1 /* $NetBSD: subr_pool.c,v 1.91 2004/01/16 12:47:37 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.91 2004/01/16 12:47:37 yamt Exp $"); 42 43 #include "opt_pool.h" 44 #include "opt_poollog.h" 45 #include "opt_lockdebug.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/proc.h> 50 #include <sys/errno.h> 51 #include <sys/kernel.h> 52 #include <sys/malloc.h> 53 #include <sys/lock.h> 54 #include <sys/pool.h> 55 #include <sys/syslog.h> 56 57 #include <uvm/uvm.h> 58 59 /* 60 * Pool resource management utility. 61 * 62 * Memory is allocated in pages which are split into pieces according to 63 * the pool item size. Each page is kept on one of three lists in the 64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 65 * for empty, full and partially-full pages respectively. The individual 66 * pool items are on a linked list headed by `ph_itemlist' in each page 67 * header. The memory for building the page list is either taken from 68 * the allocated pages themselves (for small pool items) or taken from 69 * an internal pool of page headers (`phpool'). 70 */ 71 72 /* List of all pools */ 73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 74 75 /* Private pool for page header structures */ 76 static struct pool phpool; 77 78 #ifdef POOL_SUBPAGE 79 /* Pool of subpages for use by normal pools. */ 80 static struct pool psppool; 81 #endif 82 83 /* # of seconds to retain page after last use */ 84 int pool_inactive_time = 10; 85 86 /* Next candidate for drainage (see pool_drain()) */ 87 static struct pool *drainpp; 88 89 /* This spin lock protects both pool_head and drainpp. */ 90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER; 91 92 struct pool_item_header { 93 /* Page headers */ 94 LIST_ENTRY(pool_item_header) 95 ph_pagelist; /* pool page list */ 96 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 97 SPLAY_ENTRY(pool_item_header) 98 ph_node; /* Off-page page headers */ 99 unsigned int ph_nmissing; /* # of chunks in use */ 100 caddr_t ph_page; /* this page's address */ 101 struct timeval ph_time; /* last referenced */ 102 }; 103 104 struct pool_item { 105 #ifdef DIAGNOSTIC 106 u_int pi_magic; 107 #endif 108 #define PI_MAGIC 0xdeadbeefU 109 /* Other entries use only this list entry */ 110 TAILQ_ENTRY(pool_item) pi_list; 111 }; 112 113 #define POOL_NEEDS_CATCHUP(pp) \ 114 ((pp)->pr_nitems < (pp)->pr_minitems) 115 116 /* 117 * Pool cache management. 118 * 119 * Pool caches provide a way for constructed objects to be cached by the 120 * pool subsystem. This can lead to performance improvements by avoiding 121 * needless object construction/destruction; it is deferred until absolutely 122 * necessary. 123 * 124 * Caches are grouped into cache groups. Each cache group references 125 * up to 16 constructed objects. When a cache allocates an object 126 * from the pool, it calls the object's constructor and places it into 127 * a cache group. When a cache group frees an object back to the pool, 128 * it first calls the object's destructor. This allows the object to 129 * persist in constructed form while freed to the cache. 130 * 131 * Multiple caches may exist for each pool. This allows a single 132 * object type to have multiple constructed forms. The pool references 133 * each cache, so that when a pool is drained by the pagedaemon, it can 134 * drain each individual cache as well. Each time a cache is drained, 135 * the most idle cache group is freed to the pool in its entirety. 136 * 137 * Pool caches are layed on top of pools. By layering them, we can avoid 138 * the complexity of cache management for pools which would not benefit 139 * from it. 140 */ 141 142 /* The cache group pool. */ 143 static struct pool pcgpool; 144 145 static void pool_cache_reclaim(struct pool_cache *); 146 147 static int pool_catchup(struct pool *); 148 static void pool_prime_page(struct pool *, caddr_t, 149 struct pool_item_header *); 150 static void pool_update_curpage(struct pool *); 151 152 void *pool_allocator_alloc(struct pool *, int); 153 void pool_allocator_free(struct pool *, void *); 154 155 static void pool_print_pagelist(struct pool_pagelist *, 156 void (*)(const char *, ...)); 157 static void pool_print1(struct pool *, const char *, 158 void (*)(const char *, ...)); 159 160 static int pool_chk_page(struct pool *, const char *, 161 struct pool_item_header *); 162 163 /* 164 * Pool log entry. An array of these is allocated in pool_init(). 165 */ 166 struct pool_log { 167 const char *pl_file; 168 long pl_line; 169 int pl_action; 170 #define PRLOG_GET 1 171 #define PRLOG_PUT 2 172 void *pl_addr; 173 }; 174 175 #ifdef POOL_DIAGNOSTIC 176 /* Number of entries in pool log buffers */ 177 #ifndef POOL_LOGSIZE 178 #define POOL_LOGSIZE 10 179 #endif 180 181 int pool_logsize = POOL_LOGSIZE; 182 183 static __inline void 184 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 185 { 186 int n = pp->pr_curlogentry; 187 struct pool_log *pl; 188 189 if ((pp->pr_roflags & PR_LOGGING) == 0) 190 return; 191 192 /* 193 * Fill in the current entry. Wrap around and overwrite 194 * the oldest entry if necessary. 195 */ 196 pl = &pp->pr_log[n]; 197 pl->pl_file = file; 198 pl->pl_line = line; 199 pl->pl_action = action; 200 pl->pl_addr = v; 201 if (++n >= pp->pr_logsize) 202 n = 0; 203 pp->pr_curlogentry = n; 204 } 205 206 static void 207 pr_printlog(struct pool *pp, struct pool_item *pi, 208 void (*pr)(const char *, ...)) 209 { 210 int i = pp->pr_logsize; 211 int n = pp->pr_curlogentry; 212 213 if ((pp->pr_roflags & PR_LOGGING) == 0) 214 return; 215 216 /* 217 * Print all entries in this pool's log. 218 */ 219 while (i-- > 0) { 220 struct pool_log *pl = &pp->pr_log[n]; 221 if (pl->pl_action != 0) { 222 if (pi == NULL || pi == pl->pl_addr) { 223 (*pr)("\tlog entry %d:\n", i); 224 (*pr)("\t\taction = %s, addr = %p\n", 225 pl->pl_action == PRLOG_GET ? "get" : "put", 226 pl->pl_addr); 227 (*pr)("\t\tfile: %s at line %lu\n", 228 pl->pl_file, pl->pl_line); 229 } 230 } 231 if (++n >= pp->pr_logsize) 232 n = 0; 233 } 234 } 235 236 static __inline void 237 pr_enter(struct pool *pp, const char *file, long line) 238 { 239 240 if (__predict_false(pp->pr_entered_file != NULL)) { 241 printf("pool %s: reentrancy at file %s line %ld\n", 242 pp->pr_wchan, file, line); 243 printf(" previous entry at file %s line %ld\n", 244 pp->pr_entered_file, pp->pr_entered_line); 245 panic("pr_enter"); 246 } 247 248 pp->pr_entered_file = file; 249 pp->pr_entered_line = line; 250 } 251 252 static __inline void 253 pr_leave(struct pool *pp) 254 { 255 256 if (__predict_false(pp->pr_entered_file == NULL)) { 257 printf("pool %s not entered?\n", pp->pr_wchan); 258 panic("pr_leave"); 259 } 260 261 pp->pr_entered_file = NULL; 262 pp->pr_entered_line = 0; 263 } 264 265 static __inline void 266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 267 { 268 269 if (pp->pr_entered_file != NULL) 270 (*pr)("\n\tcurrently entered from file %s line %ld\n", 271 pp->pr_entered_file, pp->pr_entered_line); 272 } 273 #else 274 #define pr_log(pp, v, action, file, line) 275 #define pr_printlog(pp, pi, pr) 276 #define pr_enter(pp, file, line) 277 #define pr_leave(pp) 278 #define pr_enter_check(pp, pr) 279 #endif /* POOL_DIAGNOSTIC */ 280 281 static __inline int 282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 283 { 284 if (a->ph_page < b->ph_page) 285 return (-1); 286 else if (a->ph_page > b->ph_page) 287 return (1); 288 else 289 return (0); 290 } 291 292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 294 295 /* 296 * Return the pool page header based on page address. 297 */ 298 static __inline struct pool_item_header * 299 pr_find_pagehead(struct pool *pp, caddr_t page) 300 { 301 struct pool_item_header *ph, tmp; 302 303 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 304 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 305 306 tmp.ph_page = page; 307 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 308 return ph; 309 } 310 311 /* 312 * Remove a page from the pool. 313 */ 314 static __inline void 315 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 316 struct pool_pagelist *pq) 317 { 318 int s; 319 320 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock) || pq != NULL); 321 322 /* 323 * If the page was idle, decrement the idle page count. 324 */ 325 if (ph->ph_nmissing == 0) { 326 #ifdef DIAGNOSTIC 327 if (pp->pr_nidle == 0) 328 panic("pr_rmpage: nidle inconsistent"); 329 if (pp->pr_nitems < pp->pr_itemsperpage) 330 panic("pr_rmpage: nitems inconsistent"); 331 #endif 332 pp->pr_nidle--; 333 } 334 335 pp->pr_nitems -= pp->pr_itemsperpage; 336 337 /* 338 * Unlink a page from the pool and release it (or queue it for release). 339 */ 340 LIST_REMOVE(ph, ph_pagelist); 341 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 342 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 343 if (pq) { 344 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 345 } else { 346 pool_allocator_free(pp, ph->ph_page); 347 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 348 s = splvm(); 349 pool_put(&phpool, ph); 350 splx(s); 351 } 352 } 353 pp->pr_npages--; 354 pp->pr_npagefree++; 355 356 pool_update_curpage(pp); 357 } 358 359 /* 360 * Initialize the given pool resource structure. 361 * 362 * We export this routine to allow other kernel parts to declare 363 * static pools that must be initialized before malloc() is available. 364 */ 365 void 366 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 367 const char *wchan, struct pool_allocator *palloc) 368 { 369 int off, slack; 370 371 #ifdef POOL_DIAGNOSTIC 372 /* 373 * Always log if POOL_DIAGNOSTIC is defined. 374 */ 375 if (pool_logsize != 0) 376 flags |= PR_LOGGING; 377 #endif 378 379 #ifdef POOL_SUBPAGE 380 /* 381 * XXX We don't provide a real `nointr' back-end 382 * yet; all sub-pages come from a kmem back-end. 383 * maybe some day... 384 */ 385 if (palloc == NULL) { 386 extern struct pool_allocator pool_allocator_kmem_subpage; 387 palloc = &pool_allocator_kmem_subpage; 388 } 389 /* 390 * We'll assume any user-specified back-end allocator 391 * will deal with sub-pages, or simply don't care. 392 */ 393 #else 394 if (palloc == NULL) 395 palloc = &pool_allocator_kmem; 396 #endif /* POOL_SUBPAGE */ 397 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 398 if (palloc->pa_pagesz == 0) { 399 #ifdef POOL_SUBPAGE 400 if (palloc == &pool_allocator_kmem) 401 palloc->pa_pagesz = PAGE_SIZE; 402 else 403 palloc->pa_pagesz = POOL_SUBPAGE; 404 #else 405 palloc->pa_pagesz = PAGE_SIZE; 406 #endif /* POOL_SUBPAGE */ 407 } 408 409 TAILQ_INIT(&palloc->pa_list); 410 411 simple_lock_init(&palloc->pa_slock); 412 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 413 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 414 palloc->pa_flags |= PA_INITIALIZED; 415 } 416 417 if (align == 0) 418 align = ALIGN(1); 419 420 if (size < sizeof(struct pool_item)) 421 size = sizeof(struct pool_item); 422 423 size = roundup(size, align); 424 #ifdef DIAGNOSTIC 425 if (size > palloc->pa_pagesz) 426 panic("pool_init: pool item size (%lu) too large", 427 (u_long)size); 428 #endif 429 430 /* 431 * Initialize the pool structure. 432 */ 433 LIST_INIT(&pp->pr_emptypages); 434 LIST_INIT(&pp->pr_fullpages); 435 LIST_INIT(&pp->pr_partpages); 436 TAILQ_INIT(&pp->pr_cachelist); 437 pp->pr_curpage = NULL; 438 pp->pr_npages = 0; 439 pp->pr_minitems = 0; 440 pp->pr_minpages = 0; 441 pp->pr_maxpages = UINT_MAX; 442 pp->pr_roflags = flags; 443 pp->pr_flags = 0; 444 pp->pr_size = size; 445 pp->pr_align = align; 446 pp->pr_wchan = wchan; 447 pp->pr_alloc = palloc; 448 pp->pr_nitems = 0; 449 pp->pr_nout = 0; 450 pp->pr_hardlimit = UINT_MAX; 451 pp->pr_hardlimit_warning = NULL; 452 pp->pr_hardlimit_ratecap.tv_sec = 0; 453 pp->pr_hardlimit_ratecap.tv_usec = 0; 454 pp->pr_hardlimit_warning_last.tv_sec = 0; 455 pp->pr_hardlimit_warning_last.tv_usec = 0; 456 pp->pr_drain_hook = NULL; 457 pp->pr_drain_hook_arg = NULL; 458 459 /* 460 * Decide whether to put the page header off page to avoid 461 * wasting too large a part of the page. Off-page page headers 462 * go on a hash table, so we can match a returned item 463 * with its header based on the page address. 464 * We use 1/16 of the page size as the threshold (XXX: tune) 465 */ 466 if (pp->pr_size < palloc->pa_pagesz/16) { 467 /* Use the end of the page for the page header */ 468 pp->pr_roflags |= PR_PHINPAGE; 469 pp->pr_phoffset = off = palloc->pa_pagesz - 470 ALIGN(sizeof(struct pool_item_header)); 471 } else { 472 /* The page header will be taken from our page header pool */ 473 pp->pr_phoffset = 0; 474 off = palloc->pa_pagesz; 475 SPLAY_INIT(&pp->pr_phtree); 476 } 477 478 /* 479 * Alignment is to take place at `ioff' within the item. This means 480 * we must reserve up to `align - 1' bytes on the page to allow 481 * appropriate positioning of each item. 482 * 483 * Silently enforce `0 <= ioff < align'. 484 */ 485 pp->pr_itemoffset = ioff = ioff % align; 486 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 487 KASSERT(pp->pr_itemsperpage != 0); 488 489 /* 490 * Use the slack between the chunks and the page header 491 * for "cache coloring". 492 */ 493 slack = off - pp->pr_itemsperpage * pp->pr_size; 494 pp->pr_maxcolor = (slack / align) * align; 495 pp->pr_curcolor = 0; 496 497 pp->pr_nget = 0; 498 pp->pr_nfail = 0; 499 pp->pr_nput = 0; 500 pp->pr_npagealloc = 0; 501 pp->pr_npagefree = 0; 502 pp->pr_hiwat = 0; 503 pp->pr_nidle = 0; 504 505 #ifdef POOL_DIAGNOSTIC 506 if (flags & PR_LOGGING) { 507 if (kmem_map == NULL || 508 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 509 M_TEMP, M_NOWAIT)) == NULL) 510 pp->pr_roflags &= ~PR_LOGGING; 511 pp->pr_curlogentry = 0; 512 pp->pr_logsize = pool_logsize; 513 } 514 #endif 515 516 pp->pr_entered_file = NULL; 517 pp->pr_entered_line = 0; 518 519 simple_lock_init(&pp->pr_slock); 520 521 /* 522 * Initialize private page header pool and cache magazine pool if we 523 * haven't done so yet. 524 * XXX LOCKING. 525 */ 526 if (phpool.pr_size == 0) { 527 #ifdef POOL_SUBPAGE 528 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0, 529 "phpool", &pool_allocator_kmem); 530 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 531 PR_RECURSIVE, "psppool", &pool_allocator_kmem); 532 #else 533 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 534 0, "phpool", NULL); 535 #endif 536 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0, 537 0, "pcgpool", NULL); 538 } 539 540 /* Insert into the list of all pools. */ 541 simple_lock(&pool_head_slock); 542 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 543 simple_unlock(&pool_head_slock); 544 545 /* Insert this into the list of pools using this allocator. */ 546 simple_lock(&palloc->pa_slock); 547 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 548 simple_unlock(&palloc->pa_slock); 549 } 550 551 /* 552 * De-commision a pool resource. 553 */ 554 void 555 pool_destroy(struct pool *pp) 556 { 557 struct pool_item_header *ph; 558 struct pool_cache *pc; 559 560 /* Locking order: pool_allocator -> pool */ 561 simple_lock(&pp->pr_alloc->pa_slock); 562 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 563 simple_unlock(&pp->pr_alloc->pa_slock); 564 565 /* Destroy all caches for this pool. */ 566 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL) 567 pool_cache_destroy(pc); 568 569 #ifdef DIAGNOSTIC 570 if (pp->pr_nout != 0) { 571 pr_printlog(pp, NULL, printf); 572 panic("pool_destroy: pool busy: still out: %u", 573 pp->pr_nout); 574 } 575 #endif 576 577 /* Remove all pages */ 578 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 579 pr_rmpage(pp, ph, NULL); 580 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 581 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 582 583 /* Remove from global pool list */ 584 simple_lock(&pool_head_slock); 585 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 586 if (drainpp == pp) { 587 drainpp = NULL; 588 } 589 simple_unlock(&pool_head_slock); 590 591 #ifdef POOL_DIAGNOSTIC 592 if ((pp->pr_roflags & PR_LOGGING) != 0) 593 free(pp->pr_log, M_TEMP); 594 #endif 595 } 596 597 void 598 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 599 { 600 601 /* XXX no locking -- must be used just after pool_init() */ 602 #ifdef DIAGNOSTIC 603 if (pp->pr_drain_hook != NULL) 604 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 605 #endif 606 pp->pr_drain_hook = fn; 607 pp->pr_drain_hook_arg = arg; 608 } 609 610 static struct pool_item_header * 611 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags) 612 { 613 struct pool_item_header *ph; 614 int s; 615 616 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0); 617 618 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 619 ph = (struct pool_item_header *) (storage + pp->pr_phoffset); 620 else { 621 s = splvm(); 622 ph = pool_get(&phpool, flags); 623 splx(s); 624 } 625 626 return (ph); 627 } 628 629 /* 630 * Grab an item from the pool; must be called at appropriate spl level 631 */ 632 void * 633 #ifdef POOL_DIAGNOSTIC 634 _pool_get(struct pool *pp, int flags, const char *file, long line) 635 #else 636 pool_get(struct pool *pp, int flags) 637 #endif 638 { 639 struct pool_item *pi; 640 struct pool_item_header *ph; 641 void *v; 642 643 #ifdef DIAGNOSTIC 644 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 645 (flags & PR_WAITOK) != 0)) 646 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 647 648 #ifdef LOCKDEBUG 649 if (flags & PR_WAITOK) 650 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)"); 651 #endif 652 #endif /* DIAGNOSTIC */ 653 654 simple_lock(&pp->pr_slock); 655 pr_enter(pp, file, line); 656 657 startover: 658 /* 659 * Check to see if we've reached the hard limit. If we have, 660 * and we can wait, then wait until an item has been returned to 661 * the pool. 662 */ 663 #ifdef DIAGNOSTIC 664 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 665 pr_leave(pp); 666 simple_unlock(&pp->pr_slock); 667 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 668 } 669 #endif 670 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 671 if (pp->pr_drain_hook != NULL) { 672 /* 673 * Since the drain hook is going to free things 674 * back to the pool, unlock, call the hook, re-lock, 675 * and check the hardlimit condition again. 676 */ 677 pr_leave(pp); 678 simple_unlock(&pp->pr_slock); 679 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 680 simple_lock(&pp->pr_slock); 681 pr_enter(pp, file, line); 682 if (pp->pr_nout < pp->pr_hardlimit) 683 goto startover; 684 } 685 686 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 687 /* 688 * XXX: A warning isn't logged in this case. Should 689 * it be? 690 */ 691 pp->pr_flags |= PR_WANTED; 692 pr_leave(pp); 693 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 694 pr_enter(pp, file, line); 695 goto startover; 696 } 697 698 /* 699 * Log a message that the hard limit has been hit. 700 */ 701 if (pp->pr_hardlimit_warning != NULL && 702 ratecheck(&pp->pr_hardlimit_warning_last, 703 &pp->pr_hardlimit_ratecap)) 704 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 705 706 pp->pr_nfail++; 707 708 pr_leave(pp); 709 simple_unlock(&pp->pr_slock); 710 return (NULL); 711 } 712 713 /* 714 * The convention we use is that if `curpage' is not NULL, then 715 * it points at a non-empty bucket. In particular, `curpage' 716 * never points at a page header which has PR_PHINPAGE set and 717 * has no items in its bucket. 718 */ 719 if ((ph = pp->pr_curpage) == NULL) { 720 #ifdef DIAGNOSTIC 721 if (pp->pr_nitems != 0) { 722 simple_unlock(&pp->pr_slock); 723 printf("pool_get: %s: curpage NULL, nitems %u\n", 724 pp->pr_wchan, pp->pr_nitems); 725 panic("pool_get: nitems inconsistent"); 726 } 727 #endif 728 729 /* 730 * Call the back-end page allocator for more memory. 731 * Release the pool lock, as the back-end page allocator 732 * may block. 733 */ 734 pr_leave(pp); 735 simple_unlock(&pp->pr_slock); 736 v = pool_allocator_alloc(pp, flags); 737 if (__predict_true(v != NULL)) 738 ph = pool_alloc_item_header(pp, v, flags); 739 740 if (__predict_false(v == NULL || ph == NULL)) { 741 if (v != NULL) 742 pool_allocator_free(pp, v); 743 744 simple_lock(&pp->pr_slock); 745 pr_enter(pp, file, line); 746 747 /* 748 * We were unable to allocate a page or item 749 * header, but we released the lock during 750 * allocation, so perhaps items were freed 751 * back to the pool. Check for this case. 752 */ 753 if (pp->pr_curpage != NULL) 754 goto startover; 755 756 if ((flags & PR_WAITOK) == 0) { 757 pp->pr_nfail++; 758 pr_leave(pp); 759 simple_unlock(&pp->pr_slock); 760 return (NULL); 761 } 762 763 /* 764 * Wait for items to be returned to this pool. 765 * 766 * XXX: maybe we should wake up once a second and 767 * try again? 768 */ 769 pp->pr_flags |= PR_WANTED; 770 /* PA_WANTED is already set on the allocator. */ 771 pr_leave(pp); 772 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 773 pr_enter(pp, file, line); 774 goto startover; 775 } 776 777 /* We have more memory; add it to the pool */ 778 simple_lock(&pp->pr_slock); 779 pr_enter(pp, file, line); 780 pool_prime_page(pp, v, ph); 781 pp->pr_npagealloc++; 782 783 /* Start the allocation process over. */ 784 goto startover; 785 } 786 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 787 pr_leave(pp); 788 simple_unlock(&pp->pr_slock); 789 panic("pool_get: %s: page empty", pp->pr_wchan); 790 } 791 #ifdef DIAGNOSTIC 792 if (__predict_false(pp->pr_nitems == 0)) { 793 pr_leave(pp); 794 simple_unlock(&pp->pr_slock); 795 printf("pool_get: %s: items on itemlist, nitems %u\n", 796 pp->pr_wchan, pp->pr_nitems); 797 panic("pool_get: nitems inconsistent"); 798 } 799 #endif 800 801 #ifdef POOL_DIAGNOSTIC 802 pr_log(pp, v, PRLOG_GET, file, line); 803 #endif 804 805 #ifdef DIAGNOSTIC 806 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 807 pr_printlog(pp, pi, printf); 808 panic("pool_get(%s): free list modified: magic=%x; page %p;" 809 " item addr %p\n", 810 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 811 } 812 #endif 813 814 /* 815 * Remove from item list. 816 */ 817 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 818 pp->pr_nitems--; 819 pp->pr_nout++; 820 if (ph->ph_nmissing == 0) { 821 #ifdef DIAGNOSTIC 822 if (__predict_false(pp->pr_nidle == 0)) 823 panic("pool_get: nidle inconsistent"); 824 #endif 825 pp->pr_nidle--; 826 827 /* 828 * This page was previously empty. Move it to the list of 829 * partially-full pages. This page is already curpage. 830 */ 831 LIST_REMOVE(ph, ph_pagelist); 832 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 833 } 834 ph->ph_nmissing++; 835 if (TAILQ_EMPTY(&ph->ph_itemlist)) { 836 #ifdef DIAGNOSTIC 837 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 838 pr_leave(pp); 839 simple_unlock(&pp->pr_slock); 840 panic("pool_get: %s: nmissing inconsistent", 841 pp->pr_wchan); 842 } 843 #endif 844 /* 845 * This page is now full. Move it to the full list 846 * and select a new current page. 847 */ 848 LIST_REMOVE(ph, ph_pagelist); 849 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 850 pool_update_curpage(pp); 851 } 852 853 pp->pr_nget++; 854 855 /* 856 * If we have a low water mark and we are now below that low 857 * water mark, add more items to the pool. 858 */ 859 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 860 /* 861 * XXX: Should we log a warning? Should we set up a timeout 862 * to try again in a second or so? The latter could break 863 * a caller's assumptions about interrupt protection, etc. 864 */ 865 } 866 867 pr_leave(pp); 868 simple_unlock(&pp->pr_slock); 869 return (v); 870 } 871 872 /* 873 * Internal version of pool_put(). Pool is already locked/entered. 874 */ 875 static void 876 pool_do_put(struct pool *pp, void *v) 877 { 878 struct pool_item *pi = v; 879 struct pool_item_header *ph; 880 caddr_t page; 881 int s; 882 883 LOCK_ASSERT(simple_lock_held(&pp->pr_slock)); 884 885 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask); 886 887 #ifdef DIAGNOSTIC 888 if (__predict_false(pp->pr_nout == 0)) { 889 printf("pool %s: putting with none out\n", 890 pp->pr_wchan); 891 panic("pool_put"); 892 } 893 #endif 894 895 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 896 pr_printlog(pp, NULL, printf); 897 panic("pool_put: %s: page header missing", pp->pr_wchan); 898 } 899 900 #ifdef LOCKDEBUG 901 /* 902 * Check if we're freeing a locked simple lock. 903 */ 904 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 905 #endif 906 907 /* 908 * Return to item list. 909 */ 910 #ifdef DIAGNOSTIC 911 pi->pi_magic = PI_MAGIC; 912 #endif 913 #ifdef DEBUG 914 { 915 int i, *ip = v; 916 917 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 918 *ip++ = PI_MAGIC; 919 } 920 } 921 #endif 922 923 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 924 KDASSERT(ph->ph_nmissing != 0); 925 ph->ph_nmissing--; 926 pp->pr_nput++; 927 pp->pr_nitems++; 928 pp->pr_nout--; 929 930 /* Cancel "pool empty" condition if it exists */ 931 if (pp->pr_curpage == NULL) 932 pp->pr_curpage = ph; 933 934 if (pp->pr_flags & PR_WANTED) { 935 pp->pr_flags &= ~PR_WANTED; 936 if (ph->ph_nmissing == 0) 937 pp->pr_nidle++; 938 wakeup((caddr_t)pp); 939 return; 940 } 941 942 /* 943 * If this page is now empty, do one of two things: 944 * 945 * (1) If we have more pages than the page high water mark, 946 * or if we are flagged as immediately freeing back idle 947 * pages, free the page back to the system. ONLY CONSIDER 948 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 949 * CLAIM. 950 * 951 * (2) Otherwise, move the page to the empty page list. 952 * 953 * Either way, select a new current page (so we use a partially-full 954 * page if one is available). 955 */ 956 if (ph->ph_nmissing == 0) { 957 pp->pr_nidle++; 958 if (pp->pr_npages > pp->pr_minpages && 959 (pp->pr_npages > pp->pr_maxpages || 960 (pp->pr_roflags & PR_IMMEDRELEASE) != 0 || 961 (pp->pr_alloc->pa_flags & PA_WANT) != 0)) { 962 simple_unlock(&pp->pr_slock); 963 pr_rmpage(pp, ph, NULL); 964 simple_lock(&pp->pr_slock); 965 } else { 966 LIST_REMOVE(ph, ph_pagelist); 967 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 968 969 /* 970 * Update the timestamp on the page. A page must 971 * be idle for some period of time before it can 972 * be reclaimed by the pagedaemon. This minimizes 973 * ping-pong'ing for memory. 974 */ 975 s = splclock(); 976 ph->ph_time = mono_time; 977 splx(s); 978 } 979 pool_update_curpage(pp); 980 } 981 982 /* 983 * If the page was previously completely full, move it to the 984 * partially-full list and make it the current page. The next 985 * allocation will get the item from this page, instead of 986 * further fragmenting the pool. 987 */ 988 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 989 LIST_REMOVE(ph, ph_pagelist); 990 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 991 pp->pr_curpage = ph; 992 } 993 } 994 995 /* 996 * Return resource to the pool; must be called at appropriate spl level 997 */ 998 #ifdef POOL_DIAGNOSTIC 999 void 1000 _pool_put(struct pool *pp, void *v, const char *file, long line) 1001 { 1002 1003 simple_lock(&pp->pr_slock); 1004 pr_enter(pp, file, line); 1005 1006 pr_log(pp, v, PRLOG_PUT, file, line); 1007 1008 pool_do_put(pp, v); 1009 1010 pr_leave(pp); 1011 simple_unlock(&pp->pr_slock); 1012 } 1013 #undef pool_put 1014 #endif /* POOL_DIAGNOSTIC */ 1015 1016 void 1017 pool_put(struct pool *pp, void *v) 1018 { 1019 1020 simple_lock(&pp->pr_slock); 1021 1022 pool_do_put(pp, v); 1023 1024 simple_unlock(&pp->pr_slock); 1025 } 1026 1027 #ifdef POOL_DIAGNOSTIC 1028 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1029 #endif 1030 1031 /* 1032 * Add N items to the pool. 1033 */ 1034 int 1035 pool_prime(struct pool *pp, int n) 1036 { 1037 struct pool_item_header *ph = NULL; 1038 caddr_t cp; 1039 int newpages; 1040 1041 simple_lock(&pp->pr_slock); 1042 1043 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1044 1045 while (newpages-- > 0) { 1046 simple_unlock(&pp->pr_slock); 1047 cp = pool_allocator_alloc(pp, PR_NOWAIT); 1048 if (__predict_true(cp != NULL)) 1049 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1050 1051 if (__predict_false(cp == NULL || ph == NULL)) { 1052 if (cp != NULL) 1053 pool_allocator_free(pp, cp); 1054 simple_lock(&pp->pr_slock); 1055 break; 1056 } 1057 1058 simple_lock(&pp->pr_slock); 1059 pool_prime_page(pp, cp, ph); 1060 pp->pr_npagealloc++; 1061 pp->pr_minpages++; 1062 } 1063 1064 if (pp->pr_minpages >= pp->pr_maxpages) 1065 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1066 1067 simple_unlock(&pp->pr_slock); 1068 return (0); 1069 } 1070 1071 /* 1072 * Add a page worth of items to the pool. 1073 * 1074 * Note, we must be called with the pool descriptor LOCKED. 1075 */ 1076 static void 1077 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph) 1078 { 1079 struct pool_item *pi; 1080 caddr_t cp = storage; 1081 unsigned int align = pp->pr_align; 1082 unsigned int ioff = pp->pr_itemoffset; 1083 int n; 1084 int s; 1085 1086 LOCK_ASSERT(simple_lock_held(&pp->pr_slock)); 1087 1088 #ifdef DIAGNOSTIC 1089 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1090 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1091 #endif 1092 1093 /* 1094 * Insert page header. 1095 */ 1096 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1097 TAILQ_INIT(&ph->ph_itemlist); 1098 ph->ph_page = storage; 1099 ph->ph_nmissing = 0; 1100 s = splclock(); 1101 ph->ph_time = mono_time; 1102 splx(s); 1103 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1104 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1105 1106 pp->pr_nidle++; 1107 1108 /* 1109 * Color this page. 1110 */ 1111 cp = (caddr_t)(cp + pp->pr_curcolor); 1112 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1113 pp->pr_curcolor = 0; 1114 1115 /* 1116 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1117 */ 1118 if (ioff != 0) 1119 cp = (caddr_t)(cp + (align - ioff)); 1120 1121 /* 1122 * Insert remaining chunks on the bucket list. 1123 */ 1124 n = pp->pr_itemsperpage; 1125 pp->pr_nitems += n; 1126 1127 while (n--) { 1128 pi = (struct pool_item *)cp; 1129 1130 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1131 1132 /* Insert on page list */ 1133 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1134 #ifdef DIAGNOSTIC 1135 pi->pi_magic = PI_MAGIC; 1136 #endif 1137 cp = (caddr_t)(cp + pp->pr_size); 1138 } 1139 1140 /* 1141 * If the pool was depleted, point at the new page. 1142 */ 1143 if (pp->pr_curpage == NULL) 1144 pp->pr_curpage = ph; 1145 1146 if (++pp->pr_npages > pp->pr_hiwat) 1147 pp->pr_hiwat = pp->pr_npages; 1148 } 1149 1150 /* 1151 * Used by pool_get() when nitems drops below the low water mark. This 1152 * is used to catch up pr_nitems with the low water mark. 1153 * 1154 * Note 1, we never wait for memory here, we let the caller decide what to do. 1155 * 1156 * Note 2, we must be called with the pool already locked, and we return 1157 * with it locked. 1158 */ 1159 static int 1160 pool_catchup(struct pool *pp) 1161 { 1162 struct pool_item_header *ph = NULL; 1163 caddr_t cp; 1164 int error = 0; 1165 1166 while (POOL_NEEDS_CATCHUP(pp)) { 1167 /* 1168 * Call the page back-end allocator for more memory. 1169 * 1170 * XXX: We never wait, so should we bother unlocking 1171 * the pool descriptor? 1172 */ 1173 simple_unlock(&pp->pr_slock); 1174 cp = pool_allocator_alloc(pp, PR_NOWAIT); 1175 if (__predict_true(cp != NULL)) 1176 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1177 if (__predict_false(cp == NULL || ph == NULL)) { 1178 if (cp != NULL) 1179 pool_allocator_free(pp, cp); 1180 error = ENOMEM; 1181 simple_lock(&pp->pr_slock); 1182 break; 1183 } 1184 simple_lock(&pp->pr_slock); 1185 pool_prime_page(pp, cp, ph); 1186 pp->pr_npagealloc++; 1187 } 1188 1189 return (error); 1190 } 1191 1192 static void 1193 pool_update_curpage(struct pool *pp) 1194 { 1195 1196 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1197 if (pp->pr_curpage == NULL) { 1198 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1199 } 1200 } 1201 1202 void 1203 pool_setlowat(struct pool *pp, int n) 1204 { 1205 1206 simple_lock(&pp->pr_slock); 1207 1208 pp->pr_minitems = n; 1209 pp->pr_minpages = (n == 0) 1210 ? 0 1211 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1212 1213 /* Make sure we're caught up with the newly-set low water mark. */ 1214 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1215 /* 1216 * XXX: Should we log a warning? Should we set up a timeout 1217 * to try again in a second or so? The latter could break 1218 * a caller's assumptions about interrupt protection, etc. 1219 */ 1220 } 1221 1222 simple_unlock(&pp->pr_slock); 1223 } 1224 1225 void 1226 pool_sethiwat(struct pool *pp, int n) 1227 { 1228 1229 simple_lock(&pp->pr_slock); 1230 1231 pp->pr_maxpages = (n == 0) 1232 ? 0 1233 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1234 1235 simple_unlock(&pp->pr_slock); 1236 } 1237 1238 void 1239 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1240 { 1241 1242 simple_lock(&pp->pr_slock); 1243 1244 pp->pr_hardlimit = n; 1245 pp->pr_hardlimit_warning = warnmess; 1246 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1247 pp->pr_hardlimit_warning_last.tv_sec = 0; 1248 pp->pr_hardlimit_warning_last.tv_usec = 0; 1249 1250 /* 1251 * In-line version of pool_sethiwat(), because we don't want to 1252 * release the lock. 1253 */ 1254 pp->pr_maxpages = (n == 0) 1255 ? 0 1256 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1257 1258 simple_unlock(&pp->pr_slock); 1259 } 1260 1261 /* 1262 * Release all complete pages that have not been used recently. 1263 */ 1264 int 1265 #ifdef POOL_DIAGNOSTIC 1266 _pool_reclaim(struct pool *pp, const char *file, long line) 1267 #else 1268 pool_reclaim(struct pool *pp) 1269 #endif 1270 { 1271 struct pool_item_header *ph, *phnext; 1272 struct pool_cache *pc; 1273 struct timeval curtime; 1274 struct pool_pagelist pq; 1275 struct timeval diff; 1276 int s; 1277 1278 if (pp->pr_drain_hook != NULL) { 1279 /* 1280 * The drain hook must be called with the pool unlocked. 1281 */ 1282 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1283 } 1284 1285 if (simple_lock_try(&pp->pr_slock) == 0) 1286 return (0); 1287 pr_enter(pp, file, line); 1288 1289 LIST_INIT(&pq); 1290 1291 /* 1292 * Reclaim items from the pool's caches. 1293 */ 1294 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) 1295 pool_cache_reclaim(pc); 1296 1297 s = splclock(); 1298 curtime = mono_time; 1299 splx(s); 1300 1301 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1302 phnext = LIST_NEXT(ph, ph_pagelist); 1303 1304 /* Check our minimum page claim */ 1305 if (pp->pr_npages <= pp->pr_minpages) 1306 break; 1307 1308 KASSERT(ph->ph_nmissing == 0); 1309 timersub(&curtime, &ph->ph_time, &diff); 1310 if (diff.tv_sec < pool_inactive_time) 1311 continue; 1312 1313 /* 1314 * If freeing this page would put us below 1315 * the low water mark, stop now. 1316 */ 1317 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1318 pp->pr_minitems) 1319 break; 1320 1321 pr_rmpage(pp, ph, &pq); 1322 } 1323 1324 pr_leave(pp); 1325 simple_unlock(&pp->pr_slock); 1326 if (LIST_EMPTY(&pq)) 1327 return (0); 1328 1329 while ((ph = LIST_FIRST(&pq)) != NULL) { 1330 LIST_REMOVE(ph, ph_pagelist); 1331 pool_allocator_free(pp, ph->ph_page); 1332 if (pp->pr_roflags & PR_PHINPAGE) { 1333 continue; 1334 } 1335 s = splvm(); 1336 pool_put(&phpool, ph); 1337 splx(s); 1338 } 1339 1340 return (1); 1341 } 1342 1343 /* 1344 * Drain pools, one at a time. 1345 * 1346 * Note, we must never be called from an interrupt context. 1347 */ 1348 void 1349 pool_drain(void *arg) 1350 { 1351 struct pool *pp; 1352 int s; 1353 1354 pp = NULL; 1355 s = splvm(); 1356 simple_lock(&pool_head_slock); 1357 if (drainpp == NULL) { 1358 drainpp = TAILQ_FIRST(&pool_head); 1359 } 1360 if (drainpp) { 1361 pp = drainpp; 1362 drainpp = TAILQ_NEXT(pp, pr_poollist); 1363 } 1364 simple_unlock(&pool_head_slock); 1365 pool_reclaim(pp); 1366 splx(s); 1367 } 1368 1369 /* 1370 * Diagnostic helpers. 1371 */ 1372 void 1373 pool_print(struct pool *pp, const char *modif) 1374 { 1375 int s; 1376 1377 s = splvm(); 1378 if (simple_lock_try(&pp->pr_slock) == 0) { 1379 printf("pool %s is locked; try again later\n", 1380 pp->pr_wchan); 1381 splx(s); 1382 return; 1383 } 1384 pool_print1(pp, modif, printf); 1385 simple_unlock(&pp->pr_slock); 1386 splx(s); 1387 } 1388 1389 void 1390 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1391 { 1392 int didlock = 0; 1393 1394 if (pp == NULL) { 1395 (*pr)("Must specify a pool to print.\n"); 1396 return; 1397 } 1398 1399 /* 1400 * Called from DDB; interrupts should be blocked, and all 1401 * other processors should be paused. We can skip locking 1402 * the pool in this case. 1403 * 1404 * We do a simple_lock_try() just to print the lock 1405 * status, however. 1406 */ 1407 1408 if (simple_lock_try(&pp->pr_slock) == 0) 1409 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan); 1410 else 1411 didlock = 1; 1412 1413 pool_print1(pp, modif, pr); 1414 1415 if (didlock) 1416 simple_unlock(&pp->pr_slock); 1417 } 1418 1419 static void 1420 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...)) 1421 { 1422 struct pool_item_header *ph; 1423 #ifdef DIAGNOSTIC 1424 struct pool_item *pi; 1425 #endif 1426 1427 LIST_FOREACH(ph, pl, ph_pagelist) { 1428 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1429 ph->ph_page, ph->ph_nmissing, 1430 (u_long)ph->ph_time.tv_sec, 1431 (u_long)ph->ph_time.tv_usec); 1432 #ifdef DIAGNOSTIC 1433 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1434 if (pi->pi_magic != PI_MAGIC) { 1435 (*pr)("\t\t\titem %p, magic 0x%x\n", 1436 pi, pi->pi_magic); 1437 } 1438 } 1439 #endif 1440 } 1441 } 1442 1443 static void 1444 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1445 { 1446 struct pool_item_header *ph; 1447 struct pool_cache *pc; 1448 struct pool_cache_group *pcg; 1449 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1450 char c; 1451 1452 while ((c = *modif++) != '\0') { 1453 if (c == 'l') 1454 print_log = 1; 1455 if (c == 'p') 1456 print_pagelist = 1; 1457 if (c == 'c') 1458 print_cache = 1; 1459 } 1460 1461 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1462 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1463 pp->pr_roflags); 1464 (*pr)("\talloc %p\n", pp->pr_alloc); 1465 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1466 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1467 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1468 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1469 1470 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1471 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1472 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1473 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1474 1475 if (print_pagelist == 0) 1476 goto skip_pagelist; 1477 1478 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1479 (*pr)("\n\tempty page list:\n"); 1480 pool_print_pagelist(&pp->pr_emptypages, pr); 1481 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1482 (*pr)("\n\tfull page list:\n"); 1483 pool_print_pagelist(&pp->pr_fullpages, pr); 1484 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1485 (*pr)("\n\tpartial-page list:\n"); 1486 pool_print_pagelist(&pp->pr_partpages, pr); 1487 1488 if (pp->pr_curpage == NULL) 1489 (*pr)("\tno current page\n"); 1490 else 1491 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1492 1493 skip_pagelist: 1494 if (print_log == 0) 1495 goto skip_log; 1496 1497 (*pr)("\n"); 1498 if ((pp->pr_roflags & PR_LOGGING) == 0) 1499 (*pr)("\tno log\n"); 1500 else 1501 pr_printlog(pp, NULL, pr); 1502 1503 skip_log: 1504 if (print_cache == 0) 1505 goto skip_cache; 1506 1507 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) { 1508 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc, 1509 pc->pc_allocfrom, pc->pc_freeto); 1510 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n", 1511 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems); 1512 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1513 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); 1514 for (i = 0; i < PCG_NOBJECTS; i++) { 1515 if (pcg->pcg_objects[i].pcgo_pa != 1516 POOL_PADDR_INVALID) { 1517 (*pr)("\t\t\t%p, 0x%llx\n", 1518 pcg->pcg_objects[i].pcgo_va, 1519 (unsigned long long) 1520 pcg->pcg_objects[i].pcgo_pa); 1521 } else { 1522 (*pr)("\t\t\t%p\n", 1523 pcg->pcg_objects[i].pcgo_va); 1524 } 1525 } 1526 } 1527 } 1528 1529 skip_cache: 1530 pr_enter_check(pp, pr); 1531 } 1532 1533 static int 1534 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1535 { 1536 struct pool_item *pi; 1537 caddr_t page; 1538 int n; 1539 1540 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask); 1541 if (page != ph->ph_page && 1542 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1543 if (label != NULL) 1544 printf("%s: ", label); 1545 printf("pool(%p:%s): page inconsistency: page %p;" 1546 " at page head addr %p (p %p)\n", pp, 1547 pp->pr_wchan, ph->ph_page, 1548 ph, page); 1549 return 1; 1550 } 1551 1552 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1553 pi != NULL; 1554 pi = TAILQ_NEXT(pi,pi_list), n++) { 1555 1556 #ifdef DIAGNOSTIC 1557 if (pi->pi_magic != PI_MAGIC) { 1558 if (label != NULL) 1559 printf("%s: ", label); 1560 printf("pool(%s): free list modified: magic=%x;" 1561 " page %p; item ordinal %d;" 1562 " addr %p (p %p)\n", 1563 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1564 n, pi, page); 1565 panic("pool"); 1566 } 1567 #endif 1568 page = 1569 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask); 1570 if (page == ph->ph_page) 1571 continue; 1572 1573 if (label != NULL) 1574 printf("%s: ", label); 1575 printf("pool(%p:%s): page inconsistency: page %p;" 1576 " item ordinal %d; addr %p (p %p)\n", pp, 1577 pp->pr_wchan, ph->ph_page, 1578 n, pi, page); 1579 return 1; 1580 } 1581 return 0; 1582 } 1583 1584 1585 int 1586 pool_chk(struct pool *pp, const char *label) 1587 { 1588 struct pool_item_header *ph; 1589 int r = 0; 1590 1591 simple_lock(&pp->pr_slock); 1592 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1593 r = pool_chk_page(pp, label, ph); 1594 if (r) { 1595 goto out; 1596 } 1597 } 1598 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1599 r = pool_chk_page(pp, label, ph); 1600 if (r) { 1601 goto out; 1602 } 1603 } 1604 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1605 r = pool_chk_page(pp, label, ph); 1606 if (r) { 1607 goto out; 1608 } 1609 } 1610 1611 out: 1612 simple_unlock(&pp->pr_slock); 1613 return (r); 1614 } 1615 1616 /* 1617 * pool_cache_init: 1618 * 1619 * Initialize a pool cache. 1620 * 1621 * NOTE: If the pool must be protected from interrupts, we expect 1622 * to be called at the appropriate interrupt priority level. 1623 */ 1624 void 1625 pool_cache_init(struct pool_cache *pc, struct pool *pp, 1626 int (*ctor)(void *, void *, int), 1627 void (*dtor)(void *, void *), 1628 void *arg) 1629 { 1630 1631 TAILQ_INIT(&pc->pc_grouplist); 1632 simple_lock_init(&pc->pc_slock); 1633 1634 pc->pc_allocfrom = NULL; 1635 pc->pc_freeto = NULL; 1636 pc->pc_pool = pp; 1637 1638 pc->pc_ctor = ctor; 1639 pc->pc_dtor = dtor; 1640 pc->pc_arg = arg; 1641 1642 pc->pc_hits = 0; 1643 pc->pc_misses = 0; 1644 1645 pc->pc_ngroups = 0; 1646 1647 pc->pc_nitems = 0; 1648 1649 simple_lock(&pp->pr_slock); 1650 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist); 1651 simple_unlock(&pp->pr_slock); 1652 } 1653 1654 /* 1655 * pool_cache_destroy: 1656 * 1657 * Destroy a pool cache. 1658 */ 1659 void 1660 pool_cache_destroy(struct pool_cache *pc) 1661 { 1662 struct pool *pp = pc->pc_pool; 1663 1664 /* First, invalidate the entire cache. */ 1665 pool_cache_invalidate(pc); 1666 1667 /* ...and remove it from the pool's cache list. */ 1668 simple_lock(&pp->pr_slock); 1669 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist); 1670 simple_unlock(&pp->pr_slock); 1671 } 1672 1673 static __inline void * 1674 pcg_get(struct pool_cache_group *pcg, paddr_t *pap) 1675 { 1676 void *object; 1677 u_int idx; 1678 1679 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS); 1680 KASSERT(pcg->pcg_avail != 0); 1681 idx = --pcg->pcg_avail; 1682 1683 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL); 1684 object = pcg->pcg_objects[idx].pcgo_va; 1685 if (pap != NULL) 1686 *pap = pcg->pcg_objects[idx].pcgo_pa; 1687 pcg->pcg_objects[idx].pcgo_va = NULL; 1688 1689 return (object); 1690 } 1691 1692 static __inline void 1693 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa) 1694 { 1695 u_int idx; 1696 1697 KASSERT(pcg->pcg_avail < PCG_NOBJECTS); 1698 idx = pcg->pcg_avail++; 1699 1700 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL); 1701 pcg->pcg_objects[idx].pcgo_va = object; 1702 pcg->pcg_objects[idx].pcgo_pa = pa; 1703 } 1704 1705 /* 1706 * pool_cache_get{,_paddr}: 1707 * 1708 * Get an object from a pool cache (optionally returning 1709 * the physical address of the object). 1710 */ 1711 void * 1712 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap) 1713 { 1714 struct pool_cache_group *pcg; 1715 void *object; 1716 1717 #ifdef LOCKDEBUG 1718 if (flags & PR_WAITOK) 1719 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)"); 1720 #endif 1721 1722 simple_lock(&pc->pc_slock); 1723 1724 if ((pcg = pc->pc_allocfrom) == NULL) { 1725 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1726 if (pcg->pcg_avail != 0) { 1727 pc->pc_allocfrom = pcg; 1728 goto have_group; 1729 } 1730 } 1731 1732 /* 1733 * No groups with any available objects. Allocate 1734 * a new object, construct it, and return it to 1735 * the caller. We will allocate a group, if necessary, 1736 * when the object is freed back to the cache. 1737 */ 1738 pc->pc_misses++; 1739 simple_unlock(&pc->pc_slock); 1740 object = pool_get(pc->pc_pool, flags); 1741 if (object != NULL && pc->pc_ctor != NULL) { 1742 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 1743 pool_put(pc->pc_pool, object); 1744 return (NULL); 1745 } 1746 } 1747 if (object != NULL && pap != NULL) { 1748 #ifdef POOL_VTOPHYS 1749 *pap = POOL_VTOPHYS(object); 1750 #else 1751 *pap = POOL_PADDR_INVALID; 1752 #endif 1753 } 1754 return (object); 1755 } 1756 1757 have_group: 1758 pc->pc_hits++; 1759 pc->pc_nitems--; 1760 object = pcg_get(pcg, pap); 1761 1762 if (pcg->pcg_avail == 0) 1763 pc->pc_allocfrom = NULL; 1764 1765 simple_unlock(&pc->pc_slock); 1766 1767 return (object); 1768 } 1769 1770 /* 1771 * pool_cache_put{,_paddr}: 1772 * 1773 * Put an object back to the pool cache (optionally caching the 1774 * physical address of the object). 1775 */ 1776 void 1777 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa) 1778 { 1779 struct pool_cache_group *pcg; 1780 int s; 1781 1782 simple_lock(&pc->pc_slock); 1783 1784 if ((pcg = pc->pc_freeto) == NULL) { 1785 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1786 if (pcg->pcg_avail != PCG_NOBJECTS) { 1787 pc->pc_freeto = pcg; 1788 goto have_group; 1789 } 1790 } 1791 1792 /* 1793 * No empty groups to free the object to. Attempt to 1794 * allocate one. 1795 */ 1796 simple_unlock(&pc->pc_slock); 1797 s = splvm(); 1798 pcg = pool_get(&pcgpool, PR_NOWAIT); 1799 splx(s); 1800 if (pcg != NULL) { 1801 memset(pcg, 0, sizeof(*pcg)); 1802 simple_lock(&pc->pc_slock); 1803 pc->pc_ngroups++; 1804 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list); 1805 if (pc->pc_freeto == NULL) 1806 pc->pc_freeto = pcg; 1807 goto have_group; 1808 } 1809 1810 /* 1811 * Unable to allocate a cache group; destruct the object 1812 * and free it back to the pool. 1813 */ 1814 pool_cache_destruct_object(pc, object); 1815 return; 1816 } 1817 1818 have_group: 1819 pc->pc_nitems++; 1820 pcg_put(pcg, object, pa); 1821 1822 if (pcg->pcg_avail == PCG_NOBJECTS) 1823 pc->pc_freeto = NULL; 1824 1825 simple_unlock(&pc->pc_slock); 1826 } 1827 1828 /* 1829 * pool_cache_destruct_object: 1830 * 1831 * Force destruction of an object and its release back into 1832 * the pool. 1833 */ 1834 void 1835 pool_cache_destruct_object(struct pool_cache *pc, void *object) 1836 { 1837 1838 if (pc->pc_dtor != NULL) 1839 (*pc->pc_dtor)(pc->pc_arg, object); 1840 pool_put(pc->pc_pool, object); 1841 } 1842 1843 /* 1844 * pool_cache_do_invalidate: 1845 * 1846 * This internal function implements pool_cache_invalidate() and 1847 * pool_cache_reclaim(). 1848 */ 1849 static void 1850 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups, 1851 void (*putit)(struct pool *, void *)) 1852 { 1853 struct pool_cache_group *pcg, *npcg; 1854 void *object; 1855 int s; 1856 1857 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1858 pcg = npcg) { 1859 npcg = TAILQ_NEXT(pcg, pcg_list); 1860 while (pcg->pcg_avail != 0) { 1861 pc->pc_nitems--; 1862 object = pcg_get(pcg, NULL); 1863 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg) 1864 pc->pc_allocfrom = NULL; 1865 if (pc->pc_dtor != NULL) 1866 (*pc->pc_dtor)(pc->pc_arg, object); 1867 (*putit)(pc->pc_pool, object); 1868 } 1869 if (free_groups) { 1870 pc->pc_ngroups--; 1871 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list); 1872 if (pc->pc_freeto == pcg) 1873 pc->pc_freeto = NULL; 1874 s = splvm(); 1875 pool_put(&pcgpool, pcg); 1876 splx(s); 1877 } 1878 } 1879 } 1880 1881 /* 1882 * pool_cache_invalidate: 1883 * 1884 * Invalidate a pool cache (destruct and release all of the 1885 * cached objects). 1886 */ 1887 void 1888 pool_cache_invalidate(struct pool_cache *pc) 1889 { 1890 1891 simple_lock(&pc->pc_slock); 1892 pool_cache_do_invalidate(pc, 0, pool_put); 1893 simple_unlock(&pc->pc_slock); 1894 } 1895 1896 /* 1897 * pool_cache_reclaim: 1898 * 1899 * Reclaim a pool cache for pool_reclaim(). 1900 */ 1901 static void 1902 pool_cache_reclaim(struct pool_cache *pc) 1903 { 1904 1905 simple_lock(&pc->pc_slock); 1906 pool_cache_do_invalidate(pc, 1, pool_do_put); 1907 simple_unlock(&pc->pc_slock); 1908 } 1909 1910 /* 1911 * Pool backend allocators. 1912 * 1913 * Each pool has a backend allocator that handles allocation, deallocation, 1914 * and any additional draining that might be needed. 1915 * 1916 * We provide two standard allocators: 1917 * 1918 * pool_allocator_kmem - the default when no allocator is specified 1919 * 1920 * pool_allocator_nointr - used for pools that will not be accessed 1921 * in interrupt context. 1922 */ 1923 void *pool_page_alloc(struct pool *, int); 1924 void pool_page_free(struct pool *, void *); 1925 1926 struct pool_allocator pool_allocator_kmem = { 1927 pool_page_alloc, pool_page_free, 0, 1928 }; 1929 1930 void *pool_page_alloc_nointr(struct pool *, int); 1931 void pool_page_free_nointr(struct pool *, void *); 1932 1933 struct pool_allocator pool_allocator_nointr = { 1934 pool_page_alloc_nointr, pool_page_free_nointr, 0, 1935 }; 1936 1937 #ifdef POOL_SUBPAGE 1938 void *pool_subpage_alloc(struct pool *, int); 1939 void pool_subpage_free(struct pool *, void *); 1940 1941 struct pool_allocator pool_allocator_kmem_subpage = { 1942 pool_subpage_alloc, pool_subpage_free, 0, 1943 }; 1944 #endif /* POOL_SUBPAGE */ 1945 1946 /* 1947 * We have at least three different resources for the same allocation and 1948 * each resource can be depleted. First, we have the ready elements in the 1949 * pool. Then we have the resource (typically a vm_map) for this allocator. 1950 * Finally, we have physical memory. Waiting for any of these can be 1951 * unnecessary when any other is freed, but the kernel doesn't support 1952 * sleeping on multiple wait channels, so we have to employ another strategy. 1953 * 1954 * The caller sleeps on the pool (so that it can be awakened when an item 1955 * is returned to the pool), but we set PA_WANT on the allocator. When a 1956 * page is returned to the allocator and PA_WANT is set, pool_allocator_free 1957 * will wake up all sleeping pools belonging to this allocator. 1958 * 1959 * XXX Thundering herd. 1960 */ 1961 void * 1962 pool_allocator_alloc(struct pool *org, int flags) 1963 { 1964 struct pool_allocator *pa = org->pr_alloc; 1965 struct pool *pp, *start; 1966 int s, freed; 1967 void *res; 1968 1969 LOCK_ASSERT(!simple_lock_held(&org->pr_slock)); 1970 1971 do { 1972 if ((res = (*pa->pa_alloc)(org, flags)) != NULL) 1973 return (res); 1974 if ((flags & PR_WAITOK) == 0) { 1975 /* 1976 * We only run the drain hookhere if PR_NOWAIT. 1977 * In other cases, the hook will be run in 1978 * pool_reclaim(). 1979 */ 1980 if (org->pr_drain_hook != NULL) { 1981 (*org->pr_drain_hook)(org->pr_drain_hook_arg, 1982 flags); 1983 if ((res = (*pa->pa_alloc)(org, flags)) != NULL) 1984 return (res); 1985 } 1986 break; 1987 } 1988 1989 /* 1990 * Drain all pools, except "org", that use this 1991 * allocator. We do this to reclaim VA space. 1992 * pa_alloc is responsible for waiting for 1993 * physical memory. 1994 * 1995 * XXX We risk looping forever if start if someone 1996 * calls pool_destroy on "start". But there is no 1997 * other way to have potentially sleeping pool_reclaim, 1998 * non-sleeping locks on pool_allocator, and some 1999 * stirring of drained pools in the allocator. 2000 * 2001 * XXX Maybe we should use pool_head_slock for locking 2002 * the allocators? 2003 */ 2004 freed = 0; 2005 2006 s = splvm(); 2007 simple_lock(&pa->pa_slock); 2008 pp = start = TAILQ_FIRST(&pa->pa_list); 2009 do { 2010 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list); 2011 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list); 2012 if (pp == org) 2013 continue; 2014 simple_unlock(&pa->pa_slock); 2015 freed = pool_reclaim(pp); 2016 simple_lock(&pa->pa_slock); 2017 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start && 2018 freed == 0); 2019 2020 if (freed == 0) { 2021 /* 2022 * We set PA_WANT here, the caller will most likely 2023 * sleep waiting for pages (if not, this won't hurt 2024 * that much), and there is no way to set this in 2025 * the caller without violating locking order. 2026 */ 2027 pa->pa_flags |= PA_WANT; 2028 } 2029 simple_unlock(&pa->pa_slock); 2030 splx(s); 2031 } while (freed); 2032 return (NULL); 2033 } 2034 2035 void 2036 pool_allocator_free(struct pool *pp, void *v) 2037 { 2038 struct pool_allocator *pa = pp->pr_alloc; 2039 int s; 2040 2041 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock)); 2042 2043 (*pa->pa_free)(pp, v); 2044 2045 s = splvm(); 2046 simple_lock(&pa->pa_slock); 2047 if ((pa->pa_flags & PA_WANT) == 0) { 2048 simple_unlock(&pa->pa_slock); 2049 splx(s); 2050 return; 2051 } 2052 2053 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 2054 simple_lock(&pp->pr_slock); 2055 if ((pp->pr_flags & PR_WANTED) != 0) { 2056 pp->pr_flags &= ~PR_WANTED; 2057 wakeup(pp); 2058 } 2059 simple_unlock(&pp->pr_slock); 2060 } 2061 pa->pa_flags &= ~PA_WANT; 2062 simple_unlock(&pa->pa_slock); 2063 splx(s); 2064 } 2065 2066 void * 2067 pool_page_alloc(struct pool *pp, int flags) 2068 { 2069 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 2070 2071 return ((void *) uvm_km_alloc_poolpage(waitok)); 2072 } 2073 2074 void 2075 pool_page_free(struct pool *pp, void *v) 2076 { 2077 2078 uvm_km_free_poolpage((vaddr_t) v); 2079 } 2080 2081 #ifdef POOL_SUBPAGE 2082 /* Sub-page allocator, for machines with large hardware pages. */ 2083 void * 2084 pool_subpage_alloc(struct pool *pp, int flags) 2085 { 2086 2087 return (pool_get(&psppool, flags)); 2088 } 2089 2090 void 2091 pool_subpage_free(struct pool *pp, void *v) 2092 { 2093 2094 pool_put(&psppool, v); 2095 } 2096 2097 /* We don't provide a real nointr allocator. Maybe later. */ 2098 void * 2099 pool_page_alloc_nointr(struct pool *pp, int flags) 2100 { 2101 2102 return (pool_subpage_alloc(pp, flags)); 2103 } 2104 2105 void 2106 pool_page_free_nointr(struct pool *pp, void *v) 2107 { 2108 2109 pool_subpage_free(pp, v); 2110 } 2111 #else 2112 void * 2113 pool_page_alloc_nointr(struct pool *pp, int flags) 2114 { 2115 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 2116 2117 return ((void *) uvm_km_alloc_poolpage1(kernel_map, 2118 uvm.kernel_object, waitok)); 2119 } 2120 2121 void 2122 pool_page_free_nointr(struct pool *pp, void *v) 2123 { 2124 2125 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v); 2126 } 2127 #endif /* POOL_SUBPAGE */ 2128