xref: /netbsd-src/sys/kern/subr_pool.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: subr_pool.c,v 1.123 2006/10/12 01:32:18 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.123 2006/10/12 01:32:18 christos Exp $");
42 
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * Pool resource management utility.
61  *
62  * Memory is allocated in pages which are split into pieces according to
63  * the pool item size. Each page is kept on one of three lists in the
64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65  * for empty, full and partially-full pages respectively. The individual
66  * pool items are on a linked list headed by `ph_itemlist' in each page
67  * header. The memory for building the page list is either taken from
68  * the allocated pages themselves (for small pool items) or taken from
69  * an internal pool of page headers (`phpool').
70  */
71 
72 /* List of all pools */
73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
74 
75 /* Private pool for page header structures */
76 #define	PHPOOL_MAX	8
77 static struct pool phpool[PHPOOL_MAX];
78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
79 
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84 
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
87 
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90 
91 /* allocator for pool metadata */
92 static struct pool_allocator pool_allocator_meta = {
93 	pool_page_alloc_meta, pool_page_free_meta,
94 	.pa_backingmapptr = &kmem_map,
95 };
96 
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99 
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool	*drainpp;
102 
103 /* This spin lock protects both pool_head and drainpp. */
104 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
105 
106 typedef uint8_t pool_item_freelist_t;
107 
108 struct pool_item_header {
109 	/* Page headers */
110 	LIST_ENTRY(pool_item_header)
111 				ph_pagelist;	/* pool page list */
112 	SPLAY_ENTRY(pool_item_header)
113 				ph_node;	/* Off-page page headers */
114 	caddr_t			ph_page;	/* this page's address */
115 	struct timeval		ph_time;	/* last referenced */
116 	union {
117 		/* !PR_NOTOUCH */
118 		struct {
119 			LIST_HEAD(, pool_item)
120 				phu_itemlist;	/* chunk list for this page */
121 		} phu_normal;
122 		/* PR_NOTOUCH */
123 		struct {
124 			uint16_t
125 				phu_off;	/* start offset in page */
126 			pool_item_freelist_t
127 				phu_firstfree;	/* first free item */
128 			/*
129 			 * XXX it might be better to use
130 			 * a simple bitmap and ffs(3)
131 			 */
132 		} phu_notouch;
133 	} ph_u;
134 	uint16_t		ph_nmissing;	/* # of chunks in use */
135 };
136 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
137 #define	ph_off		ph_u.phu_notouch.phu_off
138 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
139 
140 struct pool_item {
141 #ifdef DIAGNOSTIC
142 	u_int pi_magic;
143 #endif
144 #define	PI_MAGIC 0xdeadbeefU
145 	/* Other entries use only this list entry */
146 	LIST_ENTRY(pool_item)	pi_list;
147 };
148 
149 #define	POOL_NEEDS_CATCHUP(pp)						\
150 	((pp)->pr_nitems < (pp)->pr_minitems)
151 
152 /*
153  * Pool cache management.
154  *
155  * Pool caches provide a way for constructed objects to be cached by the
156  * pool subsystem.  This can lead to performance improvements by avoiding
157  * needless object construction/destruction; it is deferred until absolutely
158  * necessary.
159  *
160  * Caches are grouped into cache groups.  Each cache group references
161  * up to 16 constructed objects.  When a cache allocates an object
162  * from the pool, it calls the object's constructor and places it into
163  * a cache group.  When a cache group frees an object back to the pool,
164  * it first calls the object's destructor.  This allows the object to
165  * persist in constructed form while freed to the cache.
166  *
167  * Multiple caches may exist for each pool.  This allows a single
168  * object type to have multiple constructed forms.  The pool references
169  * each cache, so that when a pool is drained by the pagedaemon, it can
170  * drain each individual cache as well.  Each time a cache is drained,
171  * the most idle cache group is freed to the pool in its entirety.
172  *
173  * Pool caches are layed on top of pools.  By layering them, we can avoid
174  * the complexity of cache management for pools which would not benefit
175  * from it.
176  */
177 
178 /* The cache group pool. */
179 static struct pool pcgpool;
180 
181 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
182 				   struct pool_cache_grouplist *);
183 static void	pcg_grouplist_free(struct pool_cache_grouplist *);
184 
185 static int	pool_catchup(struct pool *);
186 static void	pool_prime_page(struct pool *, caddr_t,
187 		    struct pool_item_header *);
188 static void	pool_update_curpage(struct pool *);
189 
190 static int	pool_grow(struct pool *, int);
191 static void	*pool_allocator_alloc(struct pool *, int);
192 static void	pool_allocator_free(struct pool *, void *);
193 
194 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
195 	void (*)(const char *, ...));
196 static void pool_print1(struct pool *, const char *,
197 	void (*)(const char *, ...));
198 
199 static int pool_chk_page(struct pool *, const char *,
200 			 struct pool_item_header *);
201 
202 /*
203  * Pool log entry. An array of these is allocated in pool_init().
204  */
205 struct pool_log {
206 	const char	*pl_file;
207 	long		pl_line;
208 	int		pl_action;
209 #define	PRLOG_GET	1
210 #define	PRLOG_PUT	2
211 	void		*pl_addr;
212 };
213 
214 #ifdef POOL_DIAGNOSTIC
215 /* Number of entries in pool log buffers */
216 #ifndef POOL_LOGSIZE
217 #define	POOL_LOGSIZE	10
218 #endif
219 
220 int pool_logsize = POOL_LOGSIZE;
221 
222 static inline void
223 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
224 {
225 	int n = pp->pr_curlogentry;
226 	struct pool_log *pl;
227 
228 	if ((pp->pr_roflags & PR_LOGGING) == 0)
229 		return;
230 
231 	/*
232 	 * Fill in the current entry. Wrap around and overwrite
233 	 * the oldest entry if necessary.
234 	 */
235 	pl = &pp->pr_log[n];
236 	pl->pl_file = file;
237 	pl->pl_line = line;
238 	pl->pl_action = action;
239 	pl->pl_addr = v;
240 	if (++n >= pp->pr_logsize)
241 		n = 0;
242 	pp->pr_curlogentry = n;
243 }
244 
245 static void
246 pr_printlog(struct pool *pp, struct pool_item *pi,
247     void (*pr)(const char *, ...))
248 {
249 	int i = pp->pr_logsize;
250 	int n = pp->pr_curlogentry;
251 
252 	if ((pp->pr_roflags & PR_LOGGING) == 0)
253 		return;
254 
255 	/*
256 	 * Print all entries in this pool's log.
257 	 */
258 	while (i-- > 0) {
259 		struct pool_log *pl = &pp->pr_log[n];
260 		if (pl->pl_action != 0) {
261 			if (pi == NULL || pi == pl->pl_addr) {
262 				(*pr)("\tlog entry %d:\n", i);
263 				(*pr)("\t\taction = %s, addr = %p\n",
264 				    pl->pl_action == PRLOG_GET ? "get" : "put",
265 				    pl->pl_addr);
266 				(*pr)("\t\tfile: %s at line %lu\n",
267 				    pl->pl_file, pl->pl_line);
268 			}
269 		}
270 		if (++n >= pp->pr_logsize)
271 			n = 0;
272 	}
273 }
274 
275 static inline void
276 pr_enter(struct pool *pp, const char *file, long line)
277 {
278 
279 	if (__predict_false(pp->pr_entered_file != NULL)) {
280 		printf("pool %s: reentrancy at file %s line %ld\n",
281 		    pp->pr_wchan, file, line);
282 		printf("         previous entry at file %s line %ld\n",
283 		    pp->pr_entered_file, pp->pr_entered_line);
284 		panic("pr_enter");
285 	}
286 
287 	pp->pr_entered_file = file;
288 	pp->pr_entered_line = line;
289 }
290 
291 static inline void
292 pr_leave(struct pool *pp)
293 {
294 
295 	if (__predict_false(pp->pr_entered_file == NULL)) {
296 		printf("pool %s not entered?\n", pp->pr_wchan);
297 		panic("pr_leave");
298 	}
299 
300 	pp->pr_entered_file = NULL;
301 	pp->pr_entered_line = 0;
302 }
303 
304 static inline void
305 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
306 {
307 
308 	if (pp->pr_entered_file != NULL)
309 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
310 		    pp->pr_entered_file, pp->pr_entered_line);
311 }
312 #else
313 #define	pr_log(pp, v, action, file, line)
314 #define	pr_printlog(pp, pi, pr)
315 #define	pr_enter(pp, file, line)
316 #define	pr_leave(pp)
317 #define	pr_enter_check(pp, pr)
318 #endif /* POOL_DIAGNOSTIC */
319 
320 static inline int
321 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
322     const void *v)
323 {
324 	const char *cp = v;
325 	int idx;
326 
327 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
328 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
329 	KASSERT(idx < pp->pr_itemsperpage);
330 	return idx;
331 }
332 
333 #define	PR_FREELIST_ALIGN(p) \
334 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
335 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
336 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
337 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
338 
339 static inline void
340 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
341     void *obj)
342 {
343 	int idx = pr_item_notouch_index(pp, ph, obj);
344 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
345 
346 	KASSERT(freelist[idx] == PR_INDEX_USED);
347 	freelist[idx] = ph->ph_firstfree;
348 	ph->ph_firstfree = idx;
349 }
350 
351 static inline void *
352 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
353 {
354 	int idx = ph->ph_firstfree;
355 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
356 
357 	KASSERT(freelist[idx] != PR_INDEX_USED);
358 	ph->ph_firstfree = freelist[idx];
359 	freelist[idx] = PR_INDEX_USED;
360 
361 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
362 }
363 
364 static inline int
365 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
366 {
367 
368 	/*
369 	 * we consider pool_item_header with smaller ph_page bigger.
370 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
371 	 */
372 
373 	if (a->ph_page < b->ph_page)
374 		return (1);
375 	else if (a->ph_page > b->ph_page)
376 		return (-1);
377 	else
378 		return (0);
379 }
380 
381 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
382 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
383 
384 /*
385  * Return the pool page header based on item address.
386  */
387 static inline struct pool_item_header *
388 pr_find_pagehead(struct pool *pp, void *v)
389 {
390 	struct pool_item_header *ph, tmp;
391 
392 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
393 		tmp.ph_page = (caddr_t)(uintptr_t)v;
394 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
395 		if (ph == NULL) {
396 			ph = SPLAY_ROOT(&pp->pr_phtree);
397 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
398 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
399 			}
400 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
401 		}
402 	} else {
403 		caddr_t page =
404 		    (caddr_t)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
405 
406 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
407 			ph = (void *)(page + pp->pr_phoffset);
408 		} else {
409 			tmp.ph_page = page;
410 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
411 		}
412 	}
413 
414 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
415 	    (ph->ph_page <= (char *)v &&
416 	    (char *)v < ph->ph_page + pp->pr_alloc->pa_pagesz));
417 	return ph;
418 }
419 
420 static void
421 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
422 {
423 	struct pool_item_header *ph;
424 	int s;
425 
426 	while ((ph = LIST_FIRST(pq)) != NULL) {
427 		LIST_REMOVE(ph, ph_pagelist);
428 		pool_allocator_free(pp, ph->ph_page);
429 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
430 			s = splvm();
431 			pool_put(pp->pr_phpool, ph);
432 			splx(s);
433 		}
434 	}
435 }
436 
437 /*
438  * Remove a page from the pool.
439  */
440 static inline void
441 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
442      struct pool_pagelist *pq)
443 {
444 
445 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
446 
447 	/*
448 	 * If the page was idle, decrement the idle page count.
449 	 */
450 	if (ph->ph_nmissing == 0) {
451 #ifdef DIAGNOSTIC
452 		if (pp->pr_nidle == 0)
453 			panic("pr_rmpage: nidle inconsistent");
454 		if (pp->pr_nitems < pp->pr_itemsperpage)
455 			panic("pr_rmpage: nitems inconsistent");
456 #endif
457 		pp->pr_nidle--;
458 	}
459 
460 	pp->pr_nitems -= pp->pr_itemsperpage;
461 
462 	/*
463 	 * Unlink the page from the pool and queue it for release.
464 	 */
465 	LIST_REMOVE(ph, ph_pagelist);
466 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
467 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
468 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
469 
470 	pp->pr_npages--;
471 	pp->pr_npagefree++;
472 
473 	pool_update_curpage(pp);
474 }
475 
476 static boolean_t
477 pa_starved_p(struct pool_allocator *pa)
478 {
479 
480 	if (pa->pa_backingmap != NULL) {
481 		return vm_map_starved_p(pa->pa_backingmap);
482 	}
483 	return FALSE;
484 }
485 
486 static int
487 pool_reclaim_callback(struct callback_entry *ce __unused, void *obj,
488     void *arg __unused)
489 {
490 	struct pool *pp = obj;
491 	struct pool_allocator *pa = pp->pr_alloc;
492 
493 	KASSERT(&pp->pr_reclaimerentry == ce);
494 	pool_reclaim(pp);
495 	if (!pa_starved_p(pa)) {
496 		return CALLBACK_CHAIN_ABORT;
497 	}
498 	return CALLBACK_CHAIN_CONTINUE;
499 }
500 
501 static void
502 pool_reclaim_register(struct pool *pp)
503 {
504 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
505 	int s;
506 
507 	if (map == NULL) {
508 		return;
509 	}
510 
511 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
512 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
513 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
514 	splx(s);
515 }
516 
517 static void
518 pool_reclaim_unregister(struct pool *pp)
519 {
520 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
521 	int s;
522 
523 	if (map == NULL) {
524 		return;
525 	}
526 
527 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
528 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
529 	    &pp->pr_reclaimerentry);
530 	splx(s);
531 }
532 
533 static void
534 pa_reclaim_register(struct pool_allocator *pa)
535 {
536 	struct vm_map *map = *pa->pa_backingmapptr;
537 	struct pool *pp;
538 
539 	KASSERT(pa->pa_backingmap == NULL);
540 	if (map == NULL) {
541 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
542 		return;
543 	}
544 	pa->pa_backingmap = map;
545 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
546 		pool_reclaim_register(pp);
547 	}
548 }
549 
550 /*
551  * Initialize all the pools listed in the "pools" link set.
552  */
553 void
554 pool_subsystem_init(void)
555 {
556 	struct pool_allocator *pa;
557 	__link_set_decl(pools, struct link_pool_init);
558 	struct link_pool_init * const *pi;
559 
560 	__link_set_foreach(pi, pools)
561 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
562 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
563 		    (*pi)->palloc);
564 
565 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
566 		KASSERT(pa->pa_backingmapptr != NULL);
567 		KASSERT(*pa->pa_backingmapptr != NULL);
568 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
569 		pa_reclaim_register(pa);
570 	}
571 }
572 
573 /*
574  * Initialize the given pool resource structure.
575  *
576  * We export this routine to allow other kernel parts to declare
577  * static pools that must be initialized before malloc() is available.
578  */
579 void
580 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
581     const char *wchan, struct pool_allocator *palloc)
582 {
583 #ifdef DEBUG
584 	struct pool *pp1;
585 #endif
586 	size_t trysize, phsize;
587 	int off, slack, s;
588 
589 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
590 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
591 
592 #ifdef DEBUG
593 	/*
594 	 * Check that the pool hasn't already been initialised and
595 	 * added to the list of all pools.
596 	 */
597 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
598 		if (pp == pp1)
599 			panic("pool_init: pool %s already initialised",
600 			    wchan);
601 	}
602 #endif
603 
604 #ifdef POOL_DIAGNOSTIC
605 	/*
606 	 * Always log if POOL_DIAGNOSTIC is defined.
607 	 */
608 	if (pool_logsize != 0)
609 		flags |= PR_LOGGING;
610 #endif
611 
612 	if (palloc == NULL)
613 		palloc = &pool_allocator_kmem;
614 #ifdef POOL_SUBPAGE
615 	if (size > palloc->pa_pagesz) {
616 		if (palloc == &pool_allocator_kmem)
617 			palloc = &pool_allocator_kmem_fullpage;
618 		else if (palloc == &pool_allocator_nointr)
619 			palloc = &pool_allocator_nointr_fullpage;
620 	}
621 #endif /* POOL_SUBPAGE */
622 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
623 		if (palloc->pa_pagesz == 0)
624 			palloc->pa_pagesz = PAGE_SIZE;
625 
626 		TAILQ_INIT(&palloc->pa_list);
627 
628 		simple_lock_init(&palloc->pa_slock);
629 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
630 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
631 
632 		if (palloc->pa_backingmapptr != NULL) {
633 			pa_reclaim_register(palloc);
634 		}
635 		palloc->pa_flags |= PA_INITIALIZED;
636 	}
637 
638 	if (align == 0)
639 		align = ALIGN(1);
640 
641 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
642 		size = sizeof(struct pool_item);
643 
644 	size = roundup(size, align);
645 #ifdef DIAGNOSTIC
646 	if (size > palloc->pa_pagesz)
647 		panic("pool_init: pool item size (%zu) too large", size);
648 #endif
649 
650 	/*
651 	 * Initialize the pool structure.
652 	 */
653 	LIST_INIT(&pp->pr_emptypages);
654 	LIST_INIT(&pp->pr_fullpages);
655 	LIST_INIT(&pp->pr_partpages);
656 	LIST_INIT(&pp->pr_cachelist);
657 	pp->pr_curpage = NULL;
658 	pp->pr_npages = 0;
659 	pp->pr_minitems = 0;
660 	pp->pr_minpages = 0;
661 	pp->pr_maxpages = UINT_MAX;
662 	pp->pr_roflags = flags;
663 	pp->pr_flags = 0;
664 	pp->pr_size = size;
665 	pp->pr_align = align;
666 	pp->pr_wchan = wchan;
667 	pp->pr_alloc = palloc;
668 	pp->pr_nitems = 0;
669 	pp->pr_nout = 0;
670 	pp->pr_hardlimit = UINT_MAX;
671 	pp->pr_hardlimit_warning = NULL;
672 	pp->pr_hardlimit_ratecap.tv_sec = 0;
673 	pp->pr_hardlimit_ratecap.tv_usec = 0;
674 	pp->pr_hardlimit_warning_last.tv_sec = 0;
675 	pp->pr_hardlimit_warning_last.tv_usec = 0;
676 	pp->pr_drain_hook = NULL;
677 	pp->pr_drain_hook_arg = NULL;
678 
679 	/*
680 	 * Decide whether to put the page header off page to avoid
681 	 * wasting too large a part of the page or too big item.
682 	 * Off-page page headers go on a hash table, so we can match
683 	 * a returned item with its header based on the page address.
684 	 * We use 1/16 of the page size and about 8 times of the item
685 	 * size as the threshold (XXX: tune)
686 	 *
687 	 * However, we'll put the header into the page if we can put
688 	 * it without wasting any items.
689 	 *
690 	 * Silently enforce `0 <= ioff < align'.
691 	 */
692 	pp->pr_itemoffset = ioff %= align;
693 	/* See the comment below about reserved bytes. */
694 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
695 	phsize = ALIGN(sizeof(struct pool_item_header));
696 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
697 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
698 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
699 		/* Use the end of the page for the page header */
700 		pp->pr_roflags |= PR_PHINPAGE;
701 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
702 	} else {
703 		/* The page header will be taken from our page header pool */
704 		pp->pr_phoffset = 0;
705 		off = palloc->pa_pagesz;
706 		SPLAY_INIT(&pp->pr_phtree);
707 	}
708 
709 	/*
710 	 * Alignment is to take place at `ioff' within the item. This means
711 	 * we must reserve up to `align - 1' bytes on the page to allow
712 	 * appropriate positioning of each item.
713 	 */
714 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
715 	KASSERT(pp->pr_itemsperpage != 0);
716 	if ((pp->pr_roflags & PR_NOTOUCH)) {
717 		int idx;
718 
719 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
720 		    idx++) {
721 			/* nothing */
722 		}
723 		if (idx >= PHPOOL_MAX) {
724 			/*
725 			 * if you see this panic, consider to tweak
726 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
727 			 */
728 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
729 			    pp->pr_wchan, pp->pr_itemsperpage);
730 		}
731 		pp->pr_phpool = &phpool[idx];
732 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
733 		pp->pr_phpool = &phpool[0];
734 	}
735 #if defined(DIAGNOSTIC)
736 	else {
737 		pp->pr_phpool = NULL;
738 	}
739 #endif
740 
741 	/*
742 	 * Use the slack between the chunks and the page header
743 	 * for "cache coloring".
744 	 */
745 	slack = off - pp->pr_itemsperpage * pp->pr_size;
746 	pp->pr_maxcolor = (slack / align) * align;
747 	pp->pr_curcolor = 0;
748 
749 	pp->pr_nget = 0;
750 	pp->pr_nfail = 0;
751 	pp->pr_nput = 0;
752 	pp->pr_npagealloc = 0;
753 	pp->pr_npagefree = 0;
754 	pp->pr_hiwat = 0;
755 	pp->pr_nidle = 0;
756 
757 #ifdef POOL_DIAGNOSTIC
758 	if (flags & PR_LOGGING) {
759 		if (kmem_map == NULL ||
760 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
761 		     M_TEMP, M_NOWAIT)) == NULL)
762 			pp->pr_roflags &= ~PR_LOGGING;
763 		pp->pr_curlogentry = 0;
764 		pp->pr_logsize = pool_logsize;
765 	}
766 #endif
767 
768 	pp->pr_entered_file = NULL;
769 	pp->pr_entered_line = 0;
770 
771 	simple_lock_init(&pp->pr_slock);
772 
773 	/*
774 	 * Initialize private page header pool and cache magazine pool if we
775 	 * haven't done so yet.
776 	 * XXX LOCKING.
777 	 */
778 	if (phpool[0].pr_size == 0) {
779 		int idx;
780 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
781 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
782 			int nelem;
783 			size_t sz;
784 
785 			nelem = PHPOOL_FREELIST_NELEM(idx);
786 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
787 			    "phpool-%d", nelem);
788 			sz = sizeof(struct pool_item_header);
789 			if (nelem) {
790 				sz = PR_FREELIST_ALIGN(sz)
791 				    + nelem * sizeof(pool_item_freelist_t);
792 			}
793 			pool_init(&phpool[idx], sz, 0, 0, 0,
794 			    phpool_names[idx], &pool_allocator_meta);
795 		}
796 #ifdef POOL_SUBPAGE
797 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
798 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
799 #endif
800 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
801 		    0, "pcgpool", &pool_allocator_meta);
802 	}
803 
804 	/* Insert into the list of all pools. */
805 	simple_lock(&pool_head_slock);
806 	LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
807 	simple_unlock(&pool_head_slock);
808 
809 	/* Insert this into the list of pools using this allocator. */
810 	s = splvm();
811 	simple_lock(&palloc->pa_slock);
812 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
813 	simple_unlock(&palloc->pa_slock);
814 	splx(s);
815 	pool_reclaim_register(pp);
816 }
817 
818 /*
819  * De-commision a pool resource.
820  */
821 void
822 pool_destroy(struct pool *pp)
823 {
824 	struct pool_pagelist pq;
825 	struct pool_item_header *ph;
826 	int s;
827 
828 	/* Remove from global pool list */
829 	simple_lock(&pool_head_slock);
830 	LIST_REMOVE(pp, pr_poollist);
831 	if (drainpp == pp)
832 		drainpp = NULL;
833 	simple_unlock(&pool_head_slock);
834 
835 	/* Remove this pool from its allocator's list of pools. */
836 	pool_reclaim_unregister(pp);
837 	s = splvm();
838 	simple_lock(&pp->pr_alloc->pa_slock);
839 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
840 	simple_unlock(&pp->pr_alloc->pa_slock);
841 	splx(s);
842 
843 	s = splvm();
844 	simple_lock(&pp->pr_slock);
845 
846 	KASSERT(LIST_EMPTY(&pp->pr_cachelist));
847 
848 #ifdef DIAGNOSTIC
849 	if (pp->pr_nout != 0) {
850 		pr_printlog(pp, NULL, printf);
851 		panic("pool_destroy: pool busy: still out: %u",
852 		    pp->pr_nout);
853 	}
854 #endif
855 
856 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
857 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
858 
859 	/* Remove all pages */
860 	LIST_INIT(&pq);
861 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
862 		pr_rmpage(pp, ph, &pq);
863 
864 	simple_unlock(&pp->pr_slock);
865 	splx(s);
866 
867 	pr_pagelist_free(pp, &pq);
868 
869 #ifdef POOL_DIAGNOSTIC
870 	if ((pp->pr_roflags & PR_LOGGING) != 0)
871 		free(pp->pr_log, M_TEMP);
872 #endif
873 }
874 
875 void
876 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
877 {
878 
879 	/* XXX no locking -- must be used just after pool_init() */
880 #ifdef DIAGNOSTIC
881 	if (pp->pr_drain_hook != NULL)
882 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
883 #endif
884 	pp->pr_drain_hook = fn;
885 	pp->pr_drain_hook_arg = arg;
886 }
887 
888 static struct pool_item_header *
889 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
890 {
891 	struct pool_item_header *ph;
892 	int s;
893 
894 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
895 
896 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
897 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
898 	else {
899 		s = splvm();
900 		ph = pool_get(pp->pr_phpool, flags);
901 		splx(s);
902 	}
903 
904 	return (ph);
905 }
906 
907 /*
908  * Grab an item from the pool; must be called at appropriate spl level
909  */
910 void *
911 #ifdef POOL_DIAGNOSTIC
912 _pool_get(struct pool *pp, int flags, const char *file, long line)
913 #else
914 pool_get(struct pool *pp, int flags)
915 #endif
916 {
917 	struct pool_item *pi;
918 	struct pool_item_header *ph;
919 	void *v;
920 
921 #ifdef DIAGNOSTIC
922 	if (__predict_false(pp->pr_itemsperpage == 0))
923 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
924 		    "pool not initialized?", pp);
925 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
926 			    (flags & PR_WAITOK) != 0))
927 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
928 
929 #endif /* DIAGNOSTIC */
930 #ifdef LOCKDEBUG
931 	if (flags & PR_WAITOK)
932 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
933 	SCHED_ASSERT_UNLOCKED();
934 #endif
935 
936 	simple_lock(&pp->pr_slock);
937 	pr_enter(pp, file, line);
938 
939  startover:
940 	/*
941 	 * Check to see if we've reached the hard limit.  If we have,
942 	 * and we can wait, then wait until an item has been returned to
943 	 * the pool.
944 	 */
945 #ifdef DIAGNOSTIC
946 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
947 		pr_leave(pp);
948 		simple_unlock(&pp->pr_slock);
949 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
950 	}
951 #endif
952 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
953 		if (pp->pr_drain_hook != NULL) {
954 			/*
955 			 * Since the drain hook is going to free things
956 			 * back to the pool, unlock, call the hook, re-lock,
957 			 * and check the hardlimit condition again.
958 			 */
959 			pr_leave(pp);
960 			simple_unlock(&pp->pr_slock);
961 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
962 			simple_lock(&pp->pr_slock);
963 			pr_enter(pp, file, line);
964 			if (pp->pr_nout < pp->pr_hardlimit)
965 				goto startover;
966 		}
967 
968 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
969 			/*
970 			 * XXX: A warning isn't logged in this case.  Should
971 			 * it be?
972 			 */
973 			pp->pr_flags |= PR_WANTED;
974 			pr_leave(pp);
975 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
976 			pr_enter(pp, file, line);
977 			goto startover;
978 		}
979 
980 		/*
981 		 * Log a message that the hard limit has been hit.
982 		 */
983 		if (pp->pr_hardlimit_warning != NULL &&
984 		    ratecheck(&pp->pr_hardlimit_warning_last,
985 			      &pp->pr_hardlimit_ratecap))
986 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
987 
988 		pp->pr_nfail++;
989 
990 		pr_leave(pp);
991 		simple_unlock(&pp->pr_slock);
992 		return (NULL);
993 	}
994 
995 	/*
996 	 * The convention we use is that if `curpage' is not NULL, then
997 	 * it points at a non-empty bucket. In particular, `curpage'
998 	 * never points at a page header which has PR_PHINPAGE set and
999 	 * has no items in its bucket.
1000 	 */
1001 	if ((ph = pp->pr_curpage) == NULL) {
1002 		int error;
1003 
1004 #ifdef DIAGNOSTIC
1005 		if (pp->pr_nitems != 0) {
1006 			simple_unlock(&pp->pr_slock);
1007 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1008 			    pp->pr_wchan, pp->pr_nitems);
1009 			panic("pool_get: nitems inconsistent");
1010 		}
1011 #endif
1012 
1013 		/*
1014 		 * Call the back-end page allocator for more memory.
1015 		 * Release the pool lock, as the back-end page allocator
1016 		 * may block.
1017 		 */
1018 		pr_leave(pp);
1019 		error = pool_grow(pp, flags);
1020 		pr_enter(pp, file, line);
1021 		if (error != 0) {
1022 			/*
1023 			 * We were unable to allocate a page or item
1024 			 * header, but we released the lock during
1025 			 * allocation, so perhaps items were freed
1026 			 * back to the pool.  Check for this case.
1027 			 */
1028 			if (pp->pr_curpage != NULL)
1029 				goto startover;
1030 
1031 			pp->pr_nfail++;
1032 			pr_leave(pp);
1033 			simple_unlock(&pp->pr_slock);
1034 			return (NULL);
1035 		}
1036 
1037 		/* Start the allocation process over. */
1038 		goto startover;
1039 	}
1040 	if (pp->pr_roflags & PR_NOTOUCH) {
1041 #ifdef DIAGNOSTIC
1042 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1043 			pr_leave(pp);
1044 			simple_unlock(&pp->pr_slock);
1045 			panic("pool_get: %s: page empty", pp->pr_wchan);
1046 		}
1047 #endif
1048 		v = pr_item_notouch_get(pp, ph);
1049 #ifdef POOL_DIAGNOSTIC
1050 		pr_log(pp, v, PRLOG_GET, file, line);
1051 #endif
1052 	} else {
1053 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1054 		if (__predict_false(v == NULL)) {
1055 			pr_leave(pp);
1056 			simple_unlock(&pp->pr_slock);
1057 			panic("pool_get: %s: page empty", pp->pr_wchan);
1058 		}
1059 #ifdef DIAGNOSTIC
1060 		if (__predict_false(pp->pr_nitems == 0)) {
1061 			pr_leave(pp);
1062 			simple_unlock(&pp->pr_slock);
1063 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1064 			    pp->pr_wchan, pp->pr_nitems);
1065 			panic("pool_get: nitems inconsistent");
1066 		}
1067 #endif
1068 
1069 #ifdef POOL_DIAGNOSTIC
1070 		pr_log(pp, v, PRLOG_GET, file, line);
1071 #endif
1072 
1073 #ifdef DIAGNOSTIC
1074 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1075 			pr_printlog(pp, pi, printf);
1076 			panic("pool_get(%s): free list modified: "
1077 			    "magic=%x; page %p; item addr %p\n",
1078 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1079 		}
1080 #endif
1081 
1082 		/*
1083 		 * Remove from item list.
1084 		 */
1085 		LIST_REMOVE(pi, pi_list);
1086 	}
1087 	pp->pr_nitems--;
1088 	pp->pr_nout++;
1089 	if (ph->ph_nmissing == 0) {
1090 #ifdef DIAGNOSTIC
1091 		if (__predict_false(pp->pr_nidle == 0))
1092 			panic("pool_get: nidle inconsistent");
1093 #endif
1094 		pp->pr_nidle--;
1095 
1096 		/*
1097 		 * This page was previously empty.  Move it to the list of
1098 		 * partially-full pages.  This page is already curpage.
1099 		 */
1100 		LIST_REMOVE(ph, ph_pagelist);
1101 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1102 	}
1103 	ph->ph_nmissing++;
1104 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1105 #ifdef DIAGNOSTIC
1106 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1107 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1108 			pr_leave(pp);
1109 			simple_unlock(&pp->pr_slock);
1110 			panic("pool_get: %s: nmissing inconsistent",
1111 			    pp->pr_wchan);
1112 		}
1113 #endif
1114 		/*
1115 		 * This page is now full.  Move it to the full list
1116 		 * and select a new current page.
1117 		 */
1118 		LIST_REMOVE(ph, ph_pagelist);
1119 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1120 		pool_update_curpage(pp);
1121 	}
1122 
1123 	pp->pr_nget++;
1124 	pr_leave(pp);
1125 
1126 	/*
1127 	 * If we have a low water mark and we are now below that low
1128 	 * water mark, add more items to the pool.
1129 	 */
1130 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1131 		/*
1132 		 * XXX: Should we log a warning?  Should we set up a timeout
1133 		 * to try again in a second or so?  The latter could break
1134 		 * a caller's assumptions about interrupt protection, etc.
1135 		 */
1136 	}
1137 
1138 	simple_unlock(&pp->pr_slock);
1139 	return (v);
1140 }
1141 
1142 /*
1143  * Internal version of pool_put().  Pool is already locked/entered.
1144  */
1145 static void
1146 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1147 {
1148 	struct pool_item *pi = v;
1149 	struct pool_item_header *ph;
1150 
1151 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1152 	SCHED_ASSERT_UNLOCKED();
1153 
1154 #ifdef DIAGNOSTIC
1155 	if (__predict_false(pp->pr_nout == 0)) {
1156 		printf("pool %s: putting with none out\n",
1157 		    pp->pr_wchan);
1158 		panic("pool_put");
1159 	}
1160 #endif
1161 
1162 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1163 		pr_printlog(pp, NULL, printf);
1164 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1165 	}
1166 
1167 #ifdef LOCKDEBUG
1168 	/*
1169 	 * Check if we're freeing a locked simple lock.
1170 	 */
1171 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1172 #endif
1173 
1174 	/*
1175 	 * Return to item list.
1176 	 */
1177 	if (pp->pr_roflags & PR_NOTOUCH) {
1178 		pr_item_notouch_put(pp, ph, v);
1179 	} else {
1180 #ifdef DIAGNOSTIC
1181 		pi->pi_magic = PI_MAGIC;
1182 #endif
1183 #ifdef DEBUG
1184 		{
1185 			int i, *ip = v;
1186 
1187 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1188 				*ip++ = PI_MAGIC;
1189 			}
1190 		}
1191 #endif
1192 
1193 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1194 	}
1195 	KDASSERT(ph->ph_nmissing != 0);
1196 	ph->ph_nmissing--;
1197 	pp->pr_nput++;
1198 	pp->pr_nitems++;
1199 	pp->pr_nout--;
1200 
1201 	/* Cancel "pool empty" condition if it exists */
1202 	if (pp->pr_curpage == NULL)
1203 		pp->pr_curpage = ph;
1204 
1205 	if (pp->pr_flags & PR_WANTED) {
1206 		pp->pr_flags &= ~PR_WANTED;
1207 		if (ph->ph_nmissing == 0)
1208 			pp->pr_nidle++;
1209 		wakeup((caddr_t)pp);
1210 		return;
1211 	}
1212 
1213 	/*
1214 	 * If this page is now empty, do one of two things:
1215 	 *
1216 	 *	(1) If we have more pages than the page high water mark,
1217 	 *	    free the page back to the system.  ONLY CONSIDER
1218 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1219 	 *	    CLAIM.
1220 	 *
1221 	 *	(2) Otherwise, move the page to the empty page list.
1222 	 *
1223 	 * Either way, select a new current page (so we use a partially-full
1224 	 * page if one is available).
1225 	 */
1226 	if (ph->ph_nmissing == 0) {
1227 		pp->pr_nidle++;
1228 		if (pp->pr_npages > pp->pr_minpages &&
1229 		    (pp->pr_npages > pp->pr_maxpages ||
1230 		     pa_starved_p(pp->pr_alloc))) {
1231 			pr_rmpage(pp, ph, pq);
1232 		} else {
1233 			LIST_REMOVE(ph, ph_pagelist);
1234 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1235 
1236 			/*
1237 			 * Update the timestamp on the page.  A page must
1238 			 * be idle for some period of time before it can
1239 			 * be reclaimed by the pagedaemon.  This minimizes
1240 			 * ping-pong'ing for memory.
1241 			 */
1242 			getmicrotime(&ph->ph_time);
1243 		}
1244 		pool_update_curpage(pp);
1245 	}
1246 
1247 	/*
1248 	 * If the page was previously completely full, move it to the
1249 	 * partially-full list and make it the current page.  The next
1250 	 * allocation will get the item from this page, instead of
1251 	 * further fragmenting the pool.
1252 	 */
1253 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1254 		LIST_REMOVE(ph, ph_pagelist);
1255 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1256 		pp->pr_curpage = ph;
1257 	}
1258 }
1259 
1260 /*
1261  * Return resource to the pool; must be called at appropriate spl level
1262  */
1263 #ifdef POOL_DIAGNOSTIC
1264 void
1265 _pool_put(struct pool *pp, void *v, const char *file, long line)
1266 {
1267 	struct pool_pagelist pq;
1268 
1269 	LIST_INIT(&pq);
1270 
1271 	simple_lock(&pp->pr_slock);
1272 	pr_enter(pp, file, line);
1273 
1274 	pr_log(pp, v, PRLOG_PUT, file, line);
1275 
1276 	pool_do_put(pp, v, &pq);
1277 
1278 	pr_leave(pp);
1279 	simple_unlock(&pp->pr_slock);
1280 
1281 	pr_pagelist_free(pp, &pq);
1282 }
1283 #undef pool_put
1284 #endif /* POOL_DIAGNOSTIC */
1285 
1286 void
1287 pool_put(struct pool *pp, void *v)
1288 {
1289 	struct pool_pagelist pq;
1290 
1291 	LIST_INIT(&pq);
1292 
1293 	simple_lock(&pp->pr_slock);
1294 	pool_do_put(pp, v, &pq);
1295 	simple_unlock(&pp->pr_slock);
1296 
1297 	pr_pagelist_free(pp, &pq);
1298 }
1299 
1300 #ifdef POOL_DIAGNOSTIC
1301 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1302 #endif
1303 
1304 /*
1305  * pool_grow: grow a pool by a page.
1306  *
1307  * => called with pool locked.
1308  * => unlock and relock the pool.
1309  * => return with pool locked.
1310  */
1311 
1312 static int
1313 pool_grow(struct pool *pp, int flags)
1314 {
1315 	struct pool_item_header *ph = NULL;
1316 	char *cp;
1317 
1318 	simple_unlock(&pp->pr_slock);
1319 	cp = pool_allocator_alloc(pp, flags);
1320 	if (__predict_true(cp != NULL)) {
1321 		ph = pool_alloc_item_header(pp, cp, flags);
1322 	}
1323 	if (__predict_false(cp == NULL || ph == NULL)) {
1324 		if (cp != NULL) {
1325 			pool_allocator_free(pp, cp);
1326 		}
1327 		simple_lock(&pp->pr_slock);
1328 		return ENOMEM;
1329 	}
1330 
1331 	simple_lock(&pp->pr_slock);
1332 	pool_prime_page(pp, cp, ph);
1333 	pp->pr_npagealloc++;
1334 	return 0;
1335 }
1336 
1337 /*
1338  * Add N items to the pool.
1339  */
1340 int
1341 pool_prime(struct pool *pp, int n)
1342 {
1343 	int newpages;
1344 	int error = 0;
1345 
1346 	simple_lock(&pp->pr_slock);
1347 
1348 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1349 
1350 	while (newpages-- > 0) {
1351 		error = pool_grow(pp, PR_NOWAIT);
1352 		if (error) {
1353 			break;
1354 		}
1355 		pp->pr_minpages++;
1356 	}
1357 
1358 	if (pp->pr_minpages >= pp->pr_maxpages)
1359 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1360 
1361 	simple_unlock(&pp->pr_slock);
1362 	return error;
1363 }
1364 
1365 /*
1366  * Add a page worth of items to the pool.
1367  *
1368  * Note, we must be called with the pool descriptor LOCKED.
1369  */
1370 static void
1371 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1372 {
1373 	struct pool_item *pi;
1374 	caddr_t cp = storage;
1375 	unsigned int align = pp->pr_align;
1376 	unsigned int ioff = pp->pr_itemoffset;
1377 	int n;
1378 
1379 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1380 
1381 #ifdef DIAGNOSTIC
1382 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1383 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1384 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1385 #endif
1386 
1387 	/*
1388 	 * Insert page header.
1389 	 */
1390 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1391 	LIST_INIT(&ph->ph_itemlist);
1392 	ph->ph_page = storage;
1393 	ph->ph_nmissing = 0;
1394 	getmicrotime(&ph->ph_time);
1395 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1396 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1397 
1398 	pp->pr_nidle++;
1399 
1400 	/*
1401 	 * Color this page.
1402 	 */
1403 	cp = (caddr_t)(cp + pp->pr_curcolor);
1404 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1405 		pp->pr_curcolor = 0;
1406 
1407 	/*
1408 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1409 	 */
1410 	if (ioff != 0)
1411 		cp = (caddr_t)(cp + (align - ioff));
1412 
1413 	/*
1414 	 * Insert remaining chunks on the bucket list.
1415 	 */
1416 	n = pp->pr_itemsperpage;
1417 	pp->pr_nitems += n;
1418 
1419 	if (pp->pr_roflags & PR_NOTOUCH) {
1420 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
1421 		int i;
1422 
1423 		ph->ph_off = cp - storage;
1424 		ph->ph_firstfree = 0;
1425 		for (i = 0; i < n - 1; i++)
1426 			freelist[i] = i + 1;
1427 		freelist[n - 1] = PR_INDEX_EOL;
1428 	} else {
1429 		while (n--) {
1430 			pi = (struct pool_item *)cp;
1431 
1432 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1433 
1434 			/* Insert on page list */
1435 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1436 #ifdef DIAGNOSTIC
1437 			pi->pi_magic = PI_MAGIC;
1438 #endif
1439 			cp = (caddr_t)(cp + pp->pr_size);
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * If the pool was depleted, point at the new page.
1445 	 */
1446 	if (pp->pr_curpage == NULL)
1447 		pp->pr_curpage = ph;
1448 
1449 	if (++pp->pr_npages > pp->pr_hiwat)
1450 		pp->pr_hiwat = pp->pr_npages;
1451 }
1452 
1453 /*
1454  * Used by pool_get() when nitems drops below the low water mark.  This
1455  * is used to catch up pr_nitems with the low water mark.
1456  *
1457  * Note 1, we never wait for memory here, we let the caller decide what to do.
1458  *
1459  * Note 2, we must be called with the pool already locked, and we return
1460  * with it locked.
1461  */
1462 static int
1463 pool_catchup(struct pool *pp)
1464 {
1465 	int error = 0;
1466 
1467 	while (POOL_NEEDS_CATCHUP(pp)) {
1468 		error = pool_grow(pp, PR_NOWAIT);
1469 		if (error) {
1470 			break;
1471 		}
1472 	}
1473 	return error;
1474 }
1475 
1476 static void
1477 pool_update_curpage(struct pool *pp)
1478 {
1479 
1480 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1481 	if (pp->pr_curpage == NULL) {
1482 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1483 	}
1484 }
1485 
1486 void
1487 pool_setlowat(struct pool *pp, int n)
1488 {
1489 
1490 	simple_lock(&pp->pr_slock);
1491 
1492 	pp->pr_minitems = n;
1493 	pp->pr_minpages = (n == 0)
1494 		? 0
1495 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1496 
1497 	/* Make sure we're caught up with the newly-set low water mark. */
1498 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1499 		/*
1500 		 * XXX: Should we log a warning?  Should we set up a timeout
1501 		 * to try again in a second or so?  The latter could break
1502 		 * a caller's assumptions about interrupt protection, etc.
1503 		 */
1504 	}
1505 
1506 	simple_unlock(&pp->pr_slock);
1507 }
1508 
1509 void
1510 pool_sethiwat(struct pool *pp, int n)
1511 {
1512 
1513 	simple_lock(&pp->pr_slock);
1514 
1515 	pp->pr_maxpages = (n == 0)
1516 		? 0
1517 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1518 
1519 	simple_unlock(&pp->pr_slock);
1520 }
1521 
1522 void
1523 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1524 {
1525 
1526 	simple_lock(&pp->pr_slock);
1527 
1528 	pp->pr_hardlimit = n;
1529 	pp->pr_hardlimit_warning = warnmess;
1530 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1531 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1532 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1533 
1534 	/*
1535 	 * In-line version of pool_sethiwat(), because we don't want to
1536 	 * release the lock.
1537 	 */
1538 	pp->pr_maxpages = (n == 0)
1539 		? 0
1540 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1541 
1542 	simple_unlock(&pp->pr_slock);
1543 }
1544 
1545 /*
1546  * Release all complete pages that have not been used recently.
1547  */
1548 int
1549 #ifdef POOL_DIAGNOSTIC
1550 _pool_reclaim(struct pool *pp, const char *file, long line)
1551 #else
1552 pool_reclaim(struct pool *pp)
1553 #endif
1554 {
1555 	struct pool_item_header *ph, *phnext;
1556 	struct pool_cache *pc;
1557 	struct pool_pagelist pq;
1558 	struct pool_cache_grouplist pcgl;
1559 	struct timeval curtime, diff;
1560 
1561 	if (pp->pr_drain_hook != NULL) {
1562 		/*
1563 		 * The drain hook must be called with the pool unlocked.
1564 		 */
1565 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1566 	}
1567 
1568 	if (simple_lock_try(&pp->pr_slock) == 0)
1569 		return (0);
1570 	pr_enter(pp, file, line);
1571 
1572 	LIST_INIT(&pq);
1573 	LIST_INIT(&pcgl);
1574 
1575 	/*
1576 	 * Reclaim items from the pool's caches.
1577 	 */
1578 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1579 		pool_cache_reclaim(pc, &pq, &pcgl);
1580 
1581 	getmicrotime(&curtime);
1582 
1583 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1584 		phnext = LIST_NEXT(ph, ph_pagelist);
1585 
1586 		/* Check our minimum page claim */
1587 		if (pp->pr_npages <= pp->pr_minpages)
1588 			break;
1589 
1590 		KASSERT(ph->ph_nmissing == 0);
1591 		timersub(&curtime, &ph->ph_time, &diff);
1592 		if (diff.tv_sec < pool_inactive_time
1593 		    && !pa_starved_p(pp->pr_alloc))
1594 			continue;
1595 
1596 		/*
1597 		 * If freeing this page would put us below
1598 		 * the low water mark, stop now.
1599 		 */
1600 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1601 		    pp->pr_minitems)
1602 			break;
1603 
1604 		pr_rmpage(pp, ph, &pq);
1605 	}
1606 
1607 	pr_leave(pp);
1608 	simple_unlock(&pp->pr_slock);
1609 	if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1610 		return 0;
1611 
1612 	pr_pagelist_free(pp, &pq);
1613 	pcg_grouplist_free(&pcgl);
1614 	return (1);
1615 }
1616 
1617 /*
1618  * Drain pools, one at a time.
1619  *
1620  * Note, we must never be called from an interrupt context.
1621  */
1622 void
1623 pool_drain(void *arg __unused)
1624 {
1625 	struct pool *pp;
1626 	int s;
1627 
1628 	pp = NULL;
1629 	s = splvm();
1630 	simple_lock(&pool_head_slock);
1631 	if (drainpp == NULL) {
1632 		drainpp = LIST_FIRST(&pool_head);
1633 	}
1634 	if (drainpp) {
1635 		pp = drainpp;
1636 		drainpp = LIST_NEXT(pp, pr_poollist);
1637 	}
1638 	simple_unlock(&pool_head_slock);
1639 	if (pp)
1640 		pool_reclaim(pp);
1641 	splx(s);
1642 }
1643 
1644 /*
1645  * Diagnostic helpers.
1646  */
1647 void
1648 pool_print(struct pool *pp, const char *modif)
1649 {
1650 	int s;
1651 
1652 	s = splvm();
1653 	if (simple_lock_try(&pp->pr_slock) == 0) {
1654 		printf("pool %s is locked; try again later\n",
1655 		    pp->pr_wchan);
1656 		splx(s);
1657 		return;
1658 	}
1659 	pool_print1(pp, modif, printf);
1660 	simple_unlock(&pp->pr_slock);
1661 	splx(s);
1662 }
1663 
1664 void
1665 pool_printall(const char *modif, void (*pr)(const char *, ...))
1666 {
1667 	struct pool *pp;
1668 
1669 	if (simple_lock_try(&pool_head_slock) == 0) {
1670 		(*pr)("WARNING: pool_head_slock is locked\n");
1671 	} else {
1672 		simple_unlock(&pool_head_slock);
1673 	}
1674 
1675 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
1676 		pool_printit(pp, modif, pr);
1677 	}
1678 }
1679 
1680 void
1681 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1682 {
1683 
1684 	if (pp == NULL) {
1685 		(*pr)("Must specify a pool to print.\n");
1686 		return;
1687 	}
1688 
1689 	/*
1690 	 * Called from DDB; interrupts should be blocked, and all
1691 	 * other processors should be paused.  We can skip locking
1692 	 * the pool in this case.
1693 	 *
1694 	 * We do a simple_lock_try() just to print the lock
1695 	 * status, however.
1696 	 */
1697 
1698 	if (simple_lock_try(&pp->pr_slock) == 0)
1699 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1700 	else
1701 		simple_unlock(&pp->pr_slock);
1702 
1703 	pool_print1(pp, modif, pr);
1704 }
1705 
1706 static void
1707 pool_print_pagelist(struct pool *pp __unused, struct pool_pagelist *pl,
1708     void (*pr)(const char *, ...))
1709 {
1710 	struct pool_item_header *ph;
1711 #ifdef DIAGNOSTIC
1712 	struct pool_item *pi;
1713 #endif
1714 
1715 	LIST_FOREACH(ph, pl, ph_pagelist) {
1716 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1717 		    ph->ph_page, ph->ph_nmissing,
1718 		    (u_long)ph->ph_time.tv_sec,
1719 		    (u_long)ph->ph_time.tv_usec);
1720 #ifdef DIAGNOSTIC
1721 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1722 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1723 				if (pi->pi_magic != PI_MAGIC) {
1724 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1725 					    pi, pi->pi_magic);
1726 				}
1727 			}
1728 		}
1729 #endif
1730 	}
1731 }
1732 
1733 static void
1734 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1735 {
1736 	struct pool_item_header *ph;
1737 	struct pool_cache *pc;
1738 	struct pool_cache_group *pcg;
1739 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1740 	char c;
1741 
1742 	while ((c = *modif++) != '\0') {
1743 		if (c == 'l')
1744 			print_log = 1;
1745 		if (c == 'p')
1746 			print_pagelist = 1;
1747 		if (c == 'c')
1748 			print_cache = 1;
1749 	}
1750 
1751 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1752 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1753 	    pp->pr_roflags);
1754 	(*pr)("\talloc %p\n", pp->pr_alloc);
1755 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1756 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1757 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1758 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1759 
1760 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1761 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1762 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1763 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1764 
1765 	if (print_pagelist == 0)
1766 		goto skip_pagelist;
1767 
1768 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1769 		(*pr)("\n\tempty page list:\n");
1770 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1771 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1772 		(*pr)("\n\tfull page list:\n");
1773 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1774 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1775 		(*pr)("\n\tpartial-page list:\n");
1776 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1777 
1778 	if (pp->pr_curpage == NULL)
1779 		(*pr)("\tno current page\n");
1780 	else
1781 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1782 
1783  skip_pagelist:
1784 	if (print_log == 0)
1785 		goto skip_log;
1786 
1787 	(*pr)("\n");
1788 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1789 		(*pr)("\tno log\n");
1790 	else {
1791 		pr_printlog(pp, NULL, pr);
1792 	}
1793 
1794  skip_log:
1795 	if (print_cache == 0)
1796 		goto skip_cache;
1797 
1798 #define PR_GROUPLIST(pcg)						\
1799 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1800 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
1801 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1802 		    POOL_PADDR_INVALID) {				\
1803 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1804 			    pcg->pcg_objects[i].pcgo_va,		\
1805 			    (unsigned long long)			\
1806 			    pcg->pcg_objects[i].pcgo_pa);		\
1807 		} else {						\
1808 			(*pr)("\t\t\t%p\n",				\
1809 			    pcg->pcg_objects[i].pcgo_va);		\
1810 		}							\
1811 	}
1812 
1813 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1814 		(*pr)("\tcache %p\n", pc);
1815 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1816 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1817 		(*pr)("\t    full groups:\n");
1818 		LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1819 			PR_GROUPLIST(pcg);
1820 		}
1821 		(*pr)("\t    partial groups:\n");
1822 		LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1823 			PR_GROUPLIST(pcg);
1824 		}
1825 		(*pr)("\t    empty groups:\n");
1826 		LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1827 			PR_GROUPLIST(pcg);
1828 		}
1829 	}
1830 #undef PR_GROUPLIST
1831 
1832  skip_cache:
1833 	pr_enter_check(pp, pr);
1834 }
1835 
1836 static int
1837 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1838 {
1839 	struct pool_item *pi;
1840 	caddr_t page;
1841 	int n;
1842 
1843 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1844 		page = (caddr_t)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1845 		if (page != ph->ph_page &&
1846 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1847 			if (label != NULL)
1848 				printf("%s: ", label);
1849 			printf("pool(%p:%s): page inconsistency: page %p;"
1850 			       " at page head addr %p (p %p)\n", pp,
1851 				pp->pr_wchan, ph->ph_page,
1852 				ph, page);
1853 			return 1;
1854 		}
1855 	}
1856 
1857 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1858 		return 0;
1859 
1860 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1861 	     pi != NULL;
1862 	     pi = LIST_NEXT(pi,pi_list), n++) {
1863 
1864 #ifdef DIAGNOSTIC
1865 		if (pi->pi_magic != PI_MAGIC) {
1866 			if (label != NULL)
1867 				printf("%s: ", label);
1868 			printf("pool(%s): free list modified: magic=%x;"
1869 			       " page %p; item ordinal %d; addr %p\n",
1870 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1871 				n, pi);
1872 			panic("pool");
1873 		}
1874 #endif
1875 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1876 			continue;
1877 		}
1878 		page = (caddr_t)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1879 		if (page == ph->ph_page)
1880 			continue;
1881 
1882 		if (label != NULL)
1883 			printf("%s: ", label);
1884 		printf("pool(%p:%s): page inconsistency: page %p;"
1885 		       " item ordinal %d; addr %p (p %p)\n", pp,
1886 			pp->pr_wchan, ph->ph_page,
1887 			n, pi, page);
1888 		return 1;
1889 	}
1890 	return 0;
1891 }
1892 
1893 
1894 int
1895 pool_chk(struct pool *pp, const char *label)
1896 {
1897 	struct pool_item_header *ph;
1898 	int r = 0;
1899 
1900 	simple_lock(&pp->pr_slock);
1901 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1902 		r = pool_chk_page(pp, label, ph);
1903 		if (r) {
1904 			goto out;
1905 		}
1906 	}
1907 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1908 		r = pool_chk_page(pp, label, ph);
1909 		if (r) {
1910 			goto out;
1911 		}
1912 	}
1913 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1914 		r = pool_chk_page(pp, label, ph);
1915 		if (r) {
1916 			goto out;
1917 		}
1918 	}
1919 
1920 out:
1921 	simple_unlock(&pp->pr_slock);
1922 	return (r);
1923 }
1924 
1925 /*
1926  * pool_cache_init:
1927  *
1928  *	Initialize a pool cache.
1929  *
1930  *	NOTE: If the pool must be protected from interrupts, we expect
1931  *	to be called at the appropriate interrupt priority level.
1932  */
1933 void
1934 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1935     int (*ctor)(void *, void *, int),
1936     void (*dtor)(void *, void *),
1937     void *arg)
1938 {
1939 
1940 	LIST_INIT(&pc->pc_emptygroups);
1941 	LIST_INIT(&pc->pc_fullgroups);
1942 	LIST_INIT(&pc->pc_partgroups);
1943 	simple_lock_init(&pc->pc_slock);
1944 
1945 	pc->pc_pool = pp;
1946 
1947 	pc->pc_ctor = ctor;
1948 	pc->pc_dtor = dtor;
1949 	pc->pc_arg  = arg;
1950 
1951 	pc->pc_hits   = 0;
1952 	pc->pc_misses = 0;
1953 
1954 	pc->pc_ngroups = 0;
1955 
1956 	pc->pc_nitems = 0;
1957 
1958 	simple_lock(&pp->pr_slock);
1959 	LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1960 	simple_unlock(&pp->pr_slock);
1961 }
1962 
1963 /*
1964  * pool_cache_destroy:
1965  *
1966  *	Destroy a pool cache.
1967  */
1968 void
1969 pool_cache_destroy(struct pool_cache *pc)
1970 {
1971 	struct pool *pp = pc->pc_pool;
1972 
1973 	/* First, invalidate the entire cache. */
1974 	pool_cache_invalidate(pc);
1975 
1976 	/* ...and remove it from the pool's cache list. */
1977 	simple_lock(&pp->pr_slock);
1978 	LIST_REMOVE(pc, pc_poollist);
1979 	simple_unlock(&pp->pr_slock);
1980 }
1981 
1982 static inline void *
1983 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1984 {
1985 	void *object;
1986 	u_int idx;
1987 
1988 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1989 	KASSERT(pcg->pcg_avail != 0);
1990 	idx = --pcg->pcg_avail;
1991 
1992 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1993 	object = pcg->pcg_objects[idx].pcgo_va;
1994 	if (pap != NULL)
1995 		*pap = pcg->pcg_objects[idx].pcgo_pa;
1996 	pcg->pcg_objects[idx].pcgo_va = NULL;
1997 
1998 	return (object);
1999 }
2000 
2001 static inline void
2002 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
2003 {
2004 	u_int idx;
2005 
2006 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
2007 	idx = pcg->pcg_avail++;
2008 
2009 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
2010 	pcg->pcg_objects[idx].pcgo_va = object;
2011 	pcg->pcg_objects[idx].pcgo_pa = pa;
2012 }
2013 
2014 static void
2015 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
2016 {
2017 	struct pool_cache_group *pcg;
2018 	int s;
2019 
2020 	s = splvm();
2021 	while ((pcg = LIST_FIRST(pcgl)) != NULL) {
2022 		LIST_REMOVE(pcg, pcg_list);
2023 		pool_put(&pcgpool, pcg);
2024 	}
2025 	splx(s);
2026 }
2027 
2028 /*
2029  * pool_cache_get{,_paddr}:
2030  *
2031  *	Get an object from a pool cache (optionally returning
2032  *	the physical address of the object).
2033  */
2034 void *
2035 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2036 {
2037 	struct pool_cache_group *pcg;
2038 	void *object;
2039 
2040 #ifdef LOCKDEBUG
2041 	if (flags & PR_WAITOK)
2042 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2043 #endif
2044 
2045 	simple_lock(&pc->pc_slock);
2046 
2047 	pcg = LIST_FIRST(&pc->pc_partgroups);
2048 	if (pcg == NULL) {
2049 		pcg = LIST_FIRST(&pc->pc_fullgroups);
2050 		if (pcg != NULL) {
2051 			LIST_REMOVE(pcg, pcg_list);
2052 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2053 		}
2054 	}
2055 	if (pcg == NULL) {
2056 
2057 		/*
2058 		 * No groups with any available objects.  Allocate
2059 		 * a new object, construct it, and return it to
2060 		 * the caller.  We will allocate a group, if necessary,
2061 		 * when the object is freed back to the cache.
2062 		 */
2063 		pc->pc_misses++;
2064 		simple_unlock(&pc->pc_slock);
2065 		object = pool_get(pc->pc_pool, flags);
2066 		if (object != NULL && pc->pc_ctor != NULL) {
2067 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2068 				pool_put(pc->pc_pool, object);
2069 				return (NULL);
2070 			}
2071 		}
2072 		if (object != NULL && pap != NULL) {
2073 #ifdef POOL_VTOPHYS
2074 			*pap = POOL_VTOPHYS(object);
2075 #else
2076 			*pap = POOL_PADDR_INVALID;
2077 #endif
2078 		}
2079 		return (object);
2080 	}
2081 
2082 	pc->pc_hits++;
2083 	pc->pc_nitems--;
2084 	object = pcg_get(pcg, pap);
2085 
2086 	if (pcg->pcg_avail == 0) {
2087 		LIST_REMOVE(pcg, pcg_list);
2088 		LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2089 	}
2090 	simple_unlock(&pc->pc_slock);
2091 
2092 	return (object);
2093 }
2094 
2095 /*
2096  * pool_cache_put{,_paddr}:
2097  *
2098  *	Put an object back to the pool cache (optionally caching the
2099  *	physical address of the object).
2100  */
2101 void
2102 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2103 {
2104 	struct pool_cache_group *pcg;
2105 	int s;
2106 
2107 	if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2108 		goto destruct;
2109 	}
2110 
2111 	simple_lock(&pc->pc_slock);
2112 
2113 	pcg = LIST_FIRST(&pc->pc_partgroups);
2114 	if (pcg == NULL) {
2115 		pcg = LIST_FIRST(&pc->pc_emptygroups);
2116 		if (pcg != NULL) {
2117 			LIST_REMOVE(pcg, pcg_list);
2118 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2119 		}
2120 	}
2121 	if (pcg == NULL) {
2122 
2123 		/*
2124 		 * No empty groups to free the object to.  Attempt to
2125 		 * allocate one.
2126 		 */
2127 		simple_unlock(&pc->pc_slock);
2128 		s = splvm();
2129 		pcg = pool_get(&pcgpool, PR_NOWAIT);
2130 		splx(s);
2131 		if (pcg == NULL) {
2132 destruct:
2133 
2134 			/*
2135 			 * Unable to allocate a cache group; destruct the object
2136 			 * and free it back to the pool.
2137 			 */
2138 			pool_cache_destruct_object(pc, object);
2139 			return;
2140 		}
2141 		memset(pcg, 0, sizeof(*pcg));
2142 		simple_lock(&pc->pc_slock);
2143 		pc->pc_ngroups++;
2144 		LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2145 	}
2146 
2147 	pc->pc_nitems++;
2148 	pcg_put(pcg, object, pa);
2149 
2150 	if (pcg->pcg_avail == PCG_NOBJECTS) {
2151 		LIST_REMOVE(pcg, pcg_list);
2152 		LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2153 	}
2154 	simple_unlock(&pc->pc_slock);
2155 }
2156 
2157 /*
2158  * pool_cache_destruct_object:
2159  *
2160  *	Force destruction of an object and its release back into
2161  *	the pool.
2162  */
2163 void
2164 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2165 {
2166 
2167 	if (pc->pc_dtor != NULL)
2168 		(*pc->pc_dtor)(pc->pc_arg, object);
2169 	pool_put(pc->pc_pool, object);
2170 }
2171 
2172 static void
2173 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2174     struct pool_cache *pc, struct pool_pagelist *pq,
2175     struct pool_cache_grouplist *pcgdl)
2176 {
2177 	struct pool_cache_group *pcg, *npcg;
2178 	void *object;
2179 
2180 	for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2181 		npcg = LIST_NEXT(pcg, pcg_list);
2182 		while (pcg->pcg_avail != 0) {
2183 			pc->pc_nitems--;
2184 			object = pcg_get(pcg, NULL);
2185 			if (pc->pc_dtor != NULL)
2186 				(*pc->pc_dtor)(pc->pc_arg, object);
2187 			pool_do_put(pc->pc_pool, object, pq);
2188 		}
2189 		pc->pc_ngroups--;
2190 		LIST_REMOVE(pcg, pcg_list);
2191 		LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2192 	}
2193 }
2194 
2195 static void
2196 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2197     struct pool_cache_grouplist *pcgl)
2198 {
2199 
2200 	LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2201 	LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2202 
2203 	pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2204 	pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2205 
2206 	KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2207 	KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2208 	KASSERT(pc->pc_nitems == 0);
2209 }
2210 
2211 /*
2212  * pool_cache_invalidate:
2213  *
2214  *	Invalidate a pool cache (destruct and release all of the
2215  *	cached objects).
2216  */
2217 void
2218 pool_cache_invalidate(struct pool_cache *pc)
2219 {
2220 	struct pool_pagelist pq;
2221 	struct pool_cache_grouplist pcgl;
2222 
2223 	LIST_INIT(&pq);
2224 	LIST_INIT(&pcgl);
2225 
2226 	simple_lock(&pc->pc_slock);
2227 	simple_lock(&pc->pc_pool->pr_slock);
2228 
2229 	pool_do_cache_invalidate(pc, &pq, &pcgl);
2230 
2231 	simple_unlock(&pc->pc_pool->pr_slock);
2232 	simple_unlock(&pc->pc_slock);
2233 
2234 	pr_pagelist_free(pc->pc_pool, &pq);
2235 	pcg_grouplist_free(&pcgl);
2236 }
2237 
2238 /*
2239  * pool_cache_reclaim:
2240  *
2241  *	Reclaim a pool cache for pool_reclaim().
2242  */
2243 static void
2244 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2245     struct pool_cache_grouplist *pcgl)
2246 {
2247 
2248 	/*
2249 	 * We're locking in the wrong order (normally pool_cache -> pool,
2250 	 * but the pool is already locked when we get here), so we have
2251 	 * to use trylock.  If we can't lock the pool_cache, it's not really
2252 	 * a big deal here.
2253 	 */
2254 	if (simple_lock_try(&pc->pc_slock) == 0)
2255 		return;
2256 
2257 	pool_do_cache_invalidate(pc, pq, pcgl);
2258 
2259 	simple_unlock(&pc->pc_slock);
2260 }
2261 
2262 /*
2263  * Pool backend allocators.
2264  *
2265  * Each pool has a backend allocator that handles allocation, deallocation,
2266  * and any additional draining that might be needed.
2267  *
2268  * We provide two standard allocators:
2269  *
2270  *	pool_allocator_kmem - the default when no allocator is specified
2271  *
2272  *	pool_allocator_nointr - used for pools that will not be accessed
2273  *	in interrupt context.
2274  */
2275 void	*pool_page_alloc(struct pool *, int);
2276 void	pool_page_free(struct pool *, void *);
2277 
2278 #ifdef POOL_SUBPAGE
2279 struct pool_allocator pool_allocator_kmem_fullpage = {
2280 	pool_page_alloc, pool_page_free, 0,
2281 	.pa_backingmapptr = &kmem_map,
2282 };
2283 #else
2284 struct pool_allocator pool_allocator_kmem = {
2285 	pool_page_alloc, pool_page_free, 0,
2286 	.pa_backingmapptr = &kmem_map,
2287 };
2288 #endif
2289 
2290 void	*pool_page_alloc_nointr(struct pool *, int);
2291 void	pool_page_free_nointr(struct pool *, void *);
2292 
2293 #ifdef POOL_SUBPAGE
2294 struct pool_allocator pool_allocator_nointr_fullpage = {
2295 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2296 	.pa_backingmapptr = &kernel_map,
2297 };
2298 #else
2299 struct pool_allocator pool_allocator_nointr = {
2300 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2301 	.pa_backingmapptr = &kernel_map,
2302 };
2303 #endif
2304 
2305 #ifdef POOL_SUBPAGE
2306 void	*pool_subpage_alloc(struct pool *, int);
2307 void	pool_subpage_free(struct pool *, void *);
2308 
2309 struct pool_allocator pool_allocator_kmem = {
2310 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2311 	.pa_backingmapptr = &kmem_map,
2312 };
2313 
2314 void	*pool_subpage_alloc_nointr(struct pool *, int);
2315 void	pool_subpage_free_nointr(struct pool *, void *);
2316 
2317 struct pool_allocator pool_allocator_nointr = {
2318 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2319 	.pa_backingmapptr = &kmem_map,
2320 };
2321 #endif /* POOL_SUBPAGE */
2322 
2323 static void *
2324 pool_allocator_alloc(struct pool *pp, int flags)
2325 {
2326 	struct pool_allocator *pa = pp->pr_alloc;
2327 	void *res;
2328 
2329 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2330 
2331 	res = (*pa->pa_alloc)(pp, flags);
2332 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2333 		/*
2334 		 * We only run the drain hook here if PR_NOWAIT.
2335 		 * In other cases, the hook will be run in
2336 		 * pool_reclaim().
2337 		 */
2338 		if (pp->pr_drain_hook != NULL) {
2339 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2340 			res = (*pa->pa_alloc)(pp, flags);
2341 		}
2342 	}
2343 	return res;
2344 }
2345 
2346 static void
2347 pool_allocator_free(struct pool *pp, void *v)
2348 {
2349 	struct pool_allocator *pa = pp->pr_alloc;
2350 
2351 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2352 
2353 	(*pa->pa_free)(pp, v);
2354 }
2355 
2356 void *
2357 pool_page_alloc(struct pool *pp __unused, int flags)
2358 {
2359 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2360 
2361 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2362 }
2363 
2364 void
2365 pool_page_free(struct pool *pp __unused, void *v)
2366 {
2367 
2368 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2369 }
2370 
2371 static void *
2372 pool_page_alloc_meta(struct pool *pp __unused, int flags)
2373 {
2374 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2375 
2376 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2377 }
2378 
2379 static void
2380 pool_page_free_meta(struct pool *pp __unused, void *v)
2381 {
2382 
2383 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2384 }
2385 
2386 #ifdef POOL_SUBPAGE
2387 /* Sub-page allocator, for machines with large hardware pages. */
2388 void *
2389 pool_subpage_alloc(struct pool *pp, int flags)
2390 {
2391 	void *v;
2392 	int s;
2393 	s = splvm();
2394 	v = pool_get(&psppool, flags);
2395 	splx(s);
2396 	return v;
2397 }
2398 
2399 void
2400 pool_subpage_free(struct pool *pp, void *v)
2401 {
2402 	int s;
2403 	s = splvm();
2404 	pool_put(&psppool, v);
2405 	splx(s);
2406 }
2407 
2408 /* We don't provide a real nointr allocator.  Maybe later. */
2409 void *
2410 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2411 {
2412 
2413 	return (pool_subpage_alloc(pp, flags));
2414 }
2415 
2416 void
2417 pool_subpage_free_nointr(struct pool *pp, void *v)
2418 {
2419 
2420 	pool_subpage_free(pp, v);
2421 }
2422 #endif /* POOL_SUBPAGE */
2423 void *
2424 pool_page_alloc_nointr(struct pool *pp __unused, int flags)
2425 {
2426 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2427 
2428 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2429 }
2430 
2431 void
2432 pool_page_free_nointr(struct pool *pp __unused, void *v)
2433 {
2434 
2435 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2436 }
2437