1 /* $NetBSD: subr_pool.c,v 1.166 2008/07/09 02:43:53 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.166 2008/07/09 02:43:53 yamt Exp $"); 35 36 #include "opt_ddb.h" 37 #include "opt_pool.h" 38 #include "opt_poollog.h" 39 #include "opt_lockdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bitops.h> 44 #include <sys/proc.h> 45 #include <sys/errno.h> 46 #include <sys/kernel.h> 47 #include <sys/malloc.h> 48 #include <sys/pool.h> 49 #include <sys/syslog.h> 50 #include <sys/debug.h> 51 #include <sys/lockdebug.h> 52 #include <sys/xcall.h> 53 #include <sys/cpu.h> 54 #include <sys/atomic.h> 55 56 #include <uvm/uvm.h> 57 58 /* 59 * Pool resource management utility. 60 * 61 * Memory is allocated in pages which are split into pieces according to 62 * the pool item size. Each page is kept on one of three lists in the 63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 64 * for empty, full and partially-full pages respectively. The individual 65 * pool items are on a linked list headed by `ph_itemlist' in each page 66 * header. The memory for building the page list is either taken from 67 * the allocated pages themselves (for small pool items) or taken from 68 * an internal pool of page headers (`phpool'). 69 */ 70 71 /* List of all pools */ 72 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 73 74 /* Private pool for page header structures */ 75 #define PHPOOL_MAX 8 76 static struct pool phpool[PHPOOL_MAX]; 77 #define PHPOOL_FREELIST_NELEM(idx) \ 78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 79 80 #ifdef POOL_SUBPAGE 81 /* Pool of subpages for use by normal pools. */ 82 static struct pool psppool; 83 #endif 84 85 static SLIST_HEAD(, pool_allocator) pa_deferinitq = 86 SLIST_HEAD_INITIALIZER(pa_deferinitq); 87 88 static void *pool_page_alloc_meta(struct pool *, int); 89 static void pool_page_free_meta(struct pool *, void *); 90 91 /* allocator for pool metadata */ 92 struct pool_allocator pool_allocator_meta = { 93 pool_page_alloc_meta, pool_page_free_meta, 94 .pa_backingmapptr = &kmem_map, 95 }; 96 97 /* # of seconds to retain page after last use */ 98 int pool_inactive_time = 10; 99 100 /* Next candidate for drainage (see pool_drain()) */ 101 static struct pool *drainpp; 102 103 /* This lock protects both pool_head and drainpp. */ 104 static kmutex_t pool_head_lock; 105 static kcondvar_t pool_busy; 106 107 typedef uint32_t pool_item_bitmap_t; 108 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 109 #define BITMAP_MASK (BITMAP_SIZE - 1) 110 111 struct pool_item_header { 112 /* Page headers */ 113 LIST_ENTRY(pool_item_header) 114 ph_pagelist; /* pool page list */ 115 SPLAY_ENTRY(pool_item_header) 116 ph_node; /* Off-page page headers */ 117 void * ph_page; /* this page's address */ 118 uint32_t ph_time; /* last referenced */ 119 uint16_t ph_nmissing; /* # of chunks in use */ 120 uint16_t ph_off; /* start offset in page */ 121 union { 122 /* !PR_NOTOUCH */ 123 struct { 124 LIST_HEAD(, pool_item) 125 phu_itemlist; /* chunk list for this page */ 126 } phu_normal; 127 /* PR_NOTOUCH */ 128 struct { 129 pool_item_bitmap_t phu_bitmap[1]; 130 } phu_notouch; 131 } ph_u; 132 }; 133 #define ph_itemlist ph_u.phu_normal.phu_itemlist 134 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 135 136 struct pool_item { 137 #ifdef DIAGNOSTIC 138 u_int pi_magic; 139 #endif 140 #define PI_MAGIC 0xdeaddeadU 141 /* Other entries use only this list entry */ 142 LIST_ENTRY(pool_item) pi_list; 143 }; 144 145 #define POOL_NEEDS_CATCHUP(pp) \ 146 ((pp)->pr_nitems < (pp)->pr_minitems) 147 148 /* 149 * Pool cache management. 150 * 151 * Pool caches provide a way for constructed objects to be cached by the 152 * pool subsystem. This can lead to performance improvements by avoiding 153 * needless object construction/destruction; it is deferred until absolutely 154 * necessary. 155 * 156 * Caches are grouped into cache groups. Each cache group references up 157 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 158 * object from the pool, it calls the object's constructor and places it 159 * into a cache group. When a cache group frees an object back to the 160 * pool, it first calls the object's destructor. This allows the object 161 * to persist in constructed form while freed to the cache. 162 * 163 * The pool references each cache, so that when a pool is drained by the 164 * pagedaemon, it can drain each individual cache as well. Each time a 165 * cache is drained, the most idle cache group is freed to the pool in 166 * its entirety. 167 * 168 * Pool caches are layed on top of pools. By layering them, we can avoid 169 * the complexity of cache management for pools which would not benefit 170 * from it. 171 */ 172 173 static struct pool pcg_normal_pool; 174 static struct pool pcg_large_pool; 175 static struct pool cache_pool; 176 static struct pool cache_cpu_pool; 177 178 /* List of all caches. */ 179 TAILQ_HEAD(,pool_cache) pool_cache_head = 180 TAILQ_HEAD_INITIALIZER(pool_cache_head); 181 182 int pool_cache_disable; /* global disable for caching */ 183 static pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 184 185 static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 186 void *); 187 static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 188 void **, paddr_t *, int); 189 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 190 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 191 static void pool_cache_xcall(pool_cache_t); 192 193 static int pool_catchup(struct pool *); 194 static void pool_prime_page(struct pool *, void *, 195 struct pool_item_header *); 196 static void pool_update_curpage(struct pool *); 197 198 static int pool_grow(struct pool *, int); 199 static void *pool_allocator_alloc(struct pool *, int); 200 static void pool_allocator_free(struct pool *, void *); 201 202 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 203 void (*)(const char *, ...)); 204 static void pool_print1(struct pool *, const char *, 205 void (*)(const char *, ...)); 206 207 static int pool_chk_page(struct pool *, const char *, 208 struct pool_item_header *); 209 210 /* 211 * Pool log entry. An array of these is allocated in pool_init(). 212 */ 213 struct pool_log { 214 const char *pl_file; 215 long pl_line; 216 int pl_action; 217 #define PRLOG_GET 1 218 #define PRLOG_PUT 2 219 void *pl_addr; 220 }; 221 222 #ifdef POOL_DIAGNOSTIC 223 /* Number of entries in pool log buffers */ 224 #ifndef POOL_LOGSIZE 225 #define POOL_LOGSIZE 10 226 #endif 227 228 int pool_logsize = POOL_LOGSIZE; 229 230 static inline void 231 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 232 { 233 int n = pp->pr_curlogentry; 234 struct pool_log *pl; 235 236 if ((pp->pr_roflags & PR_LOGGING) == 0) 237 return; 238 239 /* 240 * Fill in the current entry. Wrap around and overwrite 241 * the oldest entry if necessary. 242 */ 243 pl = &pp->pr_log[n]; 244 pl->pl_file = file; 245 pl->pl_line = line; 246 pl->pl_action = action; 247 pl->pl_addr = v; 248 if (++n >= pp->pr_logsize) 249 n = 0; 250 pp->pr_curlogentry = n; 251 } 252 253 static void 254 pr_printlog(struct pool *pp, struct pool_item *pi, 255 void (*pr)(const char *, ...)) 256 { 257 int i = pp->pr_logsize; 258 int n = pp->pr_curlogentry; 259 260 if ((pp->pr_roflags & PR_LOGGING) == 0) 261 return; 262 263 /* 264 * Print all entries in this pool's log. 265 */ 266 while (i-- > 0) { 267 struct pool_log *pl = &pp->pr_log[n]; 268 if (pl->pl_action != 0) { 269 if (pi == NULL || pi == pl->pl_addr) { 270 (*pr)("\tlog entry %d:\n", i); 271 (*pr)("\t\taction = %s, addr = %p\n", 272 pl->pl_action == PRLOG_GET ? "get" : "put", 273 pl->pl_addr); 274 (*pr)("\t\tfile: %s at line %lu\n", 275 pl->pl_file, pl->pl_line); 276 } 277 } 278 if (++n >= pp->pr_logsize) 279 n = 0; 280 } 281 } 282 283 static inline void 284 pr_enter(struct pool *pp, const char *file, long line) 285 { 286 287 if (__predict_false(pp->pr_entered_file != NULL)) { 288 printf("pool %s: reentrancy at file %s line %ld\n", 289 pp->pr_wchan, file, line); 290 printf(" previous entry at file %s line %ld\n", 291 pp->pr_entered_file, pp->pr_entered_line); 292 panic("pr_enter"); 293 } 294 295 pp->pr_entered_file = file; 296 pp->pr_entered_line = line; 297 } 298 299 static inline void 300 pr_leave(struct pool *pp) 301 { 302 303 if (__predict_false(pp->pr_entered_file == NULL)) { 304 printf("pool %s not entered?\n", pp->pr_wchan); 305 panic("pr_leave"); 306 } 307 308 pp->pr_entered_file = NULL; 309 pp->pr_entered_line = 0; 310 } 311 312 static inline void 313 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 314 { 315 316 if (pp->pr_entered_file != NULL) 317 (*pr)("\n\tcurrently entered from file %s line %ld\n", 318 pp->pr_entered_file, pp->pr_entered_line); 319 } 320 #else 321 #define pr_log(pp, v, action, file, line) 322 #define pr_printlog(pp, pi, pr) 323 #define pr_enter(pp, file, line) 324 #define pr_leave(pp) 325 #define pr_enter_check(pp, pr) 326 #endif /* POOL_DIAGNOSTIC */ 327 328 static inline unsigned int 329 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 330 const void *v) 331 { 332 const char *cp = v; 333 unsigned int idx; 334 335 KASSERT(pp->pr_roflags & PR_NOTOUCH); 336 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 337 KASSERT(idx < pp->pr_itemsperpage); 338 return idx; 339 } 340 341 static inline void 342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 343 void *obj) 344 { 345 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 346 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 347 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 348 349 KASSERT((*bitmap & mask) == 0); 350 *bitmap |= mask; 351 } 352 353 static inline void * 354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 355 { 356 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 357 unsigned int idx; 358 int i; 359 360 for (i = 0; ; i++) { 361 int bit; 362 363 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 364 bit = ffs32(bitmap[i]); 365 if (bit) { 366 pool_item_bitmap_t mask; 367 368 bit--; 369 idx = (i * BITMAP_SIZE) + bit; 370 mask = 1 << bit; 371 KASSERT((bitmap[i] & mask) != 0); 372 bitmap[i] &= ~mask; 373 break; 374 } 375 } 376 KASSERT(idx < pp->pr_itemsperpage); 377 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 378 } 379 380 static inline void 381 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 382 { 383 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 384 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 385 int i; 386 387 for (i = 0; i < n; i++) { 388 bitmap[i] = (pool_item_bitmap_t)-1; 389 } 390 } 391 392 static inline int 393 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 394 { 395 396 /* 397 * we consider pool_item_header with smaller ph_page bigger. 398 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 399 */ 400 401 if (a->ph_page < b->ph_page) 402 return (1); 403 else if (a->ph_page > b->ph_page) 404 return (-1); 405 else 406 return (0); 407 } 408 409 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 410 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 411 412 static inline struct pool_item_header * 413 pr_find_pagehead_noalign(struct pool *pp, void *v) 414 { 415 struct pool_item_header *ph, tmp; 416 417 tmp.ph_page = (void *)(uintptr_t)v; 418 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 419 if (ph == NULL) { 420 ph = SPLAY_ROOT(&pp->pr_phtree); 421 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 422 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 423 } 424 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 425 } 426 427 return ph; 428 } 429 430 /* 431 * Return the pool page header based on item address. 432 */ 433 static inline struct pool_item_header * 434 pr_find_pagehead(struct pool *pp, void *v) 435 { 436 struct pool_item_header *ph, tmp; 437 438 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 439 ph = pr_find_pagehead_noalign(pp, v); 440 } else { 441 void *page = 442 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 443 444 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 445 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 446 } else { 447 tmp.ph_page = page; 448 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 449 } 450 } 451 452 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 453 ((char *)ph->ph_page <= (char *)v && 454 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 455 return ph; 456 } 457 458 static void 459 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 460 { 461 struct pool_item_header *ph; 462 463 while ((ph = LIST_FIRST(pq)) != NULL) { 464 LIST_REMOVE(ph, ph_pagelist); 465 pool_allocator_free(pp, ph->ph_page); 466 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 467 pool_put(pp->pr_phpool, ph); 468 } 469 } 470 471 /* 472 * Remove a page from the pool. 473 */ 474 static inline void 475 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 476 struct pool_pagelist *pq) 477 { 478 479 KASSERT(mutex_owned(&pp->pr_lock)); 480 481 /* 482 * If the page was idle, decrement the idle page count. 483 */ 484 if (ph->ph_nmissing == 0) { 485 #ifdef DIAGNOSTIC 486 if (pp->pr_nidle == 0) 487 panic("pr_rmpage: nidle inconsistent"); 488 if (pp->pr_nitems < pp->pr_itemsperpage) 489 panic("pr_rmpage: nitems inconsistent"); 490 #endif 491 pp->pr_nidle--; 492 } 493 494 pp->pr_nitems -= pp->pr_itemsperpage; 495 496 /* 497 * Unlink the page from the pool and queue it for release. 498 */ 499 LIST_REMOVE(ph, ph_pagelist); 500 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 501 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 502 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 503 504 pp->pr_npages--; 505 pp->pr_npagefree++; 506 507 pool_update_curpage(pp); 508 } 509 510 static bool 511 pa_starved_p(struct pool_allocator *pa) 512 { 513 514 if (pa->pa_backingmap != NULL) { 515 return vm_map_starved_p(pa->pa_backingmap); 516 } 517 return false; 518 } 519 520 static int 521 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 522 { 523 struct pool *pp = obj; 524 struct pool_allocator *pa = pp->pr_alloc; 525 526 KASSERT(&pp->pr_reclaimerentry == ce); 527 pool_reclaim(pp); 528 if (!pa_starved_p(pa)) { 529 return CALLBACK_CHAIN_ABORT; 530 } 531 return CALLBACK_CHAIN_CONTINUE; 532 } 533 534 static void 535 pool_reclaim_register(struct pool *pp) 536 { 537 struct vm_map *map = pp->pr_alloc->pa_backingmap; 538 int s; 539 540 if (map == NULL) { 541 return; 542 } 543 544 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 545 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, 546 &pp->pr_reclaimerentry, pp, pool_reclaim_callback); 547 splx(s); 548 } 549 550 static void 551 pool_reclaim_unregister(struct pool *pp) 552 { 553 struct vm_map *map = pp->pr_alloc->pa_backingmap; 554 int s; 555 556 if (map == NULL) { 557 return; 558 } 559 560 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 561 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, 562 &pp->pr_reclaimerentry); 563 splx(s); 564 } 565 566 static void 567 pa_reclaim_register(struct pool_allocator *pa) 568 { 569 struct vm_map *map = *pa->pa_backingmapptr; 570 struct pool *pp; 571 572 KASSERT(pa->pa_backingmap == NULL); 573 if (map == NULL) { 574 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); 575 return; 576 } 577 pa->pa_backingmap = map; 578 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 579 pool_reclaim_register(pp); 580 } 581 } 582 583 /* 584 * Initialize all the pools listed in the "pools" link set. 585 */ 586 void 587 pool_subsystem_init(void) 588 { 589 struct pool_allocator *pa; 590 __link_set_decl(pools, struct link_pool_init); 591 struct link_pool_init * const *pi; 592 593 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 594 cv_init(&pool_busy, "poolbusy"); 595 596 __link_set_foreach(pi, pools) 597 pool_init((*pi)->pp, (*pi)->size, (*pi)->align, 598 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan, 599 (*pi)->palloc, (*pi)->ipl); 600 601 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { 602 KASSERT(pa->pa_backingmapptr != NULL); 603 KASSERT(*pa->pa_backingmapptr != NULL); 604 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); 605 pa_reclaim_register(pa); 606 } 607 608 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 609 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); 610 611 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 612 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); 613 } 614 615 /* 616 * Initialize the given pool resource structure. 617 * 618 * We export this routine to allow other kernel parts to declare 619 * static pools that must be initialized before malloc() is available. 620 */ 621 void 622 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 623 const char *wchan, struct pool_allocator *palloc, int ipl) 624 { 625 struct pool *pp1; 626 size_t trysize, phsize; 627 int off, slack; 628 629 #ifdef DEBUG 630 /* 631 * Check that the pool hasn't already been initialised and 632 * added to the list of all pools. 633 */ 634 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 635 if (pp == pp1) 636 panic("pool_init: pool %s already initialised", 637 wchan); 638 } 639 #endif 640 641 #ifdef POOL_DIAGNOSTIC 642 /* 643 * Always log if POOL_DIAGNOSTIC is defined. 644 */ 645 if (pool_logsize != 0) 646 flags |= PR_LOGGING; 647 #endif 648 649 if (palloc == NULL) 650 palloc = &pool_allocator_kmem; 651 #ifdef POOL_SUBPAGE 652 if (size > palloc->pa_pagesz) { 653 if (palloc == &pool_allocator_kmem) 654 palloc = &pool_allocator_kmem_fullpage; 655 else if (palloc == &pool_allocator_nointr) 656 palloc = &pool_allocator_nointr_fullpage; 657 } 658 #endif /* POOL_SUBPAGE */ 659 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 660 if (palloc->pa_pagesz == 0) 661 palloc->pa_pagesz = PAGE_SIZE; 662 663 TAILQ_INIT(&palloc->pa_list); 664 665 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 666 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 667 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 668 669 if (palloc->pa_backingmapptr != NULL) { 670 pa_reclaim_register(palloc); 671 } 672 palloc->pa_flags |= PA_INITIALIZED; 673 } 674 675 if (align == 0) 676 align = ALIGN(1); 677 678 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 679 size = sizeof(struct pool_item); 680 681 size = roundup(size, align); 682 #ifdef DIAGNOSTIC 683 if (size > palloc->pa_pagesz) 684 panic("pool_init: pool item size (%zu) too large", size); 685 #endif 686 687 /* 688 * Initialize the pool structure. 689 */ 690 LIST_INIT(&pp->pr_emptypages); 691 LIST_INIT(&pp->pr_fullpages); 692 LIST_INIT(&pp->pr_partpages); 693 pp->pr_cache = NULL; 694 pp->pr_curpage = NULL; 695 pp->pr_npages = 0; 696 pp->pr_minitems = 0; 697 pp->pr_minpages = 0; 698 pp->pr_maxpages = UINT_MAX; 699 pp->pr_roflags = flags; 700 pp->pr_flags = 0; 701 pp->pr_size = size; 702 pp->pr_align = align; 703 pp->pr_wchan = wchan; 704 pp->pr_alloc = palloc; 705 pp->pr_nitems = 0; 706 pp->pr_nout = 0; 707 pp->pr_hardlimit = UINT_MAX; 708 pp->pr_hardlimit_warning = NULL; 709 pp->pr_hardlimit_ratecap.tv_sec = 0; 710 pp->pr_hardlimit_ratecap.tv_usec = 0; 711 pp->pr_hardlimit_warning_last.tv_sec = 0; 712 pp->pr_hardlimit_warning_last.tv_usec = 0; 713 pp->pr_drain_hook = NULL; 714 pp->pr_drain_hook_arg = NULL; 715 pp->pr_freecheck = NULL; 716 717 /* 718 * Decide whether to put the page header off page to avoid 719 * wasting too large a part of the page or too big item. 720 * Off-page page headers go on a hash table, so we can match 721 * a returned item with its header based on the page address. 722 * We use 1/16 of the page size and about 8 times of the item 723 * size as the threshold (XXX: tune) 724 * 725 * However, we'll put the header into the page if we can put 726 * it without wasting any items. 727 * 728 * Silently enforce `0 <= ioff < align'. 729 */ 730 pp->pr_itemoffset = ioff %= align; 731 /* See the comment below about reserved bytes. */ 732 trysize = palloc->pa_pagesz - ((align - ioff) % align); 733 phsize = ALIGN(sizeof(struct pool_item_header)); 734 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 735 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 736 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { 737 /* Use the end of the page for the page header */ 738 pp->pr_roflags |= PR_PHINPAGE; 739 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 740 } else { 741 /* The page header will be taken from our page header pool */ 742 pp->pr_phoffset = 0; 743 off = palloc->pa_pagesz; 744 SPLAY_INIT(&pp->pr_phtree); 745 } 746 747 /* 748 * Alignment is to take place at `ioff' within the item. This means 749 * we must reserve up to `align - 1' bytes on the page to allow 750 * appropriate positioning of each item. 751 */ 752 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 753 KASSERT(pp->pr_itemsperpage != 0); 754 if ((pp->pr_roflags & PR_NOTOUCH)) { 755 int idx; 756 757 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 758 idx++) { 759 /* nothing */ 760 } 761 if (idx >= PHPOOL_MAX) { 762 /* 763 * if you see this panic, consider to tweak 764 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 765 */ 766 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 767 pp->pr_wchan, pp->pr_itemsperpage); 768 } 769 pp->pr_phpool = &phpool[idx]; 770 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 771 pp->pr_phpool = &phpool[0]; 772 } 773 #if defined(DIAGNOSTIC) 774 else { 775 pp->pr_phpool = NULL; 776 } 777 #endif 778 779 /* 780 * Use the slack between the chunks and the page header 781 * for "cache coloring". 782 */ 783 slack = off - pp->pr_itemsperpage * pp->pr_size; 784 pp->pr_maxcolor = (slack / align) * align; 785 pp->pr_curcolor = 0; 786 787 pp->pr_nget = 0; 788 pp->pr_nfail = 0; 789 pp->pr_nput = 0; 790 pp->pr_npagealloc = 0; 791 pp->pr_npagefree = 0; 792 pp->pr_hiwat = 0; 793 pp->pr_nidle = 0; 794 pp->pr_refcnt = 0; 795 796 #ifdef POOL_DIAGNOSTIC 797 if (flags & PR_LOGGING) { 798 if (kmem_map == NULL || 799 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 800 M_TEMP, M_NOWAIT)) == NULL) 801 pp->pr_roflags &= ~PR_LOGGING; 802 pp->pr_curlogentry = 0; 803 pp->pr_logsize = pool_logsize; 804 } 805 #endif 806 807 pp->pr_entered_file = NULL; 808 pp->pr_entered_line = 0; 809 810 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 811 cv_init(&pp->pr_cv, wchan); 812 pp->pr_ipl = ipl; 813 814 /* 815 * Initialize private page header pool and cache magazine pool if we 816 * haven't done so yet. 817 * XXX LOCKING. 818 */ 819 if (phpool[0].pr_size == 0) { 820 int idx; 821 for (idx = 0; idx < PHPOOL_MAX; idx++) { 822 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 823 int nelem; 824 size_t sz; 825 826 nelem = PHPOOL_FREELIST_NELEM(idx); 827 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 828 "phpool-%d", nelem); 829 sz = sizeof(struct pool_item_header); 830 if (nelem) { 831 sz = offsetof(struct pool_item_header, 832 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 833 } 834 pool_init(&phpool[idx], sz, 0, 0, 0, 835 phpool_names[idx], &pool_allocator_meta, IPL_VM); 836 } 837 #ifdef POOL_SUBPAGE 838 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 839 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 840 #endif 841 842 size = sizeof(pcg_t) + 843 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 844 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 845 "pcgnormal", &pool_allocator_meta, IPL_VM); 846 847 size = sizeof(pcg_t) + 848 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 849 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 850 "pcglarge", &pool_allocator_meta, IPL_VM); 851 } 852 853 /* Insert into the list of all pools. */ 854 if (__predict_true(!cold)) 855 mutex_enter(&pool_head_lock); 856 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 857 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 858 break; 859 } 860 if (pp1 == NULL) 861 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 862 else 863 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 864 if (__predict_true(!cold)) 865 mutex_exit(&pool_head_lock); 866 867 /* Insert this into the list of pools using this allocator. */ 868 if (__predict_true(!cold)) 869 mutex_enter(&palloc->pa_lock); 870 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 871 if (__predict_true(!cold)) 872 mutex_exit(&palloc->pa_lock); 873 874 pool_reclaim_register(pp); 875 } 876 877 /* 878 * De-commision a pool resource. 879 */ 880 void 881 pool_destroy(struct pool *pp) 882 { 883 struct pool_pagelist pq; 884 struct pool_item_header *ph; 885 886 /* Remove from global pool list */ 887 mutex_enter(&pool_head_lock); 888 while (pp->pr_refcnt != 0) 889 cv_wait(&pool_busy, &pool_head_lock); 890 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 891 if (drainpp == pp) 892 drainpp = NULL; 893 mutex_exit(&pool_head_lock); 894 895 /* Remove this pool from its allocator's list of pools. */ 896 pool_reclaim_unregister(pp); 897 mutex_enter(&pp->pr_alloc->pa_lock); 898 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 899 mutex_exit(&pp->pr_alloc->pa_lock); 900 901 mutex_enter(&pp->pr_lock); 902 903 KASSERT(pp->pr_cache == NULL); 904 905 #ifdef DIAGNOSTIC 906 if (pp->pr_nout != 0) { 907 pr_printlog(pp, NULL, printf); 908 panic("pool_destroy: pool busy: still out: %u", 909 pp->pr_nout); 910 } 911 #endif 912 913 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 914 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 915 916 /* Remove all pages */ 917 LIST_INIT(&pq); 918 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 919 pr_rmpage(pp, ph, &pq); 920 921 mutex_exit(&pp->pr_lock); 922 923 pr_pagelist_free(pp, &pq); 924 925 #ifdef POOL_DIAGNOSTIC 926 if ((pp->pr_roflags & PR_LOGGING) != 0) 927 free(pp->pr_log, M_TEMP); 928 #endif 929 930 cv_destroy(&pp->pr_cv); 931 mutex_destroy(&pp->pr_lock); 932 } 933 934 void 935 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 936 { 937 938 /* XXX no locking -- must be used just after pool_init() */ 939 #ifdef DIAGNOSTIC 940 if (pp->pr_drain_hook != NULL) 941 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 942 #endif 943 pp->pr_drain_hook = fn; 944 pp->pr_drain_hook_arg = arg; 945 } 946 947 static struct pool_item_header * 948 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 949 { 950 struct pool_item_header *ph; 951 952 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 953 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 954 else 955 ph = pool_get(pp->pr_phpool, flags); 956 957 return (ph); 958 } 959 960 /* 961 * Grab an item from the pool. 962 */ 963 void * 964 #ifdef POOL_DIAGNOSTIC 965 _pool_get(struct pool *pp, int flags, const char *file, long line) 966 #else 967 pool_get(struct pool *pp, int flags) 968 #endif 969 { 970 struct pool_item *pi; 971 struct pool_item_header *ph; 972 void *v; 973 974 #ifdef DIAGNOSTIC 975 if (__predict_false(pp->pr_itemsperpage == 0)) 976 panic("pool_get: pool %p: pr_itemsperpage is zero, " 977 "pool not initialized?", pp); 978 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 979 (flags & PR_WAITOK) != 0)) 980 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 981 982 #endif /* DIAGNOSTIC */ 983 #ifdef LOCKDEBUG 984 if (flags & PR_WAITOK) { 985 ASSERT_SLEEPABLE(); 986 } 987 #endif 988 989 mutex_enter(&pp->pr_lock); 990 pr_enter(pp, file, line); 991 992 startover: 993 /* 994 * Check to see if we've reached the hard limit. If we have, 995 * and we can wait, then wait until an item has been returned to 996 * the pool. 997 */ 998 #ifdef DIAGNOSTIC 999 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 1000 pr_leave(pp); 1001 mutex_exit(&pp->pr_lock); 1002 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 1003 } 1004 #endif 1005 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1006 if (pp->pr_drain_hook != NULL) { 1007 /* 1008 * Since the drain hook is going to free things 1009 * back to the pool, unlock, call the hook, re-lock, 1010 * and check the hardlimit condition again. 1011 */ 1012 pr_leave(pp); 1013 mutex_exit(&pp->pr_lock); 1014 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1015 mutex_enter(&pp->pr_lock); 1016 pr_enter(pp, file, line); 1017 if (pp->pr_nout < pp->pr_hardlimit) 1018 goto startover; 1019 } 1020 1021 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1022 /* 1023 * XXX: A warning isn't logged in this case. Should 1024 * it be? 1025 */ 1026 pp->pr_flags |= PR_WANTED; 1027 pr_leave(pp); 1028 cv_wait(&pp->pr_cv, &pp->pr_lock); 1029 pr_enter(pp, file, line); 1030 goto startover; 1031 } 1032 1033 /* 1034 * Log a message that the hard limit has been hit. 1035 */ 1036 if (pp->pr_hardlimit_warning != NULL && 1037 ratecheck(&pp->pr_hardlimit_warning_last, 1038 &pp->pr_hardlimit_ratecap)) 1039 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1040 1041 pp->pr_nfail++; 1042 1043 pr_leave(pp); 1044 mutex_exit(&pp->pr_lock); 1045 return (NULL); 1046 } 1047 1048 /* 1049 * The convention we use is that if `curpage' is not NULL, then 1050 * it points at a non-empty bucket. In particular, `curpage' 1051 * never points at a page header which has PR_PHINPAGE set and 1052 * has no items in its bucket. 1053 */ 1054 if ((ph = pp->pr_curpage) == NULL) { 1055 int error; 1056 1057 #ifdef DIAGNOSTIC 1058 if (pp->pr_nitems != 0) { 1059 mutex_exit(&pp->pr_lock); 1060 printf("pool_get: %s: curpage NULL, nitems %u\n", 1061 pp->pr_wchan, pp->pr_nitems); 1062 panic("pool_get: nitems inconsistent"); 1063 } 1064 #endif 1065 1066 /* 1067 * Call the back-end page allocator for more memory. 1068 * Release the pool lock, as the back-end page allocator 1069 * may block. 1070 */ 1071 pr_leave(pp); 1072 error = pool_grow(pp, flags); 1073 pr_enter(pp, file, line); 1074 if (error != 0) { 1075 /* 1076 * We were unable to allocate a page or item 1077 * header, but we released the lock during 1078 * allocation, so perhaps items were freed 1079 * back to the pool. Check for this case. 1080 */ 1081 if (pp->pr_curpage != NULL) 1082 goto startover; 1083 1084 pp->pr_nfail++; 1085 pr_leave(pp); 1086 mutex_exit(&pp->pr_lock); 1087 return (NULL); 1088 } 1089 1090 /* Start the allocation process over. */ 1091 goto startover; 1092 } 1093 if (pp->pr_roflags & PR_NOTOUCH) { 1094 #ifdef DIAGNOSTIC 1095 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 1096 pr_leave(pp); 1097 mutex_exit(&pp->pr_lock); 1098 panic("pool_get: %s: page empty", pp->pr_wchan); 1099 } 1100 #endif 1101 v = pr_item_notouch_get(pp, ph); 1102 #ifdef POOL_DIAGNOSTIC 1103 pr_log(pp, v, PRLOG_GET, file, line); 1104 #endif 1105 } else { 1106 v = pi = LIST_FIRST(&ph->ph_itemlist); 1107 if (__predict_false(v == NULL)) { 1108 pr_leave(pp); 1109 mutex_exit(&pp->pr_lock); 1110 panic("pool_get: %s: page empty", pp->pr_wchan); 1111 } 1112 #ifdef DIAGNOSTIC 1113 if (__predict_false(pp->pr_nitems == 0)) { 1114 pr_leave(pp); 1115 mutex_exit(&pp->pr_lock); 1116 printf("pool_get: %s: items on itemlist, nitems %u\n", 1117 pp->pr_wchan, pp->pr_nitems); 1118 panic("pool_get: nitems inconsistent"); 1119 } 1120 #endif 1121 1122 #ifdef POOL_DIAGNOSTIC 1123 pr_log(pp, v, PRLOG_GET, file, line); 1124 #endif 1125 1126 #ifdef DIAGNOSTIC 1127 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 1128 pr_printlog(pp, pi, printf); 1129 panic("pool_get(%s): free list modified: " 1130 "magic=%x; page %p; item addr %p\n", 1131 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 1132 } 1133 #endif 1134 1135 /* 1136 * Remove from item list. 1137 */ 1138 LIST_REMOVE(pi, pi_list); 1139 } 1140 pp->pr_nitems--; 1141 pp->pr_nout++; 1142 if (ph->ph_nmissing == 0) { 1143 #ifdef DIAGNOSTIC 1144 if (__predict_false(pp->pr_nidle == 0)) 1145 panic("pool_get: nidle inconsistent"); 1146 #endif 1147 pp->pr_nidle--; 1148 1149 /* 1150 * This page was previously empty. Move it to the list of 1151 * partially-full pages. This page is already curpage. 1152 */ 1153 LIST_REMOVE(ph, ph_pagelist); 1154 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1155 } 1156 ph->ph_nmissing++; 1157 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1158 #ifdef DIAGNOSTIC 1159 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 1160 !LIST_EMPTY(&ph->ph_itemlist))) { 1161 pr_leave(pp); 1162 mutex_exit(&pp->pr_lock); 1163 panic("pool_get: %s: nmissing inconsistent", 1164 pp->pr_wchan); 1165 } 1166 #endif 1167 /* 1168 * This page is now full. Move it to the full list 1169 * and select a new current page. 1170 */ 1171 LIST_REMOVE(ph, ph_pagelist); 1172 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1173 pool_update_curpage(pp); 1174 } 1175 1176 pp->pr_nget++; 1177 pr_leave(pp); 1178 1179 /* 1180 * If we have a low water mark and we are now below that low 1181 * water mark, add more items to the pool. 1182 */ 1183 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1184 /* 1185 * XXX: Should we log a warning? Should we set up a timeout 1186 * to try again in a second or so? The latter could break 1187 * a caller's assumptions about interrupt protection, etc. 1188 */ 1189 } 1190 1191 mutex_exit(&pp->pr_lock); 1192 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 1193 FREECHECK_OUT(&pp->pr_freecheck, v); 1194 return (v); 1195 } 1196 1197 /* 1198 * Internal version of pool_put(). Pool is already locked/entered. 1199 */ 1200 static void 1201 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1202 { 1203 struct pool_item *pi = v; 1204 struct pool_item_header *ph; 1205 1206 KASSERT(mutex_owned(&pp->pr_lock)); 1207 FREECHECK_IN(&pp->pr_freecheck, v); 1208 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1209 1210 #ifdef DIAGNOSTIC 1211 if (__predict_false(pp->pr_nout == 0)) { 1212 printf("pool %s: putting with none out\n", 1213 pp->pr_wchan); 1214 panic("pool_put"); 1215 } 1216 #endif 1217 1218 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1219 pr_printlog(pp, NULL, printf); 1220 panic("pool_put: %s: page header missing", pp->pr_wchan); 1221 } 1222 1223 /* 1224 * Return to item list. 1225 */ 1226 if (pp->pr_roflags & PR_NOTOUCH) { 1227 pr_item_notouch_put(pp, ph, v); 1228 } else { 1229 #ifdef DIAGNOSTIC 1230 pi->pi_magic = PI_MAGIC; 1231 #endif 1232 #ifdef DEBUG 1233 { 1234 int i, *ip = v; 1235 1236 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 1237 *ip++ = PI_MAGIC; 1238 } 1239 } 1240 #endif 1241 1242 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1243 } 1244 KDASSERT(ph->ph_nmissing != 0); 1245 ph->ph_nmissing--; 1246 pp->pr_nput++; 1247 pp->pr_nitems++; 1248 pp->pr_nout--; 1249 1250 /* Cancel "pool empty" condition if it exists */ 1251 if (pp->pr_curpage == NULL) 1252 pp->pr_curpage = ph; 1253 1254 if (pp->pr_flags & PR_WANTED) { 1255 pp->pr_flags &= ~PR_WANTED; 1256 cv_broadcast(&pp->pr_cv); 1257 } 1258 1259 /* 1260 * If this page is now empty, do one of two things: 1261 * 1262 * (1) If we have more pages than the page high water mark, 1263 * free the page back to the system. ONLY CONSIDER 1264 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1265 * CLAIM. 1266 * 1267 * (2) Otherwise, move the page to the empty page list. 1268 * 1269 * Either way, select a new current page (so we use a partially-full 1270 * page if one is available). 1271 */ 1272 if (ph->ph_nmissing == 0) { 1273 pp->pr_nidle++; 1274 if (pp->pr_npages > pp->pr_minpages && 1275 pp->pr_npages > pp->pr_maxpages) { 1276 pr_rmpage(pp, ph, pq); 1277 } else { 1278 LIST_REMOVE(ph, ph_pagelist); 1279 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1280 1281 /* 1282 * Update the timestamp on the page. A page must 1283 * be idle for some period of time before it can 1284 * be reclaimed by the pagedaemon. This minimizes 1285 * ping-pong'ing for memory. 1286 * 1287 * note for 64-bit time_t: truncating to 32-bit is not 1288 * a problem for our usage. 1289 */ 1290 ph->ph_time = time_uptime; 1291 } 1292 pool_update_curpage(pp); 1293 } 1294 1295 /* 1296 * If the page was previously completely full, move it to the 1297 * partially-full list and make it the current page. The next 1298 * allocation will get the item from this page, instead of 1299 * further fragmenting the pool. 1300 */ 1301 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1302 LIST_REMOVE(ph, ph_pagelist); 1303 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1304 pp->pr_curpage = ph; 1305 } 1306 } 1307 1308 /* 1309 * Return resource to the pool. 1310 */ 1311 #ifdef POOL_DIAGNOSTIC 1312 void 1313 _pool_put(struct pool *pp, void *v, const char *file, long line) 1314 { 1315 struct pool_pagelist pq; 1316 1317 LIST_INIT(&pq); 1318 1319 mutex_enter(&pp->pr_lock); 1320 pr_enter(pp, file, line); 1321 1322 pr_log(pp, v, PRLOG_PUT, file, line); 1323 1324 pool_do_put(pp, v, &pq); 1325 1326 pr_leave(pp); 1327 mutex_exit(&pp->pr_lock); 1328 1329 pr_pagelist_free(pp, &pq); 1330 } 1331 #undef pool_put 1332 #endif /* POOL_DIAGNOSTIC */ 1333 1334 void 1335 pool_put(struct pool *pp, void *v) 1336 { 1337 struct pool_pagelist pq; 1338 1339 LIST_INIT(&pq); 1340 1341 mutex_enter(&pp->pr_lock); 1342 pool_do_put(pp, v, &pq); 1343 mutex_exit(&pp->pr_lock); 1344 1345 pr_pagelist_free(pp, &pq); 1346 } 1347 1348 #ifdef POOL_DIAGNOSTIC 1349 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1350 #endif 1351 1352 /* 1353 * pool_grow: grow a pool by a page. 1354 * 1355 * => called with pool locked. 1356 * => unlock and relock the pool. 1357 * => return with pool locked. 1358 */ 1359 1360 static int 1361 pool_grow(struct pool *pp, int flags) 1362 { 1363 struct pool_item_header *ph = NULL; 1364 char *cp; 1365 1366 mutex_exit(&pp->pr_lock); 1367 cp = pool_allocator_alloc(pp, flags); 1368 if (__predict_true(cp != NULL)) { 1369 ph = pool_alloc_item_header(pp, cp, flags); 1370 } 1371 if (__predict_false(cp == NULL || ph == NULL)) { 1372 if (cp != NULL) { 1373 pool_allocator_free(pp, cp); 1374 } 1375 mutex_enter(&pp->pr_lock); 1376 return ENOMEM; 1377 } 1378 1379 mutex_enter(&pp->pr_lock); 1380 pool_prime_page(pp, cp, ph); 1381 pp->pr_npagealloc++; 1382 return 0; 1383 } 1384 1385 /* 1386 * Add N items to the pool. 1387 */ 1388 int 1389 pool_prime(struct pool *pp, int n) 1390 { 1391 int newpages; 1392 int error = 0; 1393 1394 mutex_enter(&pp->pr_lock); 1395 1396 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1397 1398 while (newpages-- > 0) { 1399 error = pool_grow(pp, PR_NOWAIT); 1400 if (error) { 1401 break; 1402 } 1403 pp->pr_minpages++; 1404 } 1405 1406 if (pp->pr_minpages >= pp->pr_maxpages) 1407 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1408 1409 mutex_exit(&pp->pr_lock); 1410 return error; 1411 } 1412 1413 /* 1414 * Add a page worth of items to the pool. 1415 * 1416 * Note, we must be called with the pool descriptor LOCKED. 1417 */ 1418 static void 1419 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1420 { 1421 struct pool_item *pi; 1422 void *cp = storage; 1423 const unsigned int align = pp->pr_align; 1424 const unsigned int ioff = pp->pr_itemoffset; 1425 int n; 1426 1427 KASSERT(mutex_owned(&pp->pr_lock)); 1428 1429 #ifdef DIAGNOSTIC 1430 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1431 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1432 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1433 #endif 1434 1435 /* 1436 * Insert page header. 1437 */ 1438 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1439 LIST_INIT(&ph->ph_itemlist); 1440 ph->ph_page = storage; 1441 ph->ph_nmissing = 0; 1442 ph->ph_time = time_uptime; 1443 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1444 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1445 1446 pp->pr_nidle++; 1447 1448 /* 1449 * Color this page. 1450 */ 1451 ph->ph_off = pp->pr_curcolor; 1452 cp = (char *)cp + ph->ph_off; 1453 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1454 pp->pr_curcolor = 0; 1455 1456 /* 1457 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1458 */ 1459 if (ioff != 0) 1460 cp = (char *)cp + align - ioff; 1461 1462 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1463 1464 /* 1465 * Insert remaining chunks on the bucket list. 1466 */ 1467 n = pp->pr_itemsperpage; 1468 pp->pr_nitems += n; 1469 1470 if (pp->pr_roflags & PR_NOTOUCH) { 1471 pr_item_notouch_init(pp, ph); 1472 } else { 1473 while (n--) { 1474 pi = (struct pool_item *)cp; 1475 1476 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1477 1478 /* Insert on page list */ 1479 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1480 #ifdef DIAGNOSTIC 1481 pi->pi_magic = PI_MAGIC; 1482 #endif 1483 cp = (char *)cp + pp->pr_size; 1484 1485 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1486 } 1487 } 1488 1489 /* 1490 * If the pool was depleted, point at the new page. 1491 */ 1492 if (pp->pr_curpage == NULL) 1493 pp->pr_curpage = ph; 1494 1495 if (++pp->pr_npages > pp->pr_hiwat) 1496 pp->pr_hiwat = pp->pr_npages; 1497 } 1498 1499 /* 1500 * Used by pool_get() when nitems drops below the low water mark. This 1501 * is used to catch up pr_nitems with the low water mark. 1502 * 1503 * Note 1, we never wait for memory here, we let the caller decide what to do. 1504 * 1505 * Note 2, we must be called with the pool already locked, and we return 1506 * with it locked. 1507 */ 1508 static int 1509 pool_catchup(struct pool *pp) 1510 { 1511 int error = 0; 1512 1513 while (POOL_NEEDS_CATCHUP(pp)) { 1514 error = pool_grow(pp, PR_NOWAIT); 1515 if (error) { 1516 break; 1517 } 1518 } 1519 return error; 1520 } 1521 1522 static void 1523 pool_update_curpage(struct pool *pp) 1524 { 1525 1526 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1527 if (pp->pr_curpage == NULL) { 1528 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1529 } 1530 } 1531 1532 void 1533 pool_setlowat(struct pool *pp, int n) 1534 { 1535 1536 mutex_enter(&pp->pr_lock); 1537 1538 pp->pr_minitems = n; 1539 pp->pr_minpages = (n == 0) 1540 ? 0 1541 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1542 1543 /* Make sure we're caught up with the newly-set low water mark. */ 1544 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1545 /* 1546 * XXX: Should we log a warning? Should we set up a timeout 1547 * to try again in a second or so? The latter could break 1548 * a caller's assumptions about interrupt protection, etc. 1549 */ 1550 } 1551 1552 mutex_exit(&pp->pr_lock); 1553 } 1554 1555 void 1556 pool_sethiwat(struct pool *pp, int n) 1557 { 1558 1559 mutex_enter(&pp->pr_lock); 1560 1561 pp->pr_maxpages = (n == 0) 1562 ? 0 1563 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1564 1565 mutex_exit(&pp->pr_lock); 1566 } 1567 1568 void 1569 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1570 { 1571 1572 mutex_enter(&pp->pr_lock); 1573 1574 pp->pr_hardlimit = n; 1575 pp->pr_hardlimit_warning = warnmess; 1576 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1577 pp->pr_hardlimit_warning_last.tv_sec = 0; 1578 pp->pr_hardlimit_warning_last.tv_usec = 0; 1579 1580 /* 1581 * In-line version of pool_sethiwat(), because we don't want to 1582 * release the lock. 1583 */ 1584 pp->pr_maxpages = (n == 0) 1585 ? 0 1586 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1587 1588 mutex_exit(&pp->pr_lock); 1589 } 1590 1591 /* 1592 * Release all complete pages that have not been used recently. 1593 */ 1594 int 1595 #ifdef POOL_DIAGNOSTIC 1596 _pool_reclaim(struct pool *pp, const char *file, long line) 1597 #else 1598 pool_reclaim(struct pool *pp) 1599 #endif 1600 { 1601 struct pool_item_header *ph, *phnext; 1602 struct pool_pagelist pq; 1603 uint32_t curtime; 1604 bool klock; 1605 int rv; 1606 1607 if (pp->pr_drain_hook != NULL) { 1608 /* 1609 * The drain hook must be called with the pool unlocked. 1610 */ 1611 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1612 } 1613 1614 /* 1615 * XXXSMP Because we do not want to cause non-MPSAFE code 1616 * to block. 1617 */ 1618 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1619 pp->pr_ipl == IPL_SOFTSERIAL) { 1620 KERNEL_LOCK(1, NULL); 1621 klock = true; 1622 } else 1623 klock = false; 1624 1625 /* Reclaim items from the pool's cache (if any). */ 1626 if (pp->pr_cache != NULL) 1627 pool_cache_invalidate(pp->pr_cache); 1628 1629 if (mutex_tryenter(&pp->pr_lock) == 0) { 1630 if (klock) { 1631 KERNEL_UNLOCK_ONE(NULL); 1632 } 1633 return (0); 1634 } 1635 pr_enter(pp, file, line); 1636 1637 LIST_INIT(&pq); 1638 1639 curtime = time_uptime; 1640 1641 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1642 phnext = LIST_NEXT(ph, ph_pagelist); 1643 1644 /* Check our minimum page claim */ 1645 if (pp->pr_npages <= pp->pr_minpages) 1646 break; 1647 1648 KASSERT(ph->ph_nmissing == 0); 1649 if (curtime - ph->ph_time < pool_inactive_time 1650 && !pa_starved_p(pp->pr_alloc)) 1651 continue; 1652 1653 /* 1654 * If freeing this page would put us below 1655 * the low water mark, stop now. 1656 */ 1657 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1658 pp->pr_minitems) 1659 break; 1660 1661 pr_rmpage(pp, ph, &pq); 1662 } 1663 1664 pr_leave(pp); 1665 mutex_exit(&pp->pr_lock); 1666 1667 if (LIST_EMPTY(&pq)) 1668 rv = 0; 1669 else { 1670 pr_pagelist_free(pp, &pq); 1671 rv = 1; 1672 } 1673 1674 if (klock) { 1675 KERNEL_UNLOCK_ONE(NULL); 1676 } 1677 1678 return (rv); 1679 } 1680 1681 /* 1682 * Drain pools, one at a time. This is a two stage process; 1683 * drain_start kicks off a cross call to drain CPU-level caches 1684 * if the pool has an associated pool_cache. drain_end waits 1685 * for those cross calls to finish, and then drains the cache 1686 * (if any) and pool. 1687 * 1688 * Note, must never be called from interrupt context. 1689 */ 1690 void 1691 pool_drain_start(struct pool **ppp, uint64_t *wp) 1692 { 1693 struct pool *pp; 1694 1695 KASSERT(!TAILQ_EMPTY(&pool_head)); 1696 1697 pp = NULL; 1698 1699 /* Find next pool to drain, and add a reference. */ 1700 mutex_enter(&pool_head_lock); 1701 do { 1702 if (drainpp == NULL) { 1703 drainpp = TAILQ_FIRST(&pool_head); 1704 } 1705 if (drainpp != NULL) { 1706 pp = drainpp; 1707 drainpp = TAILQ_NEXT(pp, pr_poollist); 1708 } 1709 /* 1710 * Skip completely idle pools. We depend on at least 1711 * one pool in the system being active. 1712 */ 1713 } while (pp == NULL || pp->pr_npages == 0); 1714 pp->pr_refcnt++; 1715 mutex_exit(&pool_head_lock); 1716 1717 /* If there is a pool_cache, drain CPU level caches. */ 1718 *ppp = pp; 1719 if (pp->pr_cache != NULL) { 1720 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, 1721 pp->pr_cache, NULL); 1722 } 1723 } 1724 1725 void 1726 pool_drain_end(struct pool *pp, uint64_t where) 1727 { 1728 1729 if (pp == NULL) 1730 return; 1731 1732 KASSERT(pp->pr_refcnt > 0); 1733 1734 /* Wait for remote draining to complete. */ 1735 if (pp->pr_cache != NULL) 1736 xc_wait(where); 1737 1738 /* Drain the cache (if any) and pool.. */ 1739 pool_reclaim(pp); 1740 1741 /* Finally, unlock the pool. */ 1742 mutex_enter(&pool_head_lock); 1743 pp->pr_refcnt--; 1744 cv_broadcast(&pool_busy); 1745 mutex_exit(&pool_head_lock); 1746 } 1747 1748 /* 1749 * Diagnostic helpers. 1750 */ 1751 void 1752 pool_print(struct pool *pp, const char *modif) 1753 { 1754 1755 pool_print1(pp, modif, printf); 1756 } 1757 1758 void 1759 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1760 { 1761 struct pool *pp; 1762 1763 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1764 pool_printit(pp, modif, pr); 1765 } 1766 } 1767 1768 void 1769 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1770 { 1771 1772 if (pp == NULL) { 1773 (*pr)("Must specify a pool to print.\n"); 1774 return; 1775 } 1776 1777 pool_print1(pp, modif, pr); 1778 } 1779 1780 static void 1781 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1782 void (*pr)(const char *, ...)) 1783 { 1784 struct pool_item_header *ph; 1785 #ifdef DIAGNOSTIC 1786 struct pool_item *pi; 1787 #endif 1788 1789 LIST_FOREACH(ph, pl, ph_pagelist) { 1790 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1791 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1792 #ifdef DIAGNOSTIC 1793 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1794 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1795 if (pi->pi_magic != PI_MAGIC) { 1796 (*pr)("\t\t\titem %p, magic 0x%x\n", 1797 pi, pi->pi_magic); 1798 } 1799 } 1800 } 1801 #endif 1802 } 1803 } 1804 1805 static void 1806 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1807 { 1808 struct pool_item_header *ph; 1809 pool_cache_t pc; 1810 pcg_t *pcg; 1811 pool_cache_cpu_t *cc; 1812 uint64_t cpuhit, cpumiss; 1813 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1814 char c; 1815 1816 while ((c = *modif++) != '\0') { 1817 if (c == 'l') 1818 print_log = 1; 1819 if (c == 'p') 1820 print_pagelist = 1; 1821 if (c == 'c') 1822 print_cache = 1; 1823 } 1824 1825 if ((pc = pp->pr_cache) != NULL) { 1826 (*pr)("POOL CACHE"); 1827 } else { 1828 (*pr)("POOL"); 1829 } 1830 1831 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1832 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1833 pp->pr_roflags); 1834 (*pr)("\talloc %p\n", pp->pr_alloc); 1835 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1836 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1837 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1838 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1839 1840 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1841 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1842 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1843 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1844 1845 if (print_pagelist == 0) 1846 goto skip_pagelist; 1847 1848 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1849 (*pr)("\n\tempty page list:\n"); 1850 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1851 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1852 (*pr)("\n\tfull page list:\n"); 1853 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1854 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1855 (*pr)("\n\tpartial-page list:\n"); 1856 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1857 1858 if (pp->pr_curpage == NULL) 1859 (*pr)("\tno current page\n"); 1860 else 1861 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1862 1863 skip_pagelist: 1864 if (print_log == 0) 1865 goto skip_log; 1866 1867 (*pr)("\n"); 1868 if ((pp->pr_roflags & PR_LOGGING) == 0) 1869 (*pr)("\tno log\n"); 1870 else { 1871 pr_printlog(pp, NULL, pr); 1872 } 1873 1874 skip_log: 1875 1876 #define PR_GROUPLIST(pcg) \ 1877 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1878 for (i = 0; i < pcg->pcg_size; i++) { \ 1879 if (pcg->pcg_objects[i].pcgo_pa != \ 1880 POOL_PADDR_INVALID) { \ 1881 (*pr)("\t\t\t%p, 0x%llx\n", \ 1882 pcg->pcg_objects[i].pcgo_va, \ 1883 (unsigned long long) \ 1884 pcg->pcg_objects[i].pcgo_pa); \ 1885 } else { \ 1886 (*pr)("\t\t\t%p\n", \ 1887 pcg->pcg_objects[i].pcgo_va); \ 1888 } \ 1889 } 1890 1891 if (pc != NULL) { 1892 cpuhit = 0; 1893 cpumiss = 0; 1894 for (i = 0; i < MAXCPUS; i++) { 1895 if ((cc = pc->pc_cpus[i]) == NULL) 1896 continue; 1897 cpuhit += cc->cc_hits; 1898 cpumiss += cc->cc_misses; 1899 } 1900 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1901 (*pr)("\tcache layer hits %llu misses %llu\n", 1902 pc->pc_hits, pc->pc_misses); 1903 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1904 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1905 pc->pc_contended); 1906 (*pr)("\tcache layer empty groups %u full groups %u\n", 1907 pc->pc_nempty, pc->pc_nfull); 1908 if (print_cache) { 1909 (*pr)("\tfull cache groups:\n"); 1910 for (pcg = pc->pc_fullgroups; pcg != NULL; 1911 pcg = pcg->pcg_next) { 1912 PR_GROUPLIST(pcg); 1913 } 1914 (*pr)("\tempty cache groups:\n"); 1915 for (pcg = pc->pc_emptygroups; pcg != NULL; 1916 pcg = pcg->pcg_next) { 1917 PR_GROUPLIST(pcg); 1918 } 1919 } 1920 } 1921 #undef PR_GROUPLIST 1922 1923 pr_enter_check(pp, pr); 1924 } 1925 1926 static int 1927 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1928 { 1929 struct pool_item *pi; 1930 void *page; 1931 int n; 1932 1933 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1934 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1935 if (page != ph->ph_page && 1936 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1937 if (label != NULL) 1938 printf("%s: ", label); 1939 printf("pool(%p:%s): page inconsistency: page %p;" 1940 " at page head addr %p (p %p)\n", pp, 1941 pp->pr_wchan, ph->ph_page, 1942 ph, page); 1943 return 1; 1944 } 1945 } 1946 1947 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1948 return 0; 1949 1950 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1951 pi != NULL; 1952 pi = LIST_NEXT(pi,pi_list), n++) { 1953 1954 #ifdef DIAGNOSTIC 1955 if (pi->pi_magic != PI_MAGIC) { 1956 if (label != NULL) 1957 printf("%s: ", label); 1958 printf("pool(%s): free list modified: magic=%x;" 1959 " page %p; item ordinal %d; addr %p\n", 1960 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1961 n, pi); 1962 panic("pool"); 1963 } 1964 #endif 1965 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1966 continue; 1967 } 1968 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1969 if (page == ph->ph_page) 1970 continue; 1971 1972 if (label != NULL) 1973 printf("%s: ", label); 1974 printf("pool(%p:%s): page inconsistency: page %p;" 1975 " item ordinal %d; addr %p (p %p)\n", pp, 1976 pp->pr_wchan, ph->ph_page, 1977 n, pi, page); 1978 return 1; 1979 } 1980 return 0; 1981 } 1982 1983 1984 int 1985 pool_chk(struct pool *pp, const char *label) 1986 { 1987 struct pool_item_header *ph; 1988 int r = 0; 1989 1990 mutex_enter(&pp->pr_lock); 1991 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1992 r = pool_chk_page(pp, label, ph); 1993 if (r) { 1994 goto out; 1995 } 1996 } 1997 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1998 r = pool_chk_page(pp, label, ph); 1999 if (r) { 2000 goto out; 2001 } 2002 } 2003 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2004 r = pool_chk_page(pp, label, ph); 2005 if (r) { 2006 goto out; 2007 } 2008 } 2009 2010 out: 2011 mutex_exit(&pp->pr_lock); 2012 return (r); 2013 } 2014 2015 /* 2016 * pool_cache_init: 2017 * 2018 * Initialize a pool cache. 2019 */ 2020 pool_cache_t 2021 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2022 const char *wchan, struct pool_allocator *palloc, int ipl, 2023 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2024 { 2025 pool_cache_t pc; 2026 2027 pc = pool_get(&cache_pool, PR_WAITOK); 2028 if (pc == NULL) 2029 return NULL; 2030 2031 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2032 palloc, ipl, ctor, dtor, arg); 2033 2034 return pc; 2035 } 2036 2037 /* 2038 * pool_cache_bootstrap: 2039 * 2040 * Kernel-private version of pool_cache_init(). The caller 2041 * provides initial storage. 2042 */ 2043 void 2044 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2045 u_int align_offset, u_int flags, const char *wchan, 2046 struct pool_allocator *palloc, int ipl, 2047 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2048 void *arg) 2049 { 2050 CPU_INFO_ITERATOR cii; 2051 pool_cache_t pc1; 2052 struct cpu_info *ci; 2053 struct pool *pp; 2054 2055 pp = &pc->pc_pool; 2056 if (palloc == NULL && ipl == IPL_NONE) 2057 palloc = &pool_allocator_nointr; 2058 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2059 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 2060 2061 if (ctor == NULL) { 2062 ctor = (int (*)(void *, void *, int))nullop; 2063 } 2064 if (dtor == NULL) { 2065 dtor = (void (*)(void *, void *))nullop; 2066 } 2067 2068 pc->pc_emptygroups = NULL; 2069 pc->pc_fullgroups = NULL; 2070 pc->pc_partgroups = NULL; 2071 pc->pc_ctor = ctor; 2072 pc->pc_dtor = dtor; 2073 pc->pc_arg = arg; 2074 pc->pc_hits = 0; 2075 pc->pc_misses = 0; 2076 pc->pc_nempty = 0; 2077 pc->pc_npart = 0; 2078 pc->pc_nfull = 0; 2079 pc->pc_contended = 0; 2080 pc->pc_refcnt = 0; 2081 pc->pc_freecheck = NULL; 2082 2083 if ((flags & PR_LARGECACHE) != 0) { 2084 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2085 pc->pc_pcgpool = &pcg_large_pool; 2086 } else { 2087 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2088 pc->pc_pcgpool = &pcg_normal_pool; 2089 } 2090 2091 /* Allocate per-CPU caches. */ 2092 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2093 pc->pc_ncpu = 0; 2094 if (ncpu < 2) { 2095 /* XXX For sparc: boot CPU is not attached yet. */ 2096 pool_cache_cpu_init1(curcpu(), pc); 2097 } else { 2098 for (CPU_INFO_FOREACH(cii, ci)) { 2099 pool_cache_cpu_init1(ci, pc); 2100 } 2101 } 2102 2103 /* Add to list of all pools. */ 2104 if (__predict_true(!cold)) 2105 mutex_enter(&pool_head_lock); 2106 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2107 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2108 break; 2109 } 2110 if (pc1 == NULL) 2111 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2112 else 2113 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2114 if (__predict_true(!cold)) 2115 mutex_exit(&pool_head_lock); 2116 2117 membar_sync(); 2118 pp->pr_cache = pc; 2119 } 2120 2121 /* 2122 * pool_cache_destroy: 2123 * 2124 * Destroy a pool cache. 2125 */ 2126 void 2127 pool_cache_destroy(pool_cache_t pc) 2128 { 2129 struct pool *pp = &pc->pc_pool; 2130 pool_cache_cpu_t *cc; 2131 pcg_t *pcg; 2132 int i; 2133 2134 /* Remove it from the global list. */ 2135 mutex_enter(&pool_head_lock); 2136 while (pc->pc_refcnt != 0) 2137 cv_wait(&pool_busy, &pool_head_lock); 2138 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2139 mutex_exit(&pool_head_lock); 2140 2141 /* First, invalidate the entire cache. */ 2142 pool_cache_invalidate(pc); 2143 2144 /* Disassociate it from the pool. */ 2145 mutex_enter(&pp->pr_lock); 2146 pp->pr_cache = NULL; 2147 mutex_exit(&pp->pr_lock); 2148 2149 /* Destroy per-CPU data */ 2150 for (i = 0; i < MAXCPUS; i++) { 2151 if ((cc = pc->pc_cpus[i]) == NULL) 2152 continue; 2153 if ((pcg = cc->cc_current) != &pcg_dummy) { 2154 pcg->pcg_next = NULL; 2155 pool_cache_invalidate_groups(pc, pcg); 2156 } 2157 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2158 pcg->pcg_next = NULL; 2159 pool_cache_invalidate_groups(pc, pcg); 2160 } 2161 if (cc != &pc->pc_cpu0) 2162 pool_put(&cache_cpu_pool, cc); 2163 } 2164 2165 /* Finally, destroy it. */ 2166 mutex_destroy(&pc->pc_lock); 2167 pool_destroy(pp); 2168 pool_put(&cache_pool, pc); 2169 } 2170 2171 /* 2172 * pool_cache_cpu_init1: 2173 * 2174 * Called for each pool_cache whenever a new CPU is attached. 2175 */ 2176 static void 2177 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2178 { 2179 pool_cache_cpu_t *cc; 2180 int index; 2181 2182 index = ci->ci_index; 2183 2184 KASSERT(index < MAXCPUS); 2185 2186 if ((cc = pc->pc_cpus[index]) != NULL) { 2187 KASSERT(cc->cc_cpuindex == index); 2188 return; 2189 } 2190 2191 /* 2192 * The first CPU is 'free'. This needs to be the case for 2193 * bootstrap - we may not be able to allocate yet. 2194 */ 2195 if (pc->pc_ncpu == 0) { 2196 cc = &pc->pc_cpu0; 2197 pc->pc_ncpu = 1; 2198 } else { 2199 mutex_enter(&pc->pc_lock); 2200 pc->pc_ncpu++; 2201 mutex_exit(&pc->pc_lock); 2202 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2203 } 2204 2205 cc->cc_ipl = pc->pc_pool.pr_ipl; 2206 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2207 cc->cc_cache = pc; 2208 cc->cc_cpuindex = index; 2209 cc->cc_hits = 0; 2210 cc->cc_misses = 0; 2211 cc->cc_current = &pcg_dummy; 2212 cc->cc_previous = &pcg_dummy; 2213 2214 pc->pc_cpus[index] = cc; 2215 } 2216 2217 /* 2218 * pool_cache_cpu_init: 2219 * 2220 * Called whenever a new CPU is attached. 2221 */ 2222 void 2223 pool_cache_cpu_init(struct cpu_info *ci) 2224 { 2225 pool_cache_t pc; 2226 2227 mutex_enter(&pool_head_lock); 2228 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2229 pc->pc_refcnt++; 2230 mutex_exit(&pool_head_lock); 2231 2232 pool_cache_cpu_init1(ci, pc); 2233 2234 mutex_enter(&pool_head_lock); 2235 pc->pc_refcnt--; 2236 cv_broadcast(&pool_busy); 2237 } 2238 mutex_exit(&pool_head_lock); 2239 } 2240 2241 /* 2242 * pool_cache_reclaim: 2243 * 2244 * Reclaim memory from a pool cache. 2245 */ 2246 bool 2247 pool_cache_reclaim(pool_cache_t pc) 2248 { 2249 2250 return pool_reclaim(&pc->pc_pool); 2251 } 2252 2253 static void 2254 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2255 { 2256 2257 (*pc->pc_dtor)(pc->pc_arg, object); 2258 pool_put(&pc->pc_pool, object); 2259 } 2260 2261 /* 2262 * pool_cache_destruct_object: 2263 * 2264 * Force destruction of an object and its release back into 2265 * the pool. 2266 */ 2267 void 2268 pool_cache_destruct_object(pool_cache_t pc, void *object) 2269 { 2270 2271 FREECHECK_IN(&pc->pc_freecheck, object); 2272 2273 pool_cache_destruct_object1(pc, object); 2274 } 2275 2276 /* 2277 * pool_cache_invalidate_groups: 2278 * 2279 * Invalidate a chain of groups and destruct all objects. 2280 */ 2281 static void 2282 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2283 { 2284 void *object; 2285 pcg_t *next; 2286 int i; 2287 2288 for (; pcg != NULL; pcg = next) { 2289 next = pcg->pcg_next; 2290 2291 for (i = 0; i < pcg->pcg_avail; i++) { 2292 object = pcg->pcg_objects[i].pcgo_va; 2293 pool_cache_destruct_object1(pc, object); 2294 } 2295 2296 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2297 pool_put(&pcg_large_pool, pcg); 2298 } else { 2299 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2300 pool_put(&pcg_normal_pool, pcg); 2301 } 2302 } 2303 } 2304 2305 /* 2306 * pool_cache_invalidate: 2307 * 2308 * Invalidate a pool cache (destruct and release all of the 2309 * cached objects). Does not reclaim objects from the pool. 2310 */ 2311 void 2312 pool_cache_invalidate(pool_cache_t pc) 2313 { 2314 pcg_t *full, *empty, *part; 2315 2316 mutex_enter(&pc->pc_lock); 2317 full = pc->pc_fullgroups; 2318 empty = pc->pc_emptygroups; 2319 part = pc->pc_partgroups; 2320 pc->pc_fullgroups = NULL; 2321 pc->pc_emptygroups = NULL; 2322 pc->pc_partgroups = NULL; 2323 pc->pc_nfull = 0; 2324 pc->pc_nempty = 0; 2325 pc->pc_npart = 0; 2326 mutex_exit(&pc->pc_lock); 2327 2328 pool_cache_invalidate_groups(pc, full); 2329 pool_cache_invalidate_groups(pc, empty); 2330 pool_cache_invalidate_groups(pc, part); 2331 } 2332 2333 void 2334 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2335 { 2336 2337 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2338 } 2339 2340 void 2341 pool_cache_setlowat(pool_cache_t pc, int n) 2342 { 2343 2344 pool_setlowat(&pc->pc_pool, n); 2345 } 2346 2347 void 2348 pool_cache_sethiwat(pool_cache_t pc, int n) 2349 { 2350 2351 pool_sethiwat(&pc->pc_pool, n); 2352 } 2353 2354 void 2355 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2356 { 2357 2358 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2359 } 2360 2361 static bool __noinline 2362 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2363 paddr_t *pap, int flags) 2364 { 2365 pcg_t *pcg, *cur; 2366 uint64_t ncsw; 2367 pool_cache_t pc; 2368 void *object; 2369 2370 pc = cc->cc_cache; 2371 cc->cc_misses++; 2372 2373 /* 2374 * Nothing was available locally. Try and grab a group 2375 * from the cache. 2376 */ 2377 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2378 ncsw = curlwp->l_ncsw; 2379 mutex_enter(&pc->pc_lock); 2380 pc->pc_contended++; 2381 2382 /* 2383 * If we context switched while locking, then 2384 * our view of the per-CPU data is invalid: 2385 * retry. 2386 */ 2387 if (curlwp->l_ncsw != ncsw) { 2388 mutex_exit(&pc->pc_lock); 2389 return true; 2390 } 2391 } 2392 2393 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2394 /* 2395 * If there's a full group, release our empty 2396 * group back to the cache. Install the full 2397 * group as cc_current and return. 2398 */ 2399 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2400 KASSERT(cur->pcg_avail == 0); 2401 cur->pcg_next = pc->pc_emptygroups; 2402 pc->pc_emptygroups = cur; 2403 pc->pc_nempty++; 2404 } 2405 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2406 cc->cc_current = pcg; 2407 pc->pc_fullgroups = pcg->pcg_next; 2408 pc->pc_hits++; 2409 pc->pc_nfull--; 2410 mutex_exit(&pc->pc_lock); 2411 return true; 2412 } 2413 2414 /* 2415 * Nothing available locally or in cache. Take the slow 2416 * path: fetch a new object from the pool and construct 2417 * it. 2418 */ 2419 pc->pc_misses++; 2420 mutex_exit(&pc->pc_lock); 2421 splx(s); 2422 2423 object = pool_get(&pc->pc_pool, flags); 2424 *objectp = object; 2425 if (__predict_false(object == NULL)) 2426 return false; 2427 2428 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2429 pool_put(&pc->pc_pool, object); 2430 *objectp = NULL; 2431 return false; 2432 } 2433 2434 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2435 (pc->pc_pool.pr_align - 1)) == 0); 2436 2437 if (pap != NULL) { 2438 #ifdef POOL_VTOPHYS 2439 *pap = POOL_VTOPHYS(object); 2440 #else 2441 *pap = POOL_PADDR_INVALID; 2442 #endif 2443 } 2444 2445 FREECHECK_OUT(&pc->pc_freecheck, object); 2446 return false; 2447 } 2448 2449 /* 2450 * pool_cache_get{,_paddr}: 2451 * 2452 * Get an object from a pool cache (optionally returning 2453 * the physical address of the object). 2454 */ 2455 void * 2456 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2457 { 2458 pool_cache_cpu_t *cc; 2459 pcg_t *pcg; 2460 void *object; 2461 int s; 2462 2463 #ifdef LOCKDEBUG 2464 if (flags & PR_WAITOK) { 2465 ASSERT_SLEEPABLE(); 2466 } 2467 #endif 2468 2469 /* Lock out interrupts and disable preemption. */ 2470 s = splvm(); 2471 while (/* CONSTCOND */ true) { 2472 /* Try and allocate an object from the current group. */ 2473 cc = pc->pc_cpus[curcpu()->ci_index]; 2474 KASSERT(cc->cc_cache == pc); 2475 pcg = cc->cc_current; 2476 if (__predict_true(pcg->pcg_avail > 0)) { 2477 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2478 if (__predict_false(pap != NULL)) 2479 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2480 #if defined(DIAGNOSTIC) 2481 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2482 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2483 KASSERT(object != NULL); 2484 #endif 2485 cc->cc_hits++; 2486 splx(s); 2487 FREECHECK_OUT(&pc->pc_freecheck, object); 2488 return object; 2489 } 2490 2491 /* 2492 * That failed. If the previous group isn't empty, swap 2493 * it with the current group and allocate from there. 2494 */ 2495 pcg = cc->cc_previous; 2496 if (__predict_true(pcg->pcg_avail > 0)) { 2497 cc->cc_previous = cc->cc_current; 2498 cc->cc_current = pcg; 2499 continue; 2500 } 2501 2502 /* 2503 * Can't allocate from either group: try the slow path. 2504 * If get_slow() allocated an object for us, or if 2505 * no more objects are available, it will return false. 2506 * Otherwise, we need to retry. 2507 */ 2508 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2509 break; 2510 } 2511 2512 return object; 2513 } 2514 2515 static bool __noinline 2516 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2517 { 2518 pcg_t *pcg, *cur; 2519 uint64_t ncsw; 2520 pool_cache_t pc; 2521 2522 pc = cc->cc_cache; 2523 cc->cc_misses++; 2524 2525 /* Lock the cache. */ 2526 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2527 ncsw = curlwp->l_ncsw; 2528 mutex_enter(&pc->pc_lock); 2529 pc->pc_contended++; 2530 2531 /* 2532 * If we context switched while locking, then our view of 2533 * the per-CPU data is invalid: retry. 2534 */ 2535 if (__predict_false(curlwp->l_ncsw != ncsw)) { 2536 mutex_exit(&pc->pc_lock); 2537 return true; 2538 } 2539 } 2540 2541 /* If there are no empty groups in the cache then allocate one. */ 2542 if (__predict_false((pcg = pc->pc_emptygroups) == NULL)) { 2543 if (__predict_true(!pool_cache_disable)) { 2544 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2545 } 2546 if (__predict_true(pcg != NULL)) { 2547 pcg->pcg_avail = 0; 2548 pcg->pcg_size = pc->pc_pcgsize; 2549 } 2550 } else { 2551 pc->pc_emptygroups = pcg->pcg_next; 2552 pc->pc_nempty--; 2553 } 2554 2555 /* 2556 * If there's a empty group, release our full group back 2557 * to the cache. Install the empty group to the local CPU 2558 * and return. 2559 */ 2560 if (pcg != NULL) { 2561 KASSERT(pcg->pcg_avail == 0); 2562 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2563 cc->cc_previous = pcg; 2564 } else { 2565 cur = cc->cc_current; 2566 if (__predict_true(cur != &pcg_dummy)) { 2567 KASSERT(cur->pcg_avail == cur->pcg_size); 2568 cur->pcg_next = pc->pc_fullgroups; 2569 pc->pc_fullgroups = cur; 2570 pc->pc_nfull++; 2571 } 2572 cc->cc_current = pcg; 2573 } 2574 pc->pc_hits++; 2575 mutex_exit(&pc->pc_lock); 2576 return true; 2577 } 2578 2579 /* 2580 * Nothing available locally or in cache, and we didn't 2581 * allocate an empty group. Take the slow path and destroy 2582 * the object here and now. 2583 */ 2584 pc->pc_misses++; 2585 mutex_exit(&pc->pc_lock); 2586 splx(s); 2587 pool_cache_destruct_object(pc, object); 2588 2589 return false; 2590 } 2591 2592 /* 2593 * pool_cache_put{,_paddr}: 2594 * 2595 * Put an object back to the pool cache (optionally caching the 2596 * physical address of the object). 2597 */ 2598 void 2599 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2600 { 2601 pool_cache_cpu_t *cc; 2602 pcg_t *pcg; 2603 int s; 2604 2605 FREECHECK_IN(&pc->pc_freecheck, object); 2606 2607 /* Lock out interrupts and disable preemption. */ 2608 s = splvm(); 2609 while (/* CONSTCOND */ true) { 2610 /* If the current group isn't full, release it there. */ 2611 cc = pc->pc_cpus[curcpu()->ci_index]; 2612 KASSERT(cc->cc_cache == pc); 2613 pcg = cc->cc_current; 2614 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2615 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2616 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2617 pcg->pcg_avail++; 2618 cc->cc_hits++; 2619 splx(s); 2620 return; 2621 } 2622 2623 /* 2624 * That failed. If the previous group isn't full, swap 2625 * it with the current group and try again. 2626 */ 2627 pcg = cc->cc_previous; 2628 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2629 cc->cc_previous = cc->cc_current; 2630 cc->cc_current = pcg; 2631 continue; 2632 } 2633 2634 /* 2635 * Can't free to either group: try the slow path. 2636 * If put_slow() releases the object for us, it 2637 * will return false. Otherwise we need to retry. 2638 */ 2639 if (!pool_cache_put_slow(cc, s, object)) 2640 break; 2641 } 2642 } 2643 2644 /* 2645 * pool_cache_xcall: 2646 * 2647 * Transfer objects from the per-CPU cache to the global cache. 2648 * Run within a cross-call thread. 2649 */ 2650 static void 2651 pool_cache_xcall(pool_cache_t pc) 2652 { 2653 pool_cache_cpu_t *cc; 2654 pcg_t *prev, *cur, **list; 2655 int s; 2656 2657 s = splvm(); 2658 mutex_enter(&pc->pc_lock); 2659 cc = pc->pc_cpus[curcpu()->ci_index]; 2660 cur = cc->cc_current; 2661 cc->cc_current = &pcg_dummy; 2662 prev = cc->cc_previous; 2663 cc->cc_previous = &pcg_dummy; 2664 if (cur != &pcg_dummy) { 2665 if (cur->pcg_avail == cur->pcg_size) { 2666 list = &pc->pc_fullgroups; 2667 pc->pc_nfull++; 2668 } else if (cur->pcg_avail == 0) { 2669 list = &pc->pc_emptygroups; 2670 pc->pc_nempty++; 2671 } else { 2672 list = &pc->pc_partgroups; 2673 pc->pc_npart++; 2674 } 2675 cur->pcg_next = *list; 2676 *list = cur; 2677 } 2678 if (prev != &pcg_dummy) { 2679 if (prev->pcg_avail == prev->pcg_size) { 2680 list = &pc->pc_fullgroups; 2681 pc->pc_nfull++; 2682 } else if (prev->pcg_avail == 0) { 2683 list = &pc->pc_emptygroups; 2684 pc->pc_nempty++; 2685 } else { 2686 list = &pc->pc_partgroups; 2687 pc->pc_npart++; 2688 } 2689 prev->pcg_next = *list; 2690 *list = prev; 2691 } 2692 mutex_exit(&pc->pc_lock); 2693 splx(s); 2694 } 2695 2696 /* 2697 * Pool backend allocators. 2698 * 2699 * Each pool has a backend allocator that handles allocation, deallocation, 2700 * and any additional draining that might be needed. 2701 * 2702 * We provide two standard allocators: 2703 * 2704 * pool_allocator_kmem - the default when no allocator is specified 2705 * 2706 * pool_allocator_nointr - used for pools that will not be accessed 2707 * in interrupt context. 2708 */ 2709 void *pool_page_alloc(struct pool *, int); 2710 void pool_page_free(struct pool *, void *); 2711 2712 #ifdef POOL_SUBPAGE 2713 struct pool_allocator pool_allocator_kmem_fullpage = { 2714 pool_page_alloc, pool_page_free, 0, 2715 .pa_backingmapptr = &kmem_map, 2716 }; 2717 #else 2718 struct pool_allocator pool_allocator_kmem = { 2719 pool_page_alloc, pool_page_free, 0, 2720 .pa_backingmapptr = &kmem_map, 2721 }; 2722 #endif 2723 2724 void *pool_page_alloc_nointr(struct pool *, int); 2725 void pool_page_free_nointr(struct pool *, void *); 2726 2727 #ifdef POOL_SUBPAGE 2728 struct pool_allocator pool_allocator_nointr_fullpage = { 2729 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2730 .pa_backingmapptr = &kernel_map, 2731 }; 2732 #else 2733 struct pool_allocator pool_allocator_nointr = { 2734 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2735 .pa_backingmapptr = &kernel_map, 2736 }; 2737 #endif 2738 2739 #ifdef POOL_SUBPAGE 2740 void *pool_subpage_alloc(struct pool *, int); 2741 void pool_subpage_free(struct pool *, void *); 2742 2743 struct pool_allocator pool_allocator_kmem = { 2744 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2745 .pa_backingmapptr = &kmem_map, 2746 }; 2747 2748 void *pool_subpage_alloc_nointr(struct pool *, int); 2749 void pool_subpage_free_nointr(struct pool *, void *); 2750 2751 struct pool_allocator pool_allocator_nointr = { 2752 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2753 .pa_backingmapptr = &kmem_map, 2754 }; 2755 #endif /* POOL_SUBPAGE */ 2756 2757 static void * 2758 pool_allocator_alloc(struct pool *pp, int flags) 2759 { 2760 struct pool_allocator *pa = pp->pr_alloc; 2761 void *res; 2762 2763 res = (*pa->pa_alloc)(pp, flags); 2764 if (res == NULL && (flags & PR_WAITOK) == 0) { 2765 /* 2766 * We only run the drain hook here if PR_NOWAIT. 2767 * In other cases, the hook will be run in 2768 * pool_reclaim(). 2769 */ 2770 if (pp->pr_drain_hook != NULL) { 2771 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2772 res = (*pa->pa_alloc)(pp, flags); 2773 } 2774 } 2775 return res; 2776 } 2777 2778 static void 2779 pool_allocator_free(struct pool *pp, void *v) 2780 { 2781 struct pool_allocator *pa = pp->pr_alloc; 2782 2783 (*pa->pa_free)(pp, v); 2784 } 2785 2786 void * 2787 pool_page_alloc(struct pool *pp, int flags) 2788 { 2789 bool waitok = (flags & PR_WAITOK) ? true : false; 2790 2791 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); 2792 } 2793 2794 void 2795 pool_page_free(struct pool *pp, void *v) 2796 { 2797 2798 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); 2799 } 2800 2801 static void * 2802 pool_page_alloc_meta(struct pool *pp, int flags) 2803 { 2804 bool waitok = (flags & PR_WAITOK) ? true : false; 2805 2806 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); 2807 } 2808 2809 static void 2810 pool_page_free_meta(struct pool *pp, void *v) 2811 { 2812 2813 uvm_km_free_poolpage(kmem_map, (vaddr_t) v); 2814 } 2815 2816 #ifdef POOL_SUBPAGE 2817 /* Sub-page allocator, for machines with large hardware pages. */ 2818 void * 2819 pool_subpage_alloc(struct pool *pp, int flags) 2820 { 2821 return pool_get(&psppool, flags); 2822 } 2823 2824 void 2825 pool_subpage_free(struct pool *pp, void *v) 2826 { 2827 pool_put(&psppool, v); 2828 } 2829 2830 /* We don't provide a real nointr allocator. Maybe later. */ 2831 void * 2832 pool_subpage_alloc_nointr(struct pool *pp, int flags) 2833 { 2834 2835 return (pool_subpage_alloc(pp, flags)); 2836 } 2837 2838 void 2839 pool_subpage_free_nointr(struct pool *pp, void *v) 2840 { 2841 2842 pool_subpage_free(pp, v); 2843 } 2844 #endif /* POOL_SUBPAGE */ 2845 void * 2846 pool_page_alloc_nointr(struct pool *pp, int flags) 2847 { 2848 bool waitok = (flags & PR_WAITOK) ? true : false; 2849 2850 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); 2851 } 2852 2853 void 2854 pool_page_free_nointr(struct pool *pp, void *v) 2855 { 2856 2857 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); 2858 } 2859 2860 #if defined(DDB) 2861 static bool 2862 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2863 { 2864 2865 return (uintptr_t)ph->ph_page <= addr && 2866 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2867 } 2868 2869 static bool 2870 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2871 { 2872 2873 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2874 } 2875 2876 static bool 2877 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2878 { 2879 int i; 2880 2881 if (pcg == NULL) { 2882 return false; 2883 } 2884 for (i = 0; i < pcg->pcg_avail; i++) { 2885 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2886 return true; 2887 } 2888 } 2889 return false; 2890 } 2891 2892 static bool 2893 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2894 { 2895 2896 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2897 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2898 pool_item_bitmap_t *bitmap = 2899 ph->ph_bitmap + (idx / BITMAP_SIZE); 2900 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2901 2902 return (*bitmap & mask) == 0; 2903 } else { 2904 struct pool_item *pi; 2905 2906 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2907 if (pool_in_item(pp, pi, addr)) { 2908 return false; 2909 } 2910 } 2911 return true; 2912 } 2913 } 2914 2915 void 2916 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2917 { 2918 struct pool *pp; 2919 2920 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2921 struct pool_item_header *ph; 2922 uintptr_t item; 2923 bool allocated = true; 2924 bool incache = false; 2925 bool incpucache = false; 2926 char cpucachestr[32]; 2927 2928 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 2929 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2930 if (pool_in_page(pp, ph, addr)) { 2931 goto found; 2932 } 2933 } 2934 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2935 if (pool_in_page(pp, ph, addr)) { 2936 allocated = 2937 pool_allocated(pp, ph, addr); 2938 goto found; 2939 } 2940 } 2941 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2942 if (pool_in_page(pp, ph, addr)) { 2943 allocated = false; 2944 goto found; 2945 } 2946 } 2947 continue; 2948 } else { 2949 ph = pr_find_pagehead_noalign(pp, (void *)addr); 2950 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 2951 continue; 2952 } 2953 allocated = pool_allocated(pp, ph, addr); 2954 } 2955 found: 2956 if (allocated && pp->pr_cache) { 2957 pool_cache_t pc = pp->pr_cache; 2958 struct pool_cache_group *pcg; 2959 int i; 2960 2961 for (pcg = pc->pc_fullgroups; pcg != NULL; 2962 pcg = pcg->pcg_next) { 2963 if (pool_in_cg(pp, pcg, addr)) { 2964 incache = true; 2965 goto print; 2966 } 2967 } 2968 for (i = 0; i < MAXCPUS; i++) { 2969 pool_cache_cpu_t *cc; 2970 2971 if ((cc = pc->pc_cpus[i]) == NULL) { 2972 continue; 2973 } 2974 if (pool_in_cg(pp, cc->cc_current, addr) || 2975 pool_in_cg(pp, cc->cc_previous, addr)) { 2976 struct cpu_info *ci = 2977 cpu_lookup_byindex(i); 2978 2979 incpucache = true; 2980 snprintf(cpucachestr, 2981 sizeof(cpucachestr), 2982 "cached by CPU %u", 2983 ci->ci_index); 2984 goto print; 2985 } 2986 } 2987 } 2988 print: 2989 item = (uintptr_t)ph->ph_page + ph->ph_off; 2990 item = item + rounddown(addr - item, pp->pr_size); 2991 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 2992 (void *)addr, item, (size_t)(addr - item), 2993 pp->pr_wchan, 2994 incpucache ? cpucachestr : 2995 incache ? "cached" : allocated ? "allocated" : "free"); 2996 } 2997 } 2998 #endif /* defined(DDB) */ 2999