_free(struct pool *, void *);
2153 
2154 struct pool_allocator pool_allocator_kmem_subpage = {
2155 	pool_subpage_alloc, pool_subpage_free, 0,
2156 };
2157 #endif /* POOL_SUBPAGE */
2158 
2159 /*
2160  * We have at least three different resources for the same allocation and
2161  * each resource can be depleted.  First, we have the ready elements in the
2162  * pool.  Then we have the resource (typically a vm_map) for this allocator.
2163  * Finally, we have physical memory.  Waiting for any of these can be
2164  * unnecessary when any other is freed, but the kernel doesn't support
2165  * sleeping on multiple wait channels, so we have to employ another strategy.
2166  *
2167  * The caller sleeps on the pool (so that it can be awakened when an item
2168  * is returned to the pool), but we set PA_WANT on the allocator.  When a
2169  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
2170  * will wake up all sleeping pools belonging to this allocator.
2171  *
2172  * XXX Thundering herd.
2173  */
2174 void *
2175 pool_allocator_alloc(struct pool *org, int flags)
2176 {
2177 	struct pool_allocator *pa = org->pr_alloc;
2178 	struct pool *pp, *start;
2179 	int s, freed;
2180 	void *res;
2181 
2182 	LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
2183 
2184 	do {
2185 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2186 			return (res);
2187 		if ((flags & PR_WAITOK) == 0) {
2188 			/*
2189 			 * We only run the drain hookhere if PR_NOWAIT.
2190 			 * In other cases, the hook will be run in
2191 			 * pool_reclaim().
2192 			 */
2193 			if (org->pr_drain_hook != NULL) {
2194 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
2195 				    flags);
2196 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2197 					return (res);
2198 			}
2199 			break;
2200 		}
2201 
2202 		/*
2203 		 * Drain all pools, except "org", that use this
2204 		 * allocator.  We do this to reclaim VA space.
2205 		 * pa_alloc is responsible for waiting for
2206 		 * physical memory.
2207 		 *
2208 		 * XXX We risk looping forever if start if someone
2209 		 * calls pool_destroy on "start".  But there is no
2210 		 * other way to have potentially sleeping pool_reclaim,
2211 		 * non-sleeping locks on pool_allocator, and some
2212 		 * stirring of drained pools in the allocator.
2213 		 *
2214 		 * XXX Maybe we should use pool_head_slock for locking
2215 		 * the allocators?
2216 		 */
2217 		freed = 0;
2218 
2219 		s = splvm();
2220 		simple_lock(&pa->pa_slock);
2221 		pp = start = TAILQ_FIRST(&pa->pa_list);
2222 		do {
2223 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2224 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2225 			if (pp == org)
2226 				continue;
2227 			simple_unlock(&pa->pa_slock);
2228 			freed = pool_reclaim(pp);
2229 			simple_lock(&pa->pa_slock);
2230 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2231 			 freed == 0);
2232 
2233 		if (freed == 0) {
2234 			/*
2235 			 * We set PA_WANT here, the caller will most likely
2236 			 * sleep waiting for pages (if not, this won't hurt
2237 			 * that much), and there is no way to set this in
2238 			 * the caller without violating locking order.
2239 			 */
2240 			pa->pa_flags |= PA_WANT;
2241 		}
2242 		simple_unlock(&pa->pa_slock);
2243 		splx(s);
2244 	} while (freed);
2245 	return (NULL);
2246 }
2247 
2248 void
2249 pool_allocator_free(struct pool *pp, void *v)
2250 {
2251 	struct pool_allocator *pa = pp->pr_alloc;
2252 	int s;
2253 
2254 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2255 
2256 	(*pa->pa_free)(pp, v);
2257 
2258 	s = splvm();
2259 	simple_lock(&pa->pa_slock);
2260 	if ((pa->pa_flags & PA_WANT) == 0) {
2261 		simple_unlock(&pa->pa_slock);
2262 		splx(s);
2263 		return;
2264 	}
2265 
2266 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2267 		simple_lock(&pp->pr_slock);
2268 		if ((pp->pr_flags & PR_WANTED) != 0) {
2269 			pp->pr_flags &= ~PR_WANTED;
2270 			wakeup(pp);
2271 		}
2272 		simple_unlock(&pp->pr_slock);
2273 	}
2274 	pa->pa_flags &= ~PA_WANT;
2275 	simple_unlock(&pa->pa_slock);
2276 	splx(s);
2277 }
2278 
2279 void *
2280 pool_page_alloc(struct pool *pp, int flags)
2281 {
2282 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2283 
2284 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2285 }
2286 
2287 void
2288 pool_page_free(struct pool *pp, void *v)
2289 {
2290 
2291 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2292 }
2293 
2294 static void *
2295 pool_page_alloc_meta(struct pool *pp, int flags)
2296 {
2297 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2298 
2299 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2300 }
2301 
2302 static void
2303 pool_page_free_meta(struct pool *pp, void *v)
2304 {
2305 
2306 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2307 }
2308 
2309 #ifdef POOL_SUBPAGE
2310 /* Sub-page allocator, for machines with large hardware pages. */
2311 void *
2312 pool_subpage_alloc(struct pool *pp, int flags)
2313 {
2314 	void *v;
2315 	int s;
2316 	s = splvm();
2317 	v = pool_get(&psppool, flags);
2318 	splx(s);
2319 	return v;
2320 }
2321 
2322 void
2323 pool_subpage_free(struct pool *pp, void *v)
2324 {
2325 	int s;
2326 	s = splvm();
2327 	pool_put(&psppool, v);
2328 	splx(s);
2329 }
2330 
2331 /* We don't provide a real nointr allocator.  Maybe later. */
2332 void *
2333 pool_page_alloc_nointr(struct pool *pp, int flags)
2334 {
2335 
2336 	return (pool_subpage_alloc(pp, flags));
2337 }
2338 
2339 void
2340 pool_page_free_nointr(struct pool *pp, void *v)
2341 {
2342 
2343 	pool_subpage_free(pp, v);
2344 }
2345 #else
2346 void *
2347 pool_page_alloc_nointr(struct pool *pp, int flags)
2348 {
2349 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2350 
2351 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2352 }
2353 
2354 void
2355 pool_page_free_nointr(struct pool *pp, void *v)
2356 {
2357 
2358 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2359 }
2360 #endif /* POOL_SUBPAGE */
2361